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THE DIFFEOMORPHISM GROUP
OF A LIE FOLIATION

by Gilbert HECTOR, Enrique MACÍAS-VIRGÓS
& Antonio SOTELO-ARMESTO (*)

Abstract. — We describe explicitly the group of transverse diffeomorphisms
of several types of minimal linear foliations on the torus Tn, n > 2. We show
in particular that non-quadratic foliations are rigid, in the sense that their only
transverse diffeomorphisms are ±Id and translations. The description derives from
a general formula valid for the group of transverse diffeomorphisms of any minimal
Lie foliation on a compact manifold. Our results generalize those of P. Donato and
P. Iglesias for T 2, P. Iglesias and G. Lachaud for codimension one foliations on Tn,
n > 2, and B. Herrera for transcendent foliations. The theoretical setting of the
paper is that of J. M. Souriau’s diffeological spaces.

Résumé. — Nous décrivons explicitement le groupe des difféomorphismes trans-
verses de plusieurs types de feuilletages linéaires minimaux sur le tore Tn, n > 2.
En particulier, nous montrons que les feuilletages non quadratiques sont rigides,
en ce sens que leurs seuls difféomorphismes sont ±Id. La description découle d’une
formule générale valable pour le groupe des difféomorphismes transverses de tout
feuilletage de Lie minimal sur une variété compacte. Nos résultats généralisent
ceux de P. Donato et P. Iglesias pour T 2, P. Iglesias et G. Lachaud pour les feuille-
tages de codimension un sur Tn, n > 2, et de B. Herrera pour les feuilletages
transcendants. Le cadre théorique de l’article est celui des espaces difféologiques
de J. M. Souriau.

1. Introduction

The category of Souriau’s diffeological spaces [15] is a fruitful generaliza-
tion of the category of manifolds, where there are natural constructions for
subspaces, quotient spaces and functional spaces. In particular, the factor
space G/Γ of the simply connected Lie group G by a totally disconnected

Keywords: Diffeological space, diffeomorphism group, Lie foliation, linear flow.
Math. classification: 57R30, 22E65, 58D05, 58B25.
(*) Second author partially supported by FEDER and MTM2008-05861 MICINN Spain.
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subgroup Γ can be endowed with a diffeology, and its group of diffeomor-
phisms Diff(G/Γ) is a diffeological group (the notion corresponding to Lie
group). When Γ is dense in G, we show that Diff(G/Γ) is isomorphic to
(AutΓ(G) nG)/Γ; this formula will be our main tool.

Let G be the Lie algebra of G. For a G-Lie foliation [3, 4, 14] with global
holonomy group Γ on the compact manifold M , the space of leaves M/F
turns out to be diffeomorphic, as a diffeological space, to G/Γ hence its
group of diffeomorphisms Diff(M/F) (i.e., transverse diffeomorphisms of
the foliation) can be described by means of the above formula.

A fundamental class is that of Lie foliations with abelian Lie algebra,
in particular (minimal) linear foliations on tori. In this paper we describe
explicitly the group Diff(M/F) for several types of such foliations on the
torus Tn, n > 2, namely codimension one foliations, flows, and the so-
called non-quadratic foliations. We show in particular that non-quadratic
foliations are rigid, in the sense that they do not admit transverse diffeo-
morphisms other than ± Id and translations. Our results generalize those
of P. Donato and P. Iglesias [2] for T 2, P. Iglesias and G. Lachaud [11]
for codimension one foliations on Tn, n > 2, and B. Herrera [8, 9] for
transcendent foliations.

2. Diffeological spaces

We briefly review here some basic notations and constructions in the
category of diffeological spaces (see also [6, 7, 12]).

Let M be a set. A map α : Rn ⊃ U → M defined on an open set U of
some Rn will be called a plot of M .

