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MONOPOLE METRICS AND THE ORBIFOLD
YAMABE PROBLEM

by Jeff A. VIACLOVSKY (¥)

ABSTRACT. — We consider the self-dual conformal classes on n#CP? discovered
by LeBrun. These depend upon a choice of n points in hyperbolic 3-space, called
monopole points. We investigate the limiting behavior of various constant scalar
curvature metrics in these conformal classes as the points approach each other, or
as the points tend to the boundary of hyperbolic space. There is a close connection
to the orbifold Yamabe problem, which we show is not always solvable (in contrast
to the case of compact manifolds). In particular, we show that there is no constant
scalar curvature orbifold metric in the conformal class of a conformally compactified
non-flat hyperkéhler ALE space in dimension four.

RissuME. — Nous considérons les classes conformes auto-duales sur n#CP? in-
troduites par LeBrun. Elles dépendent du choix de n points dans I’espace hyper-
bolique de dimension 3, appelés points de monopoéle. Nous étudions les limites de
diverses métriques de courbure scalaire constante dans ces classes conformes lorsque
ces points se rapprochent ou tendent vers le bord de ’espace hyperbolique. Il existe
une relation étroite avec le probléme de Yamabe sur les orbifolds qui n’admet pas
toujours de solution (contrairement au cas des variétés compactes). En particu-
lier, nous montrons qu’il n’existe pas de métrique d’orbifold de courbure scalaire
constante dans la classe conforme d’un espace ALE hyperkahlérien conformément
compact en dimension 4.
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2504 Jeff A. VIACLOVSKY

1. Introduction

There is an interesting history regarding the existence of self-dual met-
rics on n#CP? beginning with work of Yat-Sun Poon [39]. Using tech-
niques from twistor theory, Poon proved the existence of a l-parameter
family of self-dual conformal classes on CP?#CP? and that any such con-
formal class with positive scalar curvature must be in this family. Examples
for larger n were found by Donaldson-Friedman [17] and Floer [18] using
gluing methods. In 1991, Claude LeBrun [32] produced explicit examples
with U(1)-symmetry on n#CP?, using a hyperbolic ansatz inspired by the
Gibbons-Hawking ansatz [19]. LeBrun’s construction depends on the choice
of n points in hyperbolic 3-space H?>. For n = 2, the only invariant of the
configuration is the distance between the monopole points, and LeBrun
conformal classes are the same as the 1-parameter family found by Poon.

1.1. Limits of LeBrun metrics

The first question we address in this paper: is there a nice compactifica-
tion of the moduli space of LeBrun metrics on n#CP?? In general, as the
monopole points limit towards each other, or if the points approach the
boundary of hyperbolic space, some degeneration will occur. We empha-
size that the LeBrun construction produces conformal classes on n#CP?.
To discuss convergence in the Cheeger-Gromov sense, one needs to choose
a conformal factor. Of course, the limit will strongly depend on the particu-
lar choice of conformal metrics. Some degenerations were already described
in [32] and [17], but these examples depended on a somewhat arbitrary
choice of conformal factor.

The solution of the Yamabe problem provides one with a very natural
metric in these conformal classes. However, the abstract existence theorem
does not tell one what the actual minimizer looks like in any particular
case, and other methods are needed to understand the geometry of mini-
mizers. The main point of this paper is to describe the limiting behavior of
the Yamabe minimizers in these conformal classes as they degenerate. In
general, Yamabe minimizers are not necessarily unique; an example of non-
uniqueness is given Theorem 1.1. We also examine the existence and limit-
ing behavior of various non-minimizing constant scalar curvature metrics.
Given a subgroup of the conformal automorphism group, Hebey-Vaugon
have shown there is a minimizer of the Yamabe functional when restricted
to the class of invariant functions (the equivariant Yamabe problem), and
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MONOPOLE METRICS 2505

these automorphisms will act as isometries on the minimizer [21]. Of course,
a symmetric Yamabe minimizer can have higher energy than a Yamabe
minimizer, and an example of this is seen in Theorem 1.1.

If G € SO(4) is a finite subgroup acting freely on S3, then we let G act on
S* C R® acting as rotations around the xs-axis. The quotient S*/G is then
a orbifold, with two singular points, and the spherical metric gg descends
to this orbifold. Near the singular points, the metric is asymptotic to a
cone metric C(S%/G), thus S*/G looks like a United States “football”. In
the following, G C SU(2) will be a certain cyclic subgroup Z,,, see (2.2)
below. For a smooth Riemannian manifold (M, g), the Yamabe invariant of
the conformal class is denoted by Y (M, [g]), see Section 3. If (M, g) is an
orbifold, then Y,.,(M,[g]) will denote the orbifold Yamabe invariant, see
Section 4.

We first discuss the special case of n = 2. To employ the equivariant
Yamabe problem, one must first understand the group of conformal au-
tomorphisms: it was proved in [25] that the conformal group G of Poon’s
metrics for n = 2 is given by

(1.1) G = (U(1) x U(1)) x Dy,

where D, is the dihedral group of order 8. There is the index 2 subgroup
given by

(1.2) K = (U(1) x U(1)) x (Zo @ Zo),

which are exactly the lifts of hyperbolic isometries preserving the set of 2
monopole points. In contrast, for n > 2, any conformal automorphism of a
LeBrun metric is a lift of an isometry of #3. There is an “extra” involution
when n = 2, which is not a lift of any hyperbolic isometry, see [25]. Let
dp(-,-) denote hyperbolic distance.

THEOREM 1.1. — Let (M, g) be a Poon-LeBrun metric on CP*#CP?
with monopole points p, and py. The Yamabe invariant satisfies the sharp
estimate

(13) 87V3 = Yors(S"/Zs, [gs]) < Y (M, [g]) < ¥ (CP?, [grs]) = 12V/2.

There exists a number N large, such that if dg(p1,p2) > N then the follow-
ing holds. There are two distinct Yamabe minimizers, each limiting to grg
on CP? as dy (p1,p2) — oo. In each case, there is one singular point of con-
vergence at which a Burns metric bubbles off. The symmetric K-Yamabe
minimizers limit to (S*, gs) as dg(p1,p2) — 0o, with 2 antipodal singular
points of convergence, with Burns metrics bubbling off at each of the sin-
gular points. There is a fourth constant scalar curvature metric, limiting
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2506 Jeff A. VIACLOVSKY

to CP? v CP? (the wedge of two copies of CP? with Fubini-Study metrics,
touching at a single point) as dg(p1,p2) — oo. In this case, a Euclidean
Schwarzschild metric with two asymptotically flat ends bubbles off.

As dg(p1,p2) — 0, the limit of both the Yamabe minimizers and the
symmetric K-Yamabe minimizers is the S*/Zy-football with the round
metric. In both cases, at each singular point an FEguchi-Hanson metric
bubbles off.

These limits are illustrated in Figure 1.1. An important point is that the
properties of being self-dual and having constant scalar curvature form an
elliptic system [45]. In Tian-Viaclovsky [46, 47], it was shown that limits
of such metrics may have at worst multi-fold singularities, provided that
the sequence has bounded L2-norm of curvature and does not collapse. The
crucial ingredient of this theory is the upper volume growth estimate proved
in [45]. For other results dealing with this type of convergence in various
settings, see [1, 2, 6, 7, 10, 14, 16, 15, 37, 44]. In the situation considered in
this paper, the L2-curvature bound follows from the Chern-Gauss-Bonnet
formula and Hirzebruch signature theorem. The non-collapsing condition
will follow from uniform positivity of the Yamabe invariant.

As mentioned above, the LeBrun monopole construction depends upon
the choice of n points in hyperbolic space. An easy generalization of this
construction allows one to assign integer multiplicities greater than one at
the monopole points. The resulting space will have orbifold points. We call
such a space a LeBrun orbifold. Next, for n > 2, we present the following
compactness theorem.

THEOREM 1.2. — Let (M, g) be a LeBrun self-dual conformal class on
n#CP? with monopole points {p1,...,p,}. Then

(1.4) Y(M,[g]) < Y(CP? [grs]) = 127V2,

with strict inequality for n > 2, where grg denotes the Fubini-Study met-
ric. Next, assume that all monopole points are contained in a compact
set I C H3. Then there exists a constant 6, depending only upon n, K
such that

(1.5) 0< 6, <Y(M,][g]).

Furthermore, any sequence of unit volume Yamabe minimizers in a se-
quence of LeBrun conformal classes (for fixed n) satisfying (1.5) has a sub-
sequence which converges (in the Cheeger-Gromov sense) to either to (1) a
compactified LeBrun orbifold metric with 1 < k < n points or (2) the round
metric on S*/Z,,, for some 2 < m < n. In addition, the estimate (1.5) is
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Figure 1.1. The 5 limiting cases described in Theorem 1.1. The left
side is as d(p1,p2) — oo. The top left is the symmetric K-Yamabe
minimizer. The middle left are the two Yamabe minimizers. The lower
left is the metric obtained by Joyce gluing. The right hand side is as
d(p1,p2) — 0. In this case, the Yamabe minimizers and the symmetric
Yamabe minimizers have the same limiting behavior. Note that in each
of the above cases, to obtain CP?*#CP? topologically, the attaching
map for one of the factors should be orientation reversing.

true for n = 2,3 without the requirement that the points are contained in
a compact set K.

There can exist sequences of Yamabe minimizers with limiting behavior
as in Case (1); this limit can occur when some of the monopole points limit
to the boundary of 3, as seen in Theorem 1.1. Another example is given in
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2508 Jeff A. VIACLOVSKY

Theorem 1.5 below. There also can exist sequences limiting as in Case (2),
as seen in Theorem 1.1.

