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BERNSTEIN POLYNOMIALS
AND SPECTRAL NUMBERS FOR LINEAR FREE

DIVISORS

by Christian SEVENHECK (*)

Abstract. — We discuss Bernstein polynomials of reductive linear free divi-
sors. We define suitable Brieskorn lattices for these non-isolated singularities, and
show the analogue of Malgrange’s result relating the roots of the Bernstein poly-
nomial to the residue eigenvalues on the saturation of these Brieskorn lattices.

Résumé. — Dans ce travail, nous nous intéressons aux polynômes de Bernstein
d’un diviseur linéairement libre réductif. Nous définissons un réseau de Brieskorn
pour ces fonctions, qui sont des exemples de singularités non-isolées. Nous démon-
trons un théorème analogue au résultat de Malgrange qui relate les racines du
polynôme de Bernstein aux valeurs propres du résidu de la saturation de ce réseau
de Brieskorn.

1. Introduction

In this note, we show that for reductive linear free divisors D ⊂ Cn,
which were studied in a number of recent papers (see [3] [8], [10] and [9]),
the roots of the Bernstein polynomial of a defining equation h of D can be
recovered as a certain set of eigenvalues of a residue endomorphism. More
precisely, for a generic linear form f on Cn, one defines a family of Gauß-
Manin systems for f , seen as a function on the fibres of h. This family has
a specific (logarithmic) extension over D, which gives the set of residue
eigenvalues we are interested in.

Keywords: Brieskorn lattice, Bernstein polynomial, linear free divisors, spectral numbers.
Math. classification: 32S40, 34M35.
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This relation to the Bernstein polynomial has a number of consequences:
First, while the definition of the Bernstein polynomial is rather simple, it is
in general very hard to calculate its roots in concrete examples. This is true
even for linear free divisors, though the differential operator occurring in
Bernstein’s functional equation is more explicitly known than in the general
case. On the other hand, the calculation of the residue eigenvalues alluded
to above is, although not trivial, easier to carry out. We apply our result to
obtain, using the calculations from [10, chapter 6], Bernstein polynomials
for discriminants in representation spaces of the Dynkin quivers An, Dn
and E6 as well as the so-called star quiver ?n, also considered in loc.cit.
(which is not a Dynkin quiver for n > 3). We also calculate the Bernstein
polynomials for two irreducible linear free divisors which are discriminants
of irreducible pre-homogenous vector spaces described in [26].

Another motivation for this work comes from the fact that the residue
eigenvalues of the Gauß-Manin systems give information on their limit be-
havior (resp., of the corresponding family of Brieskorn lattices), when ap-
proaching the zero fibre of h, i.e., the divisor D. In particular, in [10],
questions about the degeneration of Frobenius manifolds, associated to the
tame functions f|Dt , where Dt := h−1(t), were related to the asymptotic
behavior of a natural pairing defined on the Gauß-Manin system. In par-
ticular, the residue eigenvalues of these Gauß-Manin systems then need to
be symmetric around zero. This was stated as a conjecture in loc.cit., and
it follows from the relation between these eigenvalues and the roots of the
Bernstein polynomial that we prove here.

Finally, the family of Brieskorn lattices associated to f|Dt also has loga-
rithmic extension over the divisor D, constructed using logarithmic differ-
ential forms. We define the fibre over t = 0 to be the logarithmic Brieskorn
lattice of D (in fact, it does not depend on the choice of the linear form).
In contrast to the fibres at t 6= 0, this Brieskorn lattice is regular singular
at the origin, reflecting the local situation of the pair (f, h) at the origin
in Cn. It turns out that then our result can be rephrased to give the ana-
logue of Malgrange’s classical result for isolated singularities: The roots of
the Bernstein polynomial are (up to a rescaling) the residue eigenvalues on
the saturation of this logarithmic Brieskorn lattice.

2. Linear Free Divisors and Gauß-Manin systems

In this section, we first recall from [10] the construction of the family of
Gauß-Manin systems associated to a linear section of a linear free divisor.

ANNALES DE L’INSTITUT FOURIER
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We also give a more intrinsic definition of these Gauß-Manin systems as
a direct image of a map constructed from two polynomials. Finally, we
discuss the definition of the residue eigenvalues relevant for the present
work, as introduced in [10].

We denote throughout this article by V the complex vector space Cn.

Definition-Lemma 1 ([25], [3], [10]). — (1) Let D ⊂ V be a re-
duced hypersurface with defining equation h. Then D is called a
free divisor, if the sheaf ΘV (− log D) := {ϑ ∈ ΘV |ϑ(h) ⊂ (h)} is
a free OV -module. If moreover a basis (ξi) of ΘV (− log D) exists
such that ξi =

∑n
j=1 ξij∂xj where ξij are linear forms on V , then

D is called linear free.
(2) Let G be the identity component of the algebraic group GD :=
{g ∈ Gl(V ) | g(D) ⊂ D}. Then (V,G) is a pre-homogenous vector
space in the sense of Sato (see, e.g., [26]), in particular, the com-
plement V \D is an open orbit of G. We call D reductive if GD is
so. A rational function r ∈ C(V ) is called a semi-invariant if there
is a character χr : G→ C∗ such that g(r) = χr(g) · r for all g ∈ G.
Obviously, h itself is a semi-invariant.

(3) G acts on V ∗ by the dual action, with dual discriminantD∗ ⊂ V ∗. If
GD is reductive, then (V ∗, D∗) is pre-homogenous. We call a linear
form f ∈ V ∗ generic with respect to h (or simply generic, if no
confusion is possible) if f lies in the open orbit V ∗\D∗ of the dual
action.

There is a basis (ei) of V with corresponding coordinates (xi)
(called unitary) such that G appears as a subgroup of U(n) in these
coordinates. Then D∗ = {h∗ = 0}, where h∗(y) := h(y), (yi) being
the dual coordinates of (xi).

In the sequel, we always consider linear forms which are generic with
respect to h.

