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ALMOST EVERYWHERE CONVERGENCE
OF CONVOLUTION POWERS

WITHOUT FINITE SECOND MOMENT

by Christopher M. WEDRYCHOWICZ

Abstract. — Bellow and Calderón proved that the sequence of convolution
powers µnf(x) =

∑
k∈Z µ

n(k)f(Tkx) converges a.e, when µ is a strictly aperiodic
probability measure on Z such that the expectation is zero, E(µ) = 0, and the
second moment is finite, m2(µ) < ∞. In this paper we extend this result to cases
where m2(µ) = ∞.
Résumé. — Nous généralisons un théorème de Bellow et Calderón concernant

la convergence p.p. de puissances de convolution µnf(x) =
∑

k
µn(k)f(Tkx) où T

est une transformation préservant la mesure d’un espace de probabilités et µ est
une mesure de probabilité sur les nombres entiers.

1. Almost everywhere convergence of convolution powers

1.1. Preliminaries

Let µ(k), k ∈ Z, be a probability measure. It’s convolution µ∗µ is defined
by µ ∗ µ(k) =

∑
j∈Z µ(j)µ(k − j). The n−fold convolution µ ∗ · · · ∗ µ(k) =

µn(k) is defined inductively by µn(k) = µ∗µn−1(k). The Fourier transform
of µ will be denoted by θ(t) for t ∈ [−1/2, 1/2) and it is equal to

θ(t) =
∑
k∈Z

µ(k)e2πikt.

The weights may be recovered from the inversion formula

µ(k) =
∫ 1/2

−1/2
θ(t)e−2πikt dt.

Keywords: Convolution powers, a.e convergence, Fourier transform, Lipschitz class
Lip(α).
Math. classification: 47A35.
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The pth moment of µ is the sum mp(µ) =
∑
|k|pµ(k) and we say that

µ has a pth moment if the above sum is finite. It will be necessary to
consider positive non-integral moments p. The expectation of µ is given by
E(µ) =

∑
k∈Z kµ(k).

Definition 1.1. — µ is called strictly aperiodic if the support of µ is
not contained in a proper coset of the integers.

We have the following important theorem by Foguel( [4]).

Theorem 1.2. — µ is strictly aperiodic ⇐⇒ |θ(t)| 6= 1 ∀t 6= 0.

Now let T : X → X be an invertible measure preserving transformation
of a probability space (X,B, λ). For f ∈ L1(λ) one may define

µf(x) =
∑
k∈Z

µ(k)f(T kx).

One then considers the question of a.e convergence for the sequence
µnf(x) =

∑
k∈Z µ

n(k)f(T kx).

Definition 1.3. — A probability measure µ on Z has bounded angular
ratio, if µ is strictly aperiodic and

1 6 sup
t 6=0

|µ̂(t)− 1|
1− |µ̂(t)| <∞

Definition 1.4. — We denote by µn : L1(X) → L1(X) the operator
defined by µnf(x) =

∑
k∈Z µ

n(k)f(T kx). We refer to the sequence µn as
the sequence of convolution powers of µ.

The following Theorem establishes the necessity of of the bounded an-
gular ratio condition in the study of convolution powers.

Theorem 1.5 ([6]). — Suppose that µ is a probability measure on
Z(µ 6= δk, i.e not concentrated in a single point) and that µ̂ has unbounded
angular ratio. Then there exists a function f ∈ L∞ such that µnf(x) fails
to converge a.e.

In order to establish some key properties of the measures under our
consideration we will need the following Theorem from [9]; it provides a
generalization of L’Hospital’s rule concerning indeterminate forms of type
0/0.

Theorem 1.6. — Let f(x) and F (x) be continuous differentiable func-
tions on an open interval (a, x) where amay denote−∞, and the differential
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CONVERGENCE OF CONVOLUTION POWERS 403

coefficients f ′ and F ′ have no common zeros or infinities in the open in-
terval and if, as x approaches the value a, f(x) and F (x) each have the
unique limit zero, then as x approaches the value a the limits of

f(x)
F (x)

are the limits of
f ′(x)
F ′(x) .

Lemma 1.7. — Suppose µ is a probability measure defined on Z such
that m1(µ) < ∞, µ has bounded angular ratio and θ′′(t) exists on a set
S = (−δ, δ)− {0}. Furthermore if for θ(t) = f(t) + ig(t) we have f ′′(t) < 0
on S then

(a) E(µ) = 0 ,
(b) |g′(t)| 6 c1|f ′(t)| and |g′′(t)| 6 c2|f ′′(t)| on S.

