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QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS
IN REDUCTIVE LIE ALGEBRAS.

by Karin BAUR & Anne MOREAU (*)

ABSTRACT. — We say that a finite dimensional Lie algebra is quasi-reductive if
it has a linear form whose stabilizer for the coadjoint representation, modulo the
center, is a reductive Lie algebra with a center consisting of semisimple elements.
Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive
(except in types A or C by work of Panyushev). The classification of quasi-reductive
parabolic subalgebras in the classical case has been recently achieved in unpub-
lished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-
reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or
seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum
is the total Lie algebra. As a main result, we complete the classification of quasi-
reductive parabolic subalgebras of reductive Lie algebras by considering the excep-
tional cases.

RESUME. — Une algebre de Lie de dimension finie est dite quasi-réductive si elle
posséde une forme linéaire dont le stablisateur pour la représentation coadjointe,
modulo le centre, est une algebre de Lie réductive avec un centre formé d’éléments
semi-simples. Les sous-algebres paraboliques d’une algebre de Lie semi-simple ne
sont pas toujours quasi-réductives (sauf en types A ou C d’aprés un résultat de Pa-
nyushev). Récemment, Duflo, Khalgui and Torasso ont terminé la classification des
sous-algebres paraboliques quasi-réductives dans le cas classique. Dans cet article
nous étudions la quasi-réductivité des sous-algebres biparaboliques des algébres
de Lie réductives. Les sous-algebres biparaboliques sont les intersections de deux
sous-algebres paraboliques dont la somme est 1’algébre de Lie ambiante. Notre prin-
cipal résultat est la complétion de la classification des sous-algébres paraboliques
quasi-réductives des algebres de Lie réductives.

Keywords: Reductive Lie algebras, quasi-reductive Lie algebras, index, biparabolic Lie
algebras, seaweed algebras, regular linear forms.
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Introduction

Let G be a complex connected linear algebraic Lie group. Denote by g its
Lie algebra. The group G acts on the dual g* of g by the coadjoint action.
For f € g*, we denote by G(f) its stabilizer in Gj; it always contains the
center Z of G. One says that a linear form f € g* has reductive type if the
quotient G(f)/Z is a reductive subgroup of GL(g). The Lie algebra g is
called quasi-reductive if it has linear forms of reductive type. This notion
goes back to M. Duflo. He initiated the study of such Lie algebras because
of applications in harmonic analysis, see [3]. For more details about linear
forms of reductive type and quasi-reductive Lie algebras we refer the reader
to Section 1.

Reductive Lie algebras are obviously quasi-reductive Lie algebras since in
that case, 0 is a linear form of reductive type. Biparabolic subalgebras form
a very interesting class of non-reductive Lie algebras. They naturally extend
the classes of parabolic subalgebras and of Levi subalgebras. The latter are
clearly quasi-reductive since they are reductive subalgebras.. Biparabolic
subalgebras were introduced by V. Dergachev and A. Kirillov in the case
g = sl,, see [2]. A biparabolic subalgebra or seaweed subalgebra (of a
semisimple Lie algebra) is the intersection of two parabolic subalgebras
whose sum is the total Lie algebra.

In this article, we are interested in the classification of quasi-reductive
(bi)parabolic subalgebras. Note that it is enough to consider the case of
(bi)parabolic subalgebras of the simple Lie algebras, cf. Remark 1.4.

In the classical cases, various results are already known: All biparabolic
subalgebras of sl,, and sp,,, are quasi-reductive as has been proven by D. Pa-
nyushev in [19]. The case of orthogonal Lie algebras is more complicated:
On one hand, there are parabolic subalgebras of orthogonal Lie algebras
which are not quasi-reductive, as P. Tauvel and R.W.T. Yu have shown
(Section 3.2 of [20]). On the other hand, D. Panyushev and A. Dvorsky
exhibit many quasi-reductive parabolic subalgebras in [6] and [19] by con-
structing linear forms with the desired properties. Recently, M. Duflo,
M.S. Khalgui and P. Torasso have obtained the classification of quasi-
reductive parabolic subalgebras of the orthogonal Lie algebras in unpub-
lished work, [4]. They were able to characterize quasi-reductive parabolic
subalgebras in terms of the flags stabilized by the subalgebras.

The main result of this paper is the completion of the classification of
quasi-reductive parabolic subalgebras of simple Lie algebras. This is done
in Section 5 (Theorem 5.1 and Theorem 5.2). Our goal is ultimately to de-
scribe all quasi-reductive biparabolic subalgebras. Thus, in the first sections
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QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS 419

we present results concerning biparabolic subalgebras to remain in a gen-
eral setting as far as possible. For the remainder of the introduction, g is a
finite dimensional complex semisimple Lie algebra.

The paper is organized as follows:

In Section 1 we introduce the main notations and definitions. We also
include in this section a short review of known results about biparabolic
subalgebras, including the description of quasi-reductive parabolic subalge-
bras in the classical Lie algebras (Subsection 1.4). In Section 2, we describe
two methods of reduction, namely the transitivity property (Theorem 2.1)
and the additivity property (Theorem 2.11). As a first step of our classifica-
tion, we exhibit in Section 3 a large collection of quasi-reductive biparabolic
subalgebras of g (Theorem 3.6). Next, in Section 4, we consider the non
quasi-reductive parabolic subalgebras of g, for simple g of exceptional type
(Theorems 4.1, 4.3 and 4.6). This is a crucial part of the paper. Indeed,
to study the quasi-reductivity, we can make explicit computations (cf. Sec-
tion 5) while it is much trickier to prove that a Lie algebra is not quasi-
reductive. Using the results of Sections 2, 3 and 4, we are able to cover a
large number of parabolic subalgebras. The remaining cases are dealt with
in Section 5 (Theorem 5.6, Propositions 5.8 and 5.9). This completes the
classification of quasi-reductive parabolic subalgebras of g (Theorems 5.1
and 5.2, see also Tables 5.1 and 5.2).

At this place, we also want to point out that in [16], O. Yakimova and
the second author study the mazimal reductive stabilizers of quasi-reductive
parabolic subalgebras of g. This piece of work yields an alternative proof
of Proposition 5.9 which is not based on the computer programme GAP, see
Remark 5.10.

1. Notations, definitions and basic facts

In this section, we recall a number of known results that will be used in
the sequel.

1.1. Let g be a complex Lie algebra of a connected linear algebraic Lie
group G. Denoting by g(f) the Lie algebra of G(f), we have g(f) = {z €
g | (ad*z)(f) = 0} where ad” is the coadjoint representation of g. Recall
that a linear form f € g* is of reductive type if G(f)/Z is a reductive Lie
subgroup of GL(g). We can reformulate this definition as follows:
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420 Karin BAUR & Anne MOREAU

DEFINITION 1.1. — An element f of g* is said to be of reductive type
if g(f)/3 is a reductive Lie algebra whose center consists of semisimple
elements of g where 3 is the center of g.

Recall that a linear form f € g* is regular if the dimension of g(f) is
as small as possible. By definition, the index of g, denoted by ind g, is the
dimension of the stabilizer of a regular linear form. The index of various
special classes of subalgebras of reductive Lie algebras has been studied by
several authors, cf. [18], [25], [14], [15]. For the index of seaweed algebras,
we refer to [17], [6], [20], [22], [10] and [11].

Recall that g is called quasi-reductive if it has linear forms of reductive
type. From Duflo’s work [3, §§1.26-27] one deduces the following result
about regular linear forms of reductive type:

PROPOSITION 1.2. — Suppose that g is quasi-reductive. The set of reg-
ular linear forms of reductive type forms a Zariski open dense subset of g*.

1.2. From now on, g is a complex finite dimensional semisimple Lie al-
gebra. The dual of g is identified with g through the Killing form of g. For
u € g, we denote by ¢, the corresponding element of g*. For u € g, the
restriction of ¢, to any subalgebra a of g will be denoted by (¢4 )|a-

Denote by 7 the set of simple roots with respect to a fixed triangular
decomposition

g=ntohon

of g, and by A, (respectively At A~) the corresponding root system
(respectively positive root system, negative root system). If 7’ is a subset
of 7, we denote by A,/ the root subsystem of A, generated by 7’ and we
set Af/ = A N AL For a € Ay, denote by g, the a-root subspace of
g and let h, be the unique element of [g,, g—] such that a(h,) = 2. For
each a € Ay, fix x4 € gqo so that the family {z,,hpg ; a € A, €n}isa
Chevalley basis of g. In particular, for non-colinear roots « and 3, we have
[Za, 28] = £(p + 1)zayps if B — pa is the source of the a-string through .

We briefly recall a classical construction due to B. Kostant. It associates
to a subset of m a system of strongly orthogonal positive roots in Aj.
This construction is known to be very helpful to obtain regular forms on
biparabolic subalgebras of g. For a recent account about the cascade con-
struction of Kostant, we refer to [22, §1.5] or [21, §40.5].
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QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS 421

For X in b* and a € A, we shall write (A, a") for A(hy). Recall that two
roots a and 3 in A, are said to be strongly orthogonal if neither « + 3 nor
a— fisin A,. Let © be a subset of . The cascade X of 7’ is defined
by induction on the cardinality of 7’ as follows:

(1) X(0) =0,
(2) If 7,...,m are the connected components of 7', then X = K U
UK

(3) If 7’ is connected, then K = {7’} UKy where T = {a € 7’ |
(a,eY,) = 0} and e, is the highest positive root of AT,.

For K € K, set
Ik ={a€Ax | {a,e)) >0} and T9% =T\ {ex}.

Notice that the subspace > g, is a Heisenberg Lie algebra whose center
Kelg

1S Heg -

The cardinality k, of X, only depends on g; it is independent of the
choices of h and 7. The values of k, for the different types of simple Lie
algebras are given in Table 1.1; in this table, for a real number x, we denote
by [z] the largest integer < x.

