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DIFFERENT METHODS FOR THE STUDY OF
OBSTRUCTIONS IN THE SCHEMES OF JACOBI

by Roger CARLES & M. Carmen MÁRQUEZ

Abstract. — In this paper the problem of obstructions in Lie algebra deforma-
tions is studied from four different points of view. First, we illustrate the method of
local ring, an alternative to Gerstenhaber’s method for Lie deformations. We draw
parallels between both methods showing that an obstruction class corresponds to
a nilpotent local parameter of a versal deformation of the law in the scheme of
Jacobi. Then, an elimination process in the global ring, which defines the scheme,
allows us to obtain nilpotent elements and to describe the global method. Finally,
the obstruction problem is studied in the geometry defined by generators and re-
lations. Under certain conditions, we prove that subschemes of grassmannians of
T -invariant ideals of a free Lie algebra (T being a torus of derivations), after quo-
tient by an action group, are the same as those defined from Jacobi polynomials
after a similar quotient.
Résumé. — Le problème des obstructions aux déformations d’algèbres de Lie

est étudié de quatre points de vue différents. On illustrera d’abord la méthode
de l’anneau local, une alternative à la méthode de Gerstenhaber. On compare les
deux méthodes en montrant qu’une classe d’obstruction correspond à un para-
mètre local nilpotent d’une déformation verselle de la loi dans le schéma de Jacobi.
Un procédé d’élimination dans l’anneau global permet ensuite d’obtenir des élé-
ments nilpotents, constituant ainsi une méthode globale. Enfin, le problème des
obstructions est traité dans la géométrie définie par générateurs et relations. Des
sous-schémas de grassmanniennes constitués d’idéaux T -invariants d’une algèbre
de Lie libre (T étant un tore bien choisi), après quotient par une action de groupe,
sont égaux à ceux définis par les polynômes de Jacobi après passage à un quotient
similaire.

Introduction

Let Ln be the scheme of laws of Lie algebras of dimension n over C defined
by antisymmetry and Jacobi identities and called “scheme of Jacobi”. If
R is a completely reducible Lie subalgebra of the space C1(Cn,Cn) of

Keywords: Deformation, obstruction, free Lie algebra.
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454 Roger CARLES & M. Carmen MÁRQUEZ

linear morphisms Cn → Cn, then we can impose R-invariance conditions
for the laws in Ln. Thus, we obtain a subscheme of Ln denoted by LRn
and let LRn (C) be the set of its points. This scheme was introduced in
the study of algebraic Lie algebras admitting a Chevalley decomposition
g = R⊕n with nilpotent part n = (V,Φ0), for V = Cn. It is well known that
LRn ' Spec(C[Xk

ij ]/ Jacn), where Jacn is the ideal in the ring of polynomials
C[Xk

ij ], for 1 6 i < j 6 n, 1 6 k 6 n, generated by the antisymmetry,
Jacobi identities and R-invariance conditions. We can deduce the local
study of g in the scheme Lm, with m = n + dim(R), from the local study
of n in LRn under certain conditions on R. This type of result enters in the
scope of the “Theorem of reduction” where a general statement is proposed
in [6]. R can be a torus T (i.e., abelian and reducible) satisfying hypotheses
of the reduction theorem. This allows us to work directly in Jacobi scheme
LTn and local results obtained for n in LTn are valid for g in Lm. It suffices to
choose a maximal T for at least one law. According to Mostow, all maximal
tori over a complex Lie algebra are conjugated by automorphisms. The
schemes used in this paper are T -invariant but most of the results can be
transferred to schemes Lm thanks to the reduction theorem.
This paper is organized in five sections as follows:
1 – Section 1 deals with the classical theory of obstructions, which was

initiated by M.Gerstenhaber [12] for associative laws within the framework
of formal deformations. The fact that a vector Φ1 in the Zariski tangent
space of LRn at Φ0, Z

2(n, n)R, cannot be lifted to a curve Φ0 +
∑
k∈N t

kΦk,
but only to a “truncated deformation” up to an order p > 1, leads to the
existence of a non null 3-class ωp+1 ∈ H3(n, n)R, called obstruction. If Φ1
doesn’t belong to the tangent space of the reduced scheme at Φ0, defined by
the radical of the ideal Jacn,

√
Jacn, then it always presents an obstruction

and the scheme LRn is not reduced at Φ0. A certain number of technical
difficulties are attached to this method, in particular the dependence on
the choice of partial solutions Φ2,Φ3, ...,Φp in deformation equations.

