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Ann. Inst. Fourier, Grenoble
60, 7 (2010) 2357-2372

ASYMPTOTIC VALUES OF MINIMAL GRAPHS
IN A DISC

by Pascal COLLIN & Harold ROSENBERG

Abstract. — We consider solutions of the prescribed mean curvature equation
in the open unit disc of euclidean n-dimensional space. We prove that such a
solution has radial limits almost everywhere; which may be infinite. We give an
example of a solution to the minimal surface equation that has finite radial limits
on a set of measure zero, in dimension two. This answers a question of Nitsche.
Résumé. — Nous considérons les solutions de l´équation de la courbure moyenne

prescrite sur le disque unité ouvert de l’espace euclidien. Nous prouvons qu’une telle
solution a une limite radiale presque partout qui, éventuellement, peut-être infinie.
Nous donnons l´exemple d´une solution de l´équation des surfaces minimales en
dimension deux, qui admet des limites radiales finies sur un ensemble de mesure
nulle. Ce travail répond à une question de Nitsche.

1. Introduction

Let D be the open unit disk {(r, θ) | 0 6 r < 1, 0 6 θ 6 2π} and g a
Riemannian metric on D. We consider solutions u on D, of the minimal
surface equation

div
(
∇u
W

)
= 0,

where the terms are calculated in the metric g and W 2 = 1+ |∇u|2. We re-
mark thatXu = ∇u

W , is the horizontal component of the downward pointing
unit normal vector field, to the graph of u in D×R, with the Riemannian
product metric. Our primary interests are when g is the Euclidean metric
in D and when g is the (complete) hyperbolic metric in D of curvature −1.
For fixed θ,we define the radial limit (also called asymptotic value) u(θ):

u(θ) = lim
r→1

u(r, θ).

Keywords: Minimal graphs, radial limits, Fatou theorem.
Math. classification: 53A10, 53C43.
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Our main concern is understanding for what values of θ does u(θ) exist;
allowing infinite values as well.
When the minimal surface equation is replaced by the Laplace equation,

this is a well studied problem. For example, when g is the Euclidean metric
and u is a bounded harmonic function, then Fatou’s theorem states radial
limits (indeed, even angular limits) exist for almost all θ. Also, in this case,
the radial limits can not be plus infinity for a positive measure set of θ.

In 1965, Nitsche asked if there is a Fatou theorem for solutions of the
minimal surface equation in the Euclidean diskD [4]. This was answered af-
firmatively by V. Miklyukov [3]. He proved that angular limits exist almost
everywhere, for a solution to the minimal surface equation on a domain
bounded by a rectifiable Jordan curve (they may be ±∞). We prove that
radial limits exist almost everywhere (again, they may be ±∞) for the
prescribed mean curvature equation on the n-dimensional unit ball.

Theorem. — Let D = {x ∈ Rn+1 | ||x|| < 1} and let H be a bounded
continuous function on D. Let u be a smooth solution of

div
(
∇u
W

)
= 2H

on D. Then u has radial limits almost everywhere.

In the same paper [4] Nitsche also asked what is the largest set of θ
for which a minimal graph on D may not have radial limits. If one allows
infinite radial limits then the Fatou type theorem says the largest set has
measure zero. If one means finite radial limits then we will show there is
an example with finite radial limits only on a set of measure zero. In this
example, the +∞ radial limits (resp. −∞) are taken on a set of measure π
(resp. π). Notice that although the value +∞ is taken on a positive measure
set of the unit circle, there is no interval on which the value +∞ is assumed.
However, when the domain is the interior of a square, the classical doubly
periodic solution of Scherk (log(cos(x)/cos(y))) takes the values +∞ and
−∞ on alternate sides of the square. Thus the asymptotic behavior of
solutions depends on the geometry of the boundary.
We conjecture that π is the maximum value for which radial limits in

the 2-dimensional disk can be +∞.
Now consider solutions to the minimal surface equation in the hyperbolic

metric on the disc. We will give an example for which radial limits do not
exist almost everywhere (including infinite limits).

