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A NEW PROOF OF A CONJECTURE OF YOCCOZ

by Xavier BUFF & Arnaud CHÉRITAT (*)

Abstract. — We give a new proof of the following conjecture of Yoccoz:
(∃C ∈ R) (∀θ ∈ R \ Q) log rad ∆(Qθ) 6 −Y (θ) + C,

where Qθ(z) = e2πiθz + z2, ∆(Qθ) is its Siegel disk if Qθ is linearizable (or ∅
otherwise), rad ∆(Qθ) is the conformal radius of the Siegel disk of Qθ (or 0 if there
is none) and Y (θ) is Yoccoz’s Brjuno function.

In a former article we obtained a first proof based on the control of parabolic
explosion. Here, we present a more elementary proof based on Yoccoz’s initial
methods.

We then extend this result to some new families of polynomials such as zd + c
with d > 2. We also show that the conjecture does not hold for e2πiθ(z + zd) with
d > 2.

Résumé. — Nous donnons une nouvelle preuve de la conjecture suivante de
Yoccoz :

(∃C ∈ R) (∀θ ∈ R \ Q) log rad ∆(Qθ) 6 −Y (θ) + C,
où Qθ(z) = e2πiθz + z2, ∆(Qθ) est son disque de Siegel si Qθ est linéarisable (ou
∅ sinon), rad ∆(Qθ) est le rayon conforme du disque de Siegel de Qθ (ou 0 s’il n’y
en a pas) et Y (θ) est la fonction de Brjuno de Yoccoz.

Dans un article précédent nous avons obtenu une première preuve basée sur le
contrôle de l’explosion parabolique. Ici, nous présentons une preuve plus élémen-
taire basée sur les méthodes initiales de Yoccoz.

Nous étendons ce résultat à quelques nouvelles familles de polynômes telle que
zd + c avec d > 2. Nous montrons également que la conjecture ne tient pas pour
e2πiθ(z + zd) avec d > 2.

In this article, the notation N stands for the set of non negative integers
{0, 1, 2, . . .} and N∗ = {1, 2, . . .}. We will use m ∧ n to denote the greatest
common divisor of m and n. Let D(z, r) stand for the disk of center z and
radius r in C and let D = D(0, 1).

Many of our statements will concern the following set, where θ ∈ R \Q:

Sθ =
{

univalent maps f : D ↪→ C with f(z) = e2πiθ z +O(z2)
}
.

Keywords: Siegel disks, quadratic polynomials, harmonic and subharbonic functions,
conformal radius, holomorphic motions.
Math. classification: 37F50.
(*) This research was partially funded by the grant At the Boundary of Chaos of the
Agence Nationale de la Recherche, ANR–08–JCJC–0002.
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1. Introduction and statements

1.1. Main theorem

Definition 1.1. — The conformal radius (with respect to 0) of a con-
nected and simply connected open subset U of C containing 0, is the unique
value of r ∈ (0,+∞] such that there exists a conformal map ψ : D(0, r)→ U

with ψ(0) = 0 and ψ′(0) = 1. It will be denoted by radU in this article.

Remark 1.2. — A consequence of Schwarz’s lemma is that if U ⊂ U ′

and U ′ is also open connected and simply connected, then radU ′ > radU .

Let f be a holomorphic map fixing the origin in C. Assume that its
differential at the origin is an aperiodic rotation: f(z) = e2πiθ z + O(z2)
with θ ∈ R \ Q. If f is linearizable at the origin, the Siegel disk ∆(f) is
the maximal domain containing 0 on which f is conjugated to a rotation.
Then f has a Siegel disk if and only if the radius of convergence of the
normalized formal linearizing power series is positive, see Section 2.1. In
this case the conformal radius of its Siegel disk is less than or equal to this
convergence radius. If f is not linearizable let us set ∆(f) = ∅. Let us set
by convention that

rad ∅ = 0.

Definition 1.3. — Let Qθ : C → C be the quadratic polynomial de-
fined by:

Qθ(z) = e2πiθ z + z2.

In [18], Yoccoz used a technique of Ilyashenko and the polynomial-like
map theory of Douady and Hubbard [7] to prove the following result.

Theorem A (Yoccoz). — For all ε > 0, there exists a constant c(ε) > 0
such that the following holds. For all θ ∈ R \Q and f ∈ Sθ, then:

rad ∆(f) > c(ε) ·
(
rad ∆(Qθ)

)1+ε
.

Our first result, whose proof takes its roots in the one of Yoccoz, asserts
that one can choose a constant c(ε) which does not depend on ε. This
follows from the results obtained in [3] but there, the techniques are much
more elaborate than the ones we present here.

Theorem 1.4 (main theorem). — Assume f ∈ Sθ with θ ∈ R\Q. Then

rad ∆(f) >
1
10

rad ∆(Qθ).
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We shall prove this theorem in Section 2. The constant 1/10 is not opti-
mal.

The main theorem can also be presented as follows.

Corollary 1.5. — Let Q̃θ(z) = 2Qθ(z/2) (this affine conjugate of Qθ
is univalent on D). For all θ ∈ R \Q,

1
20

rad ∆(Q̃θ) 6 inf
f∈Sθ

rad ∆(f) 6 rad ∆(Q̃θ).

Stated this way, the right hand inequality is trivial. The left hand fol-
lows from Theorem 1.4 and the following elementary formula expressing
how rad ∆(f) changes under a linear conjugacy: if g(z) = λf(z/λ) then
rad ∆(g) = |λ| rad ∆(f).

1.2. Yoccoz’s work linking arithmetical properties
of the rotation number with the size of Siegel disks

Definition 1.6. — For θ ∈ R \Q let

Y (θ) =
+∞∑
n=0

α0 · · ·αn−1 log 1
αn

where α0 = Frac(θ) = θ − bθc and αn+1 = Frac(1/αn).

Definition 1.7. — A Brjuno number is an irrational real number θ
satisfying Brjuno’s condition Y (θ) < +∞. We denote by B the set of Brjuno
numbers.

The following results were proved by Yoccoz in [18].

Theorem B (Yoccoz). — There exists a constant C ∈ R such that
for all θ ∈ B, for all f ∈ Sθ, the Siegel disk of f contains the disk
D(0, e−Y (θ)−C). In particular,

log rad ∆(f) > −Y (θ)− C.

Corollary (Yoccoz). — If θ is a Brjuno number, rad ∆(Qθ) > 0 and

log rad ∆(Qθ) > −Y (θ)− C − log 2.

The term − log 2 comes from the fact Qθ is univalent only on the disk
D(0, 1/2).

TOME 61 (2011), FASCICULE 1



322 Xavier BUFF & Arnaud CHÉRITAT

Theorem C (Yoccoz). — There exists a constant C ∈ R such that for
all θ ∈ R \Q there exists f ∈ Sθ, such that

log rad ∆(f) 6 −Y (θ) + C.

This includes the case θ /∈ B (i.e., Y (θ) = +∞) if we interpret the above
inequality as rad ∆(f) = 0.

Theorems B and C can be presented together as follows:

Corollary (Yoccoz).

∀θ ∈ R \Q, −Y (θ)− C 6 inf
f∈Sθ

log rad ∆(f) 6 −Y (θ) + C.

Combining Theorem A and Theorem C, Yoccoz obtained the following
corollaries.

Corollary (Yoccoz). — For all ε > 0, there exists Cε ∈ R (that a
priori may tend to +∞ as ε −→ 0) such that for all θ ∈ R \Q,

log rad ∆(Qθ) 6 −(1− ε)Y (θ) + Cε.

In particular, if θ is not a Brjuno number, then rad ∆(Qθ) = 0.

Corollary (Yoccoz). — rad ∆(Qθ) > 0 if and only if θ is a Brjuno
number.

1.3. Consequence of the main theorem

The second author found an independent proof of “θ ∈ R \ B =⇒
rad ∆(Qθ) = 0” in [6], working directly in the family Qθ. He looked at how
parabolic points explode into cycles and how these cycles hinder each oth-
ers. The control on parabolic explosion uses the combinatorics of quadratic
polynomials, and the Yoccoz inequality on the limbs of the Mandelbrot
set. The relative Schwarz lemma of the first author then enabled us to have
a good enough control on conformal radii to prove the following result,
conjectured by Yoccoz [18], that enhances his estimate.