The examples in [15] satisfying ω2 6= 0 are solved by Rauch rigidity
criterion. This criterion is applied in [14] to Lie algebras sl(2,C)⊕Cn, with
R = sl(2,C) 6= T . The first T -rigid examples known with ωp 6= 0 for p > 2
are provided by filiform Lie algebras fn for n > 12 [1] and the obstruction
appears at order 5. We illustrate this method sketching out cohomological
calculations and using the fact that if H2(n, n)R is equal to C then the
choice of Φk(1 < k < p) for 1 < p 6 4 is irrelevant.
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STUDY OF OBSTRUCTIONS IN JACOBI SCHEMES 455

We prove a useful result which provides a link to the local ring method
developed in section 2: ωp+1 = 0 is equivalent to the existence of a pa-
rameter t in the maximal ideal of the local ring O at Φ0, such that tp+1

doesn’t belong to an ideal B whose quotient O → O/B defines a deforma-
tion Φ0 + t̄Φ1 + · · ·+ t̄p+1Φp+1 at order p+1. More concretely, in the study
of fn we obtain an obstruction at order 5, so ω5 6= 0⇔ t5 = 0 (t4 6= 0).

2 – The 1-parameter deformation method is not characteristic enough, as
it gives only partial results. The right way is to introduce versal deforma-
tions, which describe the deformation question completely. This was done
by Fialowski [9] and [10]. In [9] and later in [11] a straightforward method
was given to construct a versal deformation. This construction starts with
determining the universal infinitesimal deformation, and extending it step
by step. In [5, 6] authors have developed a method giving versal deforma-
tions from the universal deformation constituted by the germs of coordinate
functions at the point Φ0. The local ring O at Φ0 in Jacobi scheme Lm or
LRn gives maximal information about the local deformation problem. A de-
formation of Φ0 on a local ring A is a local morphism from O to A. In [6],
versal deformations are obtained by reducing the number of parameters
with a quotient of O and the equivalence of two versal deformations as a
solution of a universal problem is proved. A comparison with the Fialowski
method (cf. [9] [10] [11]) is also made in [6]. The normalizing group H of
a torus T in GL(n) acts canonically on LTn and its orbits are the isomor-
phism classes of laws in a good open set. We can define local charts for
the space LTn/H0 = LTn/G0, where G0 and H0 are unit components of the
groups GL(n)T and H respectively. We fix the coordinates in LTn which
are labelled with a certain choice of indices called an admisible set A. Un-
der certain conditions, it defines a sub-scheme LT,An of LTn (C), called slice,
which is transversal to each orbit in a certain open set of LTn (C). A versal
deformation in LTn at the point Φ0 can be seen as the canonical deformation
in a slice at Φ0.
In section 2 this second method, called “local ring method”, will be illus-

trated by new examples showing the behavior of the slices. The schemes LTn
associated with the torus T, defined by the weights αk = kα1, 1 6 k 6 4
and α5 + kα1, k > 0, are studied by using the induction on central ex-
tensions. This allows us to study the relationship between the dimension
and the number of essential parameters: we observe an increase and then
a decrease in this number. We also present a new series of slices with a
unique nilpotent parameter tp+1 = 0, tp 6= 0, for each dimension n > 3p+6

TOME 61 (2011), FASCICULE 2



456 Roger CARLES & M. Carmen MÁRQUEZ

and each p > 0. These important examples give cohomological obstructions
ωp+1 6= 0 for any p > 0 too.
3 – Section 3 develops the third method, which is entirely new and is

attached to the global Jacobi scheme. Bearing in mind LTn = Spec(An)
with An = C[Xk

ij ]/ Jacn, the scheme is not reduced iff
√

Jacn 6= Jacn, i.e.,
there are polynomials f such that fp+1 ∈ Jacn and fp /∈ Jacn . We obtain
a result on the existence and the determination of nilpotent elements in
An corresponding to the nilpotent parameters found in local rings of the
slice. The technique employed consists of applying an elimination procedure
to certain coordinates in C[Xk

ij ] modulo the ideal Jacn . We proceed by
reducing the dimension, in contrary to the local ring method. In the study
of fn, using graded coordinates Xij , for each n we eliminate in Jacobi
relations the coordinates Xij , i + j = n except for X1,n−1, keeping the
Xhk with h + k < n and so on. Finally, the remaining coordinates are
those which correspond to one essential parameter X34 in the local ring
method and a choice of orbital ones (X23 and the X1k). It is very striking
that by using this method we obtain polynomials with great factorizations
(monomials in some cases) in the ideals Jacn and