The estimate for the lower bound in (1.5) is not explicit, this is proved by
a contradiction argument in Section 7. It would be very interesting to find
a sharp constant. We conjecture that &,, = Y,,4(S*/Zn, [g5]), without any
requirement that the monopole points are contained in a compact set .
For n = 2,3, the uniform positivity of the Yamabe invariant holds for
topological reasons, see Proposition 6.1.

We mention that the degeneration of the LeBrun conformal classes can
also be studied using twistor theory. For this important perspective, we
refer the reader to the recent paper of Nobuhiro Honda [24].

1.2. The orbifold Yamabe problem

Akutagawa and Botvinnik considered the Yamabe problem on orbifolds
in [4, 5] in which they proved several foundational results. We will de-
scribe this in more detail in Section 4. Since the limits described above are
typically orbifolds, it is no surprise that there is a close connection with
the orbifold Yamabe problem. In fact, an important tool in identifying the
possible limit spaces above is the following nonexistence result.

THEOREM 1.3. — Let (X,,g) be a hyperkdhler ALE metric in dimen-
sion 4, with group G of order n > 1 at infinity, and let (X', [g]) denote the
orbifold conformal compactification. Then Yo,(X, [3]) = Yors(S*/G, [9s]),

and there is no solution to the orbifold Yamabe problem on (X, [j]). That
is, there is no conformal metric §j = e?“§ having constant scalar curvature.

This will be proved in Section 4 along with some other remarks on
the orbifold Yamabe problem. The ALE metrics above, can be viewed as
the Green’s function metrics g, = Ff,g of the orbifold compactification,
where I',, is the Green’s function for the conformal Laplacian of § based
at the orbifold point p. It is interesting that these ALE spaces have zero
mass and their compactifications do not admit a solution of the orbifold
Yamabe problem. This shows that the orbifold Yamabe problem is more
subtle than in the case of smooth manifolds.

In Section 7, we will prove another nonexistence result regarding the
negative mass ALE spaces found in [31].

THEOREM 1.4. — If (X, g) is a LeBrun negative mass ALE metric on
O(—n) with n > 1, then there is no symmetric solution of the orbifold
Yamabe problem on (X, §) invariant under SU(2).

ANNALES DE L’INSTITUT FOURIER
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As a consequence, the symmetric Yamabe problem on orbifolds is not
always solvable either. For n = 2, this metric is the same as the compactified
Eguchi-Hanson metric, which does not admit any constant scalar curvature
metric by Theorem 1.3. We do not know if there is a non-symmetric solution
on these orbifolds for n > 3.

Finally, we present an existence result for the orbifold Yamabe problem,
which for simplicity we state here in only the case of total multiplicity 3
(see Corollary 4.4 for the general statement). The following theorem also
shows that LeBrun orbifold metrics can in fact arise as a limit of smooth
Yamabe metrics in LeBrun conformal classes, and also k can be strictly
less than n in Case (1) of Theorem 1.2.

THEOREM 1.5. — Let (M,[g]) be compact self-dual LeBrun orbifold
corresponding to a monopole point py of multiplicity 1 and a monpole point
po of multiplicity 2, with p1 # po. Then there exists a radius r > 0 such that
if dy(p1,p2) < r, then (M, [g]) admits a solution to the orbifold Yamabe
problem. Furthermore, let (M, [g;]) be a self-dual LeBrun conformal class
on 3#CP? corresponding to 3 distinct monopole points all of multiplicity
one, with pi and psy fixed, and p2,p;3 € B(pi,r). Then as p;3 — p2, a
subsequence of Yamabe minimizers on (M, [g;]) converges to an orbifold
Yamabe metric on (M, [g]). There is one singular point of convergence, at
which an Eguchi-Hanson metric bubbles off.

Next, let p; and ps be fixed and let p; 3 limit to the boundary of H? as
Jj — o0o. Then any sequence of Yamabe minimizers on (M, [g;]) has a sub-
sequence which converges to a Yamabe minimizer in the 2-pointed smooth
LeBrun conformal class (2#CP?, [jLg(p1,p2)]). There is one singular point
of convergence, at which a Burns metric bubbles off.

Remark 1.6. — 1t is possible that r could be taken to be infinite in the
above theorem, but this would require a much more involved estimate of
the Yamabe invariant.

1.3. Acknowledgements

The author would like to thank first and foremost, Claude LeBrun, for
originally suggesting this problem and providing extremely helpful com-
ments along the way. Peter Kronheimer and Clifford Taubes also provided
very helpful suggestions early on. Nobuhiro Honda provided crucial assis-
tance in understanding the conformal geometry of LeBrun metrics. The
author held several valuable discussions with Kazuo Akutagawa regarding
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the orbifold Yamabe problem. Denis Auroux, Simon Donaldson, Yat-Sun
Poon, and Gang Tian also gave the author some important remarks that
proved to be very useful when completing this work. Finally, thanks are
given to the anonymous referee whose numerous remarks and suggestions
greatly improved the exposition of the paper.

2. Monopole metrics

We first recall some basic definitions.

DEFINITION 2.1. — A Riemannian orbifold (M™, g) is a topological spa-
ce which is a smooth manifold of dimension n with a smooth Riemannian
metric away from finitely many singular points. At a singular point p, M is
locally diffeomorphic to a cone C on S"~!/G, where G C SO(n) is a finite
subgroup acting freely on S”~!. Furthermore, at such a singular point, the
metric is locally the quotient of a smooth G-invariant metric on B™ under
the orbifold group G.

A Riemannian multi-fold M is a connected space obtained from a finite
collection of Riemannian orbifolds by finitely many identifications of points.
If there is only one cone at a singular point p, then M is called irreducible
at p, otherwise M is called reducible at p.

We note that the notions of smooth orbifold, orbifold diffeomorphism,
and orbifold Riemannian metric are well-defined, see [46] for background
and references. Note also that our definition is very restrictive since we only
allow isolated singular points.

DEFINITION 2.2. — A smooth Riemannian manifold (X™,g) is called
an asymptotically locally Euclidean (ALE) end of order 7 if there exists a
finite subgroup G C SO(n) acting freely on R™ \ B(0, R) and a C*° diffeo-
morphism ¥ : X — (R" \ B(0, R))/G such that under this identification,

@1) 9ij = 95+ O( ), Mgy = 0™ H),

for any partial derivative of order k as r — oco. A complete, noncompact
Riemannian orbifold (X, g) is called ALE if X can be written as the disjoint
union of a compact set and finitely many ALE ends. If all of the groups G;
corresponding to the ends are trivial, then (X, g) is called asymptotically
flat (AF).

ANNALES DE L’INSTITUT FOURIER
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For an integer m > 1, we let Z,, = Z/mZ C SU(2) be the cyclic group
of matrices

2mip/m
(2.2) (exp 0

acting on R*, which is identified with C? via the map

(2.3) (1,91, 72, y2) = (21 + iy1, T2 +iy2) = (21, 22)-

2.1. Gibbons-Hawking ansatz

We briefly review the construction of Gibbons-Hawking multi-Eguchi-
Hanson metrics, from [19, 22], as presented in [8]. We also present a gener-
alization to allow orbifold points, by taking Green’s functions with integral
weights.

Consider R3 with the flat metric ggs = da?+dy?+dz2. Choose n distinct
points P = {p1,...,pn} C R3. For each point p;, we assign a multiplic-
ity m;, which is an integer satisfying m; > 1, and let N =Y  m; be the
total multiplicity.

Let T'p, denote the fundamental solution for the Euclidean Laplacian
based at p; with normalization Al',, = —274,, and let

1 n
(2.4) V=3 > mily,.
i=1

Then *dV is a closed 2-form on R?\ P, and (1/27)[*dV] is an integral class
in H%(R3\ P,Z). Let 7 : Xy — R?\ P be the unique principal U(1)-bundle
determined by the the above integral class. By Chern-Weil theory, there
is a connection form w € H'(Xp,iR) with curvature form i(xdV). The
Gibbons-Hawking metric is defined by

(2.5) goa =V - grs — V3ikow.

Note the minus sign appears, since by convention our connection form is
imaginary valued. We define a larger manifold X by attaching points pj;
over each p;.

Remark 2.3. — Choosing a different connection form will result in the
same metric, up to diffeomorphism.

We summarize the main properties of (X, gon) in the following proposi-
tion.

TOME 60 (2010), FASCICULE 7



2512 Jeff A. VIACLOVSKY

PRrROPOSITION 2.4. — The Gibbons-Hawking multi-Eguchi-Hanson met-
ric (Xo, gcn) extends to X as a smooth Riemannian orbifold metric. At a
point p; with multiplicity m; > 1, X has an orbifold structure with group
Z/m;Z, acting as in (2.2). The space (X, g ) is ALE with a single end of
order 4. The group at infinity is the cyclic group Z/NZ acting as in (2.2),
where N is the total multiplicity.

Proof. — The smooth case is discussed in [8], and is straightforward to
adapt to the orbifold case. O

This metric will be denoted by ggm(m1 - p1,...,mMy - pn). Note that a
small sphere around a Z,,-orbifold point is diffeomorphic to the Lens space
L(m,1), and that X is equipped with an isometric S action, with fixed
point set the finite set {p1,...,Pn}-

2.2. LeBrun hyperbolic ansatz

We briefly review LeBrun’s construction of Kéhler scalar-flat metrics on
the blow-up of C? at n points on a line from [32]. As in the Gibbons-
Hawking case, we present a generalization which allows orbifold points.