In order to study the behavior of the restriction of the linear function f
on the fibres Dt := h−1(t), t 6= 0, but also on D itself, the following
deformation algebra was introduced in [10].

Definition 2. — Let D be linear free with defining equation h, seen as
a morphism h : V → T := Spec C[t].

(1) Let E ∈ ΘV (− log D) be the Euler field E =
∑n
i=1 xi∂xi . Call

ΘV/T (− log D) := {ϑ ∈ ΘV (− log D) |ϑ(h) = 0}

TOME 61 (2011), FASCICULE 1



382 Christian SEVENHECK

the module of relative logarithmic vector fields. ΘV/T (− log D) is
OV -free of rank n− 1, and we have a decomposition

ΘV (− log D) = OV E ⊕ΘV/T (− log D).

(2) The ideal Jh(f) := df(ΘV/T (− log D)) ⊂ OV is called the Jacobian
ideal of the pair (f, h). The quotient OV /Jh(f) is the Jacobian
algebra (or deformation algebra) of (f, h).

Notice that ΘV/T (− log D) was called ΘV (− log h) in [10]. It was shown
in loc.cit., section 3.2, that if f is generic with respect to h, then h∗OV/Jh(f)
is OT -free of rank n, and generated by (f i) for i = 0, . . . , n− 1. Moreover,
it is interpreted as the relative tangent space T 1

Rh/C(f) of the deformation
theory of f with respect to the group Rh of right-equivalences preserving
all fibres of h.

Denote by

(Ω•V/T (log D), d) := (Ω•V (log D)/(Ω•−1
V (log D) ∧ h∗Ω1(log {0}), d)

the relative logarithmic de Rham complex of h as studied, under the name
Ω•(log h) in [10, section 2.2]). This relative logarithmic complex is used in
the definition of the family of Gauß-Manin-systems resp. Brieskorn lattices
in loc.cit.

Definition-Lemma 3 ([10, section 4]). — Let h and f as above. Define

G(log D) :=
H0(V,Ωn−1

V/T (log D)[θ, θ−1])
(θd− df∧)H0(V,Ωn−2

V/T (log D)[θ, θ−1])

G(∗D) :=
H0(V,Ωn−1

V/T (∗D)[θ, θ−1])
(θd− df∧)H0(V,Ωn−2

V/T (∗D)[θ, θ−1])

G0(log D) :=
H0(V,Ωn−1

V/T (log D)[θ])
(θd− df∧)H0(V,Ωn−2

V/T (log D)[θ])

G0(∗D) :=
H0(V,Ωn−1

V/T (∗D)[θ])
(θd− df∧)H0(V,Ωn−2

V/T (∗D)[θ])
.

(2.1)

Then G(∗D) is C[θ, θ−1, t, t−1]-free of rank n and G(log D) (resp. G0(∗D),
G0(log D)) is a C[θ, θ−1, t]- (resp. C[θ, t, t−1]-, C[θ, t]-) lattice inside G(∗D).

ANNALES DE L’INSTITUT FOURIER
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These modules fit into the following diagram

G(log D) ⊂ G(∗D)
∪ ∪

G0(log D) ⊂ G0(∗D).

Define a connection

∇ : G0(log D) −→ G0(log D)⊗ θ−1Ω1
C×T (log({0} × T ) ∪ (C× {0}))

by putting, for a form ω ∈ H0(V,Ωn−1
V/T (log D)),

∇∂θ ([ω]) :=θ−2[f · ω]

∇∂t([ω]) := 1
nt

([LieE(ω)]− [θ−1f · ω])
(2.2)

and extending by the Leibniz-rule (for ∇∂θ ) resp. θ-linearly (for ∇∂t). We
denote by ∇ the induced connection on G(log D), G0(∗D) and G(∗D).

One of the main results of [10] concerns the construction of various bases
of the module G0(log D) (hence, of all the other modules given above),
such that the connection takes a particularly simple form. This can be
summarized as follows.

Proposition 4 ([10, proposition 4.5(iii)]). — There is a C[θ, t]-basis
ω(1) = (ω1, . . . , ωn) of G0(log D) such that

(2.3) ∇(ω(1)) = ω(1) ·
[
(A0

1
θ

+A∞)dθ
θ

+ (−A0
1
θ

+A′∞) dt
nt

]
where

A0 :=


0 0 . . . 0 c · t
−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . −1 0

 ,
A∞ = diag(ν1, . . . , νn) and A′∞ := diag(0, 1, . . . , n−1)−A∞. The constant
c ∈ C is defined by the equation

fn = −c · h+
n−1∑
i=1
ξi(f) · ki,

where ξi ∈ ΘV/T (log D) and ki ∈ OV are homogenous polynomials of
degree n− 1. Here

ω1 = ιE
vol
h

= nvol
dh
,

TOME 61 (2011), FASCICULE 1
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where vol = dx1 ∧ . . . ∧ dxn. In particular, (G(∗D),∇) is flat. Moreover,
(ν1, . . . , νn) is the spectrum at (θ =) infinity of the restriction of G0(log D)
to t = 0.

The following obvious consequence will be used in the next section.

Corollary 5. — Consider the inclusion j : {1} × T ↪→ C× T and the
restriction (G1(∗D),∇) := j∗(G(∗D),∇). This is a meromorphic bundle
on T with connection (the only pole being at 0 ∈ T ), and can thus be
seen as a coherent and holonomic left C[t]〈∂t〉-module. Then we have an
isomorphism of left C[t]〈∂t〉-modules

ϕ : C[t]〈∂t〉/(bG1(log D)(t∂t) + c
nn
· t)

∼=−→ (G1(∗D),∇),

where bG1(log D) is the spectral polynomial ofG1(log D) := j∗(G(log D),∇)
at 0 ∈ T , i.e.,

bG1(log D)(s) :=
n∏
i=1

(
s− i− 1− νi

n

)
,

and where ϕ(1) = ω1. In particular, ω1 satisfies the functional equation
bG1(log D)(t∂t)ω1 = −c/nn · tω1 in G1(∗D).