Definition 2.1. — A diffeology of class C∞ on M is a collection P of
plots α : Rnα ⊃ Uα →M verifying the following axioms:

(1) Any constant map c : Rn →M belongs to P;
(2) For any plot α : Rn ⊃ U → M belonging to P and any C∞ map

h : Rm ⊃ V → U , the composition α ◦ h belongs to P;
(3) Let α : Rn ⊃ U →M be a plot of M . If any t ∈ U has a neighbour-

hood Ut ⊂ U such that α|Ut belongs to P then α ∈ P.

Usually, a diffeology is defined by means of a generating set G of plots
on M . We denote by 〈G〉 the least diffeology on M containing G and all
constant plots. Explicitly, 〈G〉 is the collection of plots α : U → M such
that any point t ∈ U has a neighbourhood Ut where α can be written as
γ ◦ h for some C∞ map h and some γ ∈ G [12].
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THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION 367

Example 2.2. — An atlas of a finite dimensional manifold M generates
the manifold diffeology of M .

2.1. Basic constructions

Let F : M → N be a map of sets.
a) For any diffeology P on M , we define the final diffeology F?P on N

as the diffeology generated by the set of plots F ◦ α, α ∈ P. A particular
case is the quotient diffeology associated to an equivalence relation on M .

b) If (M,P) and (N,Q) are two diffeological spaces, the product diffeol-
ogy on the product M × N is the diffeology generated by the set of plots
α× β, α ∈ P, β ∈ Q.

c) A map F : (M,P) → (N,Q) between diffeological spaces is differen-
tiable if for any α ∈ P, the composition F ◦ α ∈ Q. A diffeomorphism is a
differentiable map with a differentiable inverse.

d) Finally, let D(M,N) be the space of differentiable maps between
(M,P) and (N,Q). The functional diffeology on it is generated by the set
of all plots α : U → D(M,N) such that the associated map α̂ : U×M → N

given by α̂(t, x) = α(t)(x) is differentiable.

Definition 2.3. — A diffeological group is a diffeological space (G,P)
endowed with a group structure such that the division map δ : G×G→ G,
with δ(x, y) = xy−1, is differentiable.

A typical example of diffeological group is the group of diffeomorphisms
of a finite dimensional manifold M , endowed with the diffeology induced
by D(M,M) [6]. It was proved in [7] that the group of diffeomorphisms of
the leaf space of a “Lie foliation” is a diffeological group too. The aim of
the present paper is to describe it precisely in several relevant cases.

3. Diffeological homogeneous spaces

Indeed we will focus on a very special class of diffeological spaces. Let
Γ ⊂ G be a totally disconnected subgroup (hence a discrete subgroup in
diffeological sense) of a connected Lie group G. The quotient diffeology on
G/Γ is the collection of plots α : U → G/Γ which lift locally as a smooth
map with values in G.

Definition 3.1. — If Γ is dense in G, we call G/Γ a strongly homoge-
neous space (s.h.s. for short).
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Note that taking the universal cover p : G̃ → G of G and the pullback
Γ̃ = p−1(Γ), it is easy to check that the induced map G̃/Γ̃ → G/Γ is a
diffeomorphism. Therefore, in what follows we will always assume that the
Lie groups at hand are connected and simply connected.

3.1. Lifting maps and diffeomorphisms

Although it is possible to develop a general theory of fibre bundles
and covering spaces in the diffeological category [10], we prove here di-
rectly, in seek of completeness, some lifting properties for the quotient map
π : G → G/Γ which will be essential for our purposes. To do so, consider
two s.h.s. G/Γ and G′/Γ′ and the commutative diagram:

G ⊃ U

π

��

ϕ̃

$$IIIIIIIII
ψ // G′

π′

��
G/Γ

ϕ // G′/Γ′

where ϕ is a differentiable map and ϕ̃ = ϕ ◦ π.
The restriction of ϕ̃ to a convenient neighborhood U of the identity

e ∈ G is a plot of G′/Γ′ which lifts as a map ψ : U → G′. Choose a smaller
neighborhood W of e such that W ·W ⊂ U , then for any γ ∈ Γ ∩W and
any g ∈W we get

(π′ ◦ ψ)(gγ) = (ϕ ◦ π)(gγ) = (ϕ ◦ π)(g) = (π′ ◦ ψ)(g).