The LeBrun construction [32] is similar to the Gibbons-Hawking con-
struction above, by replacing R? with the upper half-space model of hyper-
bolic space

(2.6) H? = {(z,y,2) € R,z >0},

with the hyperbolic metric gys = 2~2(dz? + dy? + dz?). Choose n distinct
points P = {p1,...,pn} C H?>. For each point p;, we assign a multiplic-
ity m;, which is an integer satisfying m; > 1, and let N ="  m; be the
total multiplicity.

Let I'y, denote the fundamental solution for the hyperbolic Laplacian
based at p; with normalization AI',, = —274,,, and let

(2.7) V=1+> ml,.
i=1

Then *dV is a closed 2-form on H?\ P, and (1/27)[*dV] is an integral class
in H*(H3\ P,Z). Let 7 : Xo — H3\ P be the unique principal U(1)-bundle
determined by the the above integral class. By Chern-Weil theory, there is
a connection form w € H'(Xo,iR) with curvature form i(xdV). LeBrun’s
metric is defined by

(2.8) g = 22(V - gys — V w o w).

ANNALES DE L’INSTITUT FOURIER
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We define a larger manifold X by attaching points p; over each p;, and
by attaching an R? at z = 0. The space X is non-compact, and has the
topology of an asymptotically flat space. Adding the point at infinity will
result in a compact manifold X. We summarize the main properties of
(X, grp) in the following proposition.

PROPOSITION 2.5 (LeBrun [32]). — The metric gip extends to X as a
smooth orbifold Riemannian metric. At a point p; with multiplicity m; > 1,
X has an orbifold structure with group Z/m;Z, acting as in (2.2). The
space (X, gLp) Is asymptotically flat Kéhler scalar-flat with a single end
of order 2. By adding one point, this metric conformally compactifies to a

smooth self-dual conformal class on the compactification (X, [grg]). If all
points have multiplicity 1, then X is diffeomorphic to n#CP?.

Proof. — The smooth case is proved in [32]. Furthermore, the case of one
point taken with multiplicity n was also considered in [32, Section 5], and
the generalization to several points with multiplicity is straightforward. O

The non-compact AF metric will be denoted by gr,5(m1 - p1,..., My - n),
while a metric on the compactification will typically be denoted by gr5.
Note that a small sphere around a Z,,-orbifold point is diffeomorphic to
the Lens space L(m, 1), and that X is equipped with a conformal S! ac-
tion, with fixed point set the finite set {f1,...,p,} together with an S?
corresponding to the boundary of #3. For n = 0, this construction gives
the Euclidean metric on R*, and for n = 1, it yields the Burns metric,
which conformally compactifies to the Fubini-Study metric on CP?. In other
words, the Burns metric is the Green’s function asymptotically flat space
associated to the Fubini-Study metric.

2.3. Negative mass metrics

In [31], LeBrun presented the first known examples of scalar-flat ALE
spaces of negative mass, which gave counterexamples to extending the pos-
itive mass theorem to ALE spaces. We briefly describe these as follows.
Define

dr?
1+ Ar—2+ Br—4
where r is a radial coordinate, and {o1, 09,03} is a left-invariant coframe
on % = SU(2), and A =n — 2, B =1 — n. Redefine the radial coordinate
to be #2 = r2—1, and attach a CP' at # = 0. After taking a quotient by Z,,

(2.9) goLp = + 72 [a% +ol+(14+Ar 2+ Br*‘*)ag],

TOME 60 (2010), FASCICULE 7



2514 Jeff A. VIACLOVSKY

the metric then extends smoothly over this CP!, is ALE at infinity, and is
diffeomorphic to O(—n). The mass is computed to be —47%(n — 2), which
is negative when n > 2. For n = 1, this construction yields the Burns
metric. For n = 2, this space is Ricci-flat, and is exactly the metric of
Eguchi-Hanson. There is a close connection with the hyperbolic monopole
metrics: the conformal compactification of these ALE spaces are confomal
to gr.s(n-p1), a compactified LeBrun hyperbolic monopole orbifold metric
with a single monopole point of multiplicity n [32, Section 5].

3. The Yamabe invariant

The Yamabe Problem asks whether there exists a conformal metric with
constant scalar curvature on any closed Riemannian manifold, and has been
completely solved in the affirmative. We do not attempt to give a history
of the Yamabe problem here, for this we refer the reader to [9, 41, 34].
In what follows, let (M, g) be a Riemannian manifold, and let R denote
the scalar curvature of g. Writing a conformal metric as § = vz g, the
Yamabe equation takes the form

n_lAv—l—R'v:)\-v%,
n—2
where ) is a constant (note: we use the analyst’s Laplacian). These are the
Euler-Lagrange equations of the Yamabe functional,

(3.2) Y(G) = Vol(g) =" /M Rgdvolg,

for § € [g], where [g] denotes the conformal class of g. An important related
conformal invariant is the Yamabe invariant of the conformal class [g]:

(3.3) Y(M,g]) = gigfg]y(ﬁ)'

(3.1) —4

In dimension 4, Aubin’s inequality states
(3'4) Y(M’ [gD < Y(S4’ [95]) = 877\/6’
with equality if (M, g) is conformally equivalent to (S*, gs).

3.1. Upper estimate

Next is an estimate from above on the Yamabe invariant of compactified
LeBrun conformal classes. We begin with a short calculation.

ANNALES DE L’INSTITUT FOURIER
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LEMMA 3.1. — The function p(p) = dus (p, (0,0,1)) satisfies

(3.5) —2+ Ap = 4e” %PV,
where

1 1
(3.6) Vi=1+4+T01n =1+ 2 _1 1_e2

Proof. — Since p is the distance function of the hyperbolic metric,

(3.7) Ap = 2coth p,
which yields
(3.8)
_ _ e’ +ef I

O

For purposes of the Yamabe invariant, if g is a n-pointed LeBrun metric,
then we may assume that p; = (0,0,1). To see this, apply a hyperbolic
isometry ¢ to arrange so that p; = (0,0,1). By [25, Section 2], there exists
a lift of ¢ to @ : Xy — X preserving the connection form. The metric ®*g
will be conformal to the original, so will have the same Yamabe invariant.

For n = 1, the compactified LeBrun metric is conformal to CP? with the
Fubini-Study metric gpg [33, Section 3]. Consequently,

(3.9) Y (M, [grs(p1)]) = 127v2 = Y (CP?, [gps]).

For n > 1 we have the following estimate of the Yamabe invariant.

THEOREM 3.2. — Let (M, [§r5]) be a Lebrun conformal class on n#CP*
with n > 1. Without loss of generality assume that p; = (0,0,1). Then
(3.10) Y(M, [g5)) < 120V2 = B(p2, ... pu),

where 3 : H3 x ---H® — Ry, is a positive function, and approaches zero
only if every point ps, ..., p, approaches the boundary of H>.

Proof. — We consider conformal changes of the form

(3.11) 9=V gp+V ' wow),

where f: H? — R. It is computed in [33] that

(3.12) R, =6e 2V (—1 - Af — |Vf]%).

We will now take f = —p as a test function in the Yamabe functional. The

resulting metric g will then be a smooth orbifold metric on the conformal
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compactification. Let V' = V,, correspond to an n-pointed LeBrun metric,
with p; = (0,0, 1). From Lemma 3.1,

(3.13) R, =6e*V, Y (Ap —2) =24V, 'V}

(since |[Vp| = 1). The Yamabe functional evaluated at g is then

(3.14)

—1/2 —1/2
y(g):/ Rgdw</ dvg> :/ 24vn1v1dvg.</ dVg) .
M M M M

We next take a coordinate system (z,y, z,0) where 6 is an angular coordi-
nate on the fiber for some trivialization. The volume element is

(3.15) Vdet(g) = e (V370112 = ¢=4ry, 273,

In coordinates we then have

—1/2
(3.16) V(g) = / 24V164pz3dV0-< / Vne4pz?’dV0> ,
M M

where dV = dx A dy A dz A df. Since the integrand is independent of 6, we
may integrate with respect to 6 to obtain

-1/2
(3.17) V(g) = 24V2r Vle_‘“’dVHs-( / Vne_4”dVH3) :
H3 H3

Since n > 1, we must have V,, > Vj (with strict inequality for n > 1) and
we obtain the estimate

1/2
(3.18) V(g) < 24V27 < / Vle4pdVH3> )
H

3

Using radial coordinates on H?3, we compute that

o0
1
/’H3 V1€_4pdVH3 = 47T/ me_‘l’)(sinhp)gdp
E 0

= 77/ (672’) — 674/)) dp = Z
0
Substituting this into (3.18), we obtain

(3.20) Y(g) < 127V2 =Y (CP?, [grs]).

(3.19)

If n > 1, this inequality is strict, and the only way it can be close to
saturation is if all the points p; are close to the hyperbolic boundary, since
the only inequality used was Vi < V,,. The existence of the function
follows easily. O
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4. The orbifold Yamabe invariant

The orbifold Yamabe invariant of an orbifold conformal class is defined
as in the smooth case:
(4.1) Yoro(M, [g]) = inf Vol(§)+ / R;dVj.
g€ld] M

The analogue of Aubin’s estimate and basic existence result is as follows.

THEOREM 4.1 (Akutagawa-Botvinik [5], Akutagawa [3]). — Let (M, g)
be a Riemannian orbifold with singular points {p1,...,px}, with orbifold
groups G; C SO(n), i =1...k. Then

(4.2) Yors(M, [g]) < Y/(S™) min Gi| %

Furthermore, if this inequality is strict, then there exists a smooth confor-
4

mal metric § = u»-2g which minimizes the Yamabe functional (and thus

has constant scalar curvature).