Theorem 1.8. — There exists a constant C ∈ R such that for all θ ∈
R \Q,

log rad ∆(Qθ) 6 −Y (θ) + C.

This article gives a new proof of Theorem 1.8, as an immediate corollary
of Yoccoz’s Theorem C and the main theorem, Theorem 1.4.

Together with the corollary following Theorem B, this gives:

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.9. — There exists a constant C ∈ R such that for all
θ ∈ R \Q,

−Y (θ)− C 6 log rad ∆(Qθ) 6 −Y (θ) + C.

Thus the function

Υ : B → R defined by Υ(θ) = log rad ∆(Qθ) + Y (θ)

is uniformly bounded. In [4], we proved the stronger statement that this
function has a continuous extension to R. This problem is not addressed in
the present article.

1.4. Extension to some other families of polynomials
and counterexamples

In Section 3, we show that our techniques extend to other families of
polynomials. Let us define a class of well-behaved polynomials that was
studied by Lukas Geyer in [9]. Given a polynomial P : C → C, a critical
orbit tail is an equivalence class in the set of forward critical orbits(1) , with
the relation z ≡ z′ ⇐⇒ ∃m,n ∈ N such that P ◦n(z) = P ◦m(z′). We say
it is infinite if a point of the class (and therefore every point in the class)
has infinite forward orbit. Every infinite critical orbit tail falls in one and
only one of the following five categories: let

• ti0 count the number of infinite critical orbit tails falling in a Siegel
disk,
• ti1 count those that fall in a super-attracting basin,
• ti2 those that fall in an attracting basin, not super-attracting,
• ti3 those that fall in a parabolic basin,
• ti4 those that belong to J .

Let ti count the total number of infinite critical orbit tails: ti = ti0+· · ·+ti4.
Let

• n1 be the number of superattracting cycles,
• n2 be the number of attracting cycles, not super-attracting,
• n3 be the number of parabolic cycles,
• n′3 > n3 be the number of cycles of parabolic petals,
• n4 be the number of irrationally indifferent cycles.

By the Fatou-Shishikura inequality (see [7], [15], [8]) n2 6 ti2, n′3 6 ti3,
n4 6 ti4. Geyer’s condition is that n4 = ti4. Note that we always have
n3 + n4 6 ti.
(1) or, equivalently, in the set of critical points

TOME 61 (2011), FASCICULE 1
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Definition 1.10. — A polynomial has property (G) if the number of
infinite critical orbit tails is equal to the number of indifferent cycles, i.e.,
n3 + n4 = ti.

Thus, P has property (G) if and only if ti4 = n4, ti3 = n′3 = n3, ti2 =
n2 = 0, ti1 = 0 and ti0 = 0, i.e., there is no attracting cycle, the basin of
attraction of super-attracting cycles and Siegel disks contains no infinite
critical orbit tail and the basin of attraction of each parabolic cycle contains
at most one infinite critical orbit tail. It follows that each parabolic cycle
has exactly one cycle of petals and is virtually repelling (see [5]). Property
(G) is less general than Geyer’s condition.

Remark 1.11. — If P has property (G), its iterates do not necessarily.
For instance, take a degree 2 polynomial with a period one Siegel disk.
Then n3(P ) = 0, n4(P ) = 1 and ti(P ) = 1. However n3(P ◦n) = 0 and
n4(P ◦n) = 1 whereas ti(P ◦n) = n.

Lukas Geyer proved optimality of Brjuno’s condition for polynomials
satisfying n4 = ti4 (i.e., polynomials such that the number of infinite critical
orbit tails in the Julia set is equal to the number of irrationally indifferent
cycles; they are called saturated polynomials), by using the same method
as Yoccoz. It is therefore natural that our new observation adapts in a
similar yet slightly less general setting.

Definition 1.12. — The critical orbits of a polynomial P : C→ C are
the sets

{
P ◦k(c)

}
k>0 where c is a critical point of P . A point z in a critical

orbit is said to be free(2) if for all critical point c′, ∀k ∈ N, ∀` ∈ N∗,(
P ◦k(c′) = P ◦`(z)

)
=⇒
(
k > ` and P ◦(k−`)(c′) = z

)
.

We denote by ZP the set of non-free points of critical orbits.

This strange definition has the following interest: ZP is the smallest
subset of the union of all critical orbits of P , on which for all map g : C→ C
such that g

∣∣
ZP

= P
∣∣
ZP

, for all critical points c, c′ of P and all integers
k > 0, k′ > 0, if P ◦k(c) = P ◦k

′(c′) then g◦k(c) = g◦k
′(c′).

When a critical point c has a finite forward orbit (i.e., when it is periodic
or preperiodic), then c and its iterates are non-free points. When it has an
infinite forward orbit, then there can be only finitely many non-free points
in its orbit: let P ◦p(c), p > 0, be the last point in the orbit of c where
a critical orbit joins the orbit of c. The non-free points in the orbit of c

(2) This is not a standard terminology.
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are exactly the P ◦n(c) for 0 6 n < p. In particular, if no other critical
point shares the same tail then every point in the orbit of c is free. Another
consequence is that ZP is finite.

Let IP denote the set of all indifferent periodic points of P .

Definition 1.13. — A polynomial P with an indifferent fixed point at
the origin has “property (G) with bound N and margin ε” if in addition
to having property (G), the cardinal of IP ∪ ZP is at most N (3) and if
∀z ∈ IP ∪ ZP , either z = 0 or |z| > ε.

Theorem 1.14. — Let N ∈ N, ε > 0 and C be a compact set of degree d
polynomials h fixing 0 with indifferent multiplier e2πiθ(h), having property
(G) with bound N and margin ε. Let CR\Q = {h ∈ C | θ(h) ∈ R \Q}. Then
∃C ∈ R such that

∀h ∈ CR\Q, log rad ∆(h) 6 log rad ∆(Qθ(h)) + C.

The following lemma shows that it is sufficient to check the margin on
only ZP .

Lemma 1.15. — Any compact set C of degree d polynomials h fixing
0 with indifferent multiplier e2πiθ(h), having property (G) and such that
∀P ∈ C, |IP | 6 N , must have a margin for IP (i.e., there must exist ε > 0
such that ∀P ∈ C and ∀z ∈ IP , either z = 0 or |z| > ε).

Proof. — Assume that this is not the case: then since C is compact, there
would be a map P ∈ C, a sequence Pn ∈ C and a sequence un ∈ IP \{0} such
that un −→ 0 and Pn −→ P . The point un would belong to an indifferent
cycle of Pn with period bounded by |IP | 6 N . So an iterate of P would
have multiple fixed point at 0, i.e., P would have a parabolic fixed point
at 0, and Pn would have an indifferent fixed point at the origin, and an
indifferent cycle close to 0. Then either P would have at least two cycles of
petals at 0, or the parabolic fixed point at 0 would be virtually indifferent
(see [2] for a definition). In both cases, the basin of attraction of 0 would
contain at least two critical points (see [5] for a proof), contradicting the
fact that P has property (G). �

Remark 1.16. — We did not try to get the most general result possible.
For instance, it is possible that the hypothesis that 0 has period 1 is not
required.(4)

(3) In a family of polynomials with bounded degrees, it is equivalent to bound the cardinal
of ZP and to bound the sum of local degrees at points in ZP .
(4) But in this case, the margin on IP is not automatic anymore: the indifferent cycle
containing 0 may collapse on itself.

TOME 61 (2011), FASCICULE 1



326 Xavier BUFF & Arnaud CHÉRITAT

Corollary 1.17. — Under the assumptions of Theorem 1.14, ∃C ∈ R
such that

∀h ∈ CR\Q, −Y (θ(h))− C 6 log rad ∆(h) 6 −Y (θ(h)) + C.

The lower bound follows from Yoccoz’s Theorem B and the compactness
of C which implies that there is a ball D(0, r) on which all maps in C are
univalent.