We call ψ a (local) lift of ϕ based at ψ(e).
Given h ∈ G′ such that π′(h) = (ϕ ◦ π)(e), there exists a local lift ψh of

ϕ based at h, namely ψh = R
−1

γ ◦ ψ for γ = h
−1 ◦ ψ(e) ∈ Γ′. Moreover two

lifts based at the same point h have the same germ.

Lemma 3.2. — For any local lift ψ of ϕ, the map θψ = L−1
ψ(e) ◦ ψ is a

local group homomorphism.

Proof. — The smooth map ψ̃γ : W → G′ defined by ψ̃γ(g)=ψ(g)−1ψ(gγ)
takes its values in Γ′, hence it is constant and equal to ψ̃γ(e) = ψ(e)−1ψ(γ).
For any g ∈W and γ ∈ Γ ∩W , we get

ψ(gγ) = ψ(g) · ψ(e)−1 · ψ(γ).

Thus, as Γ is dense in G, we conclude easily that θψ is a local group
homomorphism from G to G′. �
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THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION 369

For two lifts ψ1 and ψ2, we get θψ2 = iγ ◦ θψ1 where γ = ψ2(e)−1
ψ1(e).

We globalize the previous results as follows. If G is simply connected, the
local group homomorphism θψ provided by Lemma 3.2 extends as a global
homomorphism θ : G→ G′, which, because Γ is generated by Γ∩W , maps
Γ into Γ′. Then a global lift of ϕ will be given by φ = Lψ(e) ◦ θ.

Theorem 3.3. — IfG andG′ are simply connected, any diffeomorphism
ϕ : G/Γ → G′/Γ′ has a global lift φ : G → G′ which is a diffeomorphism.
Moreover θφ = L−1

φ(e) ◦ φ is a Lie group isomorphism.

As a consequence, we obtain the following simple characterization of
diffeomorphic s.h.s. It will be made more precise for the abelian case in
Theorem 4.4.

Theorem 3.4. — Two strongly homogeneous spaces G/Γ and G′/Γ′ are
diffeomorphic if and only if G ∼= G′ and there exists an automorphism θ of
G which conjugates Γ and Γ′.

3.2. The group of diffeomorphisms

Here we apply the previous results to the description of Diff(G/Γ), the
group of all diffeomorphisms of a strongly homogeneous space G/Γ. Theo-
rem 3.6 was already announced in [7].

Theorem 3.5 ([7]). — For any s.h.s. G/Γ, the group Diff(G/Γ) is a dif-
feological group when endowed with the functional diffeology D(G/Γ, G/Γ).

Now denote by AutΓ(G) the group of automorphisms of the simply con-
nected group G which preserve Γ. We map Γ into the semidirect product
AutΓ(G) n G by the map γ 7→ (iγ , γ−1) where iγ is the inner automor-
phism of G defined by γ. This map is injective and its image is an invariant
subgroup isomorphic to Γ.

Theorem 3.6. — When G is simply connected, the map

Φ: Diff(G/Γ)→ [AutΓ(G) nG]/Γ

defined by Φ(ϕ) = [(θφ, φ(e))], with φ any lift of ϕ, is a group isomorphism.

