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QUANTUM EQUIVALENT MAGNETIC FIELDS THAT
ARE NOT CLASSICALLY EQUIVALENT

by Carolyn GORDON, William KIRWIN,
Dorothee SCHUETH & David WEBB (*)

Abstract. — We construct pairs of compact Kähler-Einstein manifolds
(Mi, gi, ωi)(i = 1, 2) of complex dimension n with the following properties: The
canonical line bundle Li =

∧n
T ∗Mi has Chern class [ωi/2π], and for each positive

integer k the tensor powers L⊗k
1 and L⊗k

2 are isospectral for the bundle Laplacian
associated with the canonical connection, while M1 and M2 – and hence T ∗M1
and T ∗M2 – are not homeomorphic. In the context of geometric quantization, we
interpret these examples as magnetic fields which are quantum equivalent but not
classically equivalent. Moreover, we construct many examples of line bundles L,
pairs of potentials Q1, Q2 on the base manifold, and pairs of connections ∇1, ∇2
on L such that for each positive integer k the associated Schrödinger operators on
L⊗k are isospectral.
Résumé. — On construit des couples de variétés de Kähler-Einstein compactes

(Mi, gi, ωi) (i = 1, 2) de dimension complexe n avec les propriétés suivantes : la
première classe de Chern associée au fibré en droites canonique Li =

∧n
T ∗Mi

est ωi/2π, et pour tout entier positif k, les puissances tensorielles L⊗k
1 et L⊗k

2
sont isospectrales pour le Laplacien associé à la connexion canonique, mais M1 et
M2 – et, en conséquence, T ∗M1 et T ∗M2 – ne sont pas homéomorphes. Dans le
contexte de la quantification géométrique, nous interprétons ces exemples comme
des champs magnétiques qui sont équivalents au sens quantique mais pas au sens
classique. En plus, on construit beaucoup d’exemples de fibrés en droites L, de
couples de potentiels Q1, Q2 sur la variété de base et de couples de connexions ∇1,
∇2 telles que, pour tout entier positif k, les opérateurs de Schrödinger associés sur
L⊗k soient isospectraux.

Keywords: Geometric quantization, tensor powers of line bundles, Laplacian, isospectral
line bundles.
Math. classification: 58J53, 53C20.
(*) The first author and last author were supported in part by NSF Grants DMS 0605247
and DMS 0906169. The third author was partially supported by DFG Sonderforschungs-
bereich 647.
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1. Introduction

Let L be a Hermitian line bundle over a closed Riemannian manifold
(M, g). The Riemannian metric g onM and the connection∇ on L together
give rise to a Laplace operator ∆ acting on the space C∞(M,L) of smooth
sections of L by

(1.1) ∆ = −trace(∇2),

where

C∞(M,L) ∇−→ C∞(T ∗M ⊗ L) ∇−→ C∞(T ∗M ⊗ T ∗M ⊗ L)

are the connections on L and on T ∗M ⊗ L (the latter is obtained from
the Levi-Civita connection on T ∗M and the given connection ∇ on L; we
denote it by ∇ as well) and the trace is with respect to the Riemannian
metric g. The connection ∇ gives rise to a connection, and thus also a
Laplacian, on the kth tensor power L⊗k of L over M for each positive
integer k. We will denote its spectrum, which is necessarily discrete, by
Spec(L,∇, k).
How much information is encoded in these spectra? For example, do they

determine the connection? The curvature of the connection? The Chern
class of the bundle? The geometry of the base manifold? We will primarily
focus on a variant of the second question.

A closed 2-form ω on a Riemannian manifold (M, g) is sometimes viewed
as a magnetic field. The classical Hamiltonian system for a charged par-
ticle moving in the magnetic field is given by (T ∗M,Ω, H). Here Ω is the
symplectic structure on the phase space T ∗M given by Ω := ω0 + π∗ω,
where ω0 is the Liouville form and π : T ∗M → M is the projection, and
the Hamiltonian H is given by H(q, ξ) = 1

2gq(ξ, ξ). If
1

2πω represents an
integer cohomology class, then there exists a complex line bundle L with
Chern class [ 1

2πω]. Endow L with a Hermitian structure and a Hermitian
connection with curvature −iω. Through the procedure of geometric quan-
tization, the space of square integrable sections of L⊗k is viewed as the
“quantum Hilbert space,” and the quantum Hamiltonian is the operator
Ĥk = −~2

2 (−∆ − 1
6R) with ~ = 1

k , where R is the scalar curvature of M .
Thus we ask:

• Does the collection of all Spec(L,∇, k), k = 1, 2, 3, . . . , determine
the symplectic structure Ω on T ∗M? That is, does “quantum equiv-
alence” of two magnetic fields imply their “classical equivalence”?