√
Jacn. We find nilpotent

elements in An which are irreducible polynomials P in
√

Jacn. The number
of factors in P minorates the number of irreducible components of the
scheme. So, factorizations obtained by this method allow us to predict
interesting properties in the scheme such as rigidity, non-reduced points
and number of irreducible components, which is not otherwise possible.
This global procedure can be completed profitably using the previous local
method.
4 – The construction by generators and relations allows us to obtain Lie

algebras (up to isomorphism) as quotient a free Lie algebra Lr with r ge-
nerators by an ideal J. G. Favre gave the first geometrical approach in this
context [8]. We obtain a geometrization of the nilpotent quotient algebras
n = Lr/J with the help of the subscheme Jn(Lr) of a grassmannian consti-
tuted by ideals J of codimension n in Lr containing Cn(Lr). This subscheme
structure, defined only by the simplest polynomial relations [x, J] ⊂ J for
all x ∈ Lr, is generally not reduced. The different tori T of maximal type
give a finite number of subschemes JTn (Lr) (up to isomorphism) defined
by adding T -invariance relations for ideals J. In this space, we have the
natural action of the normalizing group N of T in Aut(Lr). In section 4,
we compare JTn (Lr)/N0 with LTn/G0 by using adapted slices, under certain
conditions on T . The most surprising result obtained here is the identity
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STUDY OF OBSTRUCTIONS IN JACOBI SCHEMES 457

between these two types of scheme structures given by the slices. In par-
ticular the two Zariski tangent spaces at n are given by H2(n, n)T . These
results are formulated in Theorems 4.4 and 4.5. Rigidity and obstruction
studies in schemes JTn (Lr) or LTn (C) are the same problem. We obtain a
different perspective of the same obstruction phenomenon and an original
method.
5 – Section 5 focuses on some applications of the equivalence between

rigidity in LTn (C) and in the scheme of ideals. For instance, the rigidity of
a “model” in [3], as the nilpotent part of a Borel algebra, follows immedi-
ately from Proposition 5.1 applied to the maximal rank case. We give new
examples of rigid Lie algebras only defined by one relation and admitting
a one dimensional torus T . In a second example, we study the obstruction
problem in this new formalism for algebras a4n(t) where the ideal condi-
tion [x, J] ⊂ J involves the existence of a 2-order nilpotent parameter in the
scheme of ideals for n > 9. The space H2(n, n)T parameterizes the essential
local parameters in the two geometrical approaches.

1. Return to Gerstenhaber’s method of formal
deformations. The integration of a 2-cocycle

Generalities on deformations in the schemes LRn

Let (ei) be a basis of Cm, A be a commutative associative C-algebra
with unity 1 and Lm(A) be the set of laws of Lie A-algebras Φ defined by
their structure constants Φkij ∈ A : Φ(ei, ej) =

∑m
k=1 Φkijek. These structure

constants satisfy the antisymmetry and Jacobi identities, i.e., Φkij+Φkji = 0
and

∑
l Φlij Φplk + Φljk Φpli + Φlki Φplj = 0. A morphism of C-algebras f :

A → B gives a map Lm(f) : Lm(A) → Lm(B) defined by Φkij 7→ f(Φkij).
The scheme Lm is a functor from the category of commutative associative
C-algebras to the category of sets. We have Lm ' Spec(C[Xk

ij ]/Jm) where
Jm is the ideal of the polynomial ring C[Xk

ij ], 1 6 i, j, k 6 m, generated by
the antisymmetry and Jacobi polynomials, i.e., Xk

ij+Xk
ji and

∑
lX

l
ij X

p
lk+

X l
jk X

p
li + X l

ki X
p
lj . A point Φ0 ∈ Lm(C) can be identified with the ring

C-morphism λ : C[Xk
ij ]/Jm → C defined by λ(X̄k

ij) = (Φ0)kij or with the
maximal ideal Ker(λ).