We conjecture that bounded minimal graphs on D, with the hyperbolic
metric, do have radial limits almost everywhere.

ANNALES DE L’INSTITUT FOURIER



RADIAL LIMITS OF MINIMAL GRAPHS 2359

2. An example in the hyperbolic metric

Let Γ be the ideal polygon in H2 whose vertices are the four roots of
unity, rotated by 45 degrees. Let D1 be the convex hull of Γ. Let u1 be
the minimal graph on D1 which equals one on two opposite sides of Γ and
equals zero on the remaining (opposite) sides of Γ. By Schwarz reflection,
u1 extends to an entire minimal graph in D (cf. Figures 2.1 and 2.2).

1

0

1

0u1

Figure 2.1
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Figure 2.2

By symmetry of D1 through all the sides of Γ (and then continuing the
symmetries through the new sides) the vertices of Γ become a countable
dense set V on the unit circle. It is not hard to see that for each θ in the
measure 2π set S1−V , the limit of u(r, θ) does not exist as r → 1 (r →∞
in the hyperbolic metric).

We analyse the radial limits using ergodic theory.

There is a natural quotient
∑

of H2 which is a 4-punctured sphere of
curvature −1 and finite area. This is indicated in the figure 2.3 where the R-
domains are identified by hyperbolic translations (as well as the B-domains,
c.f. Figure 2.3).
The geodesic flow on

∑
(i.e., on T1(

∑
)) is ergodic for the Liouville

measure, (Hopf proved this is true for any hyperbolic manifold of finite
volume). Then the Poincaré recurrence theorem implies that for any open
set W of T1(

∑
) and for almost all (p, v) ∈W there exists tn →∞ so that

φtn(p, v) ∈W ; φ the geodesic flow on T1(
∑

).
Hence for U an open set of

∑
and for almost all p ∈ U , and for almost

all unit tangent vectors v at p, the geodesic γv(p) starting at p having v as
tangent, returns infinitely often to U . An isometry of

∑
sending a point

TOME 60 (2010), FASCICULE 7
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R B

R

B
R

Figure 2.3

p to a point q induces an absolutely continuous map from the fiber over p
(in T1(

∑
)) to the fiber over q. Hence for each point p in U , and for almost

all unit tangent vectors v at p, γv(p), returns to U infinitely often.
Fix an integer n and define

An = {(p, v) ∈ T1(
∑

) | the geodesic γv(p) of
∑

goes at least once to
an opposite side, as it traverses n fundamental domains of

∑
, starting at

(p, v)}.
An is open and not empty. Now fix p. Then for almost all unit tangent
vectors v at p, the geodesic ϕt(p, v) intersects An infinitely often. So the
geodesic γt(p, v) traverses opposite sides of a fundamental domain infinitely
often. Observe that u varies on an interval of length at least 1/2 when one
traverses a domain by opposite sides. Hence u has no finite limit on this ge-
odesic, and the set of θ for which finite radial limits exist is of measure zero.
Also the geodesics along which u → +∞ is an invariant set hence has

measure 0 or 1. By symmetry the measure of the set for which u→ −∞ is
the same as the measure for which u→ +∞. Thus both sets have measure
zero.
Hence u has no radial limits almost everywhere.

3. A Fatou Theorem for mean curvature

Theorem. — Let D = {x ∈ Rn+1 | ||x|| < 1} and let H be a bounded
continuous function on D. Let u be a smooth solution of

div
(
∇u
W

)
= 2H

on D. Then u has radial limits almost everywhere.

ANNALES DE L’INSTITUT FOURIER



RADIAL LIMITS OF MINIMAL GRAPHS 2361

Proof. — Let f : R → (−1,+1) be smooth and 0 < f ′(x) < 1 for all
x ∈ R (e.g., f(x) = 2

π arctan(x)). Define ϕ = f ◦ u, and X = ∇u
W ; X is a

vector field on D with norm less than one and divergence equal to 2H.
We have

div(ϕX) = ϕ div X + 〈∇ϕ,X〉
= 2H ϕ+ f ′(u)〈∇u,X〉

= 2H ϕ+ f ′(u)
(
W − 1

W

)
= 2H ϕ− f ′(u)

W
+ f ′(u)W.