ANNALES DE L’INSTITUT FOURIER
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We answer this question negatively by example. We consider the case
in which (M, g, ω) is a Kähler manifold; in fact, we focus on Hermit-
ian locally symmetric spaces of noncompact type, normalized such that
the Einstein constant is −1. For such spaces, the line bundle with Chern
class [ω/2π] is the canonical line bundle of (M, g, ω). We will show that
for every normalized, simply-connected irreducible Hermitian symmetric
space X of noncompact type of real dimension at least four, there ex-
ist arbitrarily large finite families of Hermitian locally symmetric spaces
(Mi, gi, ωi) covered by X such that Spec(Li,∇i, k) = Spec(Lj ,∇j , k) for
all k and all i, j (where ∇i is the canonical connection on the canonical
line bundle) but such that the cotangent bundles of the various Mi are
mutually non-homeomorphic. Hence, the phase spaces (T ∗Mj ,Ωj) for the
magnetic flows of the various (Mj , ωj) are not symplectomorphic, and yet
the measurable quantum energy spectra are the same. Our method is based
on Sunada’s isospectrality technique along with D. B. McReynolds’s recent
construction of arbitrarily large finite families of mutually isospectral lo-
cally symmetric spaces.
In the example outlined above, the classical phase spaces of the “quan-

tum equivalent” systems fail not only to be symplectomorphic, but even to
be homeomorphic. In a companion article, we will construct by a different
method an example of quantum equivalent magnetic fields on a fixed man-
ifold M (a torus) for which the associated symplectic structures on T ∗M
are not symplectomorphic.
Our technique is similar to that of R. Kuwabara [11], who constructed

pairs of connections on a fixed line bundle L over, for example, a Riemann
surface M such that Spec(L,∇1, k) = Spec(L,∇2, k) for all k. In the final
section of this paper, we review and slightly extend his construction.
The paper is organized as follows: In Section 2, we describe some of the

relevant framework of geometric quantization, which will allow for a phys-
ical interpretation of the isospectrality results. This material is of course
well-known to experts in geometric quantization, but we include it here in
the hopes that it may be of interest to a wider audience. In Section 3, we
describe Sunada’s technique in our context and show how it leads to the
examples described above of Hermitian locally symmetric spaces (of real
dimension four and higher) that are quantum equivalent but not classically
equivalent. We also address the case of Riemann surfaces. Finally, in Sec-
tion 4, we consider isospectral connections and potentials on a fixed line
bundle.

TOME 60 (2010), FASCICULE 7
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This article, like many others of the authors, was influenced by Pierre
Bérard’s work. We are pleased to celebrate many years of friendship on the
occasion of his birthday.

2. Geometric quantization

2.1. Hamiltonian system associated with a magnetic field

On R3, a magnetic field may be viewed as an exact 2-form ω, identified
with the curl of the magnetic potential field A. The 1-form α = A[ defines
a connection ∇ := d − iα on the (trivial) Hermitian line bundle R3 × C
with curvature −iω = −i dα.(1)

In analogy with the situation in R3, a closed 2-form ω on a Riemannian
manifold (M, g) can be interpreted as a magnetic field. The Hamiltonian
system for a charged particle moving in the magnetic field has phase space
(T ∗M,Ω) with Ω := ω0 +π∗ω, where ω0 is the Liouville form on T ∗M (that
is, ω0 = −dλ, where λ is the canonical 1-form on the cotangent bundle),
and π : T ∗M → M is the projection; see [10], for example. The classical
trajectories of the particle are given by the Hamiltonian flow of the (kinetic
energy) Hamiltonian H(q, ξ) := 1

2gq(ξ, ξ). When ω = 0, so that Ω = ω0,
this flow is just the usual geodesic flow describing a free particle moving
on M .

Notation 2.1. — We will say that (M1, g1, ω1) and (M2, g2, ω2) are clas-
sically equivalent if the associated Hamiltonian systems (T ∗M1,Ω1, H1)
and (T ∗M2,Ω2, H2) are equivalent; that is, if there exists a symplectomor-
phism ϕ : (T ∗M1,Ω1)→ (T ∗M2,Ω2) such that ϕ∗H2 = H1.

Notation and Remarks 2.2. — In case [ω/2π] is an integral cohomology
class, let L be the line bundle over M with Chern class [ω/2π]. Endow L

with a Hermitian structure and let P be the associated principal circle
bundle. Let ∇L be a Hermitian connection on L with curvature −iω. The
connection ∇ and the Riemannian metric on M give rise to a Riemannian
metric g̃ on P , sometimes called a Kaluza-Klein metric. Consider the asso-
ciated geodesic flow on T ∗P . The circle action on the principal bundle P
gives rise to a Hamiltonian action of the circle S1 on T ∗P . The symplectic