Corollary 1.18. — Under the same assumptions as in Theorem 1.14,
let CB = {h ∈ C|θ(h) ∈ B}. Then the function

Υ : CB → R defined by Υ(h) = log rad ∆(h) + Y
(
θ(h)
)

is uniformly bounded.

Corollary 1.19. — Let d > 2 be an integer, and C be the boundary of
the central hyperbolic component of the family of unicritical polynomials
zd+ c, i.e., the set of c ∈ C for which the polynomial zd+ c has an indiffer-
ent fixed point (this is the only indifferent cycle by the Fatou-Shishikura
inequality). Then the function Υ is bounded on CB.

Proof. — Conjugate the maps in C by a translation to put the fixed
point at the origin. We still have a compact family. By the Fatou-Shishikura
inequality, the number of indifferent cycles is at most the number of infinite
critical orbit tails. Thus ZP is empty and IP is a singleton. So we may apply
Corollary 1.18. �

Corollary 1.20. — Let d > 2 be an integer, and C be the family{
e2πiθ z(1− z)d−1}θ∈R.

Then the function Υ is bounded on CB.

Proof. — The critical points are z = 1/d and z = 1 (with multiplicity
d − 2). The second critical point is mapped in one step on z = 0 which
is fixed, thus has finite orbit. Therefore the first one has an infinite orbit
because(5) ti > n3 + n4 > 1. Thus the two critical points have disjoint
orbits, so the one with an infinite orbit is free. So ZP = {1, 0}. Also, there
is only one indifferent cycle because n3 +n4 6 ti = 1. So IP = {0}. Thus we
may apply Corollary 1.18: the family has property (G) with bound N = 2
and margin ε = 1. �

(5) It also follows from Fatou and Mañé’s theorems.
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Corollary 1.21. — For the family

fθ(z) = e2πiθ(z + zd),

the following holds: ∃C > 0 such that ∀θ ∈ R \Q,

−
Y
(
(d− 1)θ

)
d− 1

− C 6 log rad ∆(fθ) 6 −
Y
(
(d− 1)θ

)
d− 1

+ C.

Proof. — The family fθ is semi-conjugated to the previous family: more
precisely let φ(z) = −zd−1, and gθ(z) = e2πiθ z(1− z)d−1. Then(6)

φ ◦ fθ = g(d−1)θ ◦ φ.

The Siegel disk of fθ is thus the preimage by z 7→ zd−1 of the Siegel disk
of g(d−1)θ. The claim follows.(7) �

In Section 4, Lemma 4.1, we will prove that for any integer m > 2, the
function

θ ∈ B 7→ Y (θ)− Y (mθ)
m

is unbounded on any interval. It follows that the conclusions in Corol-
lary 1.18 do not hold for this family:

Corollary 1.22. — For the family

fθ(z) = e2πiθ(z + zd),

the function
Υ : θ ∈ B 7→ log rad ∆(fθ) + Y (θ)

is unbounded on any interval.

In fact, the family fθ does not satisfy property (G), which is an hypothesis
of Corollary 1.18. Indeed, there is only one indifferent cycle: the origin,
whereas there are n− 1 infinite critical orbit tails. This can be seen either
by using the semi-conjugacy or the fact that fθ commutes with the map
z 7→ e2πi/(d−1) z.

In Section 4, Lemma 4.2, we will prove that

(∃C > 0) (∀m ∈ N∗) (∀θ ∈ R) Y (θ) 6 Y (mθ) + C logm.

It follows that
log rad ∆(fθ) 6 − Y (θ)

d− 1
+ C ′.

This suggests the following conjecture.

(6) Note how the rotation number changed.
(7) If U is a connected simply connected open subset of C containing the origin and U ′
is the preimage of U by z 7→ zk then radU ′ = k

√
radU .

TOME 61 (2011), FASCICULE 1



328 Xavier BUFF & Arnaud CHÉRITAT

Conjecture 1.23. — There exists a constant C = C(d) ∈ R such that
for all polynomial P of degree d with an indifferent fixed point at the origin,

log rad ∆(P ) 6 − Y (θ)
d− 1

+ log min |ci|+ C

where the ci are the critical points of P and θ is the rotation number at
the origin.

There are possible refinements according to how many recurrent critical
points are associated to the indifferent fixed point.

2. Optimality of the quadratic polynomial

In this section, we prove Theorem 1.4. Our proof follows closely Yoccoz’s
proof of Theorem A. It uses the following notion.

2.1. The radius of convergence of the linearizing power series

This section defines the notion, relates it to the conformal radius of the
Siegel disk and collects a few known results.

Definition 2.1. — Assume θ ∈ R \ Q and f is a holomorphic map
defined in a neighborhood of the origin and such that

f(z) = e2πiθ z +O(z2).

Then, there is a unique formal series

φf (Z) = Z +
+∞∑
n=2

φ̂nZ
n

in C[[Z]] such that
φf (e2πiθ Z) = f ◦ φf (Z),

called the linearizing series. We let R(f) ∈ [0,+∞] be its radius of conver-
gence.

Remark 2.2. — For a fixed θ, the coefficient φ̂n is a polynomial in the
coefficients f̂2, . . . , f̂n of the power series expansion of f at the origin:
f(z) = e2πiθ z + f̂2z

2 + f̂3z
3 + . . .
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Let U be an open subset of C containing the origin and f : U → C be a
holomorphic map such that f(z) = e2πiθ z+O(z2), with θ an irrational real
number. The Siegel disk ∆ of f is the maximal domain ⊂ U on which f is
linearizable. There is a Siegel disk if and only if R(f) > 0. Note that R(f)
depends only on the germ(8) of f , whereas ∆ depends on the representative
of the germ. Let rad be the conformal radius of ∆ with respect to 0, i.e.,
the unique r ∈ (0,+∞] such that there exists a conformal bĳection ψ :
D(0, r)→ ∆ mapping 0 to 0 and such that ψ′(0) = 1. Conjugating f by ψ
gives a conformal self map of D(0, r) fixing the origin with multiplier e2πiθ.
So it is the rotation:

ψ−1 ◦ f ◦ ψ(z) = e2πiθ z.

By uniqueness of the linearizing formal power series:
• R(f) > rad,
• ∀z ∈ D(0, rad), ψ(z) = φ(z),
• ∆ = φ(D(0, rad)) ⊂ φ(D(0, R(f))).

Let inner denote sup{r > 0|D(0, r) ⊂ ∆}. By Schwarz’s lemma, rad >
inner. By Koebe’s one quarter theorem, inner > 1

4 rad.
The radii R(f) and rad are not necessarily equal. An obvious possibility

would be that f has an extension to a bigger domain, and that this ex-
tension has a bigger linearization domain. But this is not the only thing
that can happen, since φf is not necessarily injective on its disk of conver-
gence. In fact φf can be any convergent power series of the form z+O(z2).
Indeed, for such a φ, we can set f(z) = φ

(
e2πiθ φ−1(z)

)
near 0. . . For in-

stance, φ(z) = ez −1 = z + · · · has infinite radius of convergence, and is
not injective on C. The map φ can also have critical points.

Let us recall the following fact.

Lemma 2.3. — If for some r 6 R(f), φ(D(0, r)) is contained in the
domain of definition U of f then r 6 rad and φ(D(0, r)) ⊂ ∆. Thus

rad = sup{r 6 R(f)|φ(D(0, r)) ⊂ U}.

Proof. — First note that the relation f ◦ φ(z) = φ(e2πiθ z) holds by
analytic continuation for all z ∈ D(0, r). To prove the lemma, it is thus
enough to prove that φ is injective on D(0, r), for then φ(D(0, r)) is a
simply connected subset of U , it is invariant by f , and uniformizing it to a
disk conjugates f to an automorphism that fixes the origin so is a rotation.