We note the following easy consequence from the definitions, which was
not stated in [10].

Lemma 2.1. — Let f1, f2 ∈ V ∗\D∗ be two generic linear forms. Denote
by (Gi(log D),∇i) the family of Brieskorn lattices attached to the pair
(fi, h), i = 1, 2. Then ϕ∗c′(G1(log D),∇1) ∼= (G2(log D),∇2), where ϕc′ :
C× T → C× T is defined as ϕ(θ, t) = (θ, c′ · t) for some c′ ∈ C∗.

Proof. — By definition, the complement of D∗ in V ∗ is an (open) orbit
of the dual action of G, hence, there is g ∈ G with g(f1) = f2. Then g(h) =
χh(g) · h and it follows that ϕ∗χh(g)(G1(log D),∇1) ∼= (G2(log D),∇2). �

In order to relate the above objects to the Bernstein polynomial of h,
we recall how the Gauß-Manin system G(∗D), seen as a left C[θ, t]〈∂θ, ∂t〉-
module is obtained as a direct image of a differential system on V . A similar
reasoning as in the next lemma can be found in [6, proposition 2.7]. We
consider f as a morphism f : V → R = Spec C[r], and put Φ := (f, h) :
V → R× T .

Lemma 2.2. — Let Φ+OV (∗D) be the (algebraic) direct image complex
of the holonomic DV -module OV (∗D). Then

(1) The cohomology sheaves of Φ+OV (∗D) are DR×T -coherent, holo-
nomic and regular.

ANNALES DE L’INSTITUT FOURIER
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(2) Φ+OV (∗D), seen in Db(DR×T/T ) is represented by(
Φ∗Ω•+n−1

V/T (∗D)[∂r], d− (df ∧ −⊗ ∂r)
)
.

Under the isomorphism

(2.4) H0(Φ+O(∗D)) ∼=
Φ∗Ωn−1

V/T (∗D)[∂r]
(d− df ∧ −⊗ ∂r)Φ∗Ωn−2

V/T (∗D)[∂r]

the action of ∂t on a class [ω] ∈ H0(Φ+OV (∗D)) represented by a
form ω ∈ Hn−1

V/T (∗D) is given by

(2.5) ∂t([ω]) := 1
n · t

([LieE(ω)]− [LieE(f)ω ⊗ ∂r])

(3) PutM := H0(R×T,Φ+O(∗D))). Denote by M̂ the partial Fourier-
Laplace transformation with respect to r of M , i.e., M̂ = M as
C-vector spaces, and we define an structure of a C[τ, t]〈∂τ , ∂t〉-
module on M̂ by τ · := ∂r and ∂τ := −r·. Then M̂ is C[τ, t]〈∂τ , ∂t〉-
holonomic, with singularities at τ = {0,∞} and t = {0,∞} at
most, regular along {t = 0} ∪ {τ = ∞}. Moreover, by putting
θ = τ−1, the localized Fourier-Laplace transformation M̂ [τ−1] of
M is isomorphic to G(∗D) as a meromorphic vector bundle with
connection (the one on G(∗D) being given by formula (2.2)).

(4) The restriction (G1(∗D),∇) is isomorphic (as a left C[t]〈∂t〉-module)
to H0(T, h+OV (∗D)e−f ), where OV (∗D)e−f is the tensor product
of OV (∗D) with a rank one OV -module formally generated by e−f ,
i.e., OV (∗D)e−f ∼= OV (∗D) as OV -modules, and the differential of
OV (∗D)e−f (i.e., the operator defining its DV -module structure) is
given by df := d− df∧.

Proof. —
(1) see [21, theorem 9.0-8.]
(2) It is well known that for any left DV -module M, the direct image

complex Φ+M is represented by(
RΦ∗Ωn+•

V (M)[∂r, ∂t], d− (df ∧ −⊗ ∂r)− (dh ∧ −⊗ ∂t)
)
.

Putting M = OV (∗D) and using that Φ is affine, we consider the
double complex

Ep,q :=(
(Φ∗Ωp+qV (∗D)[∂r])⊗ ∂qt , d− (df ∧ −⊗ ∂r),−(dh ∧ −⊗ ∂t)

)
TOME 61 (2011), FASCICULE 1
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whose total cohomology isHp+q−n(Φ+(OV (∗D))). The morphism h
is smooth restricted to V \D, hence, the Koszul complex

(Ω•(∗D), dh∧)

is acyclic. Therefore the second spectral sequence associated to the
above double complex degenerates at the E2-term and the isomor-
phism

Ωp−1
V/T (∗D) dh∧−→ Ker

(
ΩpV (∗D) dh∧−→ Ωp+1

V (∗D)
)

yields the above quasi-isomorphism.
In order to prove the formula for the action of ∂t, notice that

given a class [ω] defined by a relative n-form ω ∈ Ωn−1
V/T (∗D), the

class corresponding to it in H0(Φ+OV (∗D)) is [dh ∧ ω]. By defini-
tion, we have ∂t([dh ∧ ω]) = [dh ∧ ω ⊗ ∂t]. This class is equal in
H0(Φ+OV (∗D)) to [dω − df ∧ ω ⊗ ∂r]. It follows that under the
isomorphism (2.4), this equals

[dω
dh
− df ∧ ω
dh
⊗ ∂r] ∈ Φ∗Ωn−1

V/T (∗D)[∂r]/(d− df ∧ −⊗ ∂r)Φ∗Ωn−2
V/T (∗D).

Now notice that as h is smooth outside D, there is a vector field
X ∈ ΘV (∗D) which lifts ∂t ∈ ΘT . Then we have that dω/dh = ιXdω
and (df ∧ω)/dh = ιX(df)∧ω−df ∧ ιXω. Putting this together and
using once again the relation in the quotient

Φ∗Ωn−1
V/T (∗D)[∂r]/(d− df ∧ −⊗ ∂r)Φ∗Ωn−2

V/T (∗D)

one arrives at the formula

∂t[ω] = [LieX ω]− [LieX(f)ω]⊗ ∂r.