Let A be a local ring with maximal ideal m and residue field C. A de-
formation of a law Φ0 ∈ Lm(C) with base A is a law Φ ∈ Lm(A) such that
pr(Φkij) = (Φ0)kij for all i, j, k where pr : A → A/m ' C is the quotient
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458 Roger CARLES & M. Carmen MÁRQUEZ

mapping. If f : C[Xk
ij ]/Jm → A is a ring morphism such that pr ◦f = λ,

it follows that f(Ker(λ)) ⊆ m. Thus, using OΦ0 to denote the localized
ring of C[Xk

ij ]/Jm by Ker(λ), a deformation can be identified with a local
ring morphism f : OΦ0 → A. In particular, if A = C[[t]] we obtain formal
deformations [12].
Let g = R ⊕ n be a Lie algebra of dimension m with reducible part R

and nilpotent part n of dimension n. Let LRn (C) denote the set of laws
Φ ∈ Ln(C) such that δ ·Φ = 0 for all δ ∈ R. Let ∆n be the ideal of C[Xk

ij ]
generated by the polynomials (δ ·Φ)kij . We can consider LRn the sub-scheme
of Ln isomorphic to Spec(C[Xk

ij ]/(Jn + ∆n)). We denote by Jacn the ideal
Jn + ∆n and by An the ring C[Xk

ij ]/(Jn + ∆n). A deformation of a law
Φ0 ∈ LRn (C) over a local ring A given as base, with canonical projection
pr : A −→ A/m ' C, is a law Φ of LRn (A) satisfying pr(akij) = (Φ0)kij
for all multi-indices. We obtain a deformation functor at Φ0, denoted by
DefR(Φ0,−), which may also be represented with the local ring ORΦ0

of the
scheme at Φ0; thus DefR(Φ0, A) = Homloc(ORΦ0

, A).
An interpretation of different notions attached to the usual schemes Lm

can easily be formulated in the schemes LRn . In particular, Z2(n, n)R is the
Zariski tangent space of LRn at Φ0, and B2(n, n)R is the tangent space at
Φ0 to the orbit of Φ0 by the neutral component G0 = GL(n)R0 under the
classical action ?. Moreover, we obtain the analogous classical equivalence
between the following two conditions: i) the orbit of n is open in LRn (C)
and the scheme is reduced at n; ii) H2(n, n)R = 0. [5]

Generalities on formal deformations in the schemes LRn

The classical theory of 1-parameter formal and analytic deformations
developed by Gerstenhaber and Nijenhuis-Richardson [12, 13] is valid for
the varieties LRn of R-invariant laws if R is completely reducible. The space
C = C(V, V )R = ⊕pCp(V, V )R, for Cp(V, V )R the space of p-alternating
R-invariant mappings f : ∧pV → V , is a graded Lie superalgebra for the
bracket defined in [13] by [f, g] = f • g − (−1)(p−1)(q−1)g • f for (f, g) ∈
Cp ×Cq. The usual differential d of the Chevalley-Eilenberg’s cohomology
on C satisfies df = (−1)p−1[Φ0, f ] for f ∈ Cp. A deformation of a law
Φ0 ∈ LRn (C) is an analytic curve Φ(t), (|t| < ε), with Φ(0) = Φ0, contained
in LRn (C).
The expansion Φ(t) = Φ0 + tΦ1 + · · · + tkΦk + · · · with Φk ∈ C2 is a

deformation of Φ0 if Φ(t) ∈ LRn (C[[t]]) i.e., if we have [Φ(t),Φ(t)] = 0. Using
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symmetry of the bracket for degree 2 and identifying formal developments,
we obtain the following sequence of deformation equations:

(1.1) (Ep) dΦp = 1
2
∑
p>k>0

[Φk,Φp−k] =: ωp.

If we solve these equations successively, we get: for p = 1, dΦ1 = 0 (Φ1 is a
tangent vector); p = 2, dΦ2 = 1

2 [Φ1,Φ1] = Φ1 • Φ1; p = 3, dΦ3 = [Φ1,Φ2]
and so on.

Lemma 1.1. — If the equations (Ek) are solvable up to the order p− 1,
i.e., if Φ0 +

∑p−1
k=1 t

kΦk is a truncated solution or a solution modulo tp, then
ωp ∈ Z3(n, n)R. The class ωp ∈ H3(n, n)R is called the obstruction to the
deformation at order p.