(8) An analytic germ is an equivalence class of analytic maps defined in a neighborhood
of 0, two maps being equivalent if and only if they coincide in some possibly smaller
neighborhood of 0. Analytic germs are completely characterized by the power series
expansion at the origin.
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If injectivity did not hold, then there would be a, b ∈ D(0, r) such that
a 6= b and φ(a) = φ(b). Without loss of generality, let us assume that
|a| 6 |b| (so b 6= 0). By iterating f we would get φ(ρna) = φ(ρnb) where
ρ = e2πiθ. Therefore the relation φ(z) = φ((a/b)z) would hold on a set with
a point of accumulation in D(0, r). It therefore would hold everywhere on
D(0, r) (both hands of the equality are defined when z ∈ D(0, r) because
|a| 6 |b|). This would contradict the injectivity of φ near 0. �

Proposition 2.4. — Let U be the domain of definition of f . If R(f) >
rad then ∆ is bounded and its boundary in C contains at least one point
of ∂U .

As a corollary:
• if ∆ b U (this includes polynomials and polynomial-like maps(9) ),
• or f is entire (this includes polynomials too),

then
R(f) = rad .

Proof. — Since ψ(z) = φ(z) for all z ∈ D(0, rad), the set ∆ is bounded,
because it is equal to ψ(D(0, rad)) that is contained in the compact set
φ(D(0, rad)). Now if the boundary of ∆ did not contain a point of ∂U then
∆ would be compactly contained in U . Then there would exist some r > rad
such that φ(D(0, r)) ⊂ U . By Lemma 2.3, r 6 rad: contradiction. �

Remark 2.5. — If R(f) > rad, then ∂∆ is the image of a euclidean
circle by a holomorphic map φ. So it is smooth but at finitely many points,
and it is locally connected. The map φ may however be non-injective on
the circle and may also have critical points of order 2 (think of a rotation
inside a cardioid).

Let us state the following extension of a lemma of Yoccoz [18].

Lemma 2.6. — Let U be the domain of definition of f . If there exist
z0 ∈ ∂U , ε > 0, a holomorphic map g : B(z0, ε) → C and a path in
U ∩ B(z0, ε) ending on z0 such that g = f on the path, we say that f has
a path extension (note that the point z0 must be accessible from U). If f
has no path extension then

R(f) = rad .

(9) The definition of polynomial-like maps is recalled in Definition 2.12. Note that poly-
nomials have polynomial-like restrictions but are not polynomial-like by themselves,
because C is not a compact subset of C.
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Proof. — Assume that R(f) > rad. We have seen that, then, ∃z0 ∈ ∂∆∩
∂U and that ∂∆ = φ(∂D(0, | rad |)). Thus ∃a ∈ C such that |a| = rad and
z0 = φ(a). If a is not a critical point of φ then φ is invertible near a and it is
possible to find a path extension of f at z0 using φ: g(z) = φ(e2πiθ φ−1(z)),
the path being for instance the internal ray of ∆: φ(ta) for t < 1 and close
enough to 1. If a is a critical point of φ, then the function g is multivalued
with only z0 as a singularity, so z0 cannot be an isolated point of ∂U for
otherwise g would have to coincide with f in a neighborhood of z0, so g

would be single-valued; then there exists an accessible z1 ∈ ∂U near z0, at
which f has a path extension. �

Lemma 2.7. — Given a non empty connected open subset U of C, the
set of holomorphic functions f : U → C that have no path extension is
dense for the notion of uniform convergence on compact subsets of U .

Proof. — If ∂U = ∅ there is nothing to prove. Otherwise let f0 : U → C
be holomorphic. Let K be a compact subset of U and ε > 0. Let un ∈ U
be a dense sequence. For each un ∈ U choose some vn ∈ ∂U such that
|vn − un| = dist(un, ∂U). There exists a sequence εn such that

h(z) :=
∑
n

εn
z − vn

is normally convergent on every compact subset of U and such that |h(z)| <
ε on K and such that for all n, f = f0 + h is unbounded on the segment
[un, vn]. If such a function f had a path extension g, the same g would yield
by analytic continuation of equalities a path extension of f along [un, vn]
for some n. Contradiction. �

Lemma 2.8. — If f and fn are holomorphic functions defined on a com-
mon open subset U of C containing 0, with f(z) = e2πiθ z + O(z2) and
fn(z) = e2πiθn z +O(z2), if moreover fn has a Siegel disk for all n and fn
tends to f on every compact subset of U , then

rad ∆(f) > lim sup
n→+∞

rad ∆(fn).

Proof. — Let r = lim supn→+∞ rad ∆(fn). If r = 0 there is nothing
to prove. Otherwise let θn and ψn be to fn what θ and ψ are to f . By
compactness of the set of Schlicht functions, extracting a subsequence one
can assume that ψn converges on every compact subset of D(0, r) to some
injective map ζ with ζ(0) = 0 and ζ ′(0) = 1. One can assume that θn
converges to some θ′. Then the relation fn ◦ ψn(z) = ψn(e2πiθn z) passes
to the limit: f ◦ ζ(z) = ζ(e2πiθ′ z) for all z ∈ B(0, r). By computing the
derivative at the origin, one gets θ′ = θ mod 2π. Therefore ζ(B(0, r))
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is a linearization domain, thus contained in ∆(f). By Schwarz’s lemma,
r 6 rad ∆(f). �

The following result can be found in [18], page 20.

Corollary 2.9 (Yoccoz).

inf
f∈Sθ

R(f) = inf
f∈Sθ

rad ∆(f).

Proof. — The following argument is very similar that of [18]. First, from
R(f) > rad ∆(f) it follows at once that inff∈Sθ R(f) > inff∈Sθ rad ∆(f).
To prove the reverse inequality, fix a function h : D→ C having no path ex-
tension, provided for instance by Lemma 2.7. Given some f ∈ Sθ, consider
the sequence of maps

fn : D→ C, z 7→ 1
n
z2h(z) +

f
(
(1− 1

n )z
)

1− 1
n

defined on D: they fix the origin and have multiplier e2πiθ. They have no
path extension. They also tend to f uniformly on compact subsets of D.
By Lemma 2.8,

lim sup rad ∆(fn) 6 rad ∆(f).

By Lemma 2.6,
R(fn) = rad ∆(fn).

There exists a sequence εn −→ 0 such that fn is injective on D(0, 1− εn).
Therefore the restriction un to D of z 7→ un((1− εn)z)/(1− εn) belongs to
Sθ. So R(un) > infu∈Sθ R(u). Also, R(fn) = (1 − εn)R(un). Putting it all
together we get:

rad ∆(f) > inf
u∈Sθ

R(u).

Since this holds for all f ∈ Sθ, this proves the corollary. �

The following rule is elementary: if g(z) = λf(z/λ) holds in a neighbor-
hood of 0 then

φg(X) = λφf (X/λ).

In particular, R(g) = |λ|R(f).

2.2. Holomorphic motions

The following notion is defined in [11].
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Definition 2.10. — A holomorphic motion of a subset X of the Rie-
mann sphere S with parameter in a complex manifold Λ and base parameter
λ0 ∈ Λ is an analytic map h : Λ×X → S such that

• ∀z ∈ X, h(λ0, z) = z,
• ∀z ∈ X, the function λ 7→ h(λ, z) is holomorphic,
• ∀λ ∈ Λ, the function z 7→ h(λ, z) is injective.

Then it can be proved, see [11], that h is continuous and in fact ∀λ ∈ Λ,
the map z 7→ h(λ, z) extends to a (non unique) quasiconformal homeomor-
phism of the Riemann sphere. The λ-lemma of Mañé, Sad and Sullivan in
[11] states that a holomorphic motion of X has a unique extension to a
holomorphic motion of the closure of X in S.

A family of setsXλ is said to undergo a holomorphic motion if there exists
a holomorphic motion such that ∀λ, h(λ,Xλ0) = Xλ. The base parameter
can then easily be forced to be any element of Λ.

Let B be a complex manifold. In the present article, an analytic family
parameterized by B will refer to a family of maps gb, with b ∈ B, such that
the map (b, z) 7→ gb(z) is defined on an open subset of B × C, is analytic,
and takes values in C.

An analytic family gb is said to undergo a parabolic bifurcation if there
exists b0 and n > 1 such that z 7→ g◦nb (z) − z has a root that splits when
b varies away from b0. Such a root is necessarily multiple and thus is a
parabolic point of gb0 . But a parabolic point does not necessarily bifurcate.

The following lemma was formulated by Mañé, Sad and Sullivan in [11]
for rational maps, but it is known to work alike for polynomial-like maps.