Apl>1|Bpt>2|Cpt>3|Dpt>4]Gy | Fy|Eg| Er | Eg

Table 1.1. k, for the simple Lie algebras.

For 7' a subset of 7, we denote by &, the set of the highest roots e
where K runs over the elements of the cascade of /. By construction, the
subset €,/ is a family of pairwise strongly orthogonal roots in A,/. For the
convenience of the reader, the set &, for each simple Lie algebra of type
m, is described in the Tables 1.2 and 1.3. We denote by FE,/ the subspace
of b* which is generated by the elements of &,.

TOME 61 (2011), FASCICULE 2



422 Karin BAUR & Anne MOREAU

i as Qp_1 ay {Ei = o 4 e+
Ay, 021 o0—=0 0—0—20 o e+1
Qi (0—2i+1)s LS 5 }
o s 1 o {82' = aj—1 +20; + -+
By, £>2: O O O O—=—0 2y, ieven, i < L{}U{eg; =
a;, 1 odd,i < £}
[e%1 [e D) Qp—1 %3 J— . .
Cp 0> 3: O— 0O (G = 20t 200
ap, i <L—1}U{er = ay}
o {e = a1 + 205 +
ai as ap_o R 2CY272 + a1 +
Dy, L even, £ > 4. O—O - ag, teven, i < £ —1} U
{€i = oy, ’L'Odd7 1< g} (@]
T {er = au}
o e = aim1 + 20 +
31 az Qp_g oo+ 20400 + ay_1 +
Dy, £ odd, £ >5: O—=O:-- - ag, ieven, i < {—1} U

{ei=a;, io0dd, i <} U

Y e = ap_gt g oy}

Table 1.2. &, for the classical Lie algebras.

1.3. A biparabolic subalgebra of g is defined to be the intersection of two
parabolic subalgebras whose sum is g. This class of algebras has first been
studied in the case of sl,, by Dergachev and Kirillov [2] under the name of
seaweed algebras.

For a subset 7’ of 7, we denote by p:, the standard parabolic subalgebra
of g which is the subalgebra generated by b™ = b @ n™ and by g_,, for
a € m'. We denote by p_, the “opposite parabolic subalgebra” generated
by b= =n~ @ b and by g, for a € 7'. Set [, = p;, Np.. Then [ is
a Levi factor of both parabolic subalgebras p:, and p_, and we can write
e = nh, @b n_, where nf, = n* N[, Let m}, (respectively m_,) be
the nilradical of p; (respectively p_,). We denote by g, the derived Lie
algebra of [,/ and by 3([,/) the center of [;,. The Cartan subalgebra hN g,
of g, will be denoted by b.
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Gy: G0 {e1 =23, 2 =01}
PG e {e1 = 2342, £, = 0122,
* =0 £5 = 0120, £4 = 0100}
{e1 = 12321, &5 = 11111,
Be 58 3% % % 2 0
¢ ~ g ~ e5 = 01110, g4 = 00100}
o 0 0

{e1 = 234321, &, = 012221,

2 1
£3 = 012100, g4 = 000001,
ai a3 e as g ar 1 0
E7: O O O O O
g €5 = 000000, ¢ = 010000,
g
1 0
e7 = 000100}
0
{e1 = 2465432, £, = 2343210,
3 2
g3 = 0122210, €4 = 0121000,
O S S S S S ! !
& ~ g ~ ~ ~ g5 = 0000010, eg = 0000000,
o 0 1
£7 = 0100000, g = 0001000}
0 0

Table 1.3. &, for the exceptional Lie algebras.

DEFINITION 1.3. — The subalgebra qr, », of g given as follows by the
subsets w1,y C

Qi me = Py (P, = Mg, ®H Dy
is called the standard biparabolic subalgebra (associated to m and m3). Its

nilpotent radical is ur, r, := (nf, Nmi )@ (ny Nmy)) and lr, o, = lrnm,
is the standard Levi factor of qn, r,-

Any biparabolic subalgebra is conjugate to a standard one, see [22, §2.3]
or [10, §2.5]. So, for our purpose, it will be enough to consider standard
biparabolic subalgebras.

TOME 61 (2011), FASCICULE 2



424 Karin BAUR & Anne MOREAU

Remark 1.4. — The classification of quasi-reductive (bi)parabolic sub-
algebras of reductive Lie algebras can be deduced from the classification
of quasi-reductive (bi)parabolic subalgebras of simple Lie algebras: A sta-
bilizer of a linear form on g is the product of its components on each of
the simple factors of g and of the center of g. As a consequence, we may
assume that g is simple without loss of generality.

Let 7y, w3 be two subsets of 7. The dual of qr, r, is identified to ¢, », via
the Killing form of g. For a = (ax)xex,, € (C*)km2 and b = (br)rex,, €

(C*)km1 | set
ul@b) = Y akz oo+ Y brze,
KeXn, LEX A,

It is an element of u,, », and the linear form (¢,,)
ment of q _ for any (a,b) running through a nonempty open subset of
(C*)kmaFhkm | cf. [22) Lemma 3.9].

We denote by Er, , the subspace generated by the elements e, for
K e X, UX,. Thus, dim E, r, =k, + kg, —dim(E,, N E.,). As it has
been proved in [10, §7.16], we have

(1.1) indqny 0 = (tkg —dim Er, x,) + (kr, + ke, —dim Er, 1,)

lgr, ., 15 @ regular ele-

Remark 1.5. — By (1.1), the index of g, r, is zero if and only if
E:, NE;, = {0} and k;, + k., = rkg. For example, in type Eg, there
are exactly fourteen standard parabolic subalgebras p:, with index zero.
The corresponding subsets 7’ C 7 of the simple roots are the following:

{0417 045}; {0437 016}; {0¢1,0l4, as}; {0437 044,0l6}; {Oll, as, 046}5
{0417 0437016}; {01,043, 045}; {0437 015»046}; {011, as, 014}; {0¢4,OZ5, 046}§
{a1,a3, 04, a5}; {as, aq, a5, a6}; {0, o, a3, as}; {ag, a4, a5, a6}

This was already observed in the unpublished work [7] of A. Elashvili (with
a small error).

In the sequel, we will often make use of the following element of ur, ,
on our way to construct reductive forms:

Unymg = z : L—e

€€ER,, ¢t

If 79 = 7, we simply write u,, for u,, . and, in the special case of m; = ]
and 7y = 7, we write u~ for u; . Let B be the Borel subgroup of G whose
Lie algebra is b™. We summarize in the following proposition useful results
of Kostant concerning the linear form (¢,-)|p+. They can be found in [21,

Proposition 40.6.3].
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PROPOSITION 1.6. — (i) The linear form (p,-)|s+ is of reductive type
for b+*. More precisely, the stabilizer of ¢, in b* is the subspace

(| kereg of b of dimension rkg — k.
KeX,
(ii) Let m be an ideal of b* contained in n". The B-orbit of (p,-)|m in

m* is an open dense subset of m*.

1.4. We end the section by reviewing what is known in the classical case.
First recall that the biparabolic subalgebras of simple Lie algebras of type
A and C are always quasi-reductive as has been shown by D. Panyushev
in [19].

The classification of quasi-reductive parabolic subalgebras of the orthog-
onal Lie algebras is given in the recent work [4] of Duflo, Khalgui and
Torrasso. Since we will use this result repeatedly, we state it below.

Let E be a complex vector space of dimension N endowed with a non-
degenerate symmetric bilinear form. Denote by son the Lie algebra of the
corresponding orthogonal group. Let V={{0} =V, SV, C--- C V, =V}
be a flag of isotropic subspaces in FE, with s > 1. Its stabilizer in soy
is a parabolic subalgebra of soy and any parabolic subalgebra of soy is
obtained in this way. We denote by py the stabilizer of V in soy.

THEOREM 1.7. — [4] Let V={{0} =V, C Vi C --- C Vs =V} be
a flag of isotropic subspaces in E with s > 1. Denote by V' the flag of
isotropic subspaces in E which is equal to V\ {V} if dimV is odd and
equal to N/2, and equal to 'V otherwise.

The Lie algebra py is quasi-reductive if and only if the sequence V' does
not contain two consecutive subspaces of odd dimension.

Example 1.8. — For g =Dg there are twelve standard parabolic subal-

gebras p = p;L, which are not quasi-reductive. The corresponding subsets
7' C 7 of the simple roots are the following:

{O[Q}, {a4}7 {Oé]_,Oé4}, {012, 044}, ‘{0427 045}, {042, Oé(,‘},
{ala a9, 044}, {0427013, 044}, {062, 0547015}, {Oég,Oé4, Oé@},
{ag, a5, a6}, {2, ag, as, a6}

Among these, the connected 7’ are {as}, {as}, {ag, as, as}.

Thus it remains to determine the quasi-reductive parabolic subalgebras
of the exceptional Lie algebras. This is our goal.
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2. Methods of reduction

In this section, we develop methods of reduction to deduce the quasi-
reductivity of a parabolic subalgebra from the quasi-reductivity of other
subalgebras. We assume that mo = 7. Nevertheless we keep the notations
of biparabolic subalgebras where it is convenient.

2.1. The following theorem seems to be standard. As there is no proof
to our knowledge, we give a short proof here:

THEOREM 2.1 (Transitivity). — Let n”, 7' be subsets of m with #"" C «’.
Suppose that X+ C K. Then, qr , is quasi-reductive if and only if q s
is.

Proof. — Note that the assumption X, C X, implies indqm» ~ =
ind g7 + (kx — kyv) by formula (1.1). Since u, . is an ideal of b™ con-
tained in n*, Proposition 1.6(ii) enables to choose w’ in [, such that
both (¢,4u- o,
At ! respec?ively. Then one can show that gr 7 (Puw) = drr iz (P 1y~ ) B

and (@u)|q., , are regular linear forms of g~  and

> Che - By Proposition 1.2, if g~ » (respectively qr» /) is quasi-
KeX\K,./
reductive, then we can assume furthermore that (¢, - )lq,., . (respec-
tively (¢uw)|q., .,) has reductive type. Hence the equivalgnce of the theo-
rem follows. O

Suppose that g is simple and let 7 be the subset of 7 defined by X, =
{7} UK. If g is of exceptional type, 7\ 7 only consists of one simple root
which we denote by «a. Note that a, is the simple root which is connected
to the lowest root in the extended Dynkin diagram.