Proof. — The semidirect product is given by (θ1, g1)(θ2, g2) = (θ1◦θ2, g1 ·
θ1(g2)). First note that Φ is well defined. Indeed, if φ, ψ are two different
lifts of ϕ, we get

(θψ, ψ(e)) = (iγ , γ−1)(θφ, φ(e)), γ = ψ(e)−1φ(e).
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Next, Φ(Lg ◦ θ) = [(θ, g)] for any (θ, g) ∈ AutΓ(G) ×G, which shows that
Φ is onto. It is also injective because if Φ(ϕ) is the neutral element, then
ϕ = R−1

γ for some γ ∈ Γ, and thus ϕ is the identity of G/Γ. It remains to
show that Φ is a group morphism, which is immediate from the formula
θφ◦ψ = θφ ◦ θψ. �

3.3. Lie foliations

Lie foliations, which play a central role in the study of Riemannian foli-
ations [14], appear here as natural “desingularizations” of the spaces G/Γ.

Let G be a finite dimensional Lie algebra. A G-Lie foliation on the com-
pact manifold M is defined by a non-degenerate 1-form ω with values in G

verifying the Maurer-Cartan equation dω + 1
2 [ω, ω] = 0. Once a basis of G

with structural constants ckij has been fixed, this is equivalent to having n
independent real 1-forms ω1, . . . , ωn on M such that dωk =

∑
ckijωi ∧ ωj .

Let G be the connected and simply connected Lie group corresponding to
G. It is well known [3, 13] that there exist a group morphism h : π1(M)→ G

defining a regular covering p : M̃ →M and a commutative diagram

M̃
D //

p

��

G

π

��
M

D̄ // G/Γ

where the developing map D is h-equivariant and defines a locally trivial
fibration which coincides with the lifted foliation p?F .

The image Γ of h (the holonomy group) is a finitely generated group,
which is dense in G if and only if F is minimal i.e., all leaves are dense in
M . All arrows in this square are differentiable (in the diffeological sense)
and one deduces easily that the leaf space M/F , endowed with the quo-
tient diffeology, is diffeomorphic to the factor space G/Γ. In particular,
Diff(M/F) ∼= Diff(G/Γ). This group will be sometimes called the group of
transverse diffeomorphisms of F .

4. Abelian homogeneous spaces and Linear foliations

Here we specialize to the description of strongly homogeneous spaces
G/Γ when G is an abelian simply connected Lie group Rn.

ANNALES DE L’INSTITUT FOURIER



THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION 371

A Lie foliation F of codimension n with abelian Lie algebra on a compact
manifold M will be defined by a Rn-valued closed 1-form ω = (ω1, . . . , ωn).
The holonomy group Γ ⊂ Rn is a free abelian group of rank k and the leaf
space of F is diffeomorphic to the abelian group Rn/Γ.

A particular class of such foliations is the family of linear foliations on
tori. A linear foliation F of codimension n > 1 on Tn+m can also be de-
termined by the natural action of some linear subgroup V ⊂ Rn+m of
dimension m acting on the left on Tn+m. The developing map D : M̃ =
Rn+m → G = Rn is the natural projection onto the orthogonal subspace
V ⊥ to V in Rn+m and the form ω is determined by the choice of some basis
of V ⊥. We have n+ 1 6 k 6 n+m.

4.1. Classifying foliations– Duality

Indeed we restrict to a special class of foliations.

Definition 4.1. — A linear foliation F on Tn+m will be called classi-
fying if the group V acts freely on Tn+m or equivalently if all leaves of F
are simply connected.

Having contractible leaves, these foliations are the “classifying foliations”
of abelian Lie foliations, in the sense of Haefliger’s theory [5].

Now it is easy to see that F is classifying exactly when k = n+m which
is equivalent to V ∩ Zn+m = {0} = V ⊥ ∩ Zn+m. These conditions mean
that the two foliations F and its orthogonal F⊥, defined by the left action
of V ⊥, are simultaneously classifying and minimal and that their holonomy
groups Γ and Γ⊥ have the same rank k. We will say that (F ,F⊥) is a dual
pair of classifying foliations on Tn+m and that the couple (Rn/Γ,Rm/Γ⊥)
is a dual pair of abelian strongly homogeneous spaces.

Proposition 4.2. — Any abelian strongly homogeneous space Rn/Γ is
the leaf space of a unique classifying foliation F on the torus Tk, k = rank Γ.