By Stokes theorem: ∫
D(r)

div(ϕX) =
∫
∂ D(r)

ϕ〈X, ν〉,

for r < 1 and ν the outer conormal to ∂ D(r). Since |ϕ〈X, ν〉| 6 1, we have∫
D(r)

div(ϕX) 6 ωn , ωn the volume of Sn ≡ ∂ D.

Since 2H ϕ − f ′(u)
W is bounded on D, and f ′(u)W > 0, we conclude∫

D

f ′(u)W <∞.

We have f ′(u)|∇u| 6 f ′(u)W , and |∇ϕ| = f ′(u)|∇u|, thus |∇ϕ| is inte-
grable on D. Since ∂ϕ

∂r 6 |∇ϕ|, we have (Fubini):∫
D

∂ϕ

∂r
=
∫
ω∈Sn

(∫ 1

r=0

∂ϕ

∂r
rr−1 dr

)
dω <∞.

Thus, for almost all ω ∈ Sn,∫ 1

r=0

∂ϕ

∂r
(r, ω) dr <∞,

and lim
r→1

ϕ(r, ω) exists for almost all ω.
Since ϕ = f ◦u, we conclude u has radial limits almost everywhere (which

may be ±∞ if ϕ tends to ±1). �

4. Nitsche’s Second Question

We now construct an example of a minimal graph in the Euclidean disk
D = {x2 + y2 < 1} for which the finite radial limits are of measure zero.
This construction is inspired by the example in the authors paper [1].
We recall the Jenkins-Serrin theorem for polygons in R2.

TOME 60 (2010), FASCICULE 7
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Theorem ([2]). — Let Γ ⊂ R2 be a compact polygon with an even
number of sides A1, B1, A2, B2, . . . , An, Bn, in that order, and denote by D
the domain with ∂D = Γ. The necessary and sufficient conditions for the
existence of a minimal graph u on D, taking the values +∞ on each Ai ,
and −∞ on each Bj , are the following 2 conditions.

(1)
n∑
i=1
|Ai| =

n∑
j=1
|Bj |,

(2) for each inscribed polygon P in D (the vertices of P are among the
vertices of Γ) P 6= D, one has the two inequalities:

2a(P ) < |P | and 2b(P ) < |P |.

Here a(P ) =
∑

Aj∈P
|Aj |, b(P ) =

∑
Bi∈P

|Bi| and |P | is the perimeter

of P .

A1

B2

A2

B1D1

1

D1, u1

u1 ln
cos x

cos y

Figure 4.1

We can now begin the example. Let D1 be the square inscribed in S1 =
∂D, whose vertices are the four roots of unity rotated by 45 degrees, and
let Γ1 = ∂D1 . There is a minimal graph u1 in D1 which is +∞ on the
two horizontal sides of D1 and equals −∞ on the two vertical sides (Scherk
wrote an explicit formula for u1, which is written in Figure 4.1 above, for a
certain square of side length π). We label the sides of Γ1 as A1, B1, A2, B2,
–clockwise-, with A1 the top side (cf. Figure 4.1).
Henceforth we will attach “regular trapezoids” to the sides of a polygon

Γ. By this we mean a quadrilateral E attached to a side β of Γ so that the
side of Γ opposite β, is parallel to β, and the sum of the lengths of opposite
sides of E are equal; Figure 4.2.