(1)The appearance of i =
√
−1 here is a matter of convention. We choose the convention

which is common in mathematics, specifically in geometric quantization.
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reduction of the geodesic flow on P by the S1 action yields the Hamil-
tonian system of the magnetic flow on T ∗M described above. In this brief
description we have followed Kuwabara; see [12] for more information.
In preparation for Subsection 2.2, we note that the connection ∇L and

the Riemannian metric g on M give rise to a Laplace operator ∆ on the
space C∞(M,L) of smooth sections of L given by (1.1). By the usual con-
struction, ∇L induces a Laplace operator, also denoted ∆, on the space
C∞(M,L⊗k), where L⊗k is the kth tensor power of L for k = 1, 2, 3, . . .
The space C∞(M,L⊗k) may be identified with the space C∞k (P ) of smooth
complex-valued functions f on P satisfying the equivariance condition
f(α.x) = α−kf(x) for α ∈ S1 and x ∈ P . The Laplace operator on
C∞(M,L⊗k) is unitarily equivalent to the restriction of ∆P − 4k2π2 to
C∞k (P ), where ∆P is the Laplace-Beltrami operator of (P, g̃).

The space of smooth sections C∞(M,L⊗k) is endowed with the stan-
dard L2 inner product given for smooth sections s and t by

〈s, t〉 :=
(
k

2π

)n ∫
s.t

ωn

n! ,

where s.t denotes the pointwise Hermitian inner product on each fibre.
This inner product defines a Hilbert space consisting of square-integrable
sections of L⊗k, of which the space C∞(M,L⊗k) of smooth sections is a
dense subspace. The operator ∆ is an unbounded operator on this Hilbert
space with dense domain C∞(M,L⊗k). The theory of unbounded operators
on Hilbert spaces is well-developed (see, for example, the classic texts [16,
Vol II, Chap. 8] and [4]), and we mention here only that ∆ admits a self-
adjoint extension, still denoted by ∆, with dense domain D containing the
space of smooth sections of L⊗k. In the following, when we say that ∆ is
an operator on the Hilbert space of L2-sections, it is to be understood in
this usual sense of an unbounded operator with dense domain.

2.2. Quantization of the Hamiltonian system

Using geometric quantization, one associates to a classical mechanical
system (satisfying suitable requirements) a quantum mechanical system,
consisting of a Hilbert space Hk and a quantum Hamiltonian operator
Ĥk : Hk → Hk for each integer k > 0. (Here Planck’s constant is given
by ~ = 1/k.) For the Hamiltonian system (T ∗M,Ω, H) in Subsection 2.1,
the quantization may be carried out provided that ω/2π represents an
integral cohomology class of M . In this case, one obtains Theorem 2.3

TOME 60 (2010), FASCICULE 7
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below. Following the statement of the theorem and related remarks, we
will briefly outline the procedure of geometric quantization. For a complete
presentation, see the classic references [21] and [17]; see also [9] and [2].

Theorem 2.3. — [21, p. 204] We use Notation 2.2 and assume that
[ω/2π] is an integral cohomology class. The quantum Hilbert space asso-
ciated to the classical Hamiltonian system (T ∗M,Ω, H) of Subsection 2.1
is given for each integer k > 0 by Hk = L2(M,L⊗k) (the space of square-
integrable sections of L⊗k) and the quantization of the Hamiltonian H is
the (unbounded) operator

(2.1) Ĥk = −~2

2 (−∆− 1
6R)

on Hk, where R is the scalar curvature of the metric g. (Here ~ = 1
k ).

The allowed energy values of the charged particle in the magnetic field,
which are what one would see if one “measured” the energy of the quantum
particle, are the eigenvalues of Ĥk.

Remark 2.4. — The definition of the Laplacian ∆ on L⊗k, and thus of
the operators Ĥk, depends on a choice of connection on L with the specified
curvature−iω. However, in the examples that we will give in Subsection 3.2,
there will be a natural choice of connection with that curvature.

Notation 2.5. — Let (Mi, gi), i = 1, 2, be a compact Riemannian mani-
fold and let ωi be a closed 2-form onMi such that [ωi/2π] is an integral co-
homology class. For each integer k > 0, let Ĥi

k : L2(M,L⊗ki )→ L2(M,L⊗ki )
be the associated quantum Hamiltonian as given in Theorem 2.3. We will
say that (M1, ω1) and (M2, ω2) are quantum equivalent (with respect to
the connections used to define the line bundle Laplacians) if for every k,
the operators Ĥ1

k and Ĥ2
k have the same spectrum.