We note that for the football M = S*/Z,, (as defined in the introduction)
with the round metric gg, we have
87/6
vn o
Given an orbifold with non-negative scalar curvature, one can use the

Green’s function for the conformal Laplacian to naturally associate with
any point a scalar-flat ALE orbifold by

(4.4) (M\ {p}, 5, =T} 2g).

An ALE coordinate system arises from using inverted normal coordinates

(43) Yors(M, [gs]) = Y (S*, [gs])|n| =2 =

in the metric g in a neighborhood of the point p. If we choose p to be pyg,
one of the orbifold points, then the end of this ALE space will correspond
exactly to the group G.

The positive mass theorem does not hold in general for ALE spaces as
illustrated by LeBrun’s negative mass examples discussed in Section 2.3.
Nakajima has proved a version of the positive mass theorem for spin ALE
spaces with group G C SU(2) [36], in which the zero mass spaces are exactly
the hyperkdhler ALE spaces classified by Kronheimer [29]. This makes the
orbifold Yamabe problem more subtle than in the smooth case. Indeed,
Schoen’s test function from [41] will not prove strict inequality in (4.2) if
the mass is non-positive.

By an orbifold compactification of an ALE space (X, g), we mean choos-
ing a conformal factor u : X — R, such that u = O(r=2) as r — oo. The
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space (X,u?g) then compactifies to a C1:® orbifold. The next result states
that the ALE spaces we will consider have smooth orbifold compactifica-
tions with strictly positive orbifold Yamabe invariant.

PROPOSITION 4.2. — Let (X, g) be either (i) a LeBrun hyperbolic mono-
pole orbifold AF metric, or (ii) a Gibbons-Hawking orbifold ALE metric.
Then there exists a C™-orbifold conformal compactification (X, §) which
satisfies Yorp([g]) > 0.

Proof. — The existence of a smooth orbifold compactification follows
directly from [15, Proposition 12], the proof of which is based on twistor
theory. A second proof, not using twistor theory, is obtained by locally
solving the negative Yamabe problem near the orbifold point (which is a
convex variational problem; this is solvable in the orbifold setting), and
applying the removable singularity theorem for constant scalar curvature
self-dual metrics [46, Theorem 6.4].

Next, one may find a conformal metric on the orbifold compactification
whose scalar curvature does not change sign [5, Lemma 3.4]. The strict
positivity of the scalar curvature then follows using the strong maximum
principle, as in [15, Proposition 13]. Thus we must have Y,,;([g]) > 0. We
remark that it is not difficult to write down an explicit conformal factor on
the compactification which has positive scalar curvature, but we leave this
as an exercise for the interested reader. ]

We next have an estimate for the Yamabe invariant of LeBrun orbifold
metrics.

THEOREM 4.3. — Let (M,gLB(ml Py, My pn)) be a conformally
compactified LeBrun metric with total multiplicity N = my + -+ + my,.
Without loss of generality, assume that p; = (0,0, 1), and assume that all
monopole points are contained in B(py,r). Then

1276

45 Y,o([ous]) < —— + O(7),
(4.5) v([grB]) N+2+ (r)
asr — 0.

Proof. — As in the proof of Theorem 3.2, we let f = —p, to obtain

~1/2
(4.6) V(g) =24V2r | Vie *dVys - ( Vne“”’dVHs) .
H3 H3
Using (3.19), we obtain

—1/2
(4.7) y(g)zﬁﬁﬂ'gﬂ-( Vne4pdeHa> .

H3
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Clearly,

N
(4.8) VN =1+ poraaEiag O(r),

as 7 — 0. Using radial coordinates, we calculate

N —4
/H3 <1+e2p_1>€ pdVHS

oe N
= 471'/ <1 + ) e~ % (sinh p)2dp
0

e2r —1

T —2t —4t “x’
=—(— —3(N —2 2(N -1
(67 =3V — 2 42V — 1)) |
(N +2)7
12
This yields
N 42\ ? 1271/6
4.9 =6v2r?/? [ —= O(r)=——=+0
a9 vig—ovat (N2) o) = 25 o),
asr — 0. ]
COROLLARY 4.4. — Let (M, §rp) be as in Theorem 4.3, and assume

that the highest multiplicity at any point is strictly less than 4(N + 2)/9.
Then there exists a radius r > 0 such that if all points p1, . ..,p, € B(p1,7),

~

then there exists a solution of the orbifold Yamabe problem on (M, [§1.5]).

Proof. — Let m be the greatest integer strictly less than 4(N +2)/9, and
let G be the cyclic group of order m, acting on $* C R®> = R* x R! as in
(2.2). We have

1276 8m/6 876

= < = YOT'b(S4/G’ [9s])-
VN+2  JAN+2)/9 Vm
Therefore, for r sufficiently small, by Theorem 4.3,

. 1276
4.11 You(M, [§ <
( ) b( [gLBD D)

If the highest multiplicity of any orbifold point is m, we see that estimate
(4.2) will be satisfied for r sufficiently small, and Theorem 4.1 then yields
a solution of the orbifold Yamabe problem. O

(4.10)

< Y,(S*/G, [gs]).

Remark 4.5. — For N = 3, the highest multiplicity allowed is [20/9] = 2.
This allows multiplicity 2 points (but not a single multiplicity 3 point). This
proves the existence statement in Theorem 1.5. The convergence statements
in Theorem 1.5 will be proved later in Section 7.

TOME 60 (2010), FASCICULE 7



2520 Jeff A. VIACLOVSKY
4.1. Proof of Theorem 1.3

First, adding a point p at infinity, there exists a smooth orbifold con-
formal compactification (X,§) of (X,,g) by Proposition 4.2. Assume by
contradiction that § is a constant scalar curvature metric on the compact-
ification X in this conformal class. Letting E denote the traceless Ricci
tensor, we recall the transformation formula: if g = ¢=2§, then

(4.12) E,=E;+ (m—2)¢" " (V20 — (Ag/m)j),
where m is the dimension, and the covariant derivatives are taken with
respect to §. Since ¢ is Ricci-flat and m = 4, we have

(4.13) Ey=¢"'(—2V?0+ (Ag/2)g).
We next use the argument of Obata [38]; integrating on X,
/A O, PPV = / 0By {671 (~ 2976 + (A6/2)g),, } dV
X X
(4.14) = —2/A BV ydV
X
= —2lim EIV2¢;dV.

0JX\B(p,e)

Since g is the Green’s function metric associated to § at p, we have
(4.15) g=¢29=CGmzg~rtg,

which implies that ¢ ~ 72 where r is the distance to p with respect to the
metric g. Continuing the above calculation, integration by parts yields

(4.16) /X¢\Eg|2df/:

—21lim (/ EY (Vo)ivjdo — / (V,E7 - Vzwb)df/) .
=0\ JoB(p,e) X\B(p.e)

The second term on the right hand side is zero since the scalar curvature
of g is constant (by the Bianchi identity), and the first term on the right
hand side limits to zero since the integrand is bounded. Indeed, since § is
a smooth orbifold, the curvature is bounded near p, and |V¢| ~ r near p.
Consequently, Fy; = 0, and ¢ is Einstein.

Since we have two Einstein metrics in the conformal class, the complete
manifold (X, ¢g) admits a nonconstant solution of the equation

(4.17) V2 = %g.
m

ANNALES DE L’INSTITUT FOURIER



MONOPOLE METRICS 2521

Such a solution is called a concircular scalar field, and complete mani-
folds which admit a non-zero solution were classified by Tashiro [43] (see
also [30]), who showed that (X, g) must be conformal to one of the follow-
ing: (A) a direct product V' x J, where V is an (m—1)-dimensional complete
Riemannian manifold and .J is an interval, (B) hyperbolic space H™, or (C)
the round sphere S™.

The hyperkdhler ALE spaces under consideration have second homology
generated by embedded 2-spheres with self-intersection —2, with intersec-
tion matrix given by the corresponding Dynkin diagram [29]. If such a space
were diffeomorphic to a product V3 x J, then any of the above spherical
generators in Hy would be homologous to a cycle in V3, and would therefore
have zero self intersection since such a cycle can be deformed to a disjoint
cycle by translating it in the J direction. Cases (B) and (C) obviously can-
not happen since (X, g) is not locally conformally flat for n > 1. This is
a contradiction, and the nonexistence is proved. Finally, the non-existence
of a solution, together with Theorem 4.1, imply that the orbifold Yamabe
invariant is maximal

(4.18) Yors(Xn, [9]) = 8’%6.

This completes the proof of Theorem 1.3.

Remark 4.6. — We point out that the Obata portion of the above proof
does not hold if instead the compact manifold is assumed to be Einstein.
For example, consider CP? with the Fubini-Study metric gps, which is
Einstein. The associated Green’s function ALE space at any point is the
Burns metric, which is scalar-flat but not Ricci-flat.

Remark 4.7. — It is clear from the above proof that Theorem 1.3 also
holds for Ricci-flat ALE spaces in other dimensions, as long as they are not
homeomorphic to a product V™! x J, and not locally conformally flat.

We conclude this section by noting that the proof of Theorem 1.3 is also
valid in case X has non-trivial orbifold points.

THEOREM 4.8. — Theorem 1.3 holds if (X, g) is a Gibbons-Hawking
multi-Eguchi-Hanson orbifold.