Lemma 2.11. — Let B be a simply connected complex manifold. As-
sume that (gb)b∈B is an analytic family of polynomial-like maps. Assume
that this family does not undergo a parabolic bifurcation. Then the Julia
set of gb undergoes a holomorphic motion.

Proof. — The Julia set is the closure of the set of repelling periodic
points. Because the maps gb are polynomial-like of the same degree, the
projection (b, z) 7→ b is proper from the set Pn = {(b, z)|g◦nb (z) = z} to B.
The assumption that there is no parabolic bifurcation implies that roots of
g◦nb (z)−z can be locally followed as a continuous functions of b. Properness
implies that they can be followed as global functions over the universal
cover of B. Since B is simply connected, it is its own universal cover. These
functions are in fact holomorphic as solutions of one dimensional analytic
equations. So Pn consists in the disjoint union of finitely many graphs
of holomorphic functions from B to C. Let C be one of these graphs, let
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(b, z) ∈ C and µ = (gnb )′(z) be the corresponding multiplier. If µ = 1, then
the multiplier must be constant over C itself, for otherwise there would be
a parabolic bifurcation. If µ is a k-th root of unity, it is also the case, since
C is also one of the graphs composing Pkn. If µ is irrationnally indifferent
is it also the case, for otherwise a nearby parameter would be a root of
unity. From all this, it follows that if |µ| > 1 then the cycle is repelling on
all of C. The repelling points can therefore be followed holomorphically on
B an stay repelling. Moreover two different repelling periodic point cannot
collide as b varies in B, otherwise the iterate of gb of order the GCD of
their periods would have a multiple fixed point that splits. So the set of
repelling periodic points undergoes a holomorphic motion. By the λ-lemma
of [11], its closure also undergoes a holomorphic motion. �

2.3. Proof of the main theorem

We will first compare the radius of convergence of the linearizing series
of a univalent function f on D with the corresponding radius of Qθ (which
is univalent on D(0, 1/2)).

Let us assume that θ ∈ R \ Q and R(Qθ) > 0, since otherwise, there
is nothing to prove. Consider a univalent function f : D ↪→ C fixing 0
with multiplier e2πiθ. Following Ilyashenko and Yoccoz, consider the one-
parameter families of maps{

fa : D(0, 1)→ C
}
a∈C and

{
g̃b : D

(
0, 1/|b|

)
→ C
}
b∈C

defined by:

fa(z) = f(z) + az2 and g̃b(w) = 1
b
f1/b(bw) = 1

b
f(bw) + w2.

The family g̃b extends analytically at b = 0 by g̃0 = Qθ. We have:

(2.1) (∀b ∈ C∗) R(g̃b) = 1
|b|
R(f1/b).

The following notion is defined in [7].

Definition 2.12. — A polynomial-like map is a proper holomorphic
map (and thus a ramified covering) f : U → V of degree at least 2, between
two simply connected domains U b V of C. When the degree is 2, it is also
called quadratic-like.

The following observation is essentially due to Yoccoz [18].
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Lemma 2.13. — If |b| < 2/19, the map g̃b has a quadratic-like restriction
gb : Ub → V with

Ub = {z ∈ D(0, 4)|g̃b(z) ∈ D(0, 492/121)} and V = D(0, 492/121).

Proof. — Let b1 = 2/19, w1 = 4 and ζ1 = 492/121. These number
satisfy:(10)

b1w1 < 1(2.2)
w1

(1− b1w1)2 6 w2
1 − ζ1(2.3)

w1 < ζ1.(2.4)

Since f is univalent, we have, for all z ∈ D:∣∣f(z)
∣∣ 6 |z|(

1− |z|
)2

(the Koebe function is extremal with this respect). It follows that when
|b| < b1, |w| = w1 and |ζ| < ζ1, then |bw| < 1 and∣∣(g̃b(w)− ζ)− (w2 − ζ)

∣∣ = ∣∣∣∣1b f(bw)
∣∣∣∣ 6 w1

(1− b1w1)2 6 w2
1 − ζ1 < |w2 − ζ|.

Thus by Rouché’s theorem, every ζ ∈ D(0, ζ1) = V has exactly two preim-
ages by g̃b in D(0, w1), counted with multiplicity. Therefore gb is proper
holomorphic of degree 2.(11) If Ub were not connected, the component of Ub
containing 0 would be mapped biholomorphically to V , which, by Schwarz’s
lemma, is not possible since

∣∣g̃′b(0)
∣∣ = 1. Last, Ub is compactly contained

in V because w1 < ζ1. �

We saw in Section 2.1 that R(f) is equal to the conformal radius of the
Siegel disk when f is polynomial-like.

(10) The constants are not optimal, but this is not really important: for the purpose of
this article, we need only the existence of positive solutions to the three equations. We
chose b1 very close to its maximal possible value. For b1 close to 0, it is very easy to find
solutions.
(11) A holomorphic map f : U → V between open sets, such that every point has d
preimages counted with multiplicity, is proper (and has degree d by definition). Indeed,
let K be a compact subset of V and L = f−1(K). Let un ∈ L be a sequence: f(un) ∈ K.
Passing to a subsequence we can assume that f(un) converges to some v ∈ V . The point
v has d preimages in U counted with multiplicity. For all such preimage u (call m its
multiplicity), let U ′ ⊂ U be a compact neighborhood of u. Then by Rouché, there exists
a neighborhood V ′ of v such that for all v′ ∈ V ′ \ {v}, U ′ contains at least m preimages
of v′ counted with multiplicity. Thus near the preimages of v, one still finds all preimages
of points near enough to v. Therefore, there must be a subsequence of un converging in
U . Its limit u satisfies f(u) = v thus belongs to L. Thus L is compact. Thus f is proper.
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Proposition 2.14. — Let θ ∈ R \ Q. Let gb : Ub → C be an analytic
family of maps(12) of the form gb(z) = e2πiθ z+O(z2) (so the rotation num-
ber is independent of b). Assume that they all have a Siegel disk ∆(gb) ⊂ Ub,
and that its boundary in C is not empty and undergoes a holomorphic mo-
tion (we do not require that the holomorphic motion commutes with the
dynamics, nor even that ∆(gb) b Ub). Let rad ∆(gb) be the conformal ra-
dius of ∆(gb) with respect to 0. Then the function b 7→ − log rad ∆(gb) is
harmonic.

Proof. — The following proof of this lemma of Sullivan was communi-
cated to us by Saeed Zakeri. First, note that the conformal radius varies
continuously. Indeed, the holomorphic motion implies that the function
b 7→ ∂∆(gb) is continuous for the Hausdorff topology on compact subsets
of C. It implies the sequential continuity of b 7→ (∆(gb), 0) for the notion of
Carathéodory convergence. The latter implies the continuity of the confor-
mal radius. Then, consider an extension(13) of the holomorphic motion to
a holomorphic motion of all the plane, but which does not necessarily com-
mute with the dynamics. Let b0 be any parameter and wn be any sequence
in the Siegel disk of parameter b0, converging to a point in the boundary of
∆(gb0). For b close to b0 let wn(b) be the point to which wn is transported
by the motion. Now look at

un(b) = ψ−1
gb

(
wn(b)

)
where ψgb is the unique conformal map from D(0, rad ∆(gb)) → ∆(gb)
that maps 0 to 0 and has derivative 1 there. For each b, the sequence(
wn(b)

)
converges to a point in the boundary of the Siegel disk ∆(gb).

Thus,
∣∣un(b)∣∣ 6 rad ∆(gb) converges to rad ∆(gb). Recall that R(gb) >

rad ∆(gb) and that the map ψgb and φgb must coincide on D(0, rad ∆(gb))
(see Section 2.1). As a corollary, the map (b, w) 7→ ψgb(w) is analytic:
indeed, the coefficients φ̂n(gb) are polynomials of the coefficients of gb, thus
vary analytically with b. Thus the map

(b, w) 7→
(
b, ψgb(w)

)
is bi-analytic (its inverse is (b, w) 7→

(
b, ψ−1
gb

(w)
)
), so b 7→ un(b) is ana-

lytic. Therefore, b 7→ log |un(b)| is harmonic (it does not vanish). Now, the
map b 7→ log rad ∆(gb) is the pointwise limit of this sequence of harmonic
functions. This sequence is bounded from above by the continuous func-
tion b 7→ log rad ∆(gb), therefore there is, locally, a uniform upper bound.
(12) that we do not assume polynomial-like
(13) Slodkowsky’s theorem [16] provides one, but we can also use the Bers-Royden [1] or
the Sullivan-Thurston [17] version since this argument is local in terms of the parameter.
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We can thus apply Harnack’s theorem: the limit is locally uniform and
harmonic. �

Let us go back to the specific family gb we were studying.