We now outline the quantization procedure. Consider the classical Hamil-
tonian system (T ∗M,Ω, H) given in Subsection 2.1. Recall that Ω = ω0 +
π∗ω. Let π∗L be the pullback of L to a bundle over T ∗M and π∗∇L the
pullback of the connection. Since the Liouville form ω0 on T ∗M is exact,
the Hermitian line bundle LΩ with Chern class [Ω/2π] may be identified
with π∗L. Writing ω0 = dΘ, the Hermitian connection ∇ := π∗∇L − iΘ
on LΩ has curvature −iΩ.
The prequantization of the Hamiltonian system (T ∗M,Ω) is the space

of square-integrable sections of L⊗kΩ with respect to the standard inner
product

〈s, t〉 :=
(
k

2π

)n ∫
T∗M

s.t
Ωn

n! ,

ANNALES DE L’INSTITUT FOURIER
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where s.t denotes the (pointwise) Hermitian product on L⊗kΩ . For a smooth
function f on T ∗M (we are interested in particular in the Hamiltonian H
above), one associates a prequantum Hamiltonian operator f̂preQ, given by
the Kostant-Souriau construction:

(2.2) f̂preQ := i

k
∇L

⊗k
Ω

Xf
+ f,

where Xf is the Hamiltonian vector field associated to f , defined by

Ω(Xf , ·) = df(·).

The Kostant-Souriau prequantization (2.2) satisfies Dirac’s quantization
conditions:

(1) the map f 7→ f̂ preQis linear,
(2) the quantization 1̂preQ of the constant map 1 is the identity opera-

tor, and
(3) [f̂preQ, ĝpreQ] = −i~{̂f, g}

preQ
, where {·, ·} is the Poisson bracket,

[·, ·] is the operator commutator, and ~ = 1/k.
Indeed, the prequantization (2.2) is derived precisely so that it satisfies (1)
– (3) above. (See [21, Chap. 8]). Unfortunately, the pair

(L2(T ∗M,L⊗kΩ ), f 7→ f̂preQ)

does not define a “good” quantization, essentially because L2(T ∗M,L⊗kΩ )
is too big. For example, in the case ω = 0 and M = Rn, which corresponds
to a free particle moving in Euclidean space, the line bundle L⊗kΩ is trivial
and the prequantum Hilbert space is then L2(T ∗Rn = Rn × Rn). The
variables in the first Rn factor give the position of the particle, and the
variables in the second Rn factor describe the momentum. But one knows
from quantum mechanics that a wave function cannot be simultaneously a
function of both position and momentum.

In order to obtain a Hilbert space of the “correct” size, one first chooses
a polarization of (T ∗M,Ω). A polarization of a symplectic manifold is an
integrable (real or complex) Lagrangian distribution. If, as is the case here,
the phase space is a cotangent bundle, one may take the vertical polar-
ization, i.e., the distribution given by the tangent spaces to the fibers of
T ∗M . (Note that this distribution is indeed Lagrangian with respect to Ω
as well as ω0.) This means that we are considering wave functions which
depend only on position, not on momentum. Thus, the vertical polarization
corresponds to the “position-space representation” in quantum mechanics.
Once a choice of polarization P is made, one would ideally like to de-

fine the quantum Hilbert space to be the subspace L2
P(T ∗M,L⊗kΩ ) of the

TOME 60 (2010), FASCICULE 7
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prequantum Hilbert space L2(T ∗M,L⊗kΩ ) consisting of those sections that
are covariantly constant in the P directions and then restrict the Kostant-
Souriau prequantum Hamiltonians f̂preQ to this subspace. However, there
are two problems here. First, L2

P = {0}! Secondly, even for a polarization P
that yields a nontrivial quantum Hilbert space,(2) the Kostant-Souriau
quantization f̂preQ does not in general preserve the quantum Hilbert space.
Indeed, f̂preQ will only preserve Hk if the Hamiltonian flow of f preserves
the polarization P. One can show that the Ω-Hamiltonian flow of H does
not preserve any polarization.
Fortunately, there is only one more piece of the puzzle which will remedy

both of the remaining problems at once: the so-called half-form correction.
The half-form correction boils down to tensoring L⊗k with a square root
of the canonical bundle associated to the polarization. Sections of such a
bundle are called half-forms.
The half-form correction, due essentially to Blattner, Kostant and Stern-

berg, allows one to quantize a larger set of functions than just those whose
flows preserve the polarization, and in particular one can quantize the
standard Hamiltonians which appear in wave mechanics, of which our
H = 1

2‖ξ‖
2 is an example. Moreover, the quantum Hilbert space associated

to the vertical polarization, in the presence of the half-form correction, will
turn out to be just L2(M,L⊗k), which is exactly what one would naively
expect for the position-space representation.(3)

The BKS construction in our setting is as follows. (We refer the interested
reader to [21], Chap. 9, for more details and proofs; see also [9].) Choose a
line bundle δ such that δ ⊗ δ =

∧n
TM (this is possible because

∧n
TM

is trivializable), and let ν be a section of δ with ν2 = volg(M), where
volg(M) is the Riemannian volume form onM . Sections of δ are called half-
forms (associated to the vertical polarization), and the half-form corrected
quantum Hilbert space is defined to be