ANNALES DE L’INSTITUT FOURIER
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l2l3

l4
l1

l1 l3 l2 l4

Figure 4.2

Let E and E′ be regular trapezoids attached to A1 and B1 respectively
so that all the vertices of E and E′ are on S1 (cf. Figure 4.3).
We remark that such a regular E exists since when the top edge of E

is very close to A1 , then the sum of the lengths of the horizontal sides is
greater than the sum of the lengths of the other two sides. When the top
side is near the top of S1, then the sum of the lengths is less than the sum
of the lengths of the non-parallel sides (triangle inequality). Hence there is
a unique position of the top chord of E for which one has equality.
Consider the domain D2 = D1 ∪ E ∪ E′, Γ2 = ∂D2 . This new domain

does not satisfy the second condition of the Jenkins-Serrin theorem: the
inscribed polygons E, E′ and their complements are not admissible. For
example, for E, the equality 2a(E) = |E| holds and for E′, 2b(E′) = |E′|,
violating the 2nd condition: (cf. Figure 4.4).

D1 E’

E

Figure 4.3

D2

a1

b1

Figure 4.4

We perturb D2 to made it admissible (i.e., the two conditions of Jenkins-
Serrin are satisfied). One moves the vertex a1 towards b1 to a nearby point
a1(τ) on S1 (making the +∞ sides of E shorter and the −∞ side longer),

TOME 60 (2010), FASCICULE 7
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and then one moves b1 towards a1 to a nearby point b1(τ) on S1 (making
the −∞ sides of E′ shorter and the +∞ side longer). Let Γ2(τ) be the
inscribed polygon obtained by this perturbation. For each τ > 0, τ small,
one can choose the a1(τ) and b1(τ) so that Γ2(τ) satisfies condition 1 of
Jenkins-Serrin (cf. Figure 4.5).

a1

b1

a1 Τ

b1 Τ
D2 Τ , u2 Τ

a1 Τ

b1 Τ

Figure 4.5

By construction, one has

2a(E(τ)) < |E(τ)| and 2b(E′(τ)) < |E′(τ)|.

For D2(τ) to be an admissable domain, one must check the above inequali-
ties for all other inscribed polygons in D2(τ), distinct from D2(τ). We will
prove this in general. The section that follows is like Section 6 of [1].

5. Extending Scherk Surfaces

Let (d1, d2, . . . , dn) be n distinct points of S1, ordered clockwise, and de-
note by P (d1, .d2, . . . , dn) the convex hull of these points (in the Euclidean
metric). When n is even we make the convention that Scherk graphs on
P (d1, d2, . . . , dn) take the value +∞ on the sides [di, di+1], i even, and
−∞ on the other sides when i is odd. Let Ai denote the side [d2i, d2i+1]
and Bi the side [d2i+1, d2i+2]. We say P (d1, d2, . . . , dn) is a Scherk domain
(or admissible) if its boundary satisfies the two Jenkins-Serrin conditions;
so Scherk graphs exist on the domain. They are unique up to a vertical
translation.

ANNALES DE L’INSTITUT FOURIER
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Proposition. — Let u be a Scherk graph on a polygonal domain D1 =
P (a1, a2, . . . , a2k) (inscribed in the unit circle) and K be a compact set in
the interior ofD1 . LetD2 = P (b1, b2, a1, b3, b4, a2, . . . , a2k) be the polygonal
domain D1 to which we attach two regular trapezoids E = P (b1, b2, a1, a0)
and E′ = P (a1, b3, b4, a2); E is attached to the side [a0, a1] of D1 and E′
to the side [a1, a2].

Then for all ε > 0, there exists (b′i)i=2,3 and v a Scherk graph on
P (b1, b

′
2, a1, b

′
3, b4, a2, . . . , a2k) such that:

|b′i − bi| 6 ε and ||v − u||C2(K) 6 ε.