Proof. — (a) is a special case of a result proved in [3](Proposition 1.9).
To prove (b) we first note that by [5](Lemma 1)

lim sup
t→0

|1− µ̂(t)|
1− |µ̂(t)| <∞⇔ lim sup

t→0

∣∣∣∣ g(t)
1− f(t)

∣∣∣∣ <∞
Since f ′′(t) < 0 on S and f ′(0) = 0, f ′(t) has no zeros on S except when
t = 0. Therefore by Theorem 1.6 the limit points of g(t)

1−f(t) coincide with
that of g′(t)

−f ′(t) and g′′(t)
−f ′′(t) , which proves (b). �

Definition 1.8. — Given a sequence of operators Tn : L1 → M(X),
whereM(X) denotes the set of measurable functions, the maximal operator
T ∗ of {Tn} is defined by T ∗f(x) = supn |Tnf(x)|. For the sequence {µn}
the maximal operator will be denoted by µ∗.

Theorem 1.9. — Let (X,B,m) be a probability space. If {Tn} is a
sequence of bounded operators such that

T ∗f(x) = sup
n
|Tnf(x)| <∞ a.e.

for every f ∈ L1 then the set of functions in L1 such that Tnf(x) converges
a.e. is closed.

In order to show T ∗f(x) <∞ a.e, one often establishes a weak maximal
inequality for the operator T ∗ of the form

m({x : T ∗(x) > λ}) 6 C ‖f‖1

λ
where C is a constant independent of f and λ.

TOME 61 (2011), FASCICULE 2
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Theorem 1.10 ([3]). — If µ is strictly aperiodic, µnf(x) converges a.e.
for all f ∈ S = {(f1 ◦ T − f1) + f2 : f1 ∈ L∞(X), f2(Tx) = f2(x) a.e.},
which is a dense set in Lp for all p > 1.

Remark 1.11. — The above two Theorems imply that in order to estab-
lish a.e convergence of µnf(x) for a strictly aperiodic measure µ we need
only show that µ∗ satisfies a weak L1 inequality of the form given above.

In [1] it was shown that in order to establish weak maximal inequalities
for operators on continuous spaces it is enough to establish them for an
operator on l1(Z) that has been transfered from the continuous space. Such
processes are known collectively as the Calderón Transfer Principle. In our
case we make use of the following version.

Theorem 1.12 (Calderón Transfer Principle, [2]). — Consider the dy-
namical system (Z,P, | · |, T ) where |B| = #of elements in B, P =Power set
of Z and T (x) = x + 1. For ∀φ ∈ l1(Z) we have µnφ(k) = (µn ∗ φ)(k) =∑
j∈Z µ

n(j)φ(k − j) and (Mφ)(k) = supn(µnφ)(k). Then if

|k ∈ Z : |(Mφ)(k)| > t| 6 C ‖φ‖l1
t

we have

λ ({x ∈ X : |(Mf)(x)| > t}) 6 C ‖f‖1

t

for all (X,B, λ, T ) and for all f ∈ L1(X).

In light of the above, the following general result, which we shall use,
was obtained in [1].

Theorem 1.13. — Let (µn) be a sequence of probabilities on Z and for
φ ∈ L1(Z) define the maximal operator

(Mφ)(x) = sup
n
|(µnφ)(x)| , x ∈ Z

Assume that there is 0 < α 6 1 and C ′′ > 0 such that for each n > 1

(1.1) |µn(x+ y)− µn(x)| 6 C ′′ |y|
α

|x|1+α , for x, y ∈ Z, and 2|y| 6 |x|.

Then the maximal operator M ie weak type (1, 1),i.e there is C > 0 such
that for any λ > 0

m {x ∈ X : (Mφ)(x) > λ} 6 C

λ
‖f‖1 for all φ ∈ L1(X).