Proof. — As shown in Proposition 4.2, there exists a smooth conformal
compactification (X ,g). The proof of Theorem 1.3 above shows that any
constant scalar curvature metric on X conformal to g must be Einstein.
Consequently, there exists a concircular scalar field on (X, g). An exami-
nation of Tashiro’s proof shows that there are no orbifolds with isolated
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singularities in case (A), since the product with an interval would create at
least a 1-dimensional singular set. Cases (B) and (C) cannot occur either
since these are locally conformally flat. O

5. Symmetric metrics

We begin with some elementary hyperbolic geometry. Fix the point py =
(0,0,1) € H3, and let po(-) = d(po, -) denote the hyperbolic distance to py.
Let u : H3 — R be defined by

_sech(pg) 2

5.1 = .
(5-1) z L+ a2 +y? + 22

To see the second equality in (5.1), recall the following formula

Ip1 — p2|2
22’12’2

(5.2) cosh (d;.[ (pl,pg)) =1+

where p; = (zi,¥:,2i), and the norm on the right is the Euclidean norm
([40, Theorem 4.6.1]). From this, we obtain

2 2 —1)2 2 2 241
(5.3) Cosh(po(p)):1+x S Al Gl VA i o Vol el 8

2z 2z
LEMMA 5.1. — The function u satisfies the equation
(5.4) Apuett + 27 10u = —2u5.

Proof. — We define § = u?(d2? + dy? + dz? + 22d6?). Letting & =
zcos b,y = zsin 6, we obtain
4

L+ 22 +y2 + 22 + 92)2

(5.5) g= ( (da? + dy* + di? + dj?).

The right hand side is the spherical metric on S* in coordinates arising
from stereographic projection. Consequently, from (3.1),

(5.6) Au = —2u?.

Writing out the Laplacian in the (z,y, z, 8)-coordinates, we obtain

1
(5.7) —2u% = Au= 2 Z 0i(20iu) = Apyeu + 2710, u.
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5.1. Symmetries for n = 2

In this subsection, we will only consider the LeBrun construction with
two monopole points, p; and py. Without loss of generality, by applying a
hyperbolic isometry, we may assume the points p; = (0,0,r9), and py =
(0,0,75"). Tt was shown in [25] that the automorphism group is

(5.8) G = (U(1) x U(1)) X Dy,
where D, is the dihedral group of order 8. There is the index 2 subgroup
given by
(5.9) K = (U(1) x UL)) x (Zs ® Zs),
which are exactly the lifts of hyperbolic isometries preserving the set of 2
monopole points.

For a metric to be K-invariant, it must in particular be invariant under
the bundle U(1)-action. So we consider only metrics of the form v?grp,

where v : H3 — R;. We refer the reader to [25, Section 2] for the details
on lifting isometries of H? to automorphisms of LeBrun metrics.

PROPOSITION 5.2. — If the conformal automorphism ® of grp is the
lift of an isometry of hyperbolic space ¢, then it is an isometry of the metric
v2grp provided that

(5.10) (zo @) (vo@)? = 2202
Proof. — Using (2.8),

2
(5.11)  ®*(v’gLB) = (vo ¢)*®*grp = (vo §)* (z Z¢> grLB = v’gLB.

O
Next, define the metric
(5.12) g =’ grB,
where u is defined in (5.1). Let ¢ denote inversion in the unit sphere
(5.13) d(z,y,2) = m
PROPOSITION 5.3. — The map ® acts as an isometry of gr.p.
Proof. — We check

(z0)*(uo¢)? =

22 4 422 9 9
(x2+y2+22)2. 1 2:(1+z2+y2+22)2:2u’
(Hm)

(z,y,2).
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so the result follows from Proposition 5.2. g

THEOREM 5.4. — For the LeBrun metric with 2 monopole points p; =
(0,0,79), p2 = (0, O,ral), with rq > 1, the K-symmetric Yamabe invariant
satisfies

(5.14) Yie(M, [g]) < 8V/6m — B(ro),
where [ : (1,00) — (0, 00) satisfies 5(r9) — 0 as rg — 0.

Proof. — The identity component U(1) x U(1) is generated by (the lifts
of) rotations around the z-axis and the U(1) fiber rotation [25, Proposi-
tion 2.14]. By Proposition 5.2, these are isometries of the metric gz, g defined
in (5.12). The group K is generated by the identity component, by the lift ®
of the inversion ¢, together with a lift of any reflection in the (z,y)-plane.
The lift ® acts as an isometry by Proposition 5.3. The lift of a reflection in
the (z,y)-plane is also an isometry by Proposition 5.2. Consequently, g5
is a K-invariant metric. We next compute its Yamabe energy.

Take a coordinate system (x,y, z,60) where 6 is an angular coordinate
system on the fiber for some trivialization. The volume element of g 5 is

(5.15) det(g) = (V322vHY/2 = vz,

Since u depends only upon the (z,y, z) coordinates, using Lemma 5.1, we
have for the Laplacian with respect to g1 g,

1
(5.16) Arpu= —Zai(V_luin) =V Y Agueu + 27 u,) = VH(—2u?).

\%4
Since grp is scalar-flat, from (3.1) we have
(5.17) R=—6u"Au=12V"1

The Yamabe energy in coordinates is then given by

—1/2
(5.18) V(grs) = / 2utdV - < / zVu4dV0) ,
U U

where dVy = dx A dy A dz A df is the coordinate volume element, and the
region of integration is U = H? x (0, 27). Since n > 1, we must have V > 1,
and we obtain the estimate

+1/2
(5.19) V(gre) < </ zu4dVO> = 8V6m = Y (54, [g5])-

The middle equality follows since for n = 0, g is the spherical metric, as
seen in the proof of Lemma 5.1. The existence of the function S follows
easily. O
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5.2. Proof of Theorem 1.4

Recall the definition of LeBrun’s negative mass metrics on O(—n) from
Section 2.3 above. Since gorp is scalar-flat, the Yamabe equation for a
metric § = f2g, f >0, is
(5.20) —6Af =\ f3,
where A > 0 is a constant (recall that from Proposition 4.2, there is a
smooth conformal compactification (X, g) with strictly positive Yamabe
invariant). We are interested in solutions which yield a smooth constant

scalar curvature metric on the compactification. In particular, we must
have

(5.21) f=00"%), |[Vfl=0(@"3),|V3f| = O0(r™™), as r — occ.

We are only interested in solutions for r € [1, co] which decay quadratically
at co. Therefore, we make the change of coordinates #2 = r? — 1. In these
new coordinates, the metric takes the form

(5.22) JoLB —

#2(n + ) (03 /n?).

1 A2
( tr )df2+(1+f2)[af+o§]+

n + 72 1+ 72

To obtain the actual Kéhler scalar-flat metric on O(—n), one needs to at-
tach a CP" at the origin, and quotient by Z, (see [31]), but in the following
we will just consider the metric to live on R, x S% ~ R*\ {0}, using # as
radial coordinate.

As shown in [31], the identity component of the isometry group of gorp
is U(2). Obviously, any conformal factor for which the conformal metric
is invariant under the subgroup SU(2) must be radial. To yield a smooth
metric on the compactification, f must then satisfy the initial conditions

(5.23) f0)=1, f'(0)=0.

A computation shows that for radial f, the equation (5.20) takes the
form

o \A2 .2 ‘
(5.24) (W) feo+ (TI;) fre = =Af3

If n > 3, then 5 — 2n < 0. In this case, for 7 sufficiently large, the equation
looks like

(5.25) (negative) f; + (positive) fss = (negative) f>.
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Recall that f ~ 772 for 7 large. Therefore, f must be strictly decreasing
for some 7 large, thus f#(7y) < 0 . Examining the signs in (5.25), we see
that fs#(fo) < 0. Consequently, the derivative of f is strictly decreasing
at 7. This implies that f7(7) < 0 for all # > 7, and therefore fqr(7) < 0
for all 7 > 74. This says that f is concave, so f must hit zero at some finite
point, which is a contradiction.

Finally, it is shown in [31], that gorg for n = 2 is isometric to the Eguchi-
Hanson metric, which is hyperkéhler. Thus Theorem 1.3 can be applied to
this case. This completes the proof of Theorem 1.4.

Remark 5.5. — Forn =1, it is easy to check that

(5.26) f(r) = ﬁ

is a a solution of (5.24). This is not a surprise, since for n = 1, gorp Is
the Burns metric, and § = (1 + fQ)_QQOLB = r~*go1p is the Fubini-Study
metric [31].

6. Integral formulas

For an ALE space X with several ends F;, and orbifold singularity points
pj, we have the signature formula

(6.1) 7(X)=
1 9 s /
1272 (/X (WS [2dV, —/XIWg | dVg> —;n(sz”/Gi)—F;n(SS/Gj),

where G; C SO(4) is the group corresponding to the ith end, n(S%/G;) is
the n-invariant, and G;- are the groups corresponding to the orbifold points
pj. The Gauss-Bonnet formula in this context is
1 )
/ bl
|G

(6.2) x(X)=

1
— W, |2dV, + 4 dv,
Q2 </X| gl"dVy + /XUQ g>+zi:

1
+ 1-—
|Gl z]: <
where

1 1
(6.3) 4/ o2dV, :—7/ |E\2dvg+—/ R*dV,,
X 2 X 24 X

and E is the traceless Ricci tensor. See [23] for a nice discussion of these
formulas. In this section, we will compute these for various examples.
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6.1. Self-dual metric on n#CP?

In this case, we have x(M) =n+ 2,7(M) = n. Thus

(6.4) 127%n = / W2V,
M
and
(6.5) 8ri(n+2) = / (W, [dV, +4/ o2dVj,.
M M
Combining these gives
(6.6) 47%(4—n) =4 / o2dVj.
M

This yields an estimate for the Yamabe invariant of positive self-dual met-
rics on 2#CP? and 3#CP?.