Ĥk := L2
P(T ∗M,L⊗kΩ ⊗ π∗δ)

(2)A typical example of such a polarization is available whenever T ∗M admits a Kähler
structure, for example when M is a compact Lie group. In this case, one can take P to
be the holomorphic tangent bundle.
(3)There are several further advantages, from both the mathematical and physical view-
points, though they are not relevant to our current purposes. One, which is easy to
describe, is that when using the BKS construction to quantize the simple harmonic
oscillator (a well-known example from physics), a shift is introduced which results in
the physically correct energy spectrum. Specifically, without the BKS construction, one
obtains an energy spectrum consisting of integer multiples of ~. The physically correct
spectrum, which is obtained using the BKS construction, is {(n+ 1

2 )~ : n ∈ N0}.

ANNALES DE L’INSTITUT FOURIER
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where the inner product is defined by the canonical pairing of half-forms. In
particular, a section of LΩ → T ∗M which is vertically covariantly constant
is uniquely determined by its value on the zero-section M , and the inner
product of two such sections is therefore given by(4)

(2.3) 〈sν, tν〉 =
(
k

2π

)n ∫
M

s.t volg(M).

Hence, we see that the quantum Hilbert space associated to the vertical
polarization can be identified with L2(M,L⊗k).

Now that we have the correct quantum Hilbert space, we need to quantize
the Hamiltonian flow of the kinetic energy H. Let ρt denote the Hamilton-
ian flow of H on T ∗M . In order to define the quantization of the Hamil-
tonian H, we evolve ψν for a short time (that is, apply exp(−iktĤpreQ) to
the first factor, and the pull-back ρ∗t to the second factor), and then project
the result back into Ĥk.

The projection is achieved by a generalization of the half-form pair-
ing (2.3). One can show that the pushforward of the vertical polarization
by ρt is an integrable Lagrangian distribution which is (at least for small t)
transverse to the vertical polarization. Hence, there exists some function
ft ∈ C∞(T ∗M) such that ρ∗t (volg(M))∧ volg(M) = ftΩn/n!. The general-
ized (BKS) half-form pairing is then defined to be

(ρ∗t ν) .ν :=
√
ft.

This pairing can be shown to be nondegenerate (at least for small t), and
therefore defines a bijection between (exp(−ikt ĤpreQ) ⊗ ρ∗t )Ĥk and Ĥk.
The quantum Hamiltonian Q̂k(H) is obtained by computing the derivative
with respect to t, evaluated at t = 0, of the operator on Ĥk given by first
applying (exp(−iktĤpreQ)⊗ρ∗t ) and then projecting the result back into Ĥk
using the BKS pairing. At the end of the day, we are really interested only
in sections of L⊗k; thus, we can take a section ψ in Hk, multiply it by ν,
apply the BKS construction, and write the result in the form ψ′ν. The
quantization of the Hamiltonian H is then defined to be Ĥkψ := ψ′. In our
case, this yields the expression in Theorem 2.3.

3. You can’t hear a magnetic field

3.1. The Sunada technique

We will use a variant of Sunada’s technique [18].
(4)We will abuse notation slightly and not distinguish between ν (or volg(M)) and its
pullback π∗ν (resp. π∗ volg(M)).

TOME 60 (2010), FASCICULE 7
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Definition 3.1. — Let G be a finite group and let Γ1 and Γ2 be sub-
groups of G. We will say that Γ1 is almost conjugate to Γ2 in G if there
is a bijection Γ1 → Γ2 carrying each element of Γ1 to a conjugate element
in Γ2; equivalently, each G-conjugacy class [g]G intersects Γ1 and Γ2 in the
same number of elements.

Sunada’s Theorem states that if a finite group G acts by isometries on
a compact Riemannian manifold M and if Γ1 and Γ2 are almost conjugate
subgroups of G acting freely on M , then Γ1\M and Γ2\M are isospectral.

Remarks 3.2. —
(1) The almost conjugacy condition is equivalent to a representation

theoretic condition as follows. The right multiplication of G on the
cosets in Γi\G gives rise to a natural action of G on the finite-
dimensional vector space R[Γi\G]. The subgroups Γ1 and Γ2 of G
are almost conjugate if and only if there exists an isomorphism

τ : R[Γ1\G]→ R[Γ2\G]

intertwining the actions of G.
(2) Assume that Γ1 and Γ2 are almost conjugate in G and let τ be the

intertwining map in (1). LetW be any vector space on which G acts
on the right. For i = 1, 2, let WΓi be the subspace of vectors fixed
by all elements of Γi. Then τ gives rise to a linear isomorphism,
called “transplantation”

T : WΓ2 →WΓ1 .

Transplantation was first introduced in an example in [7] and sys-
tematized in [3] to give a new proof of Sunada’s Theorem; see also
[22]. We are following the presentation in [8].