The proof of this proposition is rather long and is essentially contained in
our paper [1] from lemma 4 on. However there are some differences. First we
no longer need horocycles to define lengths; but this is not important here.
Secondly, in [1], we attached regular quadrilaterals, all of whose sides have
equal length, and then we perturbed the polygons. Now the lengths of the
sides are not equal; the trapezoids are “balanced”. For this reason we will do
the proof that the perturbed polygon D′2 = P (b1, b

′
2, a1, b

′
3, b4, a2, . . . , a2k)

is a Scherk domain.
The idea is to show that D2 satisfies the Jenkins-Serrin conditions ex-

cept for some particular inscribed polygons. Then by a small variation of
(bi)i=2,3 we can ensure the conditions are satisfied for all inscribed poly-
gons. The inscribed polygons that satisfy the strict inequalities of condition
2, continue to satisfy the strict inequality for small perturbations.

Lemma. — All the inscribed polygons of D2 are admissible except the
boundaries of E, E′, and their complements D1 − E, D1 − E′.

Proof. — For the entire polygon D2 , a simple computation gives that
a(Γ2) = b(Γ2), where Γ2 = ∂D2 ; this is why we attached regular trapezoids.
Thus it suffices to prove the second Jenkins-Serrin inequality for a inscribed
polygon P, distinct from E, E′ and their complements. Notice that by
symmetry of the problem, we need only prove the second inequality for
values +∞ on the boundary.
So let P be an inscribed polygon in D1 as above ( 6= E,E′, and their

complements), and let P = ∂P (d1, . . . , dn), where (di)i=1,...,n are vertices
of D1 . We want to prove |P| > 2a(P).
Let P ′ = P − E′ and P ′ = ∂P ′. �

Claim. — if |P ′| > 2a(P ′) then |P| > 2a(P).
Once this claim is established it will be enough to prove |P ′| > 2a(P ′).

TOME 60 (2010), FASCICULE 7
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Proof of the Claim. — if P ′ = P the result is obvious, otherwise the
chord [b3, b4] where v = +∞ is in P. Write P = ∂P (d1, b3, b4, d2, . . . , dn).

Let q1 = [d1, b3]∩ [a1, a2] and q2 = [d2, b4]∩ [a1, a2]. Notice that if a1 ∈ P
(resp. a2 ∈ P) then q1 = a1 and |a1 q1| = 0 by convention (resp. q2 = a2
and |q2 a2| = 0) cf. Figure 5.1. We have

a(P) = a(P ′) + |b3 b4|

|P| = |P ′| − |q1 q2|+ |q1 b3|+ |b3 b4|+ |b4 q2|.

Using the regularity:

|a1 q1|+ |q1 q2|+ |q2 a2|+ |b3 b4| = |a1 b3|+ |b4 a2|

and substituting the above values of a(P) and |P|, we have

|P| − 2a(P) = |P| − 2(a(P ′) + |b3 b4|)
= |P ′| − |q1 q2|+ (|q1 b3|+ |b3 b4|+ |b4 q2|)

−2a(P ′)− 2|b3 b4| > |q1 b3|+ |q2 b4| − (|b3 b4|+ |q1 q2|)

(since |P ′| > 2a(P ′))

= |q1 b3|+ |q2 b4| − (|a1 b3|+ |b4 a2| − |a1 q1| − |q2 a2|)
= (|a1 q1|+ |q1 b3| − |a1 b3|) + (|a2 q2|+ |q2 b4| − |a2 b4|) > 0,

by the triangle inequality. This proves the claim. �

P E’

E
a1

a2

b3

b4

q1

q2

Figure 5.1
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Now it remains to prove |P ′| > 2a(P ′). For that define P ′′ = P ′ − E,
P ′′ = ∂P ′′, and I1 = P ′′ ∩ [a0, a1]. A flux calculation shows that

|P ′′| − 2(a(P ′′) + |I1|) > 0;

we refer the reader to [1].
Now there are several cases to consider.

Case 1. Suppose [a0, b1] ∪ [b2, a1] ⊂ P. Then E ⊂ P ′ and

a(P ′) = a(P ′′) + |a0b1|+ |b2a1|,

|P ′| = |P ′′| − |a0a1|+ |a0b1|+ |b1b2|+ |b2a1|,
|I1| = |a0a1|;

Substitute in the flux inequality:

0 < |P ′|+ |a0a1| − |a0b1| − |b1b2| − |b2a1|

− 2
(
a(P ′)− |a0b1| − |b2a1|+ |a0a1|

)
= |P ′| − 2a(P ′)− |a0a1|+ |a0b1|+ |b2a1| − |b1b2|
= |P ′| − 2a(P ′).