Proof. — Similar to the proof in [12] [13]. �

A tangent vector in Z2(n, n)R, called infinitesimal deformation, is in-
tegrable if we can solve all successive equations (Ep) for all p > 0 or
equivalently ωp = 0 for all p > 0. Integrability of Φ1 only depends on
its class Φ1 ∈ H2(n, n)R. Indeed, the action of the group generated by
1 + tC[[t]] ⊗ C1 on deformations sends the linear part Φ1 to Φ1 + df with
f ∈ C1. If H3(n, n)R = 0, then all obstructions are null and each Φ1 is
integrable; in this case n is a simple point of LRn (C).
Consider the local ring O at Φ0 in the scheme LRn , m(O) its maximal

ideal and a sequence Φk ∈ C2(n, n)R, k > 1. If τ is a free variable, we have:

Proposition 1.2. — Let Φ1 6= 0, Φ2, · · · ,Φp be a series of solutions of
(Ek), i.e., ωk = 0 for k 6 p. There exist an ideal A of O and t ∈ m(O), such
that tp /∈ A, tp+1 ∈ A and O/A ' C[t]/(tp+1) ' C[τ ]/(τp+1). Moreover,
the following conditions are equivalent:

i) ωp+1 = 0;
ii) tp+1 6= 0 and there exists an ideal B of O such that A = Ctp+1⊕B.

Proof. — Since ωk = 0 for 1 6 k 6 p, we have a deformation Φ0 + τ̄Φ1 +
· · · τ̄pΦp with τ̄ ≡ τ mod (τp+1) or equivalently there exists a surjective
local morphism f : O → C[τ̄ ], f(Xk

ij − (Φ0)kij) = τ̄(Φ1)kij + · · · . If Φ1 6= 0,
there are indices i, j, k with (Φ1)kij 6= 0. There exist u ∈ O with a triangular
system f(ul) = τ̄ l + · · · for 1 6 l 6 p and a linear combination t =∑

16l6p λlu
l with f(t) = τ̄ . Then f is surjective and the ideal A = Ker(f)

satisfies announced statements.
i)⇒ ii): Condition ωp+1 = 0 means that we have a deformation g exten-

ding f , i.e., we have a deformation Φ0 + τ̃Φ1 + τ̃2Φ2 + · · ·+ τ̃p+1Φp+1 with
τ̃ ≡ τ mod (τp+2). We have π ◦ g = f where π is the canonical projection
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460 Roger CARLES & M. Carmen MÁRQUEZ

C[τ ]/(τp+2)→ C[τ ]/(τp+1) defined by π(τ̃) = τ̄ and Ker(π) = Cτ̃p+1. Let
u be such that g(u) = τ̃ as above. We have π(g(A)) = 0 and g(A) ⊂ Cτ̃p+1,

but g(up+1) = τ̃p+1 6= 0. Equality f(u) = f(t) gives f(up+1) = f(tp+1) = 0
and up+1 ∈ A. We obtain g(A) = Cτ̃p+1 and the kernel B of g satisfies
A = Cup+1 ⊕B. We have f(u− t) = 0 and then t ≡ u+ λup+1 mod (B)
with λ ∈ C, and tp+1 ≡ qup+1 mod (B) with q = (1 + λup)p+1 invertible
in O. We have qA = A, qB = B and then A = Ctp+1 ⊕B.

ii)⇒ i): Due to ii), the tk for k 6 p+ 1 are linearly free, modulo B, and
the quotient deformation h : O → O/B can be written as Φ0 + h(t)Ψ1 +
· · ·+ h(t)p+1Ψp+1 with h(t)p+1 6= 0, Ψk ∈ C2. The quotient by A/B gives
f : O → O/A, written as

Φ0 + f(t)Ψ1 + · · ·+ f(t)pΨp = Φ0 + τ̄Φ1 + · · ·+ τ̄pΦp.

By identifying f(t) = τ̄ , we obtain Ψk = Φk for k 6 p and Ψp+1 sa-
tisfies dΨp+1 = ωp+1 where ωp+1 is constructed with the Φk for k 6 p.
Consequently ωp+1 = 0. �

The equivalence non (i)⇔ non (ii) gives a correspondence between the
cohomological and local formalisms in the obstruction problem.