PROPOSITION 6.1. — Let 0 < n < 3. If g is a self~dual metric on M =
n#CP? with positive scalar curvature, then

(6.7) Y/(M,[g]) = 4mv6/(4 — n).
Thus for n = 2, Y/(M, [g]) > 873, and for n = 3, Y/(M, [g]) > 47/6.

Proof. — Using the inequality oo < R?/24, we obtain

1
) A7%(4 —n) < — 2
(6.8) 72(4 - n) 24/MR’

Since the self-duality condition is conformally invariant, we may confor-
mally change to a Yamabe minimizer and obtain

(6.9) 4674 —n < Y (M, [g]).
0

Restricting to the class of monopole metrics, we have the following. For
n =0, gLp is conformal to the round metric on S%, so we have Y(M, [g]) =
81v/6. For n = 1, grp is conformal to the Fubini-Study metric, so we have
we have Y (M, [§]) = 12m+/2. For n = 2, we have the lower estimate on the
Yamabe invariant stated in Theorem 1.1.

We also make the following observation

PROPOSITION 6.2. — If g is a self-dual metric on 24-CP? or 34#CP? with
positive scalar curvature, then g is conformal to a metric with positive Ricci
curvature.

TOME 60 (2010), FASCICULE 7



2528 Jeff A. VIACLOVSKY

Proof. — From (6.6), we see that the conformal invariant [, o9 is posi-
tive when n < 3. It follows from [13] that there exists a conformal metric
with R > 0 and o3 > 0 pointwise (see also [20]). Such a metric necessarily
has positive Ricci curvature. O

This was proved in [33] for n = 2, and for n = 3 under certain conditions
on the 3 monopole points. This was done by an explicit construction, as the
result of Chang-Gursky-Yang was not known at the time. An interesting
fact is that positive Ricci metrics exist for any positive scalar curvature self-
dual metric on 3#CP?, not only those obtained by the LeBrun hyperbolic
ansatz.

6.2. Single monopole point with multiplicity

We take a LeBrun metric with a single monopole point of multiplicity n,
and compactify to a self-dual orbifold M with a single orbifold point of
type A,_1. It was shown in [32] that this is the same as the conformal
compactification of LeBrun’s ALE metrics on O(—n) found in [31]. The

~ ~

characteristic numbers are x(M) = 3,7(M) = 1, and (see [36])

(6.10) n(8%/G) = (”_1?2#
We thus have

1 5 (n—1)(n—2)
(6.11) 1= 153 /M WPdv, — —,

(the minus sign is due to reversed orientation), so

2
2
(6.12) / W2V, = 21902,
v n
The Gauss-Bonnet formula yields
n?+2 1 1
6.13 3= —4 vy, +1— —|
(6.13) 2n +8772 /MUQ 9ot n
which simplifies to
(6.14) 47%(4—n) =4 / o2dVj.
M
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6.3. Gibbons-Hawking multi-Eguchi-Hanson

For this example with n points, we have 7(GH) = n — 1,x(GH) = n.
Let M be the conformal compactification to a compact orbifold with a
single Z,, singularity of type A,,_1. Reversing orientation, the metric is self-
dual. We thus have 7(M) = n — 1, x(M) = n + 1. The signature formula is

1 (n—1)(n-2)
= +2 NN 2
(6.15) ne1= /M Wi pav, + T2
which yields
(n—1
(6.16) / W, 2dV, = ntDn=bg
M n

Remark 6.3. — Note that

(6.17) DM =D e, 42000 jong2,

n 3n
which reflects the fact that the Lebrun metrics will degenerate to a gener-
alized connect sum of a LeBrun orbifold and a compactified multi-Eguchi-
Hanson space as the n monopole points tend to a single point, as observed
in [32]. This will be made more precise in Section 7.

Returning to the example, the Gauss-Bonnet formula yields

+1 —1 1
(6.18) n—i—l:% 87T24/M02dVg+1—E,
which simplifies to
2
6.19 82 =4 [ 09dV,.
g
n M
This implies the inequality
2 1
(6.20) “8m? < — [ R%*dV,
n 24 Jur

If there existed a Yamabe minimizing metric § in the conformal class, then

L < V(a1 5],

But the Akutagawa-Botvinnik inequality in Theorem 4.1 says the reverse,
so we must have equality. Tracing through the inequalites, this says that

(6.21)

|E| = 0. This gives an alternative proof that any Yamabe minimizer would
have to be Einstein (and therefore cannot exist, recall the proof of Theo-
rem 1.3 above).
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O

ALE ends

Figure 7.1. A bubble tree with several levels of scaling. The dotted
circles enclose the regions of singularity formation, and are close to
orbifold singularities (in the Cheeger-Gromov sense). The curved ar-
rows represent these regions viewed through a powerful microscope.

7. Orbifold convergence

We briefly describe the structure of “bubble-trees”. Let (M;, h;) be a
sequence of metrics converging to an orbifold (M, heo) in the Cheeger-
Gromov sense. At the first level of bubbling (the lowest level of rescaling),
the ALE orbifolds (X, g;), 7 = 1...k, bubble off, with each orbifold X
corresponding to singular points of convergence p; € My,j = 1...k, of
the original sequence (M;, h;) = (Moo, hoo). Each (X;,g5), 5 =1...k, is
a pointed rescaled Cheeger-Gromov limit of the original sequence, having
singular points of convergence p;;» € X, j/ = 1...k;. At each singular
point p; j/, there is a further rescaling which converges to an ALE orbifold
(X,.7,95.5), as above with singular points of convergence p; i j» € X; s,
j” =1...kj . This procedure is then repeated and terminates in finitely
many steps, see Figure 7.1. We refer the reader to [46] for more details
about this procedure and further references.

7.1. Bubble-tree structure for hyperbolic monopole metrics

The following theorem describes the bubble formation for compactified
LeBrun metrics.

THEOREM 7.1. — Let (M, g;) be a sequence of n-pointed LeBrun met-
rics with monopole points {p; 1, ..., pin}. Assume that asi — oo that these
points converge to

(7.1) {Pia, - sDint = {M1 - Doo1s-- -, Mk Poo,k }s
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as i — 00 With peo ; e H3 for1 <j<k and Poo,j € OH3 for ky < j <k,
allowing for multiplicity. Then there exist metrics §g; on the conformal com-
pactification so that (M, §;) converges to the compactified LeBrun orbifold

(72) (Magj) — (MooagLB(ml *Poo,1y ey My - poo,kl))7

as j — oo in the Cheeger-Gromov sense. There are finitely many bubbles,
and the bubble-tree structure is as follows. For each subcollection of points
limiting to a finite point with multiplicity greater than one, the bubble-
tree structure is a tree of Gibbons-Hawking multi-Eguchi-Hanson orbifold
ALE spaces. For each subcollection of points limiting to a boundary point,
then a LeBrun orbifold AF metric is the first bubble at that point, with
subsequent bubbles being Gibbons-Hawking orbifolds as in the previous
case. The neck regions are modeled on annuli in Euclidean spaces R*/Zy,
with the group action as in (2.2).

Proof. — By a sequence of conformal transformations, we normalize the
sequence so that p; 1 = (0,0, 1). Choose a conformal factor u : H> — R so
that §; = u?g; is a sequence of smooth metrics on the compactification M
as follows. Viewing H? as the upper half space, without loss of generality
we may assume that the limiting boundary points lie in some compact set
of the (z,y,0)-plane. We choose the compactifying conformal factor u to
be identically 1 on some open neighborhood U containing this compact set
and such that U also contains all monopole points. Furthermore, choose u
to be asymptotic to (5.1) on 9H? \ U, so that §; is a smooth metric on the
compactification. To understand the bubble structure, we can therefore
ignore the compactifying conformal factor in the following argument.

We first consider the case of several points limiting to a higher multi-
plicity point, say m; - poo,1 With my > 1. If all points limit to po 1 at a
uniform rate, then we rescale the metric so that the points are minimally
seperated by distance 1. As in [32, page 237], this is equivalent to rescaling
the hyperbolic metric to become the flat metric, and the function V' limit-
ing to the sum of Euclidean Green’s functions (without a constant). Thus
the rescaled limit is a Gibbons-Hawking metric. If the points do not limit
to M1 - Poo,1 at a uniform rate, then we do the following. Rescale the metric
the smallest amount so that the maximum distance between these points
is 1. We will then see several “clusters” of points limiting to distinct points
in a unit ball. Thus the limit will be a Gibbons-Hawking ALE orbifold. At
each orbifold point ¢ of this limit, we return to the original sequence and
rescale so that the maximum distance between the subcollection of points
limiting to ¢ in the first rescaling is 1. At this scaling, we will then see
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several new subclusters limiting to distinct points in a unit ball, so again
we find Gibbons-Hawking orbifolds at a different scale.

Next, for a subcollection of points limiting to a boundary point, by a
conformal transformation, we arrange so that this cluster of points is con-
tained in a unit ball around some finite point in H3, say p = (0,0, 1). The
pointed limit (based at p) of such rescaled metrics is a LeBrun hyperbolic
monopole AF orbifold metric (since in this gauge, all other points will limit
to OH3). This is conformally related to the original, but it is easy to see that
in the original scaling, precisely this AF orbifold metric bubbles off. We will
illustrate this in a simple case, the general argument is the same. Consider
the case of 2 monopole points. Let p;1 = (0,0,1),pj2 = (0,0,571). Let
¢j(x,y,2) = (jz,jy, jz), this is a hyperbolic isometry. By [25, Section 2],
there is a lift ®; of ¢ preserving the connection form. We then have

(7.3) (918 (pja,pi2) = J° (gLB ((0,0,4), (0,0, 1)))

In other words, we see that a scaling of the original metric is isometric
to another LeBrun metric. Consequently, the bubble will be a LeBrun AF
metric (in this case a Burns metric). In general, there could be clusters of
points tending towards OH?3, and then clearly all deeper bubbles at such
points will be Gibbons-Hawking orbifold metrics, as in the first paragraph.