ANNALES DE L’INSTITUT FOURIER
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Using the above, in [1], Bellow and Calderón established the a.e conver-
gence of µnf(x) when µ is strictly aperiodic, E(µ) = 0 and m2(µ) < ∞.
In [5] Losert shows that this result can not be extended to measures with
mp(µ) < ∞ for p < 2, however, in [3] it was shown that if µ is symmetric
and µ(k) > µ(k + 1) for all k > 0 then µnf(x) converges a.e ∀f ∈ L1(X).
This implies that the measure given by µ(k) = c

|k| log2 |k| yields a.e conver-
gence of µnf(x) even though mp(µ) = ∞ for all p > 0. The goal of this
paper will be to extend the result in [1] by weakening the second moment
condition.
Translating the second moment condition into a statement concerning

Fourier transforms we obtain

µ has finite second moment ⇔ θ is twice continuously differentiable.

Therefore we will seek a condition weaker than a continuous second deriv-
ative. The most obvious condition would be that θ′(t) ∈ Lip1[−1/2, 1/2],
however the following ([7]) shows this extension to be vacuous,

Theorem 1.14 (Moricz). — Let f(x) =
∑
k∈Z cke

ikx. If {ck} ⊂ C is
such that

∑
|k|6n |kck| = O(n1−α), n = 1, 2, . . . , for some 0 < α 6 1,

then f ∈ Lip(α). Conversely, let ck be a sequence of real numbers such
that kck > 0 for all k ∈ Z. If

∑
k∈Z |ck| is finite and f ∈ Lip(α) for some

0 < α 6 1, then
∑
|k|6n |kck| = O(n1−α).

Although the extension θ′(t) ∈ Lip(1) is vacuous, the condition θ′(t) ∈
Lip(α) for some 0 < α < 1 will not be. We will construct examples of non-
symmetric measures µ with m2(µ) = ∞ with {µnf(x)} converging a.e. In
fact, given p > 1, we will give examples of non-symmetric µ with E(µ) = 0,
mp(µ) =∞ and {µnf(x)} converging a.e.
We will need the following.

Theorem 1.15 ([8]). — Let θ(t) be the Fourier transform of a measure
µ on Z not supported at a single integer. Then there exist positive constants
δ and ε such that |θ(t)| 6 1 − εt2 for |t| 6 δ. Therefore for µ strictl y
aperiodic there exists a C such that |θ(t)| 6 e−Ct2 ∀t ∈ [−1/2, 1/2).

Lemma 1.16. — ([1]) There is a constant C > 0 such that, for any
x, y ∈ Z, 0 < 2|y| < |x|, and t ∈ R∣∣∣∣e((x+ y)t)− 1

(x+ y)2 − e(xt)− 1
x2

∣∣∣∣ 6 C|t| |y||x|2 ,
where e(x) = e2πix.

TOME 61 (2011), FASCICULE 2
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This paper contains results from the author’s Ph.D dissertation. He
would like to thank his adviser, Dr. Karin Reinhold, for all her help and
insightful comments throughout the process. The author would also like to
thank the referee for the insightful comments and suggestions. In particu-
lar that of the use of the bounded angular ratio condition which appears
throughout this paper, and how it could be used in the proof of Proposi-
tion 2.7.

2. Main Results

Throughout we suppose that all measures µ have bounded angular ratio
and m1(µ) <∞. Note that a constant c, independent of certain quantities,
may change throughout an argument. Our main results are the following.

Theorem 2.1. — Suppose µ is a probability on Z with m1(µ) <∞ and
bounded angular ratio and for some 0 < α 6 1

∑
|k|6n k

2µ(k) = O(n1−α).
Suppose θ′′(t) exists in some set 0 < |t| < δ and Re(θ′′(t)) = p(t)+O(1) < 0,
where p(t) is non-decreasing in this set. Then {µnf(x)} converges a.e. for
all f ∈ L1(X).

Since symmetric, strictly aperiodic measures have real-valued Fourier
transform they have bounded angular ratio 1. Hence, we have the following
corollary.

Corollary 2.2. — Suppose µ is a strictly aperiodic, symmetric mea-
sure on Z and for some 0 < α 6 1

∑
|k|6n k

2µ(k) = O(n1−α). Suppose θ′′(t)
exists in some set 0 < |t| < δ, and θ′′(t) = p(t) + O(1) < 0, where p(t) is
non decreasing in this set. Then {µnf(x)} converges a.e. for all f ∈ L1(X).

The following gives examples of non symmetric measures µ withm2(µ) =
∞ and µnf(x) converging a.e. for all f ∈ L1(X).