The last equality because E is regular.

Case 2. Suppose only one of the [a0, b1] or [b2, a1] is contained in P; [a0, b1]
say. Let I1 = [a0, q]. There are two possibilities: the segment [q, b1] is in
∂P , or the segment [q, b2] ⊂ ∂P . We do the estimate for the latter case and
leave the first for the reader.
We have:

a(P ′) = a(P ′′) + |a0b1|
|P ′| = |P ′′| − |I1|+ |a0b1|+ |b1b2|+ |b2q|.

Then substituting in the flux inequality:

0 <
(
|P ′|+ |I1| − |a0b1| − |b1b2| − |b2q|

)
− 2
(
a(P ′)− |a0b1|+ |I1|

)
= |P ′| − 2a(P ′)− |b1b2| − |b2q|+ |a0b1| − |I1|.

The two triangle inequalities:

|a0b1| < |a0q|+ |qb1|
|b1 q| < |b1b2|+ |b2q|,

show that the term

−|b1b2| − |b2q|+ |a0b1| − |I1|

TOME 60 (2010), FASCICULE 7
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is negative. Hence

0 < |P ′| − 2a(P ′), as desired.

Case 3. The remaining case is for P ′ ⊂ D1 . Then the flux inequality gives
the result for P ′ = ∂P ′.

This completes the proof of the lemma.
For the rest of the proof of the proposition we refer the reader to Lemma

5 and the proof of Proposition 2 of our paper [1].

Now we return to the square D1 inscribed in S1, at the four roots of
unity rotated by 45 degrees, and the Scherk graph u1 on D1 , u1 is +∞ on
the horizontal sides of ∂D1 and −∞ on the vertical sides. Let K be the
square in D1 , which is the image of D1 by homothety from the origin by
some constant a < 1; K = a ·D1 .
Let B = {p ∈ R2 | |p− zi| < 1− a, zi, i = 1, . . . , 4, the vertices of D1 }.
Finally, let K1 = K −B; cf. Figure 5.2.

K1

D1

Figure 5.2

We choose a close enough to 1, so that u1 > 1 on the horizontal sides of
K1 , and u1 < −1 on the vertical sides of K1 .
Next consider the domains D2(τ) = D1 ∪ E(τ) ∪ E′(τ) we constructed.

We have seen that we can choose τ2 > 0 so that for 0 < τ 6 τ2, u2(τ)
is as close as we want to u1 on K1 . We take τ2 so that u2(τ) > 1 on the
horizontal sides of K1 and u2(τ) < −1 on the vertical sides of K1 . Also we
can take u2(σ) = u1(σ), where σ is the center of the circle. More precisely,
for any ε2 > 0 there exists τ2 > 0 such that for 0 < τ 6 τ2 , u2(τ) exists,
u2(σ) = u1(σ) and

||u1 − u2(τ)||
K1,C2 6 ε2.

ANNALES DE L’INSTITUT FOURIER
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K1

E Τ1

E' Τ1

E' Τ2

E Τ2

Figure 5.3

Then choose ε2 > 0, so that u2(τ) > 1 on the horizontal sides of K1 and
u2(τ) < −1 on the vertical sides, for all τ , 0 < τ 6 τ2 .
Let K2(τ) ⊂ D2(τ) be a compact domain composed of sides parallel

to the sides of ∂D2(τ) (and “close” to the sides of ∂D2(τ)) together with
circular arcs centered at the vertices of ∂D2(τ). We believe the Figure 5.4
suffices to define K2(τ) (up to size):

We indicate the boundary values of u2(τ) on the Figure 4.5.
Choose K2(τ) close enough to ∂D2(τ), so that for 0 < τ 6 τ2 , u2(τ) > 2

on those sides (which do not already belong to ∂K1) of ∂K2(τ) parallel
to sides of D2(τ) where u2(τ) = +∞, and u2(τ) < −2 on the sides of
∂K2(τ) (again, those which do not already belong to ∂K1) parallel to sides
of ∂D2(τ) where u2(τ) = −∞.