As a consequence of Theorem 2.1, to describe all the quasi-reductive par-
abolic subalgebras of g, for g of exceptional type, it suffices to consider the
case of parabolic subalgebras p:, with a, € 7’. This will be an important
reduction in the sequel.

Remark 2.2. — If g has type Fy (resp. Eg, E7, Eg), then g~ has type
Cs (resp. As, Dg, E7). In particular, if g has type F4 or Eg, then p?, is
quasi-reductive for any 7’ which does not contain a, because in types A
and C all (bi)parabolic subalgebras are quasi-reductive.

2.2. As a next step we now focus on a property that we call “additivity”
to relate the quasi-reductivity of different parabolic subalgebras (cf. Theo-
rem 2.11). Throughout this paragraph, g is assumed to be simple.

ANNALES DE L’INSTITUT FOURIER



QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS 427

DEFINITION 2.3. — Let 7', 7" be subsets of w. We say that ©' is not
connected to " if o' is orthogonal to o, for all (o/, o) in " x ©"'.

Notation 2.4. — For a positive root o, we denote by K (a) the only
element L of X, such that o € I'y.. Note that unless a € &, K;F(a) is the
only element L of X for which €, — « is a positive root. For K € X, we
have K1 (ex) = K.

Remark 2.5. — Tt can be checked that K1 (a) = K5 (8) for , 3 simple
if and only if a and 8 are in the same orbit of —wgy where wq is the longest
element of the Weyl group of g. This suggests that wy should play a role
in these questions, as may be guessed from a result of Kostant which says
that €, is a basis of the space of fixed points of —wy and from work of
Joseph and collaborators ([10, 11]).

DEFINITION 2.6. — We shall say that two subsets 7/, 7" which are not
connected to each other satisfy the condition (x) if:

(%) KHa)# K (') V(d,a")en xr".

Note that if k, = rkg (that is if —wq acts trivially on 7), the condition (x)
is always satisfied. Moreover, by using Table 1.3, a case-by-case discussion
shows:

LEMMA 2.7. — Assume that g is simple of exceptional type and let 7’
be a connected subset of m containing «,. Then, for any subset " of =
which is not connected to w', the two subsets n’, ©'" satisfy the condition
(%), unless g = Eg, 7' = {a1, a9, a3,a4} and 7" = {ag} or by symmetry
7' = {9, aq, 05,06} and 7 = {aq }.

Remark 2.8. — If g = Eg, with #’ = {a1, as,a3,a4} and 7 = {as},
then KF(ay) = Kt(ag) = {{a1,a3,a4,a5,a6}}, so 7' and 7" do not
satisfy the condition (x). As a matter of fact, the parabolic subalgebra
p;,uﬁ,, will appear as a very special case (see Remark 2.12).

Let 7/, " be two subsets of m which are not connected to each other and
assume that ', 7" satisfy condition (x). By Proposition 1.6(ii), we can let
w' be in Iz such that (¢y)|,+ is regular where w = w’ 4+ u,,. Denote by &'
be the image of p:, (¢w) by tﬂhe projection map from p:, to its derived Lie
algebra g,/ EBm:, with respect to the decomposition pjr', =3l ) Dgn @mjr'/.
Let ¥ be the intersection of 3(I,/) with N kere.

e€én, egAT,

LEMMA 2.9. — (i) indp}, = dims’ + dim ¥,
(i) [8" prrumn] € 0t and pu (8", p2000]) = {0}

TOME 61 (2011), FASCICULE 2
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Proof. — (i) We have dim p}, (¢,,) = ind p,. Since the image of p;\, (py,)
by the projection map from pjr', to g @ m:, is &', it suffices to observe
that the intersection of 3(L/) with p.\, () is ¥. And this follows from the
choice of w.

(ii) Let x be an element of p, (¢, ); write z = zo+a'+2+ with xg € 3(L),
2’ € g and o7 € m},. Since [zF, w'] lies in mT,, the fact that x € p, (pw)
means (g, u_, ]+ [2/,w'] + [2',u ]+ [z, u_,] € m},. First, we have to show
[« +at,pf 0] C ol As [2/,ph ] Cpt since 7, 7’ are not connected,
it suffices to prove that ™ € mjr',uﬁ/,. If not, there are v € A:,,, K e X,,
and o/ € AY, such that

Y=gty = (o' +ex),le epr) =7+ (d +ek)
Hence v,/ € Fngr(“/) that is K7 (o) = K (7). But this contradicts condi-
tion (x). Thus [/ + 2T, pf ..] Cpl.

It remains to show: ¢, ([2/ + 2T, pf,.»]) = {0} that is [2/ + 2T, w] €
mt, o I [ + 2t w] @ mb ., there must be v € AF \ A, K € Ky,

and o’ € A, such that v — ex = . In particular o € F(IJ<+(”/) that is

K} (a") = K (). On the other hand, [z, w] € m}, implies that there exist
o € A, and L € K, such that

!

V= ety = —(a' +¢1) , ie. Extiy =7+ (o/ +er)
As before, we deduce that o/ € Fgﬁ(v)’ ie. K (o) = KI(y) =Kt (a")
and this contradicts condition (x). O
COROLLARY 2.10. — Let 7/, " be two subsets of m which are not con-

nected to each other and satisfy condition (x). If p:/uw' is quasi-reductive
then p; and p:,, are both quasi-reductive.

Proof. — Suppose that pjr'/wr

other two parabolic subalgebras is not quasi-reductive and show that this

. 18 quasi-reductive and that any one of the

leads to a contradiction. By assumption we can choose ¢ € (pf,, ,,)* of

'Um!’’
reductive type for pf, , such that ¢’ = ¢ . and ©" = ¢ , are pi-
P ’ pﬂ.//
regular and pf,-regular respectively. Suppose for instance that p;, is not
quasi-reductive. By Proposition 1.6(ii) we can suppose furthermore that
@' = (pw)l,+ for some w=w'+u_, with w' € .

Since we assumed that p, is not quasi-reductive, (¢w)l,+ contains a
nonzero nilpotent element, x, which is so contained in the derived Lie
algebra of pf,. Then, Lemma 2.9(ii) gives [z,pl,..] C pS, and {0} =
ow([z, 00 = ¢z ph0]) = ez, ph.»]). As a consequence,
pt. () contains the nonzero nilpotent element z. This contradicts the
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choice of ¢. The same line of arguments works if we assume that p, is not
quasi-reductive. O

Under certain conditions, the converse of Corollary 2.10 is also true as
we show now. To begin with, let us express the index of p;r,uﬂ,, in terms of
those of p:, and pjr',,. As Enpinn o = B o+ Err 7, we get: dim Epgpr =
dim By +dim B — dim(E » N Err ). Hence, formula (1.1) implies

(mp;:uﬁu - lndp: + ind p:// - (rkg + kﬂ— -2 dim(Eﬂ—/Jr n Eﬂ—//ﬂ-r)) .

In case rkg = ki, the intersection Er » N Eyv . is equal to E; and has
dimension rkg. Hence, the index is additive in that case, as (2.1) shows.

THEOREM 2.11 (Additivity). — Assume that g is simple and of excep-
tional type and that k, = rkg. Let «’, 7" be two subsets of m which are
not connected to each other. Then, p:rr,uﬂ,, is quasi-reductive if and only if
both p;, and p;,, are quasi-reductive.

Remark 2.12. — The conclusions of Theorem 2.11 is valid for classical
simple Lie algebras, even without the hypothesis k; = rkg. In types A
or C this follows from the fact that all biparabolic subalgebras are quasi-
reductive. If g is an orthogonal Lie algebra, this is a consequence of Theo-
rem 1.7. However, for the exceptional Lie simple algebra Eg, the only one
for which k, # rkg, the conclusions of Theorem 2.11 may fail. Indeed, let
us consider the following subsets of 7 for g of type Eg: 7’ = {1, a2, a3, a4}
and 7" = {ag}.. By Remark 1.5, p, is quasi-reductive as a Lie algebra of

zero index. On the other hand, p;’r',/ is quasi-reductive by the transitivity
+

property, cf. Remark 2.2. But, it will be shown in Theorem 4.6 that p., .
is not quasi-reductive.

As a consequence of Lemma 2.7 and Corollary 2.10, even in type Eg
where tkg # ki, if p, . is quasi-reductive, then p, and p;, are both
quasi-reductive.

As a by-product of our classification, we will see that the above situation
is the only case which prevents the additivity property to be true for all

simple Lie algebras (see Remark 5.3).

Proof. — We argue by induction on the rank of g. By the transitivity
property (Theorem 2.1), Remark 2.12 and the induction, we can assume
that a; € 7’. Then, by Lemma 2.7 and Corollary 2.10, only remains to
prove that if both pjr', and pjr'/, are quasi-reductive, then so is pjr',uﬂ,,.

Assume that both p:, and pjr'/, are quasi-reductive. By Proposition 1.2,
we can find a linear regular form ¢ in (p, ,,)* such that ¢’ = s and

!t
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¢" = , are regular and of reductive type for pl, and p, respectively.
P 1"

By Proposition 1.6(ii), we can assume that ¢ = (@4u-) , where w =

v, o
h+w'+w"”, with w’ € nf,, w” € n}, and h € . Hence, ¢’ ~ L(Jgpthw/Hﬁ)
and ¢ = (§0h+w"+u*)|p+,,'

Use the notations of Lemma 2.9. By Lemma 2.9(ii), s’ is contained in
pt . (¢). Show now that € is zero. Let h be an element ¥'. Since h € ¢/, we
have e(h) = 0 for any ¢ € &, which is not in A,. On the other hand, for any
e € &, NAL, we have e(h) = 0 since h lies in the center of I,/. Hence, our
assumption rkg = k, implies h = 0. As a consequence of Lemma 2.9(i), we
deduce that indp;, = dims’. Similarly, if §” denotes the image of pt, (¢”)
under the projection from p¥, to g.» ®m},, Lemma 2.9(ii) tells us that s”
is contained in p7, . () and that indp;, = dims”.