Example 2.3. — Let η(k) = s/|k|3 , k 6= 0 where s =
(∑

1/(|k|3)
)−1.

Then η̂(t) =
∑
k>0

s
|k|3 cos(2πkt) and therefore η̂′′(t) = −4π2s

∑
k>0 1/k

cos(2πkt). We have ∑
|k|6n

1/|k| = O(log(n))

and ∑ 1
k

cos(2πkt) = log
(

1
|2 sin(x/2)|

)
.

ANNALES DE L’INSTITUT FOURIER
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(see [10]). Hence, η′′(t) = −4π2s log
(

1
|2 sin(t/2)|

)
is monotone in a neigh-

borhood of 0. If ν is a measure with E(ν) = 0 and m2(ν) < ∞ then
µ = a1η + (1− a1)ν with 0 < a1 6 1, will have θ′′(t) = p(t) +O(1)(t) and
by Theorem 2.1 (µnf)(x) converges a.e. Note here that mp(µ) is finite if
and only if p < 2.

Example 2.4. — Let η(k) = s/|k|2+σ for some 0 < σ < 1, k 6= 0
and s =

(∑
1/|k|2+σ)−1. Since

∑
|k|6n 1/|k|σ = O(n1−σ) and η̂′′(t) =∑∞

k=1
cos(2πkt)

kα = Γ(1 − α) sin( 1
2πα)tα−1 + O(1), (see [10]). Then we can

construct a measure µ = a1η + (1 − a1)ν where 0 < a1 6 1 and ν is as
in the previous example such that µnf(x) converges a.e. Note here that
mp(µ) is finite if and only if p < 1 + σ.

Proposition 2.5. — Suppose that the measure µ satisfies the condition∑
|k|6n k

2µ(k) = O(n1−δ), so that the Fourier transform θ(t) has θ′(t) ∈
Lipδ, for some 0 < δ 6 1, then

|µn(x)| 6 c
{ √

n

|x|1+δ + n2

|x|2

}
.

Proof.

|µn(x)| =

∣∣∣∣∣
∫ 1/2

−1/2
θn(t)e−2πixt dt

∣∣∣∣∣ , by integration by parts

= 1
2π

∣∣∣∣∣nx
∫ 1/2

−1/2
θn−1(t)θ′(t)e−2πixt dt

∣∣∣∣∣
6 c

n

|x|

∣∣∣∣∣
∫ 1/2

−1/2
(θn−1(t+ h)θ′(t+ h)− θn−1(t)θ′(t))e−2πixt dt

∣∣∣∣∣ ,
where h = 1

2x

6 c
n

|x|

∫ 1/2

−1/2
|θn−1(t+ h)||θ′(t+ h)− θ′(t)|+ |θ′(t)||θn−1(t+ h)

− θn−1(t)|dt

= c
n

|x|
I1 + c

n

|x|
I2.

TOME 61 (2011), FASCICULE 2
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Now we examine I1 and I2 separately. By the Lipschitz property of θ′(t)

I1 = 1
xδ

∫ 1/2

−1/2
|θn−1(t+ h)|xδ|θ′(t+ h)− θ′(t)|dt

6
c

xδ

∫ 1/2

−1/2
|θn−1(t+ h)|dt

6
c

xδ
1√
n
, by 1.15 .

Therefore,
cn

|x|
I1 6

c
√
n

x1+δ ,

I2 = 1
|x|

∫ 1/2

−1/2
|θ′(t)||x||θn−1(t+ h)− θn−1(t)|dt

6 c
n− 1
|x|

∫ 1/2

−1/2
|θ′(t)||θ′(c(t))||θn−2(c(t))|dt 6 cn

|x|

for some c(t) between t and t+ h by the mean value theorem.
Therefore

cn

|x|
I2 6

cn2

|x|2
.

Hence

|µn(x)| 6 c1
√
n

|x|1+δ + c2n
2

|x|2
.

�

Corollary 2.6. — Let σ = min
{ 15δ

16 ,
3
4
}
then σ > 0 and if n 6 |x| δ8 ,

|µn(x)| 6 C

|x|1+σ 6
C|y|σ

|x|1+σ ,

∀y ∈ Z, y 6= 0.