Since the number of monopole points is bounded by n, this procedure
must terminate in finitely many steps, and thus there are finitely many
non-trivial bubbles. A trivial bubble, or neck region, will arise at any inter-
mediate scaling between a non-trivial ALE space, and the previous orbifold
point onto which is it glued. All of the above ALE spaces are Kéahler and
have an ALE-coordinate system in which the group action is as in (2.2), so
the structure of the neck regions is clearly as stated. O

Remark 7.2. — 'To clarify, we explain the above procedure in two cases.
Consider the case of 3 points, and normalize so that p;1 = (0,0,1). Choose
pj,2 and p;3 to be at distance 4§72 from each other, but such that both
of these are at distance j~' from pj,1- In this case, the original limit is a
LeBrun metric with a single multiplicity 3 point. To see the first bubble,
we rescale the picture so that the distance between p; 1 and p; 2 is 1. Thus
the first bubble will be a Gibbons-Hawking orbifold with one point of mul-
tiplicity 1, and another point of multiplicity 2. The second, deepest, bubble
will rescale so that p;» and p; 3 are at distance 1, and this bubble will be
a Gibbons-Hawking metric with 2 points of multiplicity 1, which is none
other than the classical Eguchi-Hanson metric.
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For the next example, consider again the case of 3 points. Assume that
pj1 = (0,0,1), and choose p;o and pjs to limit to the boundary point
(0,0,0). The limit of the original sequence will be a LeBrun metric with
a single monopole point (which we know is conformal to the Fubini-Study
metric). To understand the bubbling, apply a conformal transformation so
that p; o and pj 3 limit to (0,0, 1) (and then p;, will limit to the boundary
of hyperbolic space). The limit will now be a LeBrun AF metric with a
single point of multiplicity 2. This AF space will be the first bubble. Upon
further rescaling to separate these two points, we find the second deepest
bubble to be an Eguchi-Hanson metric.

7.2. Sobolev constants and Yamabe invariants

We proceed with the definition of the Sobolev constant.

DEFINITION 7.3. — For M compact, we define the Sobolev constant Cg
as the best constant Cs so that for all f € C%1(M) we have

(7.4) [fllzs < Cs ((IVfll2 +11fll22)-

For M non-compact, Cs is defined to be the best constant so that
(7.5) 1fllzs < CslIV£l1e,

for all f € C%Y(M) with compact support.

We next prove the lower estimate on the Yamabe invariant in Theo-
rem 1.2.

THEOREM 7.4. — Let (M, §) be a LeBrun self-dual conformal class on
n#CP? with n monopole points {p1,...,pn}. Assume that all monopole
points are contained in a compact set K C H3. Then there exists a constant
0, > 0 depending only upon n, IC such that

(7.6) 0 <6, <Y(M,I[4)).

Proof. — Let g1,B,; be a sequence of such LeBrun metrics, with monopole
points p; ;, j = 1...n, and assume that

(77) {pi,la s ;pi,n} — {ml *Poo,1y ey M- poo,k};

as i — oo with poo j € H? for 1 < j < k allowing for multiplicity (from our
assumption, there are no limit points on 9H?). Inspired by [33], let

(7.8) fi=—(pix+- 4 pin)/n,
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where p; ;(-) = dys(pij,-). Without loss of generality, by conformal in-
variance, we may assume that p;; = (0,0,1). Consider the conformally
compactified §; = e*/i272g1p;, as in (3.11). Note that since all points are
contained in a compact set around p; 1 = (0,0, 1), f; is bounded from below
on any compact set, and f;(z) ~ —p;.1(x) as @ — OH3. This implies that
A < Vol(g;) < A, for some positive constants A and A. The same argument
in Theorem 7.1, then shows that g; converges to a non-trivial limiting orb-

ifold (Moo, §oo) with finitely many ALE orbifold bubbles (our conformal
factor now varies with 4, but it remains bounded and strictly positive near

the singularities, so the same argument applies). Since |Vp; ;| = 1, this
implies the inequality
(7.9) IVfil? < 1/n.

From (3.12), we estimate the scalar curvature
Ry, = 6e 2"V (=1 = Afi = [V i)
> 6e 2V (=2 - Af) = 6e iy In ! Z(—Q + Apij),
J

where V; is defined in (2.7), corresponding to the n monopole points p; ;.
Using Lemma 3.1, we obtain the estimate

(7.10) Ry, > 24”2V In =ty " eV,
J
where V;; = 1+ 1T, . For each j, the function V7'V, ; is smooth and

uniformly positive (with a lower bound independent of i), so we have

(7.11) Ry, > Ce iy e,
J

for some constant C' > 0. Obviously, for some j, we must have
1
(7.12) -~ Z Pij Z Pijo-
J

Therefore, we have the estimate
(7.13) Rz, >d>0.

We also claim that there is a uniform bound on the Sobolev constant (7.4).
The limit space (Mo, §oo) has bounded Sobolev constant (7.4) since it is a
compact orbifold. Furthermore, all of the bubbles are ALE orbifolds, which
have bounded Sobolev constants (7.5) by [11], and each are glued onto the
previous orbifold by Euclidean neck regions. Therefore, using a standard

partition of unity argument (at possibly several scales) and scale invariance
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of the Sobolev constant (7.5), it follows that the Sobolev constant of the
sequence is uniformly bounded. This is proved in detail in [27, Proposi-
tion 2.2], and the generalization to this case is straightforward, so we omit
the details.

To finish the proof, we include the following standard argument. Assume
by contradiction that there is a sequence of unit-volume Yamabe minimizers
in each conformal class gy,; = vfgi with R; — 0 as ¢ — oo, where R; is the
(constant) scalar curvature of gy,;. The Yamabe equation is

Multiply by v; and integrate to get
(zw)G/RMfﬁ@+/R@nﬂ%f:

/m@@:&wmmzm.

The right hand side limits to zero, therefore the left-hand side does also as
i — oo. From (7.13), R(g;) is uniformly positive, so the W12 norm of v;
can be made arbitrarily small. Using the uniform Sobolev inequality and
lower volume bound for g;,

(7.16) 1= "Vol(gy:)/* =
[villLs < Cs(g:) (IVvillze + [[villz2) < C'[Jvillwr.2,

which is a contradiction for 4 sufficiently large. O

7.3. Convergence of constant scalar curvature metrics

We are now in a position to describe the possible limits of the Yamabe
minimizers. The following Theorem implies the main part of Theorem 1.2.

THEOREM 7.5. — Fix n, and let (M,g;) be an arbitrary sequence of
n-pointed LeBrun metrics, with conformal compactifications (M, [§;]). As-
sume that there exists a constant ¢,, such that

(7.17) 0 < 6, <Y(M,[3]).

Let gy,; € [§:] be a sequence of unit volume Yamabe minimizers. Then
there exists a subsequence gy,;,{j} C {i}, which converges to either (1)
a constant scalar curvature metric on a k-pointed LeBrun orbifold, 1 <
k < n, or (2) a single football metric, that is, S*/Z,, with the round
metric, for 2 <m < n.
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Proof. — As in Theorem 7.1, we choose a compactification with fixed
conformal factor §; € [gi], so that the sequence (M,g;) will limit to a
compactified LeBrun orbifold, with each bubble-tree consisting of a string
of multi-Eguchi-Hanson orbifolds, and possibly other AF LeBrun orbifold
metrics (in case some monopole points limit to the boundary of H3).
Call this limit space (MOO, Joo), and the finite singular set of convergence
S C M. We write the sequence of unit volume Yamabe minimizers in
each conformal class as gy,; = ufgl—. Let R; denote the scalar curvature
of gy;. By passing to a subsequence, assume that lim; ,. R; = Rs. From
the assumption (7.17), Roo > d > 0.

The assumption (7.17) implies that the Yamabe minimizers gy; satisfy
a uniform Sobolev inequality of the following form [46, Proposition 3.1]

(7.18) I£llze < CslIV £llzz + Vol || £z,

for any f € C' 0’1(M ). The L?-norm of the curvature is uniformly bounded,
as seen above in Section 6. We may therefore quote the compactness theo-
rem of [46, Theorem 1.1] to obtain a subsequence converging to a multi-fold
limit. The Sobolev inequality (7.18) and bl(M ) = 0 together imply that
the limit must be an irreducible orbifold [46, Proposition 7.2].

Let C; = max; u;. If C; remains bounded from above, then we argue as
follows. On any compact subset D C Moo \ S, we have a Harnack inequality
(since the conformal factors are bounded from above, and the sequence is
smoothly converging away from the singular set). This implies that the
conformal factors u; will either have a strictly positive limit on M or
will uniformly crash to zero on M. The latter case cannot happen since
Vol(gy:) = 1. Consequently, the limit must be a CSC (constant scalar
curvature) metric conformal to (Mae, joo ), and we are in Case (1).