Proof. — An isomorphism D0 : Zk → Γ extends linearly as a surjective
group homomorphism D : Rk → Rn whose kernel V is a subgroup of di-
mension m = k−n. The action of V on the torus Tk will be free and defines
the wanted classifying foliation F . �

4.2. Classification

Let F be a linear foliation of codimension n on the torus Tk, defined
by the action of the linear group V ⊂ Rk. Let GlV (k,Z) be the subgroup

TOME 61 (2011), FASCICULE 1
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of Gl(k,Z) which preserves the linear subgroup V ⊂ Rk. An element A of
GlV (k,Z) induces an automorphism of Rn which preserves Γ hence we get
a morphism ρ : GlV (k,Z)→ AutΓ(Rn).

Proposition 4.3. — ρ is an isomorphism

AutΓ(Rn) ∼= GlV (k,Z), k = rank Γ.

Proof. — Indeed ρ is onto because any automorphism in AutΓ(Rn) re-
stricts to an isomorphism of Γ which extends to an isomorphism of Rk =
Γ⊗R, the latter isomorphism belonging to GlV (k,Z). It is injective because
the identity of Rn is the unique isomorphic lift of the identity of Rn/Γ. �

Theorem 4.4. — Two abelian s.h.s. Rn/Γ and Rp/Γ′, rank Γ = k,
rank Γ′ = l, are diffeomorphic if and only if the corresponding foliations
F and F ′ are diffeomorphic or equivalently (n, k) = (p, l) and there exists
A ∈ GlV (k,Z) which conjugates Γ and Γ′.

Proof. — According to Corollary 3.3, we can assume that a diffeomor-
phism ϕ : Rn/Γ → Rp/Γ′ is a group isomorphism and lifts as a group
isomorphism φ : Rn → Rp sending Γ onto Γ′ and producing a commutative
diagram of group isomorphisms:

V //

��

Γ̂ = Rk
D //

φ̂

��

Rn π //

φ

��

Rn/Γ

ϕ

��
V ′ // Γ̂′ = Rl

D′ // Rp π′ // Rp/Γ′

where Γ̂ is the linear group generated by Γ ∼= Zk and φ̂ is the natural
extension of the restriction of φ to Γ. It implies immediately that (n, k) =
(p, l) and the linear map φ̂ : Rk → Rl conjugating the kernels of D and D′

conjugates the foliations as well as the corresponding linear subgroups. �

Proposition 4.5. — For any dual pair of abelian classifying s.h.s. Rn/Γ
and Rm/Γ⊥, k = n+m, we have a sequence of isomorphisms:

AutΓ(Rn) ∼= GlV (k,Z)
τ∼= GlV ⊥(k,Z) ∼= AutΓ⊥(Rm),

where τ is defined by transposition.

Proposition 4.6. — For an abelian s.h.s. Rn/Γ, we get

Diff(Rn/Γ) ∼= AutΓ(Rn) n (Rn/Γ).
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THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION 373

5. Two fundamental particular cases

In the remainder of the paper we study some significant families of dual
pairs. So let (F ,F⊥) be a dual pair of linear classifying foliations on the
torus Tk, of complementary codimensions n and m, k = n+m.

5.1. Equations and forms

We fix a natural system of coordinates (y1, . . . , yn, x1, . . . , xm) on Rn+m.
Consider B = (βij) a n × m matrix with real coefficients with n lines
and m columns. If X = (x1, . . . , xm)T ∈ Rm, Y = (y1, . . . , yn)T ∈ Rn,
then equation Y + BX = 0 defines an m-dimensional linear subspace V
of Rn+m which generates a linear foliation F of the torus Tn+m, defined
by the linear Rn-valued form ω = dY + BdX. We call them the reduced
equations of V and F respectively.

Conversely, any linear foliation can be described in this way.