Now the result follows as the meromorphic vector field X can be
taken to be E/(n · h), due to the homogeneity of h.

(3) This is obvious from the last point: Fourier-Laplace transforma-
tion and localization along τ = 0 transforms formula (2.4) into
the defining equation (2.1) of G(∗D) and formula (2.5) obviously
corresponds to the second part of formula (2.2). The statements
about regularity follows form the general considerations in [6, the-
orem 1.11].

(4) By definition, h+OV (∗D)e−f is represented by the complex

(h∗Ωn+•
V (∗D)[∂t], d− df ∧ −(dh ∧ −⊗ ∂t)).

The same argument as above shows that this is quasi-isomorphic to

(h∗Ωn−1+•
V/T (∗D), d− df∧).

ANNALES DE L’INSTITUT FOURIER
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Now it is clear that

H0(T, h∗Ωn−1+•
V/T (∗D), d− df∧) =

H0(Ωn−1
V/T (∗D))

(d− df∧)H0(V,Ωn−2
V/T (∗D)))

= G1(∗D)

�

Remark. — Direct images of regular holonomic modules by a mor-
phism consisting of two polynomials occur in the work of C. Roucairol
(see [22], [24] and [23]). She also studied direct images of twisted mod-
ules, i.e., h+(Me−f ). However, we will not need her results directly as the
computations from [10] (i.e. proposition 4 above) give already very precise
information about these direct images for a pair (f, h), with h reductive
linear free and f linear and generic.

3. Bernstein Polynomials

We first give the definition of the Bernstein polynomial through the clas-
sical functional equation. Next we recall how this can be rephrased using
the general theory of V -filtrations. This will be useful in proving the main
result. Finally, we state and prove the relation between the roots of the
Bernstein polynomial of a defining equation h for a linear free divisor and
the residue eigenvalues of the family of Gauß-Manin-systems introduced in
section 2.

The following classical statement is due to Bernstein (see, [1]).

Theorem 3.1. — Let h ∈ OV be any function, then there is a polyno-
mial B ∈ C[s] and a differential operator P (xi, ∂xi , s) ∈ DV [s] such that

P (xi, ∂xi , s)hs+1 = B(s)hs

All polynomials B(s) ∈ C[s] having this property form an ideal in C[s],
and we denote by bh(s) the unitary generator of this ideal. bh(s) is called
the Bernstein polynomial of h.

If h defines a linear free divisor, then the theory of pre-homogenous vector
spaces shows that the functional equation defining bh(s) is of a particular
type.

Theorem 3.2 ([26], [13], [9]). — Let D = h−1(0) be a reductive lin-
ear free divisor, then the operator P appearing in Bernstein’s functional
equation is given by P := h∗(∂x1 , . . . , ∂x1) (remember that h∗(y) = h(y),
where xi are the unitary coordinates and yi are their duals). In particular,

TOME 61 (2011), FASCICULE 1
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it is an element of C〈∂x1 , . . . , ∂xn〉. Moreover, the degree of bh(s) is equal
to n and the roots of bh(s) are contained in the open interval (−2, 0) and
are symmetric around −1. In particular, −1 is the only integer root.

The following classical reformulation of the definition of the Bernstein
polynomial will be useful in the sequel.

Consider the ring C[s, h−1], and denote by M [h−1] := C[s, h−1]hs the
rank one C[s, h−1]-module generated by the symbol hs. Define an action
of DV , the ring of algebraic differential operators on V on M [h−1] by
putting

∂xi(g · hs) := ∂xi(g) · hs + g · s · h−1∂xi(h)hs.

This action extends naturally to an DV [s]-action. LetM the DV [s]-submo-
dule ofM [h−1] generated by hs. Define an action of t onM [h−1] by putting
t(g(s) · hs) := g(s + 1) · h · hs+1. Then bh(s) is the minimal polynomial of
the action of s on the quotient M/tM .

This definition can be rephrased once more using the theory of V -filtra-
tions on D-modules. Without reviewing the details of the theory, we recall
the following facts (see, e.g. [18, section 4])

Definition-Lemma 6. — Let X be any smooth algebraic variety, and
Y ⊂ X a smooth hypersurface defined by an ideal sheaf I ⊂ OX . We denote
by t ∈ OX a local generator of I.

(1) Let DX be the sheaf of algebraic differential operators, then define

VkDX :=
{
P ∈ DX |P (Ij) ⊂ Ij−k

}
For any left DX -module M, a V-filtration on M is an increasing
filtration U•M compatible with V•DX .

(2) A V-filtration U•M on a left DX -module M is good iff the Rees-
module ⊕zkUkM is RVDX -coherent, where RVDX := ⊕kzkVkDX .

(3) A good V-filtration U•M is said to have a Bernstein polynomial iff
there is a non-zero polynomial b(s) ∈ C[s] such that for all k ∈ Z,
we have b(−∂tt+ k)UkM⊂ Uk−1M.

(4) A coherent DX -moduleM is called specializable iff locally there ex-
ists a good V -filtration U•M having a Bernstein polynomial. Equiv-
alently, for any local section m ∈M there is a non-zero polynomial
bm(s) (the Bernstein polynomial of m) such that

bm(−∂tt)m ∈ V−1DX ·m.

(5) A holonomic DX -module is specializable along any smooth hyper-
surface Y .

ANNALES DE L’INSTITUT FOURIER
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The following evident corollary gives an example of a V -filtration that
will be used later.

Corollary 7. — Consider the left C[t]〈∂t〉-moduleG1(∗D) from above.
Then

UkG1(∗D) := VkC[t]〈∂t〉 ·G1(log D)

defines a good V-filtration on G1(∗D), whose Bernstein polynomial is ex-
actly bG1(log D)(s). Moreover, we have

U0G1(∗D) = G1(log D) = V0C[t]〈∂t〉 · ω1.