To summarize, our discussion shows that s’ +s" is contained in pt, . (¢)
and that these two subspaces have the same dimension by equation (2.1). So

s +s” =pl, . (p). But by assumption, s’ +s” only consists of semisimple
+

T'ur’’
whence the theorem. O

|p:,

elements. From that we deduce that ¢ is of reductive type for p

3. Some classes of quasi-reductive biparabolic subalgebras

In this section we show that, under certain conditions on the interlace-
ment of the two cascades of m; and 7, we can deduce that g, x, is quasi-
reductive (Theorem 3.6). We assume in this section that g is simple.

3.1. We start by introducing the necessary notations. Recall that for a
positive root «, K («) stands for the only element L of X, such that
a € Tz, cf. Notation 2.4. To any positive root @ € A} we now associate
the subset X () of the cascade X, of all L such that the highest root e,
can be added to a:

K- (o) = {LeXK,|ler+aeAt}.

s
Observe that the set K (o) may be empty or contain more than one ele-
ment.

Examples 3.1. — (1) If K is in the cascade X, then X (ex) is empty.
(2) In type Er, for a = ay + a5 + ag, the set KX («) has more than one
element: €4 + a, €5 + o, g6 + « are all positive roots.

We need also the following notation:

~ 1
Ai:{QEAiyazg(ﬁK—am);K,K’EKW}.
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Remark 3.2. — One can check that for g a simply-laced simple Lie
algebra, no positive root can be written in the way as asked for in the
definition of A}. Thus A is empty if g is simple of type A, D or E.

We list the sets Ei in Table 3.1 for the simple Lie algebras of types By,
Cy, Go and Fy.

Bp, €220 {i(e2s —e2im1),i=1, ..., [5]}

Co, 023 {3(ei—€ipn1), 1<i<l—-1,0<k<l—i—1}

Go: {11 =3(e1—e2)}

Fy: { 1110 = 3(e1 —e2), 1111 = (g1 —e3), 1121 = J(g1 —ca),
0001 = (e —e3), 0011 = J(ea—e4), 0010 = (e5—e4)}

Table 3.1. A¥ for the simple Lie algebras.

Part of the following lemma explains that for a root « in &i we can
actually describe the two cascades involved in the expression of «:

LEMMA 3.3. — (i) Whenever o € E,t, then X («) consists of a unique
element K («).

(ii) For any element oo = % (ex — k) of A} we have K = K} (o) and
K' =K. («).

Proof. — One can deduce (i) from Table 3.1.

(ii) By (i), we have X (a) = {K; (a)}. Furthermore, < a,e}, >=1 so
ex — ais a root (cf. [21, Proposition 18.5.3(iii)]). Since ex — o = exr + «,
these two are both positive roots, forcing K (o) = K and K- (o) = K.

|

Let m and 7 be two subsets of m. We define
KD = (M €Ky, | ens € &fj}.
Thus, for M is in 3~<Ej) we have epy = %(51(;; (ex) ~ €K, (ear)) Dy Lem-
ma 3.3(ii). Note that M is an element of the cascade of m; while Kjfj (em)

belong to the cascade of 7;.

DEFINITION 3.4. — Let w1, wo be subsets of w. We say that the cas~cades
Kr, and K, are well-interlaced if dim(Er, NEr,) = #(Kﬂlﬂf}Cm)Jr#ngz)Jr
#XED.
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Remark 3.5. — The following subsets 71, w2 of 7w give rise to examples
of well-interlaced cascades:

(1) mp and 5 are such that K, C K, or Ky, C Ky, . In particular, this
is the case if m; or w5 is empty.

(2) m and o are such that the collection of all highest roots €., U &,
consists of linearly independent elements™) .

These two cases have already been studied by Tauvel and Yu in [22].

We are now ready to formulate the main result of this section. It will be
proved in Subsection 3.2 below.

THEOREM 3.6. — Let qr, », be a biparabolic subalgebra of g. Assume
that the cascades X, and X, are well-interlaced. Then qr, », is quasi-
reductive.

More precisely, the linear form @, (4 is of reductive type for almost all
choices of the coefficients (a,b) € Ckmi+kns

Example 3.7. — Suppose that g is simple of type Eg. In the case where
T = {ao, a3, a4} (vesp. m1 = {ag,a3,a4,06}, ™1 = {a1, 0, a3,04}) and
my = m, the union &, U ., consists of linearly independent elements.
Hence qr, r, = p;, is quasi-reductive by Remark 3.5(2) and Theorem 3.6.

We now give an example which is not covered by Remark 3.5:

Example 3.8. — Suppose that g is simple of type F4. The subsets m =
{as, a4} and my = 7 are well-interlaced and qr, =, = p;‘r‘l is quasi-reductive
by Theorem 3.6. Note that Theorem 2.1 provides an alternative way to
prove that this parabolic subalgebra is quasi-reductive.

Remark 3.9. — The converse of Theorem 3.6 is not true. For example,
we can easily check that the assumption of Theorem 3.6 does not hold for
the parabolic subalgebra p?a%oq} of Eg. However, it is quasi-reductive as
we will show in Subsection 5.1 (Theorem 5.6).

3.2. This subsection is devoted to the proof of Theorem 3.6. We start
with two technical lemmata.

Let o € AI Recall that by Lemma 3.3(ii), o is written as o = %(EKi(a)_
€k (a)). As an abbreviation we set

a= 5(5K¢(a) k()

(1)We mean that this collection of roots forms a set of linearly independent roots,
neglecting any multiplicities that might occur, cf. Example 3.7 below.
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Thus a +@ = ext(,) and —a+a@ = € ). From the relations between
the four roots «, @, EKZ (o) and EKF(a) WE define the structure constants
Ty, Ta, T3, T4 as follows:

Kjr’(a}] =TNiT-a ; [xfouxfe}(;(a)] =T2T_-a ;

b [z-ay7a] = mawe

[T, T_c

[wa, 37&] = 7-3375}(::(@) (@)

LEMMA 3.10. — Assume that g is of type By (€ > 2), C; (¢ > 3) or Fy.
Let o be in A

(i) The only roots of the form ka + la are {+«, +@, +(a+a)}.

(ii) We have 11,19 € {—1,1}, 13,74 € {—2,2} and 7174 = T273.

Proof. — (i) By assumption, the four linear combinations +(« + @) are
all roots. The claim then follows since root strings have at most length 2
in types B, C and F.

(ii) We explain how to obtain 73 = +1, the computations of 7; for ¢ =
2,3,4 is completely analogous. Consider the a-string through —EKt(a)-
It has the form {—EK::(Q), —a, —EK;(Q)}, so in particular, p = 0 in the
notation of Subsection 1.2, whence 7 = +£1.

Only remains to proof the equality 774 = 72735. We compute the bracket

[T—as [Ta,z7]] in two different ways. We have [x_,, .
(cf. [21, §18.2.2 and Corollary 18.5.5]). Hence

Ki(@} = TTita

[»Tfa, [xmwa]] = [fﬂ—mTSCUe ] = —Ti1T3T&-

Kf(@)
On the other hand, as ,+ and ¢, have the same length (g having type
different from Gs), we have: [hq, 5] = (@, a¥)zg = 0. So: [T_q, [Ta, 5] =

[maa [-roux—a]] + [ma; [$—a7xaﬂ = _[houma] + T4[x()é?xEK—(a)] = —T4T2Tx
again by using [21, §18.2.2 and Corollary 18.5.5]. We have so obtained
T1T3 = ToT4. From that the claim follows. O

From now, we let 71, w5 be two subsets of 7.

LEMMA 3.11. — Let M be an element ofﬂ%&j).
(i) EKE, (enn) and €K, (ear) ALC not roots of ;.

(ii) For K € Xr,;, em £ ek is a root if and only if K = Kfj(sM).

Proof. — (i) Can be deduced from Tables 1.2, 1.3 and 3.1.

(ii) The fact that epr — €K (ear) and epr + K (ear) BTC roots of 7; has
been observed in Lemma 3.10(i). Next, by Lemma 3.3(i), we know that
K;j (ear) is the only element L of X, such that e+, is a root. Suppose
now that there is L € Kr;, L # K;;(E]V[), such that ef — )7 is a root.
By Lemma 3.10(i), we have L # K (em). So, the fact that e —en is a
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root forces B = ep; — e to be a positive root, by definition of Kﬁj (em).
Then the equality 3+er = eps implies (3,eY,) = 1. On the other hand, we
have (enr,ey) = <%(€K7Tj (exr) — EK= (ex))sEL) = O since L # Kfj (en). So
(ern,ey;) = 0. As a consequence, 1 = (B,eY,) = (B+er,en) = (em,e)y) =
2. Hence we get a contradiction. O

Recall that for (a,b) € (C*)k=1+k=2 we have set

u(a,b) = Z ART e, + Z brae,

KeXnr, LeXxr,

LEMMA 3.12. — Let (a,b) be in (C*)k=1tk~ For K € K, NKr,, M €
92&2) and N € 92%1), there exist px € C*, (Anr, poar, V) € (C*)3 and
(Nyss tthys Vi) € (C*)3 such that the elements yx, 2y and tn of Qo
defined by

YK = Tepe + PRT —cpr

ZM = Tep + >‘M$*€M T UMTe

+ vy
K7r2(EM) MLe _

Ko, (enr)

li / /
IN=T_cpy + ANTey + UnT—c ) + VT

Kerrl (en Ko (en)
are semisimple elements of g which stabilize py(q,p) I Gy 7y

Proof. — Set u = wu(a,b). For K € X, N Xy, it is clear that yg is
semisimple. Moreover, for pxg = ax/bk, the element yg stabilizes
(Pu)lqn, »y3 We even have [yx, u] = 0.