The obstruction ω2

The bracket [ ] stabilizes the cocycle subspace Z(V, V )R and we can triv-
ially define a bracket [ ] on the quotient H(V, V )R = Z(V, V )R/B(V, V )R,
[ ] : Hp(V, V )R × Hq(V, V )R −→ Hp+q−1(V, V )R. We obtain ω2 =
1
2 [Φ1,Φ1] = Sq(Φ1) with the quadratic Rim mapping Sq, giving a rigidity
criterion [14] : if Sq−1(0) = 0, then n is rigid. The filiform Lie algebras
fn\([x1, xi] = xi+1, [x2, xi] = xi+2) have a non-null obstruction at order
p > 2 for n > 12 and their rigidity study cannot be deduced from this
criterion.

Strong integrability for a 2-cocycle

The dependence on the choice of Φ2, Φ3 · · · for solving equations (1.1)
justifies the following definition.

Definition 1.3. — A 2-cocycle is called strongly integrable up to the
order p (eventually∞) if for each choice of partial solutions Φk, 1 6 k 6 p′
of (Ek) up to p′ with 1 < p′ < p, there are partial solutions for all equations
(Em) with p′ < m 6 p.
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Integrability is generally not strong: if Φ0 = 0 is the abelian law with
R = 0, we have d = 0 and dΦ1 = 0. For Φ1 ∈ Ln(C), each Φ2 ∈ C2(V, V )
is a solution of dΦ2 = 1

2 [Φ1,Φ1] = 0. Equation dΦ3 = [Φ1,Φ2] admits a
solution for Φ2 = Φ1 but no solution for Φ2 /∈ Z2(Φ1,Φ1).

Lemma 1.4. — If H2(n, n)R = CΦ1 ' C then the integration of Φ1 up
to order 2, 3 or 4 is strong or impossible; obstructions ω2, ω3 or ω4 only
depend on Φ1.

Proof. — For p = 2 one sees that ω2 only depends on Φ1. If Φ2 is a
solution, another solution can be written as Φ′2 = Φ2 + aΦ1 + df where
a ∈ C and f ∈ C1.

For p = 3 we have ω′3 = [Φ1,Φ′2] = ω3 + d(2aΦ2 + [Φ1, f ]). If ω3 = 0, the
general solution at order 3 is Φ′3 = Φ3 + 2aΦ2 + [Φ1, f ] + bΦ1 + dg where
b ∈ C, g ∈ C1, and Φ3 being a particular one.
For p = 4 and by using equality d[Φ, f ] = −[dΦ, f ] + [Φ, df ] for (f,Φ) ∈

C1 × C2, we obtain:

ω′4 = [Φ1,Φ′3] + 1
2 [Φ′2,Φ′2] = ω4 + d(3aΦ3 + [Φ2, f ]

+ (2b+ a2)Φ2 + [Φ1, g + af ] + 1
2 [df, f ]).

The obstruction ω4 only depends on Φ1 and the general solution at order 4
is Φ′4 = Φ4 +3aΦ3 +[Φ2, f ]+(2b+a2)Φ2 +[Φ1, g+af ]+ 1

2 [df, f ]+cΦ1 +dh

where c ∈ C, h ∈ C1, and Φ4 being a particular one. �

Remark 1.5. — The difference ω′5−ω5 = dl+ 1
2 [Φ1, [df, f ]]− [f, d[Φ1, f ]]

where l ∈ C2 is not necessarily a coboundary.

Application to the study of obstructions for fn (n > 7)

If T is the torus defined on n by the weights kα1, for 1 6 k 6 n, a 2-
cochain Φ ∈ C2(n, n)T is written Φ(ei, ej) = Aijei+j for i < j < i+ j 6 n,
where (ek)16k6n is a basis of n. The differential d related to n with structure
constants cij gives:

(dΦ)ijk =− cijAi+j,k − cjkAj+k,i + cikAk+i,j

+ ci,j+kAjk − cj,i+kAik + ck,i+jAij .(1.2)

If Φ ∈ Z2(fn, fn)T , then it satisfies A3k + A2,k+1 − A1,k+2 = A2k − A1k
for k > 3 and Ajk = Aj+1,k + Aj,k+1 = Aj+2,k + Aj,k+2 for k > j > 3.
We deduce from this the equalities Apq = 0 for 3 < p < q and A3q =
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A34 for 3 < q < n − 2. Moreover, writing A1q for q > 4 depending on
A12, A13, A14, A2k, 2 < k < n− 1 and A34, we also deduce that there are
n linear independent parameters.