We will also use V -filtrations for DT×V -modules. The following result is
well known, see, e.g., [20], [18, lemme 4.4-1].

Lemma 3.3. — (1) Let h ∈ OV an arbitrary function, seen as a
morphism h : V → T . Denote by ih : V ↪→ T × V the graph em-
bedding, with image Γh. Put N := (ih)+OV , then N ∼= OV [∂t] ∼=
OT×V (∗Γh)/OT×V ∼= DT×V δ(t − h). A good V -filtration with re-
spect to the hypersurface {0}×V on N is defined by putting, for all
k ∈ Z, UkN := VkDT×V δ(t − h). This V -filtration admits a Bern-
stein polynomial (namely, a Bernstein polynomial for the section
δ(t − h)), which is exactly the polynomial bh(s). We denote, as in
[20], byM the V0DT×V -module U0N .

(2) The direct image (ih)+OV (∗D) is the localization of both N andM
along t = 0, and is thus denoted byM[t−1]. As N has no t-torsion,
we have an exact sequence

0 −→ N −→M[t−1] −→ C −→ 0.

where C is a DT×V -module. A Bernstein polynomial for a local
section m ∈ N is also a Bernstein polynomial for m, seen as a local
section inM[t−1].

We can now state and prove the main result of this paper.

Theorem 3.4. — Let D = h−1(0) be reductive linear free divisor and
f ∈ V ∗ be generic. Consider the family of Gauß-Manin systems G(∗D), the
logarithmic extension G(log D) and the restrictions G1(log D) ⊂ G1(∗D)
from above. Then we have that bh(s) = bG1(log D)(s + 1) (recall that
bG1(log D)(s) is the spectral polynomial of G1(log D)).

In order to prove this result, we start with a preliminary lemma.
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Lemma 3.5. — Let M[t−1] := (ih)+OV (∗D) as above. Consider the
twisted module (ih)+OV (∗D)e−f . Then the section

δ(t− h)e−f ∈ (ih)+OV (∗D)e−f

admits bh(s) as a Bernstein polynomial, with associated functional equation

(3.1) (t · h∗(∂xi + ai)− bh(−∂tt)) δ(t− h)e−f = 0,

where f =
∑n
i=1 aixi.

Proof. — By lemma 3.3, bh(s) is the minimal polynomial of −∂tt on

DV [t∂t]δ(t− h)
tDV [t∂t]δ(t− h)

.

In particular, by theorem 3.2, the functional equation

(t · h∗(∂xi)− bh(−∂tt)) δ(t− h) = 0

holds in (ih)+OV (∗D). Then it follows directly from the definition of the
twisted module OV (∗D)e−f that the functional equation (3.1) from above
holds in (ih)+OV (∗D)e−f . Now suppose that there is another equation(

t · P̃ (xi, ∂xi ,−∂tt)− B̃(−∂tt)
)
δ(t− h)e−f = 0,

where P̃ ∈ DV [s] and B̃(s) ∈ C[s] with deg(B̃) < deg(bh). Then we obtain
the equation(

t · P̃ (xi, ∂xi − ai,−∂tt)− B̃(−∂tt)
)
δ(t− h) = 0

in (ih)+OV (∗D), which contradicts the minimality of bh(s). �

Proof of the theorem. — We consider, as in the last lemma, the DT×V -
module

(ih)+OV (∗D)e−f ∼= (ih)∗OV (∗D)e−f [∂t]

and the DV [t∂t]-submodule generated (over DV [t∂t]) by δ(t − h)e−f . The
direct image h+(OV (∗D)e−f ) is obtained in the standard way from the
module (ih)+OV (∗D)e−f as the relative de Rham complex of the projection
p1 : T × V → T . In other words, we have

Hi(h+(OV (∗D)e−f )) = Hi((p1)∗DRn+•
T×V/T ((ih)∗OV (∗D)e−f [∂t]))

Considering (ih)+OV (∗D)e−f as a DV -module only, we thus have

Hi(h+(OV (∗D)e−f )) = h∗Hi(DRn+•
V OV (∗D)e−f [∂t]).

ANNALES DE L’INSTITUT FOURIER



BERNSTEIN POLYNOMIALS AND SPECTRAL NUMBERS 391

Now it is well known (see, e.g.,[20, proposition 2.1]or[2, proposition 2.2.10]),
that for any left DV -module L, the de Rham complex DR•V (L) represents

the (shifted) derived tensor product ΩnV
L
⊗DV L[−n], in particular, we have

Hn(DR•V (L)) ∼= ΩnV ⊗DV L.

It follows that

(3.2) H0(h+(OV (∗D)e−f )) ∼= h∗
(
ΩnV ⊗DV (OV (∗D)e−f [∂t])

)
.

so that, taking global sections and considering again the isomorphism from
lemma 2.2, 4., we obtain

H0(V,ΩnV ⊗DV (OV (∗D)e−f [∂t])) ∼= G1(∗D)

Notice that the section vol⊗δ(t− h)e−f is mapped to the section ω1/n =
vol /dh under this isomorphism.