Let now M be in 3252). If U(f(12) # () then g cannot be of type Ga, since
for Go, 3{52) = () (cf. Table 3.1). So g is of type By, Cy or F4 (Remark 5.3).
Thus we are in the situation of Lemma 3.10. Let (A, par, var) be in (C*)3.
By definition of zjs, we have:

[ZMvu] = Z CLK([IEEM?J;*EK]+)‘M[x*€M’x*EKD
K€K,
+ pm Z br [:CEK;:Q(EM) s Tey ]+ vm Z bL[zeK;z(EI\/I) 1 Te]
LEXn, LeXn,

— Ambarhe,, + KM Apct (€M)h€z<,f

VNG e — h
2(5M>+ MOKL, (ea)"e

Koy (enr)

Note that [z,,,7_c.] # 0 if and only if K = K (e5s) by Lemma 3.3. By

Lemma 3.11(i), the element v = pay > brlee . . ),st]
Lex w2 M
1
+uym D, brlz ze, ] lies in u . We set 837 = 2(ep+ +
LEX fro,ea)’ T CE T2 2\ Kq; (em)
1

5K;.(5M))’ and define the structure constants 7y, 7o, 73, 74 for a = €); and
J
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@ = gp7. Then, by Lemma 3.3 we have

[zp,u] = (TlaK;E (ear) T /\MTgaK;2(EM))x,m +v
—Anmbarhe, + uMaK"T2(51VI)hEKj;2(EM) TVM aK;z(EM)hEK;Q(sM)
By Remark 3.2, the elements of €., form a basis of b since 9(%2) # 0.

So, by Lemma 3.3, we can write h.,, = cth. , —c he _ with
Koy (enr) Koy (en1)

ct,c € C*. Furthermore, €K, (enr) and €K, (o) have the same length

(they are both long roots, cf. Table 3.1). So, ¢™ = ¢~ (cf. [21, §18.3.3]).
Hence

[ZM7’U,] = (TlaK,TQ(EM) + )\MTQQK;(EM))LL',W + v

+ (—C)\MbM + /LMGJK;—Q (EM))hEK;E(aM) + (C)\M by

+ VMg (eM))hs

Koo (em)
As a result, if we take for \ys, A\yr = —Til (EM)/(TQGK;2(EM)) and then
for ppr and pag, par = C)‘MbM/aK;;(EM) and vy = _C/\MbM/aK;z(sM) we
obtain that [zpr,u] = v € g, r,, i.e. that zp stabilizes (pu)lqg,, ., In a

similar way, one shows that ¢y stabilizes ()
It remains to prove that zp; is semisimple (and that ¢y is semisimple

P
but this can be done in a similar way). By Lemma 3.10(i), we have

exp(tad xz57)(ey, + AMT—c,,)
= Tep + AMT—cy, + HTamr, Tep, | + EAM 277, e

=z AMT_g,, —tT3 — tApTax
emr T AMT ¢y, 3 EKE(EM) MT4 EK;2<EM)

for any t € C*. By Lemma 3.10(ii), we have 7974 = 7o73. Therefore it is pos-
sible to choose t so that both equalities —t73 = C)\MbM/CLK;»2 (1) (= pm)
and —t7y = —cbn/ag- (., (= var) hold, because

w2

A = —Tiagc )/ (T205c co)-

With such a ¢, exp(t adzz7) (2c,, ¥ AT —c,, ) = za. Hence zjy is semisimple
since e, + AMT_g,, is. g

We can now complete the proof of Theorem 3.6:
Let (a,b) € (C*)kmt = such that (ou)lq,,. ., I Gr,m,-regular where
u = (a,b). The orthogonal of E, ~, in § is contained in qr, x,(¢y). Then,

by Lemma 3.12, it suffices to prove that the elements yx, zps, ty, for K €
Key NKiy, M € ngQ), and N € fKél), are linearly independent. Indeed, if
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so, the stabilizer of (pu)lq,, ., 0 Gr, =, contains a (commutative) sub-
algebra which consists of semisimple elements of qr, », and of dimen-
sion (rkg — dim By, ) + #(Kr, N Kry) + #K? + £, But the hy-
pothesis of Theorem 3.6 tells us that #(K., N Kx,) + #5{&2) + #92(21) =
dim(Er, N Er,) = ke, + kg, — dim By, 5, (cf. Definition 3.4). Hence, by
formula (1.1), this subalgebra is the stabilizer of (¢u)lq,, .,

Now, by construction, M, N, K (enr), K (en), Ky (en), K (en) do

not belong to K, N Kr,. Moreover, M € K, \ K, and N € K, \ K,
whence the expected statement.

4. Non quasi-reductive parabolic subalgebras

So far, our results (Theorem 3.6) only provide examples of quasi-reductive
parabolic subalgebras. It is much trickier to prove that a given Lie algebra
is not quasi-reductive. Indeed, to prove that a given parabolic subalgebra is
quasi-reductive, one can make explicit computations, cf. Section 5. In this
section we exhibit examples of non quasi-reductive parabolic subalgebras.

4.1. We first discuss the case of the parabolic subalgebras p;r, where 7’
only consists of one simple root. For o € 7, denote the parabolic subalgebra
p?a} simply by pZ. Thanks to Theorem 4.1 we have a criterion for the quasi-
reductivity of p}:

THEOREM 4.1. — Let « be in w. Then the parabolic subalgebra p7 is
quasi-reductive if and only if one of the following two conditions holds:
a € Af or {a} U&, consists of linearly independent elements.

If one of the above two conditions are satisfied, then the cascades of {«}
and of m are well-interlaced; so, it is clear that pt is quasi-reductive by
Theorem 3.6. Thus, Theorem 4.1 provides a converse to Theorem 3.6 for
m = {a} and w3 = 7.

Proof. — We only need to show that if pT is quasi-reductive then o
satisfies one of the two conditions of the theorem. Suppose that p7 is quasi-
reductive. If o does not satisfy any of the above conditions, then « € E,
and « is not an element of E;r U &,. By Proposition 1.2, we can find w
in p; such that (¢y)],+ is regular and of reductive type for p7. Moreover,
by Proposition 1.6(ii), since o & €, we can suppose that w is of the form:
W = aX_o + h + bxoy + u~ with a,b € C, h € h. Let us remind that
the stabilizer of (p,-)|p+ in b™ is the orthogonal of E; in h (Proposition
1.6(i)). Consequently, as a € E,, we have [bT(p,-),w] = {0}, whence
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bt (¢u-) C P (ow). In addition, by formula (1.1), ind p} = ind b + 1. So,
bt (¢,-) is an hyperplane of p}(¢.,) (cf. [22, Lemma 4.5]). Now choose z
in pf such that the decomposition

(41) p(J;(QOw) - CI ©® m ker EK
KeXx

holds. By the choice of w, pT(p,,) is an abelian Lie algebra consisting of
semisimple elements. In particular x must be semisimple. Write the element
x as follows: x = A\v_o + 1 + pxo + 2+ with \,p € C, b’ € hand 27 € m.

From the fact [z,w] € mI, we deduce that ' € (] kerekx. So we can
KEKy
assume that h’ = 0 according to (4.1). Hence A # 0, since x is semisimple.

Since « is not in &, €K ()
ex —a is aroot, for K € K,.. As « is a simple root, ex — « is necessarily
a positive root, so K = KT («). Therefore, we have

—a is a (positive) root. In turn, suppose that

[z, w] = A Z [Ty e ]+ u[xa,x_aK;r(a)] + Aa(h)z_q
LeX; (o)

+ (ap — bA)ho — pa(h)zo + [.CL'+, w]

As [z,w] € mZ, the bracket [z_ , o] must be compensated. This

)
bracket cannot be compensated by the term [zT,w]. Indeed, if this were
the case, then there would exist K € X, and 8 € Al \ {a} such that
€kt (o)~ = Ex — 3. But this would force K = K (a) and so a = 3, which
is impossible. We deduce that there is L € K («) such that EKi(a) —X=

er, +a. Thus, a = %(EK:(Q) —¢r) that is o € Ejr‘ which contradicts our

assumption on «. (|

According to Theorem 4.1, we list the simple roots « corresponding to a
non quasi-reductive parabolic subalgebra pt (for simple g) in Table 4.1.

By, (>3 Dy, ¢>4  |Go|F4|Eg| E; Es

o‘la2<7’<€_17 a272<2<£_27 Q|0 Q2 |, Og, Qg |1, Og, Og, O
1 even 1 even

Table 4.1. The parabolic subalgebras pI which are not quasi-reductive.

Remark 4.2. — 1In the exceptional case, Table 4.1 shows that there is
always at least one non quasi-reductive parabolic subalgebra.
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4.2. We now exhibit a few more parabolic subalgebras which are not
quasi-reductive (Theorem 4.3 and Theorem 4.6), all in type E.

THEOREM 4.3. — (i) If g is of type E; and if ©’ is one of the sub-
sets {a1, g, aq}, {aq, a5, a6}, or {a, as, au, as, a6}, then plf, is not quasi-
reductive.

(ii) If g is of type Eg and if n’ is one of the subsets {a1,as, a4},
{ag, 05,06}, {as,ar,a8}, {a1,a3,04,05,a6} {4, as,a6,a7,a8}, or
{a1, a3, a4, as, ap, a7, as}, then pf, is not quasi-reductive.

The indices of the parabolic subalgebras considered in Theorem 4.3 are
given in Table 5.1. Note that for g of type E; or Eg, and 7’ = {4, as, ag},
pi, is not quasi-reductive by Theorem 2.1 and Example 1.8.