Proposition 2.15. — The map b 7→ log rad ∆(gb) is well defined and
harmonic in D(0, 2/19).

Proof. — Let r0 = 2/19. By Lemma 2.13, gb : Ub → V is quadratic-like
for all b ∈ D(0, r0). The radius of convergence of φgb coincides with the
conformal radius of the Siegel disk ∆(gb) by Proposition 2.4. The maps gb
all have an indifferent fixed point. This is the only non repelling cycle of
the quadratic-like map gb (there can be at most one, see [7]). So there is
never a parabolic periodic point. So by Lemma 2.11, the Julia set of gb
undergoes a holomorphic motion as b varies in D(0, r0). The Siegel disk of
gb is the connected component containing 0 of the complement of its Julia
set. Thus the boundary of the Siegel disk undergoes a holomorphic motion
too. So by Proposition 2.14, the map b 7→ log rad(∆(gb)) is harmonic. �

Definition 2.16. — Let avg
|z|=r

m(z) denote the average of the function

m(z) on the circle |z| = r (with respect to the Lebesgue measure on the
circle).

As an immediate consequence of Proposition 2.15, we have the following
equality:

log rad ∆(Qθ) = avg
|b|=1/10

log rad ∆(gb).

And since for |b| = 1/10 the map gb is polynomial-like,

rad ∆(gb) = R(gb).

By equation (2.1):

|b| = 1/10 =⇒ R(gb) = 10R(f1/b).

Thus

(2.5) log rad ∆(Qθ) = log 10 + avg
|a|=10

logR(fa).

Proposition 2.17. — We have logR(f) > avg
|a|=10

logR(fa).

Proof. — Look at the formal linearizing power series of fa:

φfa(Z) = Z +
+∞∑
n=2

φ̂n(a)Zn.
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By Hadamard’s theorem,

1
R(fa)

= lim sup
n→+∞

n

√
|φ̂n(a)|.

By looking at the formal equation defining φ, one can see that the coeffi-
cients φ̂n(a) are polynomials in a (see the lemma p. 59 in [18]). Therefore
the maps a 7→ log |φ̂n(a)| are subharmonic, so:

1
n

log
∣∣φ̂n(0)

∣∣ 6 avg
|a|=10

1
n

log
∣∣φ̂n(a)

∣∣.
By Lemma 2.13, for |a| = 10, the map fa has a quadratic-like restriction.
In that case, the linearizing map φfa takes its values in D(0, 4/|a|) ⊂ D
and it follows from the Cauchy inequalities that∣∣φ̂n(a)

∣∣ 6 1(
R(fa)

)n .
By Proposition 2.15 b 7→ R(gb) is, in particular, a continuous non vanishing
function on the circle |b| = 1/10. Thus, when |a| = 10, R(fa) = R(gb)/10
reaches a minimum c > 0 and

1
n

log
∣∣φ̂n(a)

∣∣ 6 log 1
R(fa)

6 log 1
c
.

This uniform upper bound allows us to apply Fatou’s lemma:

− logR(f) = lim sup
n→+∞

1
n

log |φ̂n(0)|

6 avg
|a|=10

lim sup
n→+∞

1
n

log |φ̂n(a)| = − avg
|a|=10

logR(fa).

�

Equality (2.5) and Proposition 2.17 yield:

logR(f) > avg
|a|=10

logR(fa) = log rad ∆(Qθ)− log 10,

whence

R(f) >
1
10

rad ∆(Qθ).

Therefore, inf R(f) > 1
10 rad ∆(Qθ), with the infimum taken over Sθ. By

Corollary 2.9, inf rad ∆(f) = inf R(f). Q.E.D.
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3. Other families of polynomials

In this section, we shall first prove Theorem 1.14. Assume N ∈ N and C is
a compact set of degree d polynomials P fixing 0 with indifferent multiplier
e2πiθ(P ), having property (G) with bound N and margin ε. Let ZP be the
set of non-free points of critical orbits (see Definition 1.12). Let IP be the
set of indifferent periodic points of P : 0 ∈ IP . Let CP be the set of critical
points of P . Set

GP (z) =
∏

w∈ZP∪IP∪CP

(z − w)1+degP (w)

where degP (w) = the local degree of P at w. For b ∈ C let

g̃P,b = P + bGP .

First, by compactness of C, by the bound N , and by the definition of GP ,
we see that the set {GP |P ∈ C} ⊂ C[X] is bounded in the sense that
it has bounded degree and bounded coefficients. Therefore, there exists
r > 0 and R > 0, independent of P , such that |b| < r =⇒ g̃P,b(z)
has a polynomial-like restriction gP,b of degree d from the component of
g̃−1
P,b

(
D(0, R)

)
contained in D(0, R) to D(0, R).

Lemma 3.1. — Fix any P ∈ C. As b varies in D(0, r), the polynomial-
like map gP,b cannot undergo a parabolic bifurcation.

Proof. — The particular form of G has the following consequences. First,
every critical point of P is a critical point of gP,b with the same local degree.
Since gP,b is polynomial-like of degree d, it has d−1 critical points counted
with multiplicity, which is the same as for P . Therefore, the critical points of
P and gP,b are the same and have the same degree. Recall that ZP contains
the finite critical orbits. Thus for all point x in a finite critical orbit of P ,
for all b, gP,b(x) = P (x). In particular, a critical point of P with a finite
orbit is a critical point of gP,b with a finite orbit. For all non-free point of a
critical orbit of P , gP,b(x) = P (x). As a consequence, any two critical point
in the same orbit tail of P are two critical points in the same orbit tail of
gP,b. Therefore the number of infinite critical orbit tails of gP,b is at most
that of P , and the latter is equal to the number of indifferent cycles of P
by the assumption (G). So gP,b can not have more indifferent cycles than
P . But the particular form of G implies also that all indifferent cycle of P
is also a cycle of gP,b, with moreover the same multiplier. Therefore, gP,b
must have exactly the same indifferent periodic points as P . Thus there
can be no parabolic bifurcation. �
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Therefore by Lemma 2.11 the Julia set of gP,b undergoes a holomorphic
motion. So, the same analysis as in Proposition 2.15 holds, with the triple
(P, gP,b, r/2) playing the role of (Qθ, gb, 1/10), and we can thus write:

∀P ∈ C, logR(P ) = avg
|b|=r/2

logR(gP,b).

We have not yet used the margin hypothesis: the points in (ZP ∪IP )\{0}
stay bounded away from 0 when P varies in C. It is also the case for the
points of CP for otherwise there would exist a P with 0 ∈ CP contradicting
the fact that |P ′(0)| = 1. Now 0 ∈ IP thus G′′P (0) = 2

∏
(−w)1+degP (w)

with the product taken over w ∈ (ZP ∪IP ∪CP )\{0}. As a corollary, G′′P (0)
is bounded away from 0 when P varies in C.

Let a = 1/b and fP,a(z) = bgP,b(b−1z) = a−1gP,1/a(az). Then, as a −→
0, fP,a tends (pointwise) to the degree 2 polynomial

fP (z) = e2πiθ(P ) z + G′′P (0)
2

z2

The same analysis as in Proposition 2.17 also holds, with (fP , fP,a, 2/r)
playing the role of (f, fa, 10), and yields

logR(fP ) > avg
|a|=2/r

logR(fP,a).

Now since fP and Qθ(P ) are related by a linear conjugacy:

logR(fP ) = logR(Qθ(P ))− log |G
′′
P (0)|
2

and since fP,a and gP,b are related by a linear conjugacy:

logR(fP,a) = logR(gP,b) + log |b|.