From the equation

(t · h∗(∂xi + ai)− bh(−∂tt)) δ(t− h)e−f = 0

in OV (∗D)e−f [∂t] (equation (3.1)) we deduce that the element

vol⊗ (t · h∗(∂xi + ai)− bh(−∂tt)) δ(t− h)e−f

is zero in h∗(ΩnV ⊗DV (OV (∗D)e−f [∂t])).
Hence

t · (h∗(∂xi + ai)(vol))⊗ δ(t− h)e−f = bh(−∂tt)(vol⊗δ(t− h)e−f )

holds in h∗
(
ΩnV ⊗DV (OV (∗D)e−f [∂t])

)
, where the operator h∗(∂xi + ai)

acts on vol by the right DV -action on ΩnV . Now develop the polynomial
h∗(yi + ai) as h∗(yi + ai) =

∑
16|I|6n aIy

I + h∗(ai), then

h∗(∂xi + ai) =
∑

16|I|6n

aI∂
i1
x1
. . . ∂inxn + h∗(ai)

and the action h∗(∂xi + ai)(vol) is given by

∑
16|I|6n

aI

Lie∂x1
· · ·Lie∂x1︸ ︷︷ ︸
i1

· · ·Lie∂xn · · ·Lie∂xn︸ ︷︷ ︸
in

 (vol) + h∗(ai) · vol

But obviously Lie∂xi vol = 0 for any i ∈ {1, . . . , n}, so that finally we
see that the section vol⊗δ(t − h)e−f of h∗

(
ΩnV ⊗DV (OV (∗D)e−f [∂t])

)
is

annihilated by h∗(ai) · t− bh(−∂tt). It follows that bh(−∂tt) sends

U0G(∗D) = V0C[t]〈∂t〉ω1
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into U−1G(∗D), hence, we have bG1(log D)(s + 1)|bh(s). Now the theorem
follows as both bh and bG1(log D) are of degree n. �

4. Consequences and Examples

Definition 8. — Let D be a reductive linear free divisor with defining
equation h ∈ OV and f ∈ V ∗ a generic linear form. Consider, as in the last
section, the logarithmic extension G0(log D) of the family of Brieskorn
lattices G0(∗D) attached to (f, h). We define the logarithmic Brieskorn
lattice of h to be the restriction G0(h) := i∗(G0(log D),∇), where i :
C× {0} ↪→ C× T .

Notice that it follows from lemma 2.1 that G0(h) is independent of the
choice of f in V ∗\D∗, so that it makes sense to speak about the logarithmic
Brieskorn lattice of h.

The next result, which is an easy consequence of theorem 3.4, can be con-
sidered as a variant of the corresponding classical statement of Malgrange
([20]) for the isolated singularity case.

Theorem 4.1. — Let (G0(h),∇) be the logarithmic Brieskorn lattice
of a reductive linear free divisor D. Then ∇ is regular singular at θ = 0.
Consider the saturation G̃0(h) :=

∑
k>0(∇θ∂θ )kG0(h), which has a log-

arithmic pole at θ = 0. Let b
G̃0(h)(s) be the minimal polynomial of the

residue endomorphism of ∇θ on G̃0(h). Then b
G̃0(h)(n(s+ 1)) = bh(s).

Proof. — The regularity follows easily from the particular form of the
connection matrix (2.3). Namely, G0(h) is the Fourier-Laplace transforma-
tion of a regular C[r]〈∂r〉-module, hence, its regularity is equivalent to the
nilpotency of the polar part of the connection matrix, which is obviously
the case here, by putting t = 0 in A0. Now the saturation of G0(h) is easy
to calculate: We put ω̃i := θ1−iωi, then G(log D) = ⊕ni=1C[θ, θ−1, t]ω̃i, but
G0(log D) ( ⊕ni=1C[θ, t]ω̃i. It is evident that G̃0(h) = ⊕ni=1C[θ]ω̃i, in par-
ticular, this module is invariant under θ∇θ, i.e., logarithmic at θ = 0. We
have

(θ∂θ)ω̃ = ω̃ · (Ã0 + diag({1− i+ νi}i=1,...,n),
where Ã0 := (A0)|t=0. We see by theorem 3.4 that the residue eigenvalues
of ∇θ at θ = 0 are the roots of the Bernstein polynomial of h after dividing
by n and shift by −1, and moreover that the residue endomorphism is
regular (i.e., its minimal and characteristic polynomial coincide), as it has
a cyclic generator. This proves the theorem. �
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Remark. — One may ask what the meaning of the rescaling by n oc-
curring in b

G̃0(h)(n(s+ 1)) is. The same kind of twist occurs in [10, propo-
sition 4.5i(v)], where it is performed on the base, i.e., where the pull-back
u∗(G(∗D)) with u : C2 → C × T , (θ, t′) 7→ (θ, (t′)n) is considered, and
where it is shown that after this pull-back, the resulting bundle has the
“rescaling property”, i.e., that it is invariant under ∇θ∂θ−t′∂t′ .

The following easy consequence is a somewhat reverse argumentation
compared to Malgrange’s result, where the rationality of the roots of the
Bernstein polynomial was deduced from the (known) quasi-unipotency of
the monodromy acting on the cohomology of the Milnor fibre of an isolated
hypersurface singularity. In our case, the rationality of the roots of bh(s) is
known, but we deduce information on the (a priori unknown) monodromy of
the logarithmic Brieskorn lattice G0(h). Moreover, we can use the results
of [9] to obtain a symmetry property of the spectrum at infinity of the
logarithmic Brieskorn lattice, which was conjectured in [10, corollary 5.6].

Corollary 9. — The monodromy of the logarithmic Brieskorn lattice,
i.e. of the local system associated to G0(h)[θ−1] := G0(h) ⊗C[θ] C[θ, θ−1]
is quasi-unipotent. Moreover, let α1, . . . , αn be the spectral numbers of
G0(h) at infinity (i.e., the numbers νi from proposition 4), written as a
non-decreasing sequence. Then αi + αn+1−i = n− 1.

Proof. — The eigenvalues of this monodromy are simply the exponentials
of either the numbers νi or ν′i := i − 1 − νi from proposition 4 (or any
other integer shift of them). The numbers ν′i are the roots of the Bernstein
polynomial of h shifted by one, as shown in theorem 3.4. These are known to
be rational by [17]. Similarly, if we denote the roots of bh by α′1, . . . , α′n, with
α′i 6 α

′
j if i 6 j, then we know from [9, theorem 2.5.] that α′i+α′n+1−i = −2.