(3) Transplantation is functorial: if V and W are right G-spaces and
ψ : V → W is a G-equivariant map, then the following diagram
commutes:

WΓ2 TW−−−−→ WΓ1

ψ

y yψ
V Γ2 TV−−−−→ V Γ1

Moreover, if W is an inner product space and if the G action is
unitary, then the transplantation map is unitary.

Notation 3.3. — Given a Hermitian line bundle L over a closed Rie-
mannian manifold (M, g) and a Hermitian connection ∇ on L we denote
by Spec(L,∇, k) the spectrum of the associated Laplace operator ∆ on

ANNALES DE L’INSTITUT FOURIER



QUANTUM EQUIVALENT MAGNETIC FIELDS 2413

C∞(M,L⊗k) (recall Notation and Remarks 2.2). For a potential Q ∈
C∞(M), we denote by Spec(Q;L,∇, k) the spectrum of ∆ + Q on C∞

(M,L⊗k).

Proposition 3.4. — Let (M, g) be a compact Riemannian manifold,
let L be a Hermitian line bundle overM , and let ∇ be a Hermitian connec-
tion on L. Let G be a finite group that acts on L carrying fibers to fibers,
preserving ∇, and such that the induced action on M is by isometries. For
i = 1, 2, suppose that Γi is a subgroup of G whose action on M is free.
Thus Li := Γi\L, i = 1, 2 is a Hermitian line bundle over Mi := Γi\M ,
and ∇ induces a connection ∇i on Li. If Γ1 and Γ2 are almost conjugate
in G, then:

(i)
Spec(L1,∇1, k) = Spec(L2,∇2, k)

for all positive integers k.
(ii) If, moreover, Q ∈ C∞(M) is a G-invariant function, then

Spec(Q;L1,∇1, k) = Spec(Q;L2,∇2, k)

for all positive integers k, where we use the same notation Q for
the smooth potentials on M1 and M2 induced by the potential Q
on M .

This variant of Sunada’s Theorem is essentially contained in R. Kuwabara
[11], although his interest was in pairs of connections on the same under-
lying bundle and in the case Q = 0.

For a proof by transplantation, observe that G acts on the right on the
space C∞(M,L⊗k) of smooth sections of L⊗k by (f.g)(x) = g−1.f(g.x)
for f ∈ C∞(M,L⊗k), g ∈ G, and x ∈ M . The space C∞(Mi, L

⊗k
i ) of

smooth sections of L⊗ki may be identified with the space C∞(M,L⊗k)Γi of
Γi-invariant elements of C∞(M,L⊗k). Thus by Remark 3.2, we obtain a
transplantation map T : C∞(M2, L

⊗k
2 ) → C∞(M1, L

⊗k
1 ). Moreover, with

this identification, the Schrödinger operator ∆i +Q on C∞(Mi, L
⊗k
i ) (as-

sociated with the Riemannian metric on Mi, the connection ∇i, and the
potential Q) is the restriction to C∞(M,L⊗k)Γi of the Schrödinger opera-
tor ∆ +Q of L⊗k. Since ∆ commutes with the action of G and since Q is
G-invariant, we may let ∆ +Q play the role of ψ in Remark 3.2. It follows
that T intertwines the Schrödinger operators ∆1 +Q and ∆2 +Q on L⊗k1
and L⊗k2 , thus proving the theorem.

Theorem 3.5. — We use the notation and hypotheses of Proposition
3.4, part (i). Let −iωj be the curvature of the connection ∇j on Lj ,
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j = 1, 2. Then in the language of Notation 2.5 and Remark 2.4, (M1, ω1)
and (M2, ω2) are quantum equivalent with respect to the connections ∇1
and ∇2.

Proof. — We apply part (ii) of Proposition 3.4 with the scalar curva-
ture R ofM in the role of Q. Note that R is necessarily G-invariant since G
acts by isometries on M . �

3.2. Construction of examples

Let (M, g, ω) be a Kähler manifold of complex dimension n. (Here ω is
the Kähler form.) The canonical line bundle LM over M is defined to be
the nth exterior power of the holomorphic cotangent bundle. Since M is
Kähler, the Levi-Civita connection on TM commutes with the complex
structure and thus defines a holomorphic connection on the holomorphic
tangent bundle. This connection gives rise to a holomorphic connection on
LM that we will call the canonical connection.

If X is a simply-connected Hermitian symmetric space of non-compact
type and M is a compact locally symmetric space with universal cover-
ing X, we will call M an X-space. Every X-space M is a Hodge manifold,
i.e., M is a Kähler manifold and a suitable real multiple of the Kähler
form ω of M represents an integer cohomology class. More precisely, if the
metric is rescaled such that X (and hence each X-space M) has Einstein
constant −1 then the Chern class of the canonical bundle LM is [ω/2π]
(see [1], formulas (4.68) and (4.59); compare also [20], p. 219.) As in Re-
mark 2.4, the notion of “quantum equivalence” of (M1, ω1) and (M2, ω2),
where the Mi are X-spaces and ωi their Kähler forms, will mean with
respect to the canonical connections on the canonical bundles LMi

.