Remark 5.1. — The orthogonal space V ⊥ and foliation F⊥ will be de-
fined respectively by the reduced equation X−BTY = 0 and the Rm-valued
form Ω = dX −BT dY , where BT is the transpose of B.

We get classification results as follows:

Theorem 5.2. — Two foliations F an F ′ of the same codimension n

(and dimension m) corresponding to matrices B and B′ respectively will
be diffeomorphic if and only if there exists a matrix

(5.1) A =
(
P Q

R S

)
∈ Gl(n+m,Z),

with P ∈Mn×n(Z) and S ∈Mm×m(Z), such that
(1) the n× n-matrix P +BR is invertible;
(2) (P +BR)B′ = Q+BS.

The same conditions insure that the corresponding leaf spaces are dif-
feomorphic.

Proof. — We know that F and F ′ are diffeomorphic if and only if there
exists a matrix A ∈ Gl(n + m,Z) which conjugates the equations of the
corresponding subspaces V and V ′.

Now let Y +BX = 0 be a reduced equation of V and consider the n×m
matrix (

In B
)(P Q

R S

)
=
(
P +BR Q+BS

)
.

TOME 61 (2011), FASCICULE 1
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Then (P + BR)Y + (Q + BS)X = 0 is an equation of V ′ equivalent to
a reduced form Y + B′X = 0 implying the two desired conditions. The
converse is straightforward. �

As an immediate corollary, we obtain a corresponding result for diffeo-
morphisms of F :

Corollary 5.3. — A matrix A ∈ Gl(n+m,Z) as in (5.1) defines a dif-
feomorphism of the classifying foliation F of codimension n corresponding
to the matrix B if and only if

(1) P +BR is invertible;
(2) (P +BR)B = Q+BS.

5.2. Linear flows and codimension one foliations on Tn+1

For a first concrete application, we consider a dual pair (F ,F⊥) of lin-
ear classifying foliations on Tn+1, where F is of dimension 1 and F⊥ of
codimension 1. We make the following observations:

1) F is a flow defined by the Rn-valued reduced closed form

Ω = (dx1 − β1dy, dx
2 − β2dy, . . . , dx

n − βndy);

2) F⊥ is a foliation by n-planes defined by a reduced closed 1-form

ω = dy + β1dx
1 + · · ·+ βndx

n,

which is completely determined by Ω. It is a classifying foliation if the
(n+ 1)-uple (1, β1, . . . , βn) has rank n+ 1 over Q.

The corresponding leaf spaces will be denoted by R/Γω and Rn/ΓΩ re-
spectively. From the previous discussion in 5.1 we deduce:

Proposition 5.4. — Two such spaces R/Γω and R/Γω′ are diffeomor-
phic if and only if there exists an integer matrix

A =


p q1 · · · qn
r1 s1

1 · · · s1
n

...
...

...
rn sn1 · · · snn

 ∈ GL(n+ 1,Z)

such that the associated reduced matrices B,B′ verify the relations:

(p+
n∑
u=1

βur
u)β′j = qj +

n∑
u=1

βus
u
j , j ∈ {1, . . . , n}.

Moreover in this case the two spaces Rn/ΓΩ and Rn/ΓΩ′ are simultaneously
diffeomorphic.
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THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION 375

According to Proposition 4.5, the automorphism groups of a dual pair of
s.h.s. are isomorphic. Thus using original work of P. Iglesias and G. Lachaud
[11] about codimension 1 foliations, we get

Theorem 5.5. — For any dual pair R/Γω and Rn/ΓΩ there exists an
integer r 6 n such that

AutΓω (R) ∼= AutΓΩ(Rn) ∼= Z2 × Zr.

Moreover
(1) Diff(R/Γω) ∼= Z2 × Zr n (R/Γω);
(2) Diff(Rn/ΓΩ) ∼= Z2 × Zr n (Rn/ΓΩ).