From theorem 3.4 and proposition 4 we deduce that αj = (j − 1)− α′j − 1
for any j ∈ {1, . . . , n}, hence,

αi + αn+1−i =
((i− 1)− α′i − 1) + ((n+ 1− i)− 1− α′n+1−i − 1) = n− 1.

�

We outline another consequence of the theorem 3.4. Its interest is mo-
tivated by comparing the situation considered here with the one where f
is still a generic linear form, but h is supposed to by an arbitrary mono-
mial h =

∏
xwii , i.e., non-reduced. The corresponding Gauß-Manin-systems

resp. Brieskorn lattices have been studied in [7], [4] and [5]. It is known
that they are closely related to the Mirror symmetry phenomenon, i.e.,
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one constructs a Frobenius structure on the semi-universal unfolding of
f|h−1(t), t 6= 0 which is known to be isomorphic to the orbifold quantum
cohomology of the weighted projective spaces. For a linear free divisor D,
a similar construction of a Frobenius manifold has been carried out in [10].
Although these are not a priori mirrors of some variety or orbifold, the fol-
lowing corollary shows an interesting similarity with the case h =

∏
xwii .

Corollary 10. — The spectrum at θ=∞ of (G0(h),∇) and (G(∗D),∇)
contains a (non-trivial) block of integer numbers k, k+ 1, . . . , n− 1− k for
some k ∈ {0, . . . , n− 1}.

Proof. — For the spectrum of (G0(h),∇), this is obvious as this block
corresponds to the root −1 of the Bernstein polynomial bh(s). For the
spectrum of (G(∗D),∇), one shows the same statement by analyzing the
construction of a good basis of G(∗D) from a good basis of G0(h) using
algorithm 2 of [10, lemma 4.11]. �

Notice that for the normal crossing case, the integer k from above is
equal to zero, i.e., the block mentioned above is the whole spectrum. This
is not true in general, hence, the Frobenius structures constructed in [10]
are not, a priori, mirrors of quantum cohomology algebras of orbifolds, as
zero is not, in general, an element of the spectrum. Still the analogy with
the orbifold quantum cohomology, i.e., the fact that there is a block of
increasing integer spectral numbers corresponding to the “untwisted sector”
(see, e.g., [16, section 2.1.]) is rather intriguing.

Examples of Bernstein polynomials. — We use the main result and the
computations of spectral numbers in [10] to obtain the roots of the Bern-
stein polynomials for the following reductive linear free divisors. The defi-
nitions of the two last discriminants can be found in [8], example in 1.4(2)
(this one is also called “bracelet”) and [26], proposition 11, respectively.

Notice that the examples E6 and the last two discriminants are ob-
tained by direct calculations in Singular ([12]). On the other hand, the
closed formulas for the star quiver and the D-series follows from rather
involved combinatorial arguments, the details of which will appear in [11].
The Bernstein polynomials for D4 (which is equal to ?3) and the bracelet
are also calculated in [9]. The one for An is of course completely obvious
and well known. It would be of interest to complete these calculations by
the Bernstein polynomials of quiver representations for the highest roots
of the Dynkin quivers E7 and E8, however, this seems to be out of reach of
computer algebra for the moment (remember from [3] that the linear free
divisors associated to these roots for E7 resp. E8 are of degree 46 resp. 118).
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linear free divisor Bernstein polynomial of h

An - quiver (s+ 1)n

Dm - quiver
(
s+ 4

3

)m−3 · (s+ 1)2m−4 ·
(
s+ 2

3

)m−3

E6 - quiver (s+ 7
5 ) · (s+ 4

3 )4 · (s+ 6
5 ) · (s+ 1)10 · (s+ 4

5 ) ·
(s+ 2

3 )4 · (s+ 3
5 )

?m - quiver
∏m−3
l=0

(
s+ 2(m−1)−l

m

)l+1
· (s+ 1)2(m−1) ·∏m−3

l=0

(
s+ m−1−l

m

)m−l−2

discriminant in S3((C2)∗)
(
s+ 7

6

)
· (s+ 1)2 ·

(
s+ 5

6

)
discriminant of
Sl(3,C)×Gl(2,C) action
on Sym(3,C)× Sym(3,C)

(
s+ 5

4

)2 ·(s+ 7
6

)2 ·(s+ 1)4 ·
(
s+ 5

6

)2 ·(s+ 3
4

)2
Table 4.1. Bernstein polynomials for some examples of linear free di-
visors.

Let us finish this note with a remark and a conjecture exploiting further
the analogy with the case of an isolated hypersurface singularity. We have
seen that the theorem of Malgrange can be adapted for reductive linear
free divisors using the logarithmic Brieskorn lattice from above. The regu-
larity of (G0(h),∇) at θ = 0 suggest to study the spectrum in the classical
sense of Varchenko (i.e., at θ = 0) of this lattice. We recall the definition
and calculate two examples, in order to show that this spectrum contains
additional information not present in roots of the Bernstein polynomial,
similarly to the case of isolated singularities.

Definition 11. — Let (E,∇) be a vector bundle on C = Spec C[θ]
equipped with a connection with a pole at zero of order two at most, which
is regular singular. The localization M := E⊗C[θ]C[θ, θ−1] has the structure
of a holonomic C[θ]〈∂θ〉-module with a regular singularity at θ = 0. We
suppose that the monodromy of its de Rham complex is quasi-unipotent.
Denote by V •M the canonical V-filtration on M at θ = 0, indexed by Q.
As this is a filtration by free C[θ]-modules (and not by free C[θ−1]-modules
as the V -filtration at θ =∞), we write it as a decreasing filtration. Define
the spectrum of (E,∇) to be

Sp(E,∇) :=
∑
α∈Q

V αM ∩ E
V αM ∩ θE + V >αM ∩ E

α ∈ Z[Q]

where V >αM := ∪β>αV αM.
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As an example, we consider the case of the normal crossing divisor