Theorem 3.6. — Let X be a simply-connected Hermitian symmetric
space of noncompact type of real dimension at least four. Then there ex-
ist arbitrarily large families of non-isometric X-spaces Mi such that the
(Mi, ωi) are all mutually quantum equivalent but not classically equivalent.
In fact the phase spaces (T ∗Mi,Ωi) of the classical Hamiltonian systems
are not symplectomorphic (or even homeomorphic).

Proof. — D.B. McReynolds [13] showed, using Sunada’s Theorem, that
for every simply-connected symmetric space X of non-compact type, there
exist arbitrarily large collections of non-isometric X-spaces Mi whose La-
place-Beltrami operators are mutually isospectral. For each such collection,
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there exists an X-space M and a finite group G of isometries of M such
that Mi = Γi\M , where the Γi are almost conjugate subgroups of G. In
the setting that X is Hermitian symmetric, the isometries are holomorphic.
Since all holomorphic isometries of M preserve both the canonical bundle
and the canonical connection, we can now apply Theorem 3.5 to see that
(Mi, ωi) and (Mj , ωj) are quantum equivalent for all i, j.
Mostow Strong Rigidity tells us that the variousMi have non-isomorphic

fundamental groups, i.e., Mi = Λi\X with Λi and Λj non-isomorphic dis-
crete uniform subgroups of the group of isometries of X when i 6= j. The
cotangent bundle T ∗Mi is the quotient of the (trivial) bundle T ∗X by the
action of Λi and thus the various T ∗Mi are also non-homeomorphic. �

The assumption on the dimension of X in Theorem 3.6, equivalently the
exclusion of the case that X is the real hyperbolic plane, was needed only
so that the phase spaces for the classical Hamiltonian systems would not
be homeomorphic. In fact, we have the following:

Proposition 3.7. — Let (M1, g1) and (M2, g2) be any pair of hyper-
bolic Riemann surfaces which are isospectral with respect to the Laplace-
Beltrami operator acting on functions. Then (M1, ω1) and (M2, ω2) are
quantum equivalent, where ωi is the Kähler form of (Mi, gi).

We emphasize that, in contrast to the Hermitian locally symmetric spaces
in Theorem 3.6, the Riemann surfaces are not required to satisfy the con-
ditions of Sunada’s Theorem.
Proof. — H. Pesce [14] proved that every pair of isospectral compact Rie-

mann surfaces (M1, g1) and (M2, g2) is strongly isospectral in the following
sense: Let G = PSL(2,R). A Hermitian vector bundle E over the hyper-
bolic plane X is said to be homogeneous if G acts on E, carrying fibers to
fibers, such that the induced action on X is the standard action by isome-
tries. The actions of G on X and E give rise to an action of G on the space
of smooth sections of E. A self-adjoint elliptic differential operator D on E
(i.e., on smooth sections of E) is said to be natural if it commutes with
the G-action. In that case, if Γ is a discrete subgroup of G acting freely
and properly discontinuously on X, then D induces a self-adjoint elliptic
differential operator on the bundle Γ\E over the Riemann surface Γ\X.
Compact Riemann surfaces M1 = Γ1\X and M2 = Γ2\X are said to be
strongly isospectral if for each homogeneous Hermitian vector bundle E
over X and each natural self-adjoint elliptic operator D on E, the induced
operators on the bundles Γ1\E over M1 and Γ2\E over M2 are isospec-
tral. (Aside: The key point in proving that isospectral compact Riemann
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surfaces M1 = Γ1\X and M2 = Γ2\X are always strongly isospectral is
that isospectrality of the Riemann surfaces implies that the representations
of G induced by the trivial representations of Γ1 and Γ2 are equivalent. This
condition is considerably weaker than the Sunada condition, which requires
that Γ1 and Γ2 be subgroups of some finite subgroup Γ of G and that the
trivial representations of Γ1 and Γ2 induce equivalent representations of Γ.)
The proposition follows from the fact that the canonical Hermitian line

bundle overX and all its tensor powers are homogeneous, and the Laplacian
associated with the canonical connection is natural. �

Remark 3.8. — Using Sunada’s technique, R. Brooks, R. Gornet, and
W. Gustafson [6] constructed arbitrarily large finite families of mutually
isospectral, non-isometric Riemann surfaces. (Their work motivated that of
D.B. McReynolds cited above.) While the vast majority of known isospec-
tral Riemann surfaces were constructed by Sunada’s technique, M.-F. Vi-
gnéras’s examples [19] and recent examples of C.S. Rajan [15] do not satisfy
the Sunada condition.