In the proof of the theorem and in Lemma 4.4 below, we make use of the
following notations: If 7’ is a connected subset of 7, 7' is defined to be the
connected subset of 7 satisfying K = {7’} UX~, and u}, is the element

> ... Note that the element u; +u_, is a semisimple element of g.
ceg \AT,
Assume that g is of type Eg. Set:

Q1] = 3+ 0y, a2 = a4 + a5, a3 = a5+ ap, Qg = o + ay,
Q19 = 3 + g + a5, agp = g + a5 + ag, 21 = a5 + ag + ar,
Qo7 = Q3 + g + a5 + ag, g = g + a5+ as + ay,

Q35 = Q3 +aq + a5 +ag +ar

and denote by I~, the set of integers ¢ such that o; € A;,. Whenever «;
is defined, x; and y; stand for z,, and z_,, respectively. Consider the
following equations:

(E].) M4 + V19 = 0 (Gl) 11 — V12 0
(F].) 19 + V4 = 0 (H].) w2 —vi1 = 0
(EQ) —pug+vy = 0 (G2) wis+rviy = 0
(F2) H21 — Vg = 0 (H2) H14 + 13 = 0
(E3) poo+wvss = 0 (G3) por—1os = 0
(F3) s +rvo0 = 0 (H3) U2g — Va7 0

in the variables u; and v;. Set

77,1 = {O[l,Oég,CY4,C¥5,0é6},
77/2 = {au,as, a6, a7, 08}

!
and 75 = {aq, ag, a4, as, a6, 07, g}
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We now introduce subspaces aj. of g~ (for k =1,2,3) as follows:

- for k = 1,2, a; is the space of elements S Xehe + >0 (wimi +viy;)
ce& N, icl~,

!

k

with (Ag )668 i in ClE=N7kl and where ((,udz)zel~ ,(VJ)J61~ ) run through

the set of the solutlons of the homogeneous hnear system deﬁned by the
equations (Ek), (Fk), (Gk), (Hk).
- a3 is the space of elements > Ache + > (wiw; + vy;) with

ece nm} i€l
3

(Ae).ce. o in C1€=N71 and where ((pz)lej~ ,(VJ)]€[~ ) runs through the

set of the solutions of the homogeneous hnear system deﬁned by all twelve
equations.
Here is a technical lemma used in the proof of Theorem 4.3:

LEMMA 4.4. — Assume that g is of type Eg. Then ag, for k=1,2,3, is
the centralizer in o of the semisimple element u , +u_,. It is a reductive

Lie algebra and its rank is at most ind pf, — 1.

Proof. — Let k € {1,2,3}. The fact that a, centralizes u_, can be
checked without difficulty. As p and v play the same role in the equa-
tions (Ek), (Fk), (Gk), (Hk), we deduce that ay, centralizes u, too; hence
ay centralizes ujr', +u_,. Then ay, is a reductive Lie algebra as an intersection
between a reductive Lie algebra and the centralizer in g of a semisimple
element of g.

Next we show: rkag < ind p;r, — 1. We can readily verify from the equa-
tions defining aj that the center of ay is zero. Therefore, the rank of ay is
strictly smaller that the one of g~ ,- Indeed, if not, aj, is a Levi subalgebra of
9 since 9 has type A. But any proper Levi subalgebra of 9 has a non
tr1v1a1 center So, for k = 1,2, we get rkag < 2 since rkg~ = 1ndp ;= =3

whence the statement.
For k = 3, what foregoes yields rkas < 4 since the rank of 9 is 5. We

have to show: rkas < 1ndp L= = 4. The space az has dlrnen51on 21. But
there is no reductive Lie subalgebra of rank 4 and of dimension 21 since
21 — 4 is not even. As a result, we get rkag < 4. |

Here is the proof of Theorem 4.3:

Proof of Theorem 4.3. — By the transitivity property (Theorem 2.1),
statement (ii) implies (i). So we only consider the case of Eg. Let 7’ be one
of the subsets as described in (ii). Assume that p;, is quasi-reductive. We
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will show that this leads to a contradiction. Choose w € p_, such that the
following two conditions are satisfied:
(<pw)|p+ is p,-regular and of reductive type for p;

- (Pw)|m 0 belongs to the B-orbit of (¢, )|, +.

This choice of w is possible by Propos1t10n 1 2 and Proposition 1.6(ii). By
the second condition, we can assume that w = w’ 4+ u_, with w’ € /. Let
x be an element of the stabilizer (gpw)\p+ in pt; we write x = h+ 2’ + 2,

with h € b, 2’ € n_, ®nf, and 2+ € m,. The fact [z,w] € m}, forces
h e (|  kere. From that, we deduce that h belongs to the subspace of
ce€L\AT,
b generated by the elements h., for € € £, Na’" C 7 (use Table 1.3). Now
for o € I'y/, one obtains that EKF () 4 A:, and we claim that z’ has zero
coefficient in g,. Otherwise, there must be 5 € A;, and K € X, such that
Q= Ept(q) = —(B+ k). One can check that for each of the subsets 7’
such an equality is not possible (use Table 1.3). To summarize, we obtain
the inclusion:

(42) p;:-_’ (Sow) C g;r// @ ﬁ;/ @ m;:__,,

where §)_, is the Heisenberg Lie algebra generated by the g_,, a € I';v. Let
t be the 1mage of pt,(pw) by the projection map from 9, D H B m?, to

g7, As pl (pw) is a torus of g by hypothesis, (4.2) shows that t is a torus
of g~, of dimension ind ph = dimpl (pw).

For the first three subsets, with 7’ of rank 3, pi, has index 2 but g~, has
rank 1. So we get a contradiction.

The remaining cases, with 7’ of rank 5 or 7, require more work. Let
us describe the torus t. To do that, we consider on one hand the roots
a € A;rt with € R (o) ¢ A, for which there exist 3 € A}, and K € K,
such that o — ety = —(B + €k). On the other hand, we consider the
roots a € A< for which there is ¢ € €\ Ay such that o+ ¢ is a root. All
the possibleﬂroots give rise to equations describing t. Let k& € {1,2,3} and
use the notations introduced before Lemma 4.4. The equations what we
obtained are precisely the equations (Ek), (Fk), (Gk), (Hk) for k = 1,2,
and all twelve equations above for k = 3. Thereby t is contained in the
reductive Lie algebra a;. But the torus t has dimension ind p:, and this
contradicts Lemma 4.4. g

Remark 4.5. — Proceeding with the proof of Lemma 4.4, one readily
obtains that a, for k = 1,2, 3, has precisely dimension ind p;, —1 (note that
dima; = dimay = 10 and dimag = 21). Then, the proof of Theorem 4.3
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shows that the dimension of the torus part of generic stabilizers is ind p;, —1.
This dimension is given, for each case, in the last column of Table 5.1.

We end the section with an example of non quasi-reductive parabolic
subalgebra in Eg. As noticed in Remark 2.12, Theorem 4.6 shows that the
additivity property fails in type Eg:

THEOREM 4.6. — If g if of type Eg and if 7' = {an, a2, a3, g, g }, then
+

p.r, Is not quasi-reductive.
By symmetry, if 7’ = {aq, @z, a4, as, ag}, then p, is not quasi-reductive,
either.

Proof. — Choose w € p_, such that the following two conditions are
satisfied:

- (pw)lp+ is p-regular;

- (<pw)|n: belongs to the B-orbit of (¢,-)|n+.
This choice is possible by Proposition 1.2 and Proposition 1.6(ii). By the
second condition, we can assume that w = w’ +u~ where w’ is in h @ n;r,.
For z € pl,, we write # = h + 2’ + 27 with h € h, 2’ € n_, & n}, and

il

T €m],. Set:

ar = a1 +ag, ag = qg + 0y, Qg = a3+ 0y,
Q12 = a1 + a3 + aq, d13 = a2 + a3 + oy,
Q17 = Q1 + oy + Qg + oy

and let I,/ be the set of integers ¢ such that «; € A,/. Then, for i €
I, x;, y; and h; stand for x,,, x_,, and h,, respectively. Write 2’ =
> opiwi + i Aihi + Y viy; and w’ = ho + Y aya; with hg € h and
i€l i=1 i€l IET,,
(s Ajs Vis a1 )i g e € C3I/ 156,
From [z, w] € m:,, we first deduce that h belongs to kere for any e € £\
Ai, whence we get A\ = —Ag and A3 = —\5. Next, we argue as at the end of
Theorem 4.3(ii): we use the roots o € A, such that Ext(a) & AT, and for
which there exist 3 € Af, and K € K, such that « —Ext(a) = —(Bt+ek).
This enables us to show that p; = 0 for any ¢ € I \ {1,4,6} and that
vg = 11, e = v1. Now, we consider the terms in z, for o € A, and in hy
for a € 7’ of [z, w]. All these terms have to be zero; this gives us equations.
Some of them involve the terms in z, for certain o € AF\ A¥, but we can
eliminate these variables and obtain equations whose variables are only the
(Xi)i’s, (15)’s, and (vg)i’s, for ¢ = 1,3,4, j = 1,4 and k € I,/. Here are
these equations:
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(X1) 2a1A1 —a1A3 + (as — ag)(ho)pr + arvs + aravy + arrvns =0
(X2) —agAy + agvy + 2vs + a13v9 + a17v12 =0
(X3) —asAi + 2a3A3 — azhy — arvy + agvy + ai3vg =0
(X4) 2@4)\4 — a4(ho)u4 — aglV2 — AglV3 — Q12V7 =