Next construct the Scherk domain D3(τ) by attaching perturbed regular
trapezoids to the remaining two sides A2 and B2 of D1 . We know that
there exists τ3 > 0 such that if 0 < τ 6 τ3 then a Scherk graph u3(τ)
exists, u3(σ) = u1(σ), and

||u3(τ)− u2(τ)||
K2(τ),C2 < ε3 .

Here ε3 is chosen small enough so that u3(τ) > 3 on the sides of ∂K2(τ)
parallel to the sides of D2(τ) where u2(τ) = +∞ and u3(τ) < −3 on the
sides parallel to the sides where u2(τ) = −∞.
Now choose εn → 0, τn → 0, Kn(τn) so that Kn(τn) ⊂ Kn+1(τn+1),⋃

n
Kn(τn) = D.

Let Bn be the length of the circular sides of Kn(τn). We know we can
choose Kn(τn) so that B(n) is as small as we wish. We choose Kn(τn)
so that there is a number c, 0 < c < 1, and Bn+1 6 cBn. Thus the set
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Figure 5.4

{θ : r eiθ traverses an infinite number of circle arcs of
⋃
nKn(τn), as r →

1} has measure zero.

D3 Τ2 ,u3 Τ2

Figure 5.5

The un(τn) converge to a minimal graph u on D. We will now see that
u has the desired properties: the radial limits are finite on a set of measure
zero, they are +∞ (resp. −∞) on a set of measure π.
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Let F be the set of vertices of the quadrilaterals En(τn), n = 1, 2, . . . .
F is a countable dense set of measure zero on S1. Let θ be in the measure
2π set V where lim

r→1
u(r, θ) exists and θ ∈ S1 − F (V exists by our Fatou

Theorem). We consider the segment `θ =
{
reiθ | 0 6 r < 1

}
.

We can assume each θ in the measure 2π set V satisfies `θ intersects at
most a finite number of circle arcs of

⋃
nKn(τu) (since the set of θ such that

the ray `θ intersects an infinite number of circle arcs has measure zero).
Label the quadrilaterals `θ traverses as r → 1 in the order they are

traversed, E1, E2, . . . . When `θ first intersects En , it then leaves En by
traversing the opposite side or it leaves En by traversing one of the two
adjacent sides.
Consider the θ in V such that `θ traverses an infinite number of En

crossing to the opposite side of En. For n large, `θ traverses En going from
one side of En to the opposite side of En, and near these crossing points,
`θ intersects straight line segments of a Km(τm) (m = n and m = n + 1).
So, u takes a value on `θ greater than n near one crossing point and less
than −n near the other crossing point. So, the variation of u on En is at
least 2n. Hence u has no finite limit on this `θ.
Now consider those θ in V such that `θ crosses En by going to an adjacent

side of En, for n sufficiently large. Then either u takes the values n and n+1
near the adjacent sides, or u always takes the values −n and −n− 1 near
the adjacent sides (which one depends on whether the first intersection of
`θ and E1 is a horizontal or vertical side of E1). Since the radial limits of
u exist in V , they must be plus infinity in the first case and minus infinity
in the second case.
By symmetry of the plus and minus infinity limits, we conclude that

u has radial limits plus infinity (respectively, minus infinity) on a set of
measure π. This completes the proof.

Remark. — This example may lead one to believe that the plus infinity
radial limits must be balanced by the minus infinity radial limits. However,
there is an example of a minimal graph in the (Euclidean) disk that is
positive and has plus infinity radial limits on a set of positive measure. We
do not know how big this positive measure may be.
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