Proposition 2.7. — Suppose there is a set (−δ, δ)−{0} on which θ(t)
is twice differentiable and assume that if θ(t) = f(t)+ig(t), we have f ′′(t) =
p(t)+O(1) < 0 where p(t) is non-decreasing on (−δ, δ)−{0} and p(t)→ −∞
as t→ 0. Then, for t in (−δ, δ), there exists a positive constant c such that

|θ(t)| 6 1− cφ(t)t2

where φ(t) =
∣∣∣ f ′(t)

t

∣∣∣.
ANNALES DE L’INSTITUT FOURIER
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Proof. — By bounded angular ratio

|θ(t)| 6 1− c|1− θ(t)|
6 1− c|1− f(t)|.

Since f ′′(t) < 0, f ′(0) = 0 and p(t) → −∞ implies
∣∣∣ f ′(t/2)
f ′(t)

∣∣∣ is bounded
below, we have that the above quantity

= 1− c
∣∣∣∣∫ t

0
f ′(s)ds

∣∣∣∣
6 1− c

∣∣∣∣∣
∫ t

t/2
f ′(s)ds

∣∣∣∣∣
6 1− c |t|2 |f

′(t/2)|

6 1− c′t2
∣∣∣∣f ′(t)t

∣∣∣∣ .
�

Lemma 2.8. — Suppose that Re(θ′′(t)) = f ′′(t) = p(t) + O(1) < 0
on a set S = (−δ, δ) − {0} where p(t) is non-increasing as |t| → 0, and
p(t) → −∞ as t → 0. Then the function defined by φ(t) =

∣∣∣ f ′(t)
t

∣∣∣ satisfies
the following properties for all t in some set [−δ′, δ′]− {0},

(1) φ(t) = φ(−t)
(2) There exist constants 2 > c1 > 1, c2 > 0, c3 > 0 such that c1φ(t) >
|f ′′(t)|, c2φ(t) > |θ′′(t)|, c3φ(t) >

∣∣∣ θ′(t)
t

∣∣∣
(3) |tφ(t)| → 0 as t→ 0 and |tφ′(t)| 6 φ(t).

Proof. — We have f(t) =
∑
k>0 ck cos(2πkt) with ck > 0 and therefore

the first assertion is trivial. Since f ′(0) = 0, |tφ(t)| → 0. We have, as
f ′(0) = 0 for c(t) between 0 and t,

φ(t) =
∣∣∣∣f ′(t)t

∣∣∣∣ = |f ′′(c(t))| = |p(c(t)) +O(1)|

> |p(t) +O(1)|.

Hence for some 2 > c1 > 1, since φ(t)→∞ as t→ 0,

c1φ(t) > |p(t)|+ (c1 − 1)φ(t)− |O(1)|
> |p(t)|+ |O(1)| > |p(t) +O(1)|
= |f ′′(t)|.

TOME 61 (2011), FASCICULE 2
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Since by 1.7 (b) |g′′(t)| 6 c|f ′′(t)|, we have |g′′(t)| 6 c′φ(t). So |θ′′(t)| 6
|g′′(t)|+ |f ′′(t)| 6 c2φ(t). Observe that, by 1.7 (b)∣∣∣∣θ′(t)t

∣∣∣∣ 6 ∣∣∣∣g′(t)t
∣∣∣∣+
∣∣∣∣f ′(t)t

∣∣∣∣
6 c

∣∣∣∣f ′(t)t
∣∣∣∣+
∣∣∣∣f ′(t)t

∣∣∣∣
= cφ(t) .

Therefore the second assertion has been established. Now φ(t) = − f
′(t)
t so

φ′(t) = −f ′′(t)t+f ′(t)
t2 and tφ′(t) = −f ′′(t) + f ′(t)

t which implies

|tφ′(t)| =
∣∣∣∣f ′(t)t − f ′′(t)

∣∣∣∣
=
∣∣∣∣|f ′′(t)| − ∣∣∣∣f ′(t)t

∣∣∣∣∣∣∣∣
6 |2φ(t)− φ(t)| = φ(t) .

Thus the third assertion follows. �

Lemma 2.9. — For a function φ(t) satisfying the properties of Lemma
2.8, the following hold.

(1)

n

∫ δ

−δ
(1− kt2φ(t))n−1|t|φ(t) < C

(2)

n2
∫ δ

−δ
(1− kt2φ(t))n−2|t|3φ2(t) < C

where C is independent of n, and 0 6 1− kt2φ(t) 6 1 on (−δ, δ).