(X5) —2X\4 + Oé4(h0)l/4 — aolg — A3Vg9 — Q719 =0
(X6) —2a6/\1 + aﬁ)\g + (Oél - 046)(]10)1/1 + asvy + agl12 + a13viy =0
(X?) a7)\1 + a7)\3 - a7)\4 — aspi “+ a1y + a7 =0
(X8) ag)\4 + as g — 21/2 — a13V3 — a7Vt =0
(X9) —agh1 + 2a9A3 + agAs + azpa — a12v1 — a1z =0
(X12) ai2A1 + @123 + a12Aa — agpn + arfia — ar7v2 =0
(X13) —ai3A1 — ar7in =0
(X17) a17 M1 + a17As — a1z =

(H1) aep1 — arv1 — arvy — aializ — Gi7viy =0
(H3) —asvs —arvy — agrg — aial1a — aizviz — airliy =0
(H4) =244 — agva + 2a4v4 + agvs + 2agvg + 2a12v12 + a13v13 + arrvir = 0

Using a computer algebra system, we show that for any
((ai)ier,, (ai(ho))iex) in an open dense subset of CH~l x C8, the above
homogeneous linear system has rank 14, aiza;7 # 0, and any of its so-
lution ((A;)i=1,3,4, (145)j=1,4, (Vk)rer_,) verifies A3 = 0. We can (and do)
assume that ((a;)ier_,, (@i(ho))iex) belongs to this open subset; in partic-
ular ajzai7 # 0. From the equations (X13) and (X17), we obtain that any
solution of this system verifies A\? + 17 = 0 because A3 = 0. Since y; = 0
for any ¢ € I\ {1,4,6} as observed previously, this shows that 2’ is a
nilpotent element of [+; so x is a nilpotent element of g. As a consequence,
pjr', is not quasi-reductive. g

5. Explicit computations and classification

We assume in this part that g is simple of exceptional type. Together
with Theorem 1.7, the next two theorems (Theorem 5.1 and Theorem 5.2)
complete the classification of quasi-reductive parabolic subalgebras of sim-
ple Lie algebras. The goal of this section is to prove these theorems.

THEOREM 5.1. — Assume that g is of type Ga, Fy, E7 or Eg. Let «’ be
a subset of .

(i) If g is of type Ga, then p), is quasi-reductive if and only if 7' is
different from {a}.

(ii) If g is of type F4, then p}, is quasi-reductive if and only if each
connected component of 7’ is different from {a; }.
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(iii) If g is of type E;, then pJ, is quasi-reductive if and only if each
connected component of 7’ is different from the subsets {1}, {a4}, {6},
{ar, a3, a4}, {aq, a5, a6} and {aq, as, oy, a5, g}

(iv) If g is of type Es, then p}, is quasi-reductive if and only if each
connected component of 7' is different from the subsets {a1}, {a4},
{ac}, {as}, {a1, 03,04}, {ou,as5,a6}, {as, a7, a8}, {on, a3, a4, 05,06},
{ay, a5, a6, a7, a8} and {a1, as, aq, as, ag, ar, ag}.

THEOREM 5.2. — Assume that g is of type Eg and let ' be a subset of
. Then p:rr, is quasi-reductive except in the following three cases:

1) {aa} is a connected component of 7';

2) = {al, o, (3, 0y, 046},'

3) 7T/ = {al, o, 0y, 5, 046}.

Table 5.1 and Table 5.2 below summarize the results of Theorems 5.1
and 5.2 ; indeed, whenever rkg = k,, only the cases where 7’ is connected

! indp), | dim. of torus part

0
Type Fy: o] 1 0

/

™
{ou}

{oua}

Type E7: | {ag}

{al,a3,a4}

{a4, as, CVﬁ}

{061, a3, 4, A5, 06}

ind pﬁ, dim. of torus part
0

W NN - ==
N =R = OO

v indp;, | dim. of torus part
{aun} 0

{oua}

{as}

{as}

Type Es: | {a1, a3, a4}

{04470457016}

{04670477018}
{0417043,0!4,045,%}
{044,045,016,6177018}

{a1, a3, a4, a5, ag, a7, ag}

W WNNDNR P /=

W NN~ OoO

>

Table 5.1. The non quasi-reductive parabolic subalgebras p:, with
connected 7' in F,, E; and Eg and their indices.
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need to be dealt with thanks to Theorem 2.11. In these tables, the last
column gives the dimension of the torus part of a generic stabilizer; we
refer to Remark 4.5 for explanations in the types E7 and Eg. For the type
Eg, let us roughly explain our computations : in most cases, the subspaces

N ker € of h yield elements of the generic stabilizers of the regular lin-
e€& UA

ear forms of the form (¢4~ )|,+ with w’ € Iz, For the cases {1, a2, a},

o
{ag, a3, a5} and {a1, as, as, as, g}, one can show that the generic stabi-
lizers of these forms also contain nonzero semisimple elements which do
not belong to . Since this is not a central point for our work, we omit the

details.

' Cm, mof type Eg indp;, | dim. of torus part
{az} 2
{Oél,az}, {012,046}

{as, a2}, {a2, a5}

{on, 2,05}, {a2, a3, 06}

{a1, a2, a6}

{ag, a3,a5}

{a1, a0, a3}, {az, a5, a6}

{a1, 00,03, a5}, {az, a3, 05,06}

{a1, 00,03, 06}, {2, 01, 05,06}

{a1, a0, a3, a5, a6}

{ar, a0, a3, a4, a6}, {01, 02, a4, a5, a6}

= W = =D W W R NN W
O N OO NDNO - =

Table 5.2. The non quasi-reductive parabolic subalgebras p; in Eg
and their indices.

Remark 5.3. — Theorems 5.1 and 5.2 confirm what was announced in
Remark 2.12: The only cases where the additivity property fails is for g =
Eg and " = {a, a2, a3, ay, ag} (where {aq, as, as, ay} is not connected to
{ag}), resp. for g = Eg and 7’ = {aq, ao, g, a5, ag}.

By Theorem 4.1, Theorem 4.3 and Theorem 4.6, in order to prove Theo-
rems 5.1 and 5.2, it is enough to show that if 7’ is different from the subsets
listed in Theorems 5.1 and 5.2 then p; is quasi-reductive. This is our goal
until the end of the paper. Recall that a, is the simple root connected to
the lowest root in the extended Dynkin diagram. By Theorem 2.1, we can
assume that 7’ contains a.;. Moreover, whenever rkg = k., we can assume
that 7’ is connected by Theorem 2.11.
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The case where 7’ has rank 1 was dealt with in Theorem 4.1. In the next
subsection, we study the case where 7’ is connected and of rank 2. Then
we discus the remaining cases in Subsection 5.2.

5.1. Assume that g is of type Fy, Eg, E7 or Eg and let 7’ be a connected
subset of m of rank 2 which contains a,. Write 7’ = {«;,, a;, } with a;, =
. Lemma 5.4 shows that the roots of 7’ have common properties:

LEMMA 5.4. — The subset 7’ has type Ao and there are four integers
Josj1,92, 43 in {1,...,k.} and a quadruple (co,c1,c2,c3) € C* such that
the following properties are satisfied:

Qiy = Ejyy Qip = %(Ejo —&j1 T & — 61'3) and hs,,/ = 22:0 Ckhajk :

Proof. — We verify the properties for each type:

Type Fa: 7" = {9, a1 }, with a1 (= ay) % €1 —e4—¢e3—e3) and ag = &4.

Moreover hm+a2 = 2(hey + hey — hey —

he,
Type Eg: ' = {a47a2} with as(= ax) = 3(e1 -1~ €2~ €3) and aq = 4.
Moreover ha2+a4 = (hs1 +hey —hey — hey
Type Er v/ = {ay a3}, vith (= ) = o2 —eam) nd oy =
Moreover hm+a3 = (hs1 + heg — hey — he,

Type Eg: 7’ = {a7,ag} with ag(= a;) % €1 —e5—eg—e3) and ay = 5.

Moreover A, 4oy = 5 (he, + hey — ha2 -

>

(
)-
(
)-
(
)-
(
). 0

€3

Recall that there exist a = (a1,...,ax,) € (C*)k~ and b € C*, such that
the linear form (g5 )|p is pf,-regular. Since e, = 1 (j,+&5, —€j, —€js ),
the element €, — €5/ is a positive root. Denote by f; and 33 the two
positive roots o = (¢j, — €x/) — €, and f3 = (gj, — €x/) — €;,.. For A =
(A2, A, po, i1, pi2, i3, v) € (C9)7, we set 2(A) = z—o, + Xowp, + Azap, +

3
D k—o MkTe;, VT g

LEMMA 5.5. — Let (a,b) be in (C*)k= x C* such that (‘Pu(g,b)”p:, is
p;, -regular.

For a suitable choice of A = ()\2,)\3,110,;11,/127/137 v) € (C*)7, the ele-
ment () lies in the stabilizer of (py(q b))|p+ in pf,. Moreover, for such
a A, we have p,(¢uap) = [ keregx @ Cz(A) and the element x()) is

Ke

™

semisimple. In particular ¢, (43 is of reductive type for p:,.