D = {hAn =
n∏
i=1
xi = 0},

which is the discriminant in the representation space of the quiver An. It
was stated in [10] (but essentially well known before, due to the relation
of this example to the quantum cohomology of the projective space Pn−1)
that we have G0(hAn) := ⊕ni=1OC×{0}ωi, and

∇(ω) = ω ·

[
Ã0

θ
+ diag(0, 1, . . . , n− 1)

]
dθ

θ
,

Ã0 := (A0)|t=0. On the other hand, we take up the example of the star
quiver with three exterior vertices studied in [10, example 2.3(i)]. Notice
that this is exactly the quiverD4. HereD ⊂ V = C6, and h?3 = h?3

1 ·h
?3
2 ·h

?3
3 ,

where

h?3
1 =
∣∣∣∣ a bd e

∣∣∣∣ ; h?3
2 =
∣∣∣∣ a cd f

∣∣∣∣ ; h?3
3 =
∣∣∣∣ b ce f

∣∣∣∣ .
Following the various algorithms of loc.cit used to obtain good basis, we
have that G0(h?3) := ⊕6

i=1OC×{0}ωi, and

∇(ω) = ω ·
[
A0

θ
+ diag(2, 1, 2, 3, 4, 3)

]
dθ

θ

Notice that this is the basis called ω(2) in loc.cit.

Proposition 12. — (1) The spectrum at θ = 0 for hAn is

Sp(G0(hAn),∇) = (0, 1, . . . , n− 1) ∈ Z[Q],

hence, it is equal to the spectrum at θ =∞ of both (G0(h),∇) and
(G(∗D),∇) (so that in this case we do not get more information
from the spectrum at θ = 0 than those contained in the roots of
bh(s)).

(2) The spectrum at θ = 0 for h?3 is given by

Sp(G0(h?3),∇) = (−2, 1, 2, 3, 4, 7) ∈ Z[Q],

hence, different from Sp(G0(h),∇) and not directly related to

bh(s) = (s+ 4
3

)(s+ 1)4(s+ 2
3

).
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Proof. —

(1) One can calculate directly that G0(hAn) can be generated by el-
ementary sections, which implies that Sp(G0(hAn),∇) is equal to
the spectrum at θ = ∞, i.e., Sp(G0(hAn),∇) = (0, 1, . . . , n − 1).
However, this can also be obtained in a more abstract way: For
any linear free divisor D, the analytic object corresponding to the
restriction of G0(∗D) to C× (T\{0}) is known (after a finite ram-
ification of order n) to be a Sabbah orbit of TERP-structures (see
the remark after the proof of theorem 4.1 and [10, proposition 4.5
(v)]). In the An-case, it is easy to see that the extension G0(log D)
is exactly the extension 0E considered in [14, proof of theorem 7.3
and lemma 6.11] and the logarithmic Brieskorn lattice G0(h) is iso-
morphic to the limit G0 considered in loc.cit, proof of theorem 7.3
and lemma 6.12. It was shown in the proof of theorem 7.3 of loc.cit.
that G0 is generated by elementary sections.

(2) In the ?3-case, one cannot apply the previous reasoning. Hence a
direct calculation is necessary. We explain parts of it, leaving the
details to the reader. From the connection matrix given above we
see that (θ∂θ)ω6 = 3ω6, and (θ∂θ)ω5 = 4ω5 − θ−1ω6. We make the
Ansatz

ω5 = αθ−1ω6 + s4

where s4 is a section of G0(h)[θ−1] satisfying (θ∂θ)(s4) = 4 · s4. We
obtain

(θ∂θ)ω5 = 2αθ−1ω6 + 4s4
!= (4α− 1)θ−1ω6 + 4s4

from which we conclude that ω5 = 1
2θ
−1ω6 + s4. Similarly, the

equation (θ∂θ)ω4 = 3ω4 − θ−1ω5 is satisfied by putting

ω4 = 1
8
β1 · θ−2ω6 + s3

where s3 ∈ G0(h)[θ−1] is a section satisfying (θ∂θ)s3 = 3s3 +θ−1s4.
Continuing this way we see that the elements of our basis ω can be

TOME 61 (2011), FASCICULE 1



398 Christian SEVENHECK

written as finite sums of elementary sections in the following way:

ω1 = 1
128
θ−5ω6 + 1

16
θ−4s4 + 1

8
θ−3s3 + 1

4
θ−2s2 + 1

2
θ−1s1 + s̃2;

ω2 = 1
32
θ−4ω6 + s1;

ω3 = 1
16
θ−3ω6 − s2;

ω4 = 1
8
θ−2ω6 + s3;

ω5 = 1
2
θ−1ω6 + s4;

ω6 = ω6

where s1, s2, s3, s4, s̃2 are sections of G0(h)[θ−1] satisfying

(θ∂θ)s1 = s1 + θ−1s2;

(θ∂θ)s2 = 2s2 + θ−1s3;

(θ∂θ)s3 = 3s3 + θ−1s4;
(θ∂θ)s4 = 4s4;
(θ∂θ)s̃2 = 2s̃4

Now it is easy to calculate an upper triangular base change yield-
ing a good basis and to show that the spectrum is

Sp(G0(h?3),∇) = (−2, 1, 2, 3, 4, 7) ∈ Z[Q],

as required.
�

Based on the computations of these examples, we state the following
conjecture, which is related to corollary 9 as well as to [10, conjecture 5.5.].

Conjecture 13. — Let h be the defining equation of a reductive linear
free divisor D ⊂ V = Cn. Then the spectrum of its logarithmic Brieskorn
lattice (G0(h),∇) at θ = 0 is symmetric around n−1

2 .

Remark. — There are several questions one may ask about the spec-
trum at θ = 0. First, it is surprising that negative numbers (even smaller
than −1) occur in this spectrum. One might want to understand the pos-
sibly range for the spectrum, as well as the difference to the roots of bh,
when multiplied by n. This should be compared to the results in [15] for
isolated singularities, in particular, lemma 3.4 of loc.cit.
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