Proof.
(1)

n

∫ δ

−δ
(1− kt2φ(t))n−1|t|φ(t)dt = 2n

∫ δ

0
(1− kt2φ(t))n−1tφ(t)dt

= 2n
−2k

∫ δ

0
(1− kt2φ(t))n−1(−2ktφ(t)) dt

= n

−k

∫ δ

0
(1− kt2φ(t))n−1(−2ktφ(t)− kt2φ′(t)) dt

+
(n
k

)∫ δ

0
(1− kt2φ(t))n−1(−kt2φ′(t))dt.

ANNALES DE L’INSTITUT FOURIER
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Therefore

2n
∫ δ

0
(1− kt2φ(t))n−1tφ(t)dt− n

k

∫ δ

0
(1− kt2φ(t))n−1(−kt2φ′(t)) dt

= −n
k

∫ δ

0
(1− kt2φ(t))n−1(−2ktφ(t)− kt2φ′(t))dt

= n

k

∫ 1

1−kδ2φ(δ)
un−1 du 6 C.

However, since |tφ′(t)| 6 φ(t) we have

2n
∫ δ

0
(1− kt2φ(t))n−1tφ(t)dt+ n

∫ δ

0
(1− kt2φ(t))n−1t2φ′(t)dt

> n
∫ δ

0
(1− kt2φ(t))n−1tφ(t)dt

= 1
2n
∫ δ

−δ
(1− kt2φ(t))n−1|t|φ(t)dt .

The claim follows.
(2)

n2
∫ δ

−δ
(1− kt2φ(t))n−2|t|3φ2(t)dt

= 2n2
∫ δ

0
(1− kt2φ(t))n−2t3φ2(t)dt

= 2n2
∫ δ

0
(1− kt2φ(t))n−2tφ(t)t2φ(t)dt

= n2

−k2

∫ δ

0
(1− kt2φ(t))n−2(−2ktφ(t)− kt2φ′(t))t2φ(t)dt

+
(
n2

k

)∫ δ

0
(1− kt2φ(t))n−2(−kt2φ′(t))t2φ(t)dt.
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Therefore by similar arguments as in the first part of this lemma,
we have,∣∣∣∣∣12n2

∫ δ

−δ
(1− kt2φ(t))n−2t3φ2(t)dt

∣∣∣∣∣ 6
6 −n

2

k

∫ δ

0
(1− kt2φ(t))n−2(−2ktφ(t)− kt2φ′(t))t2φ(t)dt

= n2

k

∫ 1

1−kδ2φ(δ)
un−2(1− u)du

= n2

k2

∫ 1

1−kδ2φ(δ)
un−2 − un−1 du

= n2

k2

(
un−1

n− 1 −
un

n

∣∣∣∣1
1−kδ2φ(δ)

)

= n2

k2

(
1

n− 1 −
1
n

+ (1− kδ2φ(δ))n

n
− (1− kδ2φ(δ))n−1

n− 1

)
6
n2

k2

(
1

(n− 1)n +O

(
(1− kδ2φ(δ))n

n

))
6 C

n2

k2

(
1
n2 + 1

n
O((1− kδ2)n)

)
6 C

n2

k2

(
1
n2 + 1

n
O(e−nkδ

2
)
)

6 C
n2

k2

(
1
n2 +O

(
1
n3

))
6 C.

�

Theorem 2.10. — Suppose that θ(t) is twice differentiable in a neigh-
borhood [−δ, δ] of 0, except perhaps at 0, and there exists a function φ(t)
satisfying the properties (1)− (3) of Lemma 2.8 such that

(1) |θ(t)| 6 1− kt2φ(t)
(2)

∣∣∣ θ′(t)
t

∣∣∣ 6 cφ(t)
(3) |θ′′(t)| 6 cφ(t)

on [−δ, δ] for some k , c > 0, then

|µn(x+ y)− µn(x)| 6 c |y|
|x|2

for n > |x|δ/8 and |y| 6 |x|2 .

Remark 2.11. — If θ′′(t) is bounded on some [−δ, δ] then the function
φ(t) = supt∈[−δ,δ]{|θ′′(t)|} satisfies preporties (1) − (3) of Lemma 2.8 as
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well as (1)− (3) of Theorem 2.10. Thus Theorem 2.10 applies to this case.
Note that (1) of Theorem 2.10 follows from Theorem 1.15.