Putting it all together, we get

logR(P ) 6 − log r/2 + logR(Qθ(P ))− log |G
′′
P (0)|
2

.

Since G′′P (0) is bounded away from 0, we get Theorem 1.14. Q.E.D.

4. Estimates on Yoccoz’s Brjuno function

Lemma 4.1. — For any integer m > 2, the function

θ ∈ B 7→ Y (θ)− Y (mθ)
m

is unbounded on any interval.
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Proof. — The proof relies on the following fact. For any rational number
p/q with p and q coprime, any integer k > 1, and any Brjuno number θ,

(4.1) Y

(
p

q
+ k

N + θ

)
=

N→+∞

logN
q

+O(1)

where N denotes an integer. Let us first show how this enables us to con-
clude. Assume p/q is a rational number with p and q coprime and assume
q and m are coprime. Choose a Brjuno number θ and set

θN = p

q
+ 1
N + θ

.

Note that

mθN = mp

q
+ m

N + θ
with mp and q coprime.

Then,

Y (θN ) =
N→+∞

logN
q

+O(1) and Y (mθN ) =
N→+∞

logN
q

+O(1).

Thus,

Y (θN )− Y (mθN )
m

=
N→+∞

m− 1
m
· logN

q
+O(1) −→

N→+∞
+∞.

It follows that the function

θ ∈ B 7→ Y (θ)− Y (mθ)
m

is unbounded in any neighborhood of p/q. This implies our lemma since
the set of rational numbers p/q with q and m coprime is dense in R.

Let us now prove estimate (4.1). We will use the continued fraction no-
tation:

[a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1
an

.

Set θN = p

q
+ k

N + θ
. Recall that a rational has two finite continued fraction

expansions, one with n odd, equal to the initial segment of close enough
reals x < p/q and another with n even, equal to the initial segment of
close enough reals x > p/q. An approximant of a real number is a partial
quotient of its continued fraction expansion. It is also called a convergent.
Let us recall the following property: if θ ∈ R and |θ − p/q| < 1/2q2 then
p/q is one of the approximants of θ (Theorem 184 p. 196 in [10]). If N is
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large enough, p/q is an approximant of θN > p/q: there exists n even and
N ′ such that for all N > N ′:
p

q
= [a0, a1, . . . , an] and θN = [a0, a1, . . . , an + αn] with αn ∈ ]0, 1[ .

Set
p′

q′
= [a0, a1, . . . , an−1]

and for m < n, set

αm = [0, am+1, . . . , an + αn].

Then (Theorem 150 p. 167 in [10]) p′q−q′p = (−1)n = 1 because n is even,
and (see [18] Section 1.2 p. 12)

α0α1 · · ·αn−1 = |q′θN − p′| =
∣∣∣∣q′p− p′qq

+ kq′

N + θ

∣∣∣∣ −→N→+∞

1
q
,

α0α1 · · ·αn = |qθN − p| =
kq

N + θ
−→
N→+∞

0

and
1
αn

= −q
′θN − p′

qθN − p
= N + θ

kq2 −
q′

q
= θ

kq2 mod 1
kq2 .

In particular, αn+1, which is the fractional part of 1/αn, can take only kq2

values which all are Brjuno numbers. It follows that as N → +∞,

Y (θN ) = log 1
α0

+ . . .+ α0α1 · · ·αn−2 log 1
αn−1︸ ︷︷ ︸

O(1)

+ α0α1 · · ·αn−1 log 1
αn︸ ︷︷ ︸

q−1 logN+O(1)

+ α0α1 · · ·αnY (αn+1)︸ ︷︷ ︸
o(1)

= logN
q

+O(1).

�

Lemma 4.2. — ∃C > 0, ∀m ∈ N∗, ∀θ ∈ R,

Y (θ) 6 Y (mθ) + C logm.

Proof. — For θ ∈ Q it reads: −∞ 6 −∞, which holds. Let us now
assume θ irrational. For m = 1 it reads: Y (θ) 6 Y (θ) which is trivial. So
we now also assume that m > 2.

We will use the Brjuno sum:

B(θ) =
∑
n∈N

log qn+1

qn
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where pn/qn are the approximants of θ. We have the following arithmetical
property (c.f. [18], page 14):∣∣B(θ)− Y (θ)

∣∣ is bounded.

We recall that
(a) if pn/qn are the approximants of α then(14)

1
2qnqn+1

<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1
qnqn+1

,

and also that
(b) qn > Fn where Fn is the n-th Fibonacci number(15) . Last,
(c) if |α−p/q| < 1/2q2, then p/q is an approximant of α. (Theorem 184

p. 196 in [10])
Now, for every approximant pn/qn of θ, note mpn/qn = p′/q′ with q′ =
qn/(m ∧ qn).

Case 1: p′/q′ is itself an approximant of mθ in which case if we note
p′′/q′′ the next approximant of mθ, then

1
2q′q′′

<

∣∣∣∣mθ − p′

q′

∣∣∣∣ = m

∣∣∣∣θ − pn
qn

∣∣∣∣ < m

qnqn+1

whence
q′′ >

qn+1qn
2mq′

>
qn+1

2m
and thus

log q′′

q′
>

log qn+1

q′
− log 2m

q′
>

log qn+1

qn
− log 2m

q′
.

Case 2: mpn/qn = p′/q′ is not an approximant of mθ, which means that∣∣∣∣mθ − p′

q′

∣∣∣∣ > 1
2q′2

,

and thus
1

qnqn+1
>

∣∣∣∣θ − pn
qn

∣∣∣∣ > 1
2mq′2

whence
qn+1 6

2mq′2

qn
6 2mqn

and thus
log qn+1

qn
6

log qn
qn

+ log 2m
qn

.

(14) By [18] p. 12, α− pn
qn

= (−1)n/qn(qn+1+αn+1qn). Since αn+1 ∈]0, 1[ and qn 6 qn+1,
qn+1 < qn+1 + αn+1qn < 2qn+1.
(15) It follows by induction from q0 = 1, q1 = a1 > 1, and qn = anqn−1 + qn−2, 10.2.2
p. 166 of [10].
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Finally,

B(θ) =
∑

case 1

log qn+1

qn
+
∑

case 2

log qn+1

qn

6
∑ log q′′

q′
+ log(2m)

∑ 1
q′

+
∑′ logFn

Fn
+ log(2m)

∑ 1
Fn

.

The prime in the sum means the summand needs to be replaced by the
smallest non increasing sequence greater or equal to the sequence logFn/Fn.
For different values of n, the approximants p′/q′ of mθ are different since
p′/q′ = mpn/qn and thus

B(θ) 6 B(mθ) + log(2m)
∑ 1

Fn
+
∑′ logFn

Fn
+ log(2m)

∑ 1
Fn

.

Since Fn is exponentially increasing, the sums (independent of θ) they are
involved in are finite. We get

Y (θ) 6 Y (mθ) + C1 logm+ C2

6 Y (mθ) + C3 logm

with C1 = 2
∑ 1
Fn

, C2 =
∑′ logFn

Fn
+ 2
∑ 1
Fn

log(2) + 2‖B − Y ‖∞ and
C3 = (C1 + C2/ log 2) < +∞. �

Appendix A. Remarks

This section does not claim to bring new results. It is just a discussion
of probably known and hopefully useful facts.

A.1. Subharmonicity

If θ is a Brjuno number, then for all analytic family fa(z) = e2πiθ z +
O(z2) of analytic maps, a ∈ A (notice that the rotation number does not
vary with a), the function a 7→ − logR(fa) is the lim sup of subharmonic
functions (see Definition 2.1):

u : a 7→ − logR(fa) = lim sup
n→+∞

1
n

log |φ̂n(a)|.