4. Isospectral connections and potentials on a line bundle
and its tensor powers

Using a trick introduced by R. Brooks [5], we can use Proposition 3.4 to
obtain isospectral connections and potentials on a single line bundle and
its tensor powers.

Corollary 1. — In addition to the hypotheses of Proposition 3.4, as-
sume that there exists a bundle map σ of L, projecting to an isometry
(also to be denoted σ) of M , such that σ normalizes G and such that
σΓ1σ

−1 = Γ2. Continue to denote by σ the induced bundle map from L⊗k1
to L⊗k2 . Then

Spec(Q;L1,∇1, k) = Spec(σ∗Q;L1, σ
∗∇2, k)

for all positive integers k.

This corollary is contained in Kuwabara [11] for the case Q = 0.

Remark 4.1. — One may choose ∇ to be σ-invariant as well as G-
invariant, in which case ∇1 = σ∗∇2. We can then conclude that Q1 and
σ∗Q2 are isospectral potentials for the Schrödinger operator −∆1+ poten-
tial.
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We now explain how to use the corollary to obtain examples in which
the base manifolds are Riemann surfaces. Brooks [5] gave explicit exam-
ples of finite groups G and Riemann surfaces (M, g) (with a hyperbolic
Riemannian metric g) such that the following conditions are satisfied:

(i) The group G acts freely by orientation preserving isometries on the
oriented Riemann surface (M, g).

(ii) There exists a pair of almost conjugate, nonconjugate subgroups
Γ1, Γ2 of G.

(iii) There exists an outer automorphism τ of G such that Γ2 = τΓ1τ
−1

and such that the action of G extends to a free action of the semi-
direct product Ĝ of G and 〈τ〉 on (M, g) by orientation-preserving
isometries.

Using these objects we obtain the following class of examples.

Example 4.2. — We choose (M, g),G, Γ1, Γ2, τ , Ĝ as above and consider
the Hermitian line bundle LN over N := Ĝ\M . Denote its pullback to M
by L. The group Ĝ acts on L by vector bundle isomorphisms. We choose
a Ĝ-invariant Hermitian connection ∇̂ on L by pulling back a Hermitian
connection from LN , and we choose a function f ∈ C∞(M) which is G-
invariant but not τ -invariant. Denoting the Riemannian volume form onM
by ω, we let ∇ := ∇̂ + i d∗(fω). Note that ∇ is G-invariant, but not τ -
invariant. Moreover, we choose any G-invariant potential Q ∈ C∞(M).
Finally, we let σ denote the vector bundle isomorphism of L induced by τ .
Applying Proposition 3.4 together with Corollary 1 we obtain, for the vector
bundle L1 := Γ1\L over M1 := Γ1\M and the induced connections ∇1
on L1, resp. ∇2 on L2 := Γ2\L:

Spec(Q;L1,∇1, k) = Spec(σ∗Q;L1, σ
∗∇2, k)

for each positive integer k.

Remark 4.3. — (i) The choice of ∇ in the previous example guarantees
that the resulting pairs of isospectral connections ∇1 and σ∗∇2 have differ-
ent curvature. In fact, the pullbacks to L of the connections ∇1 and σ∗∇2
on L1 are ∇̂ + i d∗(fω) and ∇̂ + i d∗((τ∗f)ω), respectively. The pullback
to M of the difference of the corresponding curvature forms on M1 is given
by i dd∗((f − τ∗f)ω). The 2-form (f − τ∗f)ω has integral zero over M and
is thus exact by Poincaré duality. On the other hand, this form is nonzero
by our choice of f , and hence nonharmonic. This immediately implies that
dd∗((f − τ∗f)ω) 6= 0, as claimed.

(ii) Let τ̃ denote some lift of τ to the hyperbolic plane H2, and let G̃,
Γ̃i denote the groups of all lifts of elements of G, resp. Γi, to H2. Let
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N(Γ̃1) denote the normalizer of Γ̃1 within Isom(H2). Then τ̃ /∈ G̃ϕ̃ for
any ϕ̃ ∈ N(Γ̃1) because, otherwise, the relation τ̃ Γ̃1τ̃

−1 = Γ̃2 would imply
that Γ1 and Γ2 were conjugate in G. Note that N(Γ̃1) consists precisely
of the lifts of isometries of M1. Therefore the fact that τ̃ /∈ G̃ϕ̃ for all
ϕ̃ ∈ N(Γ̃1) implies that it is possible to choose the G-invariant function f
subject to the slightly stronger property that the functions f1 and fτ1 which
are induced by f and τ∗f onM1, respectively, do not differ by any isometry
of M1. Then, for any isometry ϕ of M1 we can apply the argument of (i)
to the lift of f1 − ϕ∗fτ1 to M and conclude that now the curvature forms
associated with ∇1 and σ∗∇2 are not related by pullback by any isometry
of M1.
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