Proof of Theorem 2.10. — By the inversion formula

µn(x) =
∫ 1/2

−1/2
θn(t)e−2πixt dt

=
∫
|t|6δ

θn(t)e−2πixt dt+
∫
|t|>δ

θn(t)e−2πixt dt

= I1,x + I2,x

Now, if θn(t) = θn(t) we note that since θ′(t) =
∫ t
ε
θ′′(t) + θ′(ε), letting

ε→ 0 we have θ′(t) =
∫ t

0 θ
′′(t) and θ′(t) is absolutely continuous on [−δ, δ]

hence

I1,x = 1
2πi

(
− θn(t)e−2πixt

x

∣∣∣∣δ
−δ

+ 1
x

∫ δ

−δ
θ′n(t)e−2πixt dt

)

= 1
2πi

(
−θn(t)e−2πixt

x

∣∣∣∣δ
−δ

)
+ 1

4π2

(
θ′n(t)e−2πixt

x2

∣∣∣∣δ
−δ

)

− 1
4π2

(
1
x2

∫ δ

−δ
θ′′n(t)e−2πixt dt

)

= Qx −
1

4π2x2

∫ δ

−δ
θ′′n(t)e−2πixt dt

= Qx −
1

4πx2

∫ δ

−δ
θ′′n(t)(e−2πixt − 1)dt− 1

4πx2

∫ δ

−δ
θ′′n(t)dt

= Qx −
1

4π2x2 (θ′n(δ)− θ′n(−δ))− 1
4π2x2

∫ δ

−δ
θ′′n(t)(e−2πixt − 1)dt

= Qx + Px −
1

4π2x2

∫ δ

−δ
θ′′n(t)(e−2πixt − 1)dt.

Therefore

µn(x) = − 1
4π2x2

∫ δ

−δ
θ′′n(t)(e−2πixt − 1)dt+Qx + Px + I2,x.
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We have, for 2|y| 6 |x| by Lemma 1.16,∣∣∣∣∣
∫ δ

−δ
θ′′n(t)e

−2πi(x+y)t − 1
(x+ y)2 dt−

∫ δ

−δ
θ′′n(t)e

−2πixt − 1
x2 dt

∣∣∣∣∣
6 C

|y|
|x|2

∫ δ

−δ
|θ′′n(t)||t|dt recalling that θ′′n(t) = (θn(t))′′ and by 1.15 and 2.7

6 C
|y|
|x|2

[
n(n− 1)

∫ δ

−δ
|θn−2(t)||θ′(t)|2|t|dt+ n

∫ δ

−δ
|θn−1(t)||θ′′(t)||t|dt

]

6 C
|y|
|x|2

(
n2
∫ δ

−δ
(1−kt2φ(t))n−2|t|3φ2(t)dt+n

∫ δ

−δ
(1−kt2φ(t))n−1φ(t)|t|dt

)

6 C
|y|
|x|2

.

Since |θn(t)| 6 e−Cnt2 , |θn(−δ)|, |θn(δ)| 6 e−Cnδ2 and |θ′(δ)|, |θ′(−δ)| =
|nθn−1(δ)θ′(δ)|, |nθn−1(−δ)θ′(−δ)| 6 Cne−nδ2 , we have |I2,x|, |Px|, |Qx| 6
Cne−nδ

2
6 C

n16/δ 6
c
|x|2 provided that n > |x|δ/8. Since y ∈ Z and |y| 6 |x|2

we have

|I2,x+y − I2,x|, |Px+y − Px|, |Qx+y −Qx| 6
c

|x|2
6 C

|y|
|x|2

.

The theorem follows. �

Combining 2.6, 2.7, 2.8 and 2.10 we obtain.

Theorem 2.12. — Let µ be a probability with m1(µ) < ∞, bounded
angular ratio and

∑
|k|6n k

2µ(k) = O(n1−δ) for some 0 < δ 6 1. Suppose
θ(t) = f(t)+ig(t) is the Fourier transform of µ and θ′′(t) exists at all points
except possibly 0 in a neighborhood [−δ, δ]. Then if f ′′(t) = p(t)+O(1) < 0
where p(t) is non-decreasing on S, there exists 0 < α 6 1 such that

|µn(x+ y)− µn(x)| 6 C |y|α

|x|1+α ,∀ |y| 6
|x|
2 .
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