So we next assume that C; — oo as ¢ — o0o. Let x; be points such
that w;(z;) = C;. We first assume that z; — x € My \ S. Then the
usual conformal dilation argument says that a bubble is forming on the
smooth part [42]. To summarize, this is by looking at the rescaled func-
tions 4;(y) = C; 1ui(C’; 4). By elliptic theory, this sequence has a subse-
gence converging to a positive solution of —6Au = Ry u® on R*, satisfying
u(0) = 1. From our assumption on the Yamabe invariant, Roc > ¢ > 0.
By Caffarelli-Gidas-Spruck [12], the limit must be the spherical metric.
This implies that the Yamabe invariant satisfies Y (M, [g;]) = Y (S%, [gs]),
for 4 large, which contradicts Theorem 3.2 above. Therefore, we must have
x; > p €S asi— oo. Let (X1,g1) be the first bubble at p. Assume that,
after the rescaling the sequence to limit to (X1, g1) (pointed convergence
based at p), x; limits to a finite point of X;. The same conformal dilation

ANNALES DE L’INSTITUT FOURIER



MONOPOLE METRICS 2537

argument shows that the rescaled conformal factor (with g; as background
metric) must be bounded from above. Away from the singular points of
convergence p1 ;/,j' = 1...k1, we again have a Harnack inequality. So the
rescaled conformal factor either (a) limits identically to zero away from the
singlar points, or (b) has a finite positive limit everywhere. In Case (b), the
limit of the original sequence must then be a CSC metric on the conformal
compactification (X' 1,d1), since this is the only possible irreducible orbifold
limit. If X is an Eguchi-Hanson orbifold, this cannot happen by Proposi-
tion 4.2. So the only possibility in Case (b) is that (X1,¢1) is an orbifold
LeBrun AF metric, whose compactification is Case (1). Case (a) splits into
two possibilities. Case (al) is that x; will limit to oo in (X, g1). In this
case, the only possible irreducible orbifold limit will be a metric on the
compactification of the “neck” region. This follows since all ALE spaces in
the bubble tree described in Theorem 7.1 have one end, the only possible
neck regions are modeled on R*/Z,,. The only CSC metric on the com-
pactification of this is the S*/Z,,-football metric, by the Obata-Tashiro
Theorem [38, 43]. Therefore, Case (al) is exactly Case (2). Case (a2) is
that z; limits to one of the singular points of convergence of X; in this
scaling. We then repeat the above argument around this singular point. In
general, we repeat the entire argument at different scalings to see that the
limit must be (i) a CSC metric on exactly one of the compactified orbifolds
in the bubble-tree, or (ii) limit occurring on a neck region. For Case (i), the
Gibbons-Hawing orbifolds do not admit CSC metrics by Proposition 4.2,
so Case (i) is exactly Case (1). The argument above shows that Case (ii)
is exactly Case (2).

Finally, in Case (1), the limit can never be a compactified 0-pointed
LeBrun metric. This is conformal to S* with the round metric, and the
only CSC metrics in this conformal class are of constant curvature [38],
so have maximal Yamabe invariant. This would contradict (1.4). This also
proves 2 < m in Case (2). O

7.4. Completion of proofs of Theorems 1.1 and 1.5

The Yamabe invariant for n = 2, 3 is stricly positive by Proposition 6.1.
For Theorem 1.1, as dg(p1,p2) — oo, Theorem 7.5 says the only possible
limit is the compactified 1-pointed LeBrun metric, since Case (2) obviously
does not happen. This is conformal to the Fubini-Study metric, which is
the unique CSC metric in its conformal class by Obata’s Theorem [38].
We note that the behavior of the Yamabe-minimizer on a connect sum is
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typically non-symmetric [28, 27]. Since the Yamabe minimizers must limit
to the Fubini-Study metric, it is then obvious that for dg (p1, p2) very large,
the Yamabe minimizers cannot be invariant under the conformal involution
which flips the two monopole points (see Section 5.1). Therefore, there must
always be at least two distinct Yamabe minimizers, which are related by
this conformal involution.

We next address the K-symmetric limit to S*. The existence of K-
symmetric minimizers follows from [21]. Again, by [46] we can find a sub-
sequence converging to a multi-fold, but which now may have reducible
points. But from the estimate on the K-Yamabe invariant in Theorem 5.4,
as dy (p1,p2) — 00, it is clear that the only possibility for a K-Yamabe min-
imizer is S* with the round metric. This follows because a reflection inter-
changing the two monopole point is clearly not an isometry of the two Yam-
abe minimizers, so these are not possible limits. From the arguments in the
proof of Theorem 7.5, another possible limit is CP? vV CP?, with the Fubini-
Study metric scaled to have Vol = 1/2 on each factor. But this cannot
occur since the Yamabe invariant of this limit is 247 > 87v/6 = Y (54, g5),
and this would contradict Theorem 5.4. Similarly, the limit CP? v S* can-
not happen either. Therefore, any sequence of Yamabe minimizers must
concentrate entirely in the neck region. The only possible limit is then 5%
with the round metric, with Burns metrics bubbling off at the 2 singu-
lar points of convergence. This follows since any reducible limit would be
several S*-s wedged together, which would have Yamabe invariant strictly
larger than 8m/6.

Remark 7.6. — As shown in [25], G is generated by K and an extra
involution A which is not a lift of a hyperbolic isometry, and is quite difficult
to describe explicitly. It is likely that as d(p1,p2) — o0, the G-symmetric
metric must also limit to S*. But since the test metric in (5.12) is not
invariant under A, we cannot say this for certain.

The fourth metric in Theorem 1.1 is obtained by adapting the CSC-
gluing argument of Joyce to this problem [27], see also [35]. Recall that the
Euclidean Schwarzschild metric in dimension n is defined as

_4
n—2

(7.19) g= (1 + W%) g0,

on R™ \ {0}, where gy is the Euclidean metric, and m > 0 is the mass
parameter. This metric is scalar-flat, locally conformally flat, and AF with
two ends. One chooses a conformal factor which is close to the Fubini-Study
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metric on neighborhoods of the monopole points, and is close to a scaled-
down Schwarzschild neck region in between; this will be the approximate
CSC-metric. One then uses the implicit function theorem, together with
the crucial fact that the Fubini-Study metric is CSC-nondegenerate, to
perturb to a CSC metric. This adaptation is straightforward, but since the
argument is quite lengthy, we omit the details due to space considerations.

As dy(p1,p2) — 0, Case (1) in Theorem 7.5 could only be a compacti-
fied LeBrun metric with a single point of multiplicity 2. This is conformal
(minus the orbifold point) to the Eguchi-Hanson metric, which does not
admit any CSC metric by Theorem 1.3, so this case cannot happen. Con-
sequently, the only possibility for the limit is the S*/Zy-football with the
round metric (since the limit of Yamabe minimizers must be irreducible).
Similarly, Theorem 1.3 implies that as dg(p1,p2) — 0, the only possible
K-symmetric limit is the S*/Zy-football with the round metric. To see this,
again the only concentration can occur in the neck region, which is R*/Zs.
The limit no longer has to be irreducible. But the lowest energy reducible
limit would be the wedge of two S*/Zy-footballs, whose Yamabe energy is
8m+/6. However, since in this case the points are not limiting to the bound-
ary of H>, Theorem 5.4 shows that the Yamabe energy must be strictly
less than 87+v/6, so this cannot happen, and therefore the limit must be the
irreducible S*/Z-football.

For the first case in Theorem 1.5, as p3 — p2, the only possible lim-
its from Theorem 7.5 are Case (1): a compactified LeBrun metric with a
single monopole point, and another multiplicity 2 point, or Case (2): a
S4/Zy-football with the round metric. However, under the assumptions of
Theorem 1.5, (4.11) says the Yamabe invariant is strictly less than that of
the S*/Zy-football, so the limit must be Case (1).

Finally, for the last case in Theorem 1.5, as p3 — OH3, the Yamabe
invariant is strictly less than that of grps by Theorem 3.2. Thus the only
possible limit is Case (1), a 2-pointed LeBrun compactified metric.

8. Questions

We conclude with a list of questions.
e What is the optimal lower bound for the Yamabe invariant in (1.5)
for n > 2? We conjecture that 6,, = Yo.4(S*/Zy, [gs]); this is true for
n = 2, as seen above in Theorem 1.1. Furthermore, the assumption
that the points are contained in a compact set K C #H3 should
not be necessary. Removing this assumption would imply that the
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moduli space of Yamabe minimizing LeBrun metrics has a nice
compactification for any n. As seen above, this is true for n = 2, 3.

e Does the compactified LeBrun metric on O(—n) admit a CSC met-
ric for n > 37 The answer is no for n = 2 since this is the compact-
ified Eguchi-Hanson metric, which was ruled out by Theorem 1.3.
For n > 3, Theorem 1.4 rules out any symmetric solution, but is
there a non-symmetric solution? Furthermore, as shown in Theo-
rem 7.1, if all monopole points approach a single point at a uniform
rate, the bubble-tree structure is a compactified LeBrun negative-
mass metric on O(—n), with a Gibbons-Hawking multi-Eguchi-
Hanson bubbling off. From the arguments in Section 7, the limit
of the Yamabe minimizers could limit to either a CSC metric on
compactified O(—n), or to the S*/Z,-football (since the compact-
ified GH metric does not admit a CSC metric by Theorem 1.3).
Which one actually happens for n > 37

e Except for the case of a single monopole point with multiplicity 7,
does a [§1.g] orbifold conformal class always admit a CSC metric?

e In Theorem 1.1, for n = 2 we determined the limiting behavior
of the K-Yamabe minimizers as d(p1,p2) — oo (the limit is S%).
Recall that K is an index 2 subgroup of full conformal group G.
What is the limit of the G-Yamabe minimizers?

e Are CSC metrics on compactified LeBrun metrics CSC nondegener-
ate? If so, then it would then be possible to apply the Joyce gluing
technique to obtain more non-Yamabe-minimizing examples.

e LeBrun metrics with torus action are a special case of Joyce met-
rics [26]. These depend on a choice of points on the boundary of
hyperbolic 2-space. What happens as these metrics degenerate?
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