Lemma A.1. — If a closed disk B is contained A, then the sequence of
functions fn(a) = 1

n log |φ̂n(a)| is uniformly bounded from above on B.
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Proof. — Choose r > 0, such that ∀a ∈ B, fa is defined and injective
on D(0, r). By Yoccoz’s Theorem B, for all a ∈ B, fa has a (not nec-
essarily maximal) rotation domain contained in D(0, r) and of conformal
radius > r0 := r e−Y (θ)−C . It implies that φfa is convergent on a disc
containing D(0, r0), and maps this disc in D(0, r). Using Cauchy’s inequal-
ities, φ̂n(a) 6 r/rn0 whence n−1 log |φ̂n(a)| 6 log(r)/n+ log(1/r0), which is
bounded. �

By Fatou’s lemma,(16) the function a 7→ − logR(fa) is therefore (every-
where) below its average on circles. But we can say more: by the Brelot-
Cartan theorem (see [13], Theorem 3.4.3, p. 64), if we note

u∗(a) = lim sup
a′→a

u(a′),

then u∗ is subharmonic and u = u∗ except on a polar set.
We however cannot say that u itself is subharmonic (iff u = u∗) because

it is not necessarily upper semicontinuous, as the following counterexample
shows. Let f0 = e2πiθ z +O(z2) be the restriction to D of a map f̃ defined
on an open set Ω containing D, and such that its Siegel disk ∆(f̃) in Ω goes
beyond the edge of D, i.e., is not contained in D (for instance f̃(z) = e2πiθ z

on Ω = C). Then ∆(f0) is the biggest f̃ -invariant subdisk of ∆(f̃) that is
contained in D. Since ∆(f0) ( ∆(f̃),

rad ∆(f0) < rad ∆(f̃).

Recall that (see Section 2.1)

rad ∆(f̃) 6 R(f̃) = R(f0).

Thus:
rad ∆(f0) < R(f0).

Let fa = f0 + az2g(z) for a ∈ C, where g(z) is any analytic function on D
that is singular on all of ∂D (no path extension). Then by Lemma 2.6,

R(fa) = rad ∆(fa).

By Lemma 2.8, lim supa→
6=

0 rad ∆(fa) 6 rad ∆(f0). Thus

lim sup
a→
6=

0
R(fa) < R(f0).

(16) Fatou’s lemma states that if fn is a sequence of non-negative measurable functions
on a measure space, then

∫
lim inf fn 6 lim inf

∫
fn. As a corollary, if fn is a sequence of

functions on the circle, uniformly bounded from above, then
∫

lim sup fn > lim sup
∫
fn

where the integral is for Lebesgue’s measure on the circle.
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Thus a 7→ R(fa) is not upper semi-continuous at a = 0.
Now, still assuming θ ∈ B, the upper semicontinuity holds if, instead of

considering the map a 7→ − logR(fa) we consider a 7→ − log rad(∆(fa
∣∣
D))

and if all fa are defined on D and fa −→ f0 for the compact open topology
on D. This is a corollary of the work of Risler [14]. Lower semicontinuity
also holds, this time for an elementary reason: see Lemma 2.8. We have
thus proved:

Proposition A.2. — Given θ ∈ B, let Hθ(D) be the set of analytic
functions f : D → C fixing 0 with multiplier e2πiθ, equipped with the
compact open topology.(17)

The map
(
Hθ(D) → (0, 1]

f 7→ rad ∆(f)

)
is continuous.

This is not true for θ /∈ B: for the rotation z 7→ e2πiθ z restricted to D,
we have ∆ = D, so rad = 1, but for the nearby map e2πiθ z + εz2, we have
rad = 0.

Proposition A.3. — If θ ∈ B and A is a one complex dimensional
parameter space and

(a, z) ∈ A× D 7→ fa(z) = e2πiθ z +O(z2)

is analytic, then the map

a 7→ − log rad ∆(fa)

is continuous and subharmonic.

Proof. — We already mentioned the continuity.
Now, the same trick(18) as before yields subharmonicity with little effort:

consider a function g as in the discussion above, i.e., holomorphic on D and
with singularities at all points of ∂D. Consider the sequence of families

(a, z) 7→ τ−1
n fa(τnz) + 1

n
z2g(z) with τn = 1− 1

n
.

They all satisfy − logR = − log rad ∆ as above, whence all these are (con-
tinuous) subharmonic functions of a. By the previous proposition, these
functions tend (locally uniformly asA is locally compact) to− log rad ∆(fa).

�

(17) uniform convergence on compact subsets of D
(18) It would be nice to have a more satisfactory (no power series) proof. Also, it could
be true that subharmonicity still holds if the domain of definition of f undergoes a
holomorphic motion.
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A.2. Holomorphic motions

Proposition A.4. — Let (Ua) be simply connected open subsets of C
whose boundaries move holomorphically with respect to a. Let ca be a
holomorphically varying point in Ua and r(a) be the conformal radius of
Ua with respect to ca. Then, a 7→ − log r(a) is a subharmonic function.

Proof. — Let Va be the image of Ua by the inversion z 7→ 1/(z−ca). The
set Va is unbounded and undergoes a holomorphic motion of its boundary.
The conformal radius of Ua is the inverse of (see [12] Corollary 11.1) the
capacity radius of C\Va, which is itself expressible by an energy minimiza-
tion(19) as follows (see [13]):

− log r(a) = log capacity radius = − inf
µ
E(µ)

where µ varies in the set of non-atomic probability measures on ∂Va (to-
gether with its Borel σ-algebra) and E(µ) (the energy) is defined by

E(µ) =
∫∫
∂Va×∂Va

− log
∣∣u− v∣∣dµ(u)dµ(v).

Since µ is non-atomic, the mass of the diagonal {(u, v)|u = v} is null.
The integrand − log

∣∣u − v∣∣ is bounded from below by − log diam(∂Va),
and the measure µ⊗ µ is finite, therefore E(µ) is well defined and belongs
to (−∞,+∞]. Choose a basepoint a0 and let ξa(z) : ∂Va0 → ∂Va be the
holomorphic motion. Then, for all probability measure µ on ∂Va0 ,

E
(
(ξa)∗µ

)
=
∫∫
∂Va0×∂Va0

− log
∣∣ξa(u)− ξa(v)

∣∣dµ(u)dµ(v).

Again, the integrand − log
∣∣ξa(u)− ξa(v)

∣∣ has a lower bound, uniform over
(u, v), when a remains in a compact set, because − log diam(∂Va) has. Thus
using Harnack’s inequality, we get that E

(
(ξa)∗µ

)
is either a harmonic

function of a or the constant function +∞. Now, − log r(a) = − inf E =
sup−E so it is the supremum of a set of harmonic functions that are locally
bounded from above. This yields a continuous subharmonic function. �

A.3. Harmonicity

Let us recall Proposition 2.14, whose proof was communicated to us by
Saeed Zakeri.

(19) As a variant of this, one could instead use the transfinite diameter.
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Proposition A.5. — Assume that fa : Ua → C is an analytic family
of maps of the form f(z) = e2πiθ z + O(z2), so that the rotation number
is independent of a. Assume they all have a Siegel disk ∆(fa), and that
∆(fa) 6= C. Assume that the boundary in C of the Siegel disk ∂∆(fa)
undergoes a holomorphic motion (we do not require ∆(fa) b Ua and we do
not require the motion to commute with the dynamics). Then the function
a 7→ − log rad ∆(fa) is harmonic.

This is kind of surprising: let A denote the fact that a simply connected
domain undergoes a holomorphic motion (of its boundary), and B denote
the fact that this domain is a Siegel disk of an analytically varying family
of analytic maps (with fixed rotation number) in D. Then

A =⇒ − log rad is subharmonic,
B =⇒ − log rad is subharmonic,
(A and B) =⇒ − log rad is harmonic. . .

Is it fair that when a number has two reasons to be negative, then it is
null?

A.4. Other radii of interest

We have
R(f) = the radius of convergence of φf

and

rad ∆(f) = the biggest radius 6 R below which φf maps in ∆(f).

Here are a few other “natural” radii that one could study

A = the biggest radius 6 R on which φf is injective,
B = the biggest radius 6 R on which φf has no critical point,

C = the biggest radius > R on which φf has a meromorphic extension φ̃f ,

D = the biggest radius 6 C on which φ̃f is injective,

E = the biggest radius 6 C on which φ̃f has no critical point.

A.5. Thanks

We would like to thank the Referees for their very useful suggestions,
that greatly enhance the readability of the present work, and allowed us to
correct mistakes in the original manuscript.
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