Proof. — By definition, we have ¢, + &5 = €, — B2, €, + €5 = €5, — B3,
B2 —€j, = B3 —€j, = oy, and e — €5, = o,. We define the structure
constants 7y, 7o, T3, T4, T5, T, To by the following equations:
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[Ty, Tcyy] = T (e ey 3 [Toc o)l = 2T te)
["Tﬂw xffj(,] = T3T— (e r4ej,) 3 [SE,EW, ) ‘T*Ejg] = T4l — (e 14ej,)
[93/32’55—5]'3] = T5%q;, [zﬁwf—sm} = T6Ta;, ;

[T_c; ,Te ] = ToTay,-

Set u = u(a,b) and x = x(A). We have:

3
[$7 U] = b[x*&,r/ bl xiwl] + Z :u’ka’jk [xajk 9 x,sjk] + ajz [l’,sﬂ/ 9 x*&m]
k=0
+ aj3 [z—e,r/ ’ x—Ejs] + A3aju [xﬁg,a m—EjO] + A2(1]4() [xﬁz’ :I:_Ejg]
+vblr o x|+ Aaaj[Tp,, vc) ]+ A3y, [vps, v, ]+ 0

where v is in m;r,. In the above notations, this gives:

3
[ u] = b(—he,, ) + > pnasihe, + (@572 + A20ioT) T, 4e,)
k=0

+ (aj, 71 + Agajorg)x,(gﬁ,ﬁjg) + (vb1o + A2aj, 75 + )\3%27'6)33%2 +v

Set pp = (bey)/aj,, for k = 0,1,2,3. By Lemma 5.4 we get b(—h._,) +

> k=0.1.23 Mk he;, = 0. Next, we set Ay = —ay,72/(aj,m1) and A3 =

—aj,T1/(aj,73) so that the terms in T (e stey,) A T (e, 4e, ) i [, u] are

both equal to zero. At last, we choose v so that the term in x,, in [z,u]

is 0. Then the element x stabilizes (¢u )]+ -

Let A be as above. We have thus obtaiwned the inclusion (] kerex @
KeX,

Cz C pt (pu). By equation (1.1), ind p, = rkg—k, +1 whence the equality

N kerex ® Cx = pt (pu).
KeXnr

We now show that = z()\) is semisimple. To start with, we prove that
x is semisimple if and only if (7275)/71 + (7476)/73 # 0. As 2 and (3 are
both different from o, ,;, and «;, + «;,, the component of z on [/ in
the decomposition p:, =l & m;r, I8 T, + p1%e;, +vr_., . By what
foregoes, p1 = (bci)/aj, # 0. Therefore, = is semisimple if and only if
v # 0. We have vbrg + Aeaj, 75 + Asaj,7¢ = 0, that is, by the choices of
Ao and Az: vbry — (aj,72a4,75)/(aj,m1) — (aj,Taa4,76)/(aj,m3) = 0 Hence
v = 1/(bro) x (aj,a5,)/aj, % ((T275)/T1 + (Ta76)/73). As a result, v # 0 if
and only (7o75)/71 + (Ta76) /73 # 0.

It remains to check that the condition (7275)/71+ (7476) /73 # 0 holds. We
check the condition for the all cases considered in the proof of Lemma 5.4.
Note that the computations of the integers 7; can be done using GAP.

Type F4: One checks that my =3 =1land o =74 =75 =75 = —1.

Type Eg: One checks that 7 = =713 =17y =1and 75 = 74 = —1.
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Type E7: One checks that 71 = o =713 =74 =75 = 76 = — 1.
Type Eg: One checks that 4 = =1 =17 =75 =7 = 1. O

To summarize, this gives us:

THEOREM 5.6. — For simple g of exceptional type, and simple ' C w
of rank 2 containing o, the parabolic subalgebra p:, is quasi-reductive.

Using Theorem 5.6, we obtain new cases of quasi-reductive parabolic
subalgebras in Eg:

THEOREM 5.7. — For simple g of type Eg and 7" = {1, a9, a4} or
{a1, 09,04, a6}, p;“// is quasi-reductive.

Note that Theorem 5.7 cannot be deduced from Theorem 2.11 even
though 7" is not connected. Indeed Theorem 2.11 fails in type Eg as ex-
plained in Remark 2.12.

Proof. — We approach the two cases in the same way.
Let 7’ be the subset {as,a4}. Then 7’ is a connected component of

7”. Hence, one can choose u” = wu(a,b) such that both () and

o+
(¢uw)],+ are regular (for pl, and p), respectively) where v’ = u(a,bx).
Let A = (A2, A3, fo, i1, Hi2, f13, ) be an element of C7 such that x = z())
stabilizes (¢u/)|,+ (cf. Lemma 5.5). One can readily check that « belongs to

p;,, (¢ur), too. On the other hand, in both cases, the orthogonal of E;» . in
b has dimension 1, is contained in p;,, (¢u), and does not contain . Hence,
as « is semisimple (by Lemma 5.5), we have found a torus a dimension 2
which is contained in p7,, (0 ).
We distinguish now the two cases:

Case " = {a1, s, a4}: by (1.1), indp;, = 2. Then, the above discussion
shows that (¢u~)|,+ is of reductive type.

Case 7’ = {ay, ag,ﬂa4, ag}: by (1.1), indp;,, = 3. So, it suffices to provide
a nonzero semisimple element in p:,, (¢u) which does not lie in the preced-
ing torus. We claim that the (semisimple) element y = (ax,/b{as})Tay +
(axy/bfar})T—ar + (0Ks/bfar})Tas + (0K, /b{ag))T—as + 2T does the job,
where 1 is an element of mjr',, and where K; (for 1 <4 < 4) corresponds
to the highest root ¢;. O

5.2. Using the results of Sections 2, 3 and 4, we are able to deal with
a large number of parabolic subalgebras. Unfortunately, the results ob-
tained so far do not cover all parabolic subalgebras. There remains a small
number of cases. We consider these here. This will complete the proof of
Theorems 5.1 and 5.2.
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We first consider examples which do not need of the computer programme
GAP.

It is well known that minimal parabolic subalgebras of a real simple
(finite dimensional) Lie algebra are quasi-reductive, see e.g. [13]. Moreover,
the complexified subalgebras give rise to quasi-reductive subalgebras of
the corresponding complex simple Lie algebra. In type F4 and type Eg
the so-obtained parabolic subalgebras of g correspond to the subsets 7’ =
{a1,a0,a3} and @ = {a9, a3, a4, a5} of 7 respectively. As a result, we
have:

PROPOSITION 5.8. — (i) If g is of type Fy and if ' is {a1, aa, a3} then
pjr', is quasi-reductive.
(ii) If g is of type Eg¢ and if 7’ is {ag,as,as,a5} then pjr', is quasi-

reductive.

We consider now the remaining cases. For all these cases, we are able
to find (a,b) € C**=+%) guch that Pu(a,p) is of reductive type for p;r,.
We have used the computer programme GAP to check that the stabilizer of
such a form is a torus of g. The commands we have used are presented in
Appendix A.

PROPOSITION 5.9. — (i) If g is of type Eg and if ' is {a, a2, g, g, a5 }
or {aa, a3, a4, a5, a6} then pl, is quasi-reductive.

(ii) If g is of type E7 and if «' is one the subsets {a1,as,as, a4},
{O{l,OLQ,ag,OL4,0é5}, {Oél,OLQ,Olg,Oé4,0Z5,066}, {Otl,Oég,Oé4,0[5} or
{a1, a3, a4, a5, a6, a7} then pl, is quasi-reductive.

(iii) If g is of type Eg and if «' is one the subsets {as, g, a7, a5},
{043,0447045,04676%77048}, {042,04,0457046,047,048} or {042aa370447045,0¢670477048}
then p:, is quasi-reductive.

This proposition completes the proof of Theorems 5.1 and 5.2; the other
cases are dealt with either in Remark 1.5, or in Example 3.7, or in Theo-
rems 4.1, 5.6 and 5.7 (or deduced from Theorem 2.1 or Theorem 2.11 as
explained before).

Remark 5.10. — As noticed in the introduction, Proposition 5.9 can be
proved without the help of GAP; this is done in a joint work of the second
author and O. Yakimova, [16] where the authors consider the maximal
reductive stabilizers of quasi-reductive parabolic subalgebras of simple Lie
algebras.
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Appendix A.

In this appendix, we explain how to use GAP to verify that for suit-
able u = u(a,b) and 7' as described in Proposition 5.9 the linear form
(¢u)]y+ 1s of reductive type. We do this for the example g =E7 and

7" = {aq, ag, a3, a4, a5}, the other cases work similarly. First, we define

the simple Lie algebra L (= g), a root system R and a Chevalley Basis

(h,x,y) of L, and then the parabolic subalgebra P (= pJ,) generated by gP;

its dimension is dP:
>L:=SimpleLieAlgebra("E",7,Rationals);;R:=RootSystem(L);;
>x:=PositiveRootVectors(R);;y:=NegativeRootVectors(R);;
>g:=CanonicalGenerators(R);;h:=g[3];;
>gP:=Concatenation(g[1],h,y{[1..5]});;P:=Subalgebra(L,gP);;
>dP:=Dimension(P);

90

Next we choose numbers (al,a2,a3,a4,ab,a6,a7,bl,b2,b3,bd) €

(C*)n+kx) and we define the element u=ul+u2 (= u(a,b)) of p.:
>al:=-3;;a2:=5;;a3:=7;;a4:=11;;ab5:=13;;a6:=-17;;a7:=19;;
>b1:=23;;b2:=-29;;b3:=31;;b4:=37;;
>u2:=al*y[63]+a2xy [49]+a3*y [28] +ad*y [7]+ab*y [2] +a6*y [3]+a7*y[5];;
>ul:=b1*x[37]+b2*[16]+b3* [4]+bd*x[1] ; ;u:=ul+u2;;

We are now ready to compute the stabilizer of (¢y)]p. To start with, we

calculate the vector space V generated by the brackets uxbP[i], for i =

1,...,dP, where bP is a basis of P. We obtain the orthogonal K of V with

respect to the Killing form thanks to the command KappaPerp. Then, the

stabilizer S of (¢y)|p is the intersection of K and P:
>bP:=List(Basis(P));; l:=[1;;
>for i in [1..dP] do 1[i]:=ux*bP[i];od;;1;
>V:=Subspace(L,1);;K:=KappaPerp(L,V);;S:=Intersection(X,P);;
>dS:=Dimension(S);

4

The fact dim S=4 shows that (¢,)|p is regular, since ind P = 4. It remains

to check that S is a reductive subalgebra of L.. To process, we check that

the restriction of the Killing form to S x S is nondegenerate. For that it

suffices to compute the intersection between S and its orthogonal in L. The

result has to be a vector space of dimension 0:

>KS:=Intersection(KappaPerp(L,S),S);

<vector space of dimension O over Rationals>
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