As the dimension ofB2(fn, fn)T is n−1 for n > 7, we obtainH2(fn, fn)T '
C. Moreover, a class of 2-cocycle is not null if and only if A34 6= 0 [1]. We
choose Φ1 by:

A1j = A23 = 0, A2j = 4− j (3 < j < n− 1),

(1.3) A3j = 1 (3 < j < n− 2), Aij = 0 (3 < i < j).

Having solved equations (Ek) with partial solutions Φ2, Φ3, Φ4, we state:

Proposition 1.6.
(1) For n > 7, the Lie algebra fn satisfies H2(fn, fn)T = CΦ1 with the

2-cocycle Φ1 defined in (1.3).
(2) If 7 6 n 6 11, then Φ1 is integrable and LTn (C) is smooth at fn; fn

is not rigid.
(3) If n > 12, then Φ1 is strongly integrable up to the order 4 and the

sequence of obstructions satisfies: ω2 = ω3 = ω4 = 0, ω5 6= 0. The
algebra fn is rigid in LTn (C).

We have the same results for the semi-direct product T ⊕ fn in Ln+1(C).

Proof. — A direct cohomological proof is obtained here with the help of
Lemma 1.4. We can also apply Proposition 1.2 to the versal deformation
Φ0 + tΦ1 + · · ·+ t4Φ4 where t ∈ m(O), obtained in [6]. Thus the condition
non(ii) t5 = 0 and t4 6= 0, gives ω5 6= 0. �

2. The local ring method for studying the schemes LTn

Generalities on the local ring method

In this section, let T be a torus over Cn with weights αi > 0 (i.e.,
αi(t) > 0 for t ∈ T, ∀i), let n(αi) be the multiplicity of αi and let Σn(T )
be the set of laws on which T is maximal. Consequently, the T -invariant
laws are nilpotent. In addition we suppose the following conditions: for
each n ∈ Σn(T ), the multiplicities of T -weights appearing in the quotient
module n/[n, n] are 1. Thus, there are generators ei of n belonging to a
diagonalizing basis such that n(αi) = 1, ∀i.
This involves equality Der(n)T = T and the dimension of the G0-orbit,

isomorphic to G0/Aut(n)T0 , is
∑
i n(αi)2 − dimT. We have the following

properties, cf. [6]:
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1. The isomorphic classes in Σn(T ) are the H-orbits, equal to finite
unions of G0-orbits;

2. Σn(T ) is the Zariski open set equal to the union of the G0-orbits of
maximal dimension. This dimension is

∑
i n(αi)2 − dim(T );

3. Σn(T ) is the set of nilpotent laws n ∈ LTn (C) for which the semi-
direct product g = T ⊕ n is complete (i.e., the derivations are inner
and the center is zero). These Lie algebras satisfy the reduction
theorem [6], so the local study of g in Lm(C)/GL(m) is equivalent
to that of n in LTn (C)/G0. Assuming that multiplicities of all the
weights αi are 1, we can find slices in LTn (C) playing the part of
local charts in the quotient Σn(T )/G0 ⊂ LTn (C)/G0.

Admissible part A associated with Φ0 and slice

Since weights are distinct, it follows that the elements of G0 are s =
(sk)16k6n with sk ∈ C∗ operating on Φ as

(2.1) (s ? Φ)kij = sk
sisj

Φkij .

By the unicity of the weights, Φkij 6= 0 involves αi + αj = αk. Then, the
triple indices giving non-null values Φkij can be defined by the pairs (i < j).
So we can write Φij the coordinates instead of Φkij and let C be the set of
all pairs (i < j).

Definition 2.1. — A subset A ⊂ C is called an admissible part associ-
ated with a law Φ0 ∈ LTn (C) if the equation system s?Φ0 = Φ0 is equivalent
to (s ? Φ0)kij = (Φ0)kij , (ij) ∈ A, and if A is minimal for this property [6].

One sees that all admissible sets A associated with Φ0 are contained in
the set I(Φ0) of all pairs (i < j) with (Φ0)kij 6= 0. Using (2.1) we see that
A can index a minimal system of equations equivalent to the following:
sk = sisj , (i < j) ∈ I(Φ0).
In the same way, we can use the equations defining a derivation δ ∈

(Der n)T = T , i.e., (δ.Φ0)kij = (δkk − δii − δ
j
j )(Φ0)kij = 0, (i < j) ∈ I(Φ0)

where δ is given by its diagonal matrix (δii) over the basis (ei) for 1 6 i 6 n.
If Tn is the full torus on Cn diagonalized by the ei