The integer r may take different values depending on the algebraic nature
of the form ω, as described in [11]. For example, in case n = 1 we get
ω = dy + βdx and, as P. Donato and P. Iglesias proved in [2], AutΓω (R) is
isomorphic to Z2 × Z if β is a quadratic number and Z2 otherwise.

Let us recall that linear flows on tori have particular importance because
of the following result of P. Caron and Y. Carrière.

Theorem 5.6 ([1]). — Let M be a compact manifold of dimension n+1,
endowed with a dense G-Lie flow. Then G = Rn, M is diffeomorphic to the
torus Tn+1, and the given foliation is smoothly conjugate to a linear one.

5.3. Non-quadratic and transcendent and foliations

Finally, we consider two special classes of classifying foliations and spaces.

Definition 5.7. — We will say that a matrix B = (βij) is non-quadratic
[resp. transcendent] if the degree of any polynomial with rational coeffi-
cients and nm variables which annihilates the family of coefficients {βij}
is strictly greater than 2 [resp. the coefficients {βij} are algebraically inde-
pendent over Q].

According to Theorem 5.2, a linear foliation F will be called non-quadra-
tic [resp. transcendent] if the corresponding matrix is non-quadratic [resp.
transcendent].

Moreover a matrix B is non-quadratic [resp. transcendent] if and only
if its transpose BT is so. Thus, by Remark 5.1, dual foliations (or dual
abelian s.h.s.) are simultaneously non-quadratic [resp. transcendent].
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Example 5.8. — By definition, a transcendent matrix (or linear folia-
tion) is also non-quadratic. The foliation by planes on T3 defined by the
1-form ω = dy + 3

√
2dx1 + 3

√
3dx2 is non-quadratic and non-trascendent.

Transcendent foliations appeared first in B. Herrera’s thesis [9]; our def-
inition is easily seen to be equivalent to his. For non-quadratic foliations,
we obtain the following rigidity result which generalizes [2] and recovers
the main result of Herrera:

Theorem 5.9. — Let (F ,F⊥) be a dual pair of non-quadratic classify-
ing foliations on Tn+m. Then

AutΓ(Rn) ∼= Z2 ∼= AutΓ⊥(Rm).

Furthermore, Diff(Rn/Γ) = Z2 n (Rn/Γ) and Diff(Rm/Γ⊥) = Z2 n
(Rm/Γ⊥).

Proof. — According to Proposition 4.5, it will suffice to show that for a
non-quadratic foliation F defined by the action of V ⊂ Rn+m, the group
GlV (n + m,Z) reduces to ± Id. Using Theorem 5.3, we see that a matrix
A ∈ Gl(n+m,Z) as in (5.1) preserves the subgroup V if and only if

(5.2) C = (P +BR)B − (Q+BS) = BRB + (PB −BS)−Q = 0.

The coefficients of C are polynomials with integer coefficients in the
variables βij , the coefficients of B. Their degree is less than or equal to 2
thus by definition of non-quadratic foliations all these polynomials have to
be trivial. We make two observations:

a) the terms of degree 2 come exclusively from the matrix BRB and
thus the vanishing condition implies that R = 0. Similarly the vanishing
of the independent terms implies Q = 0. So our condition 5.2 reduces to
PB = BS;

b) then by equaling the corresponding coefficients of PB and BS we
obtain the following nm equations (with notations similar to those used in
5.4):

n∑
u=1

pjuβ
j
u =

m∑
v=1

βvj s
j
v,

where the only common variable of both sides is βij . Thus for fixed (j, i)
the vanishing condition implies puj = 0 for u 6= j and siv = 0 for v 6= i,
while pjj = sii.

The last condition being valid for any (j, i), we conclude that both P and
S and therefore also A are diagonal matrices. But having integer coefficients
and being invertible, it follows that A = ± Id; the proof is complete. �
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Corollary 5.10 ([9]). — The only transverse automorphisms of a tran-
scendent foliation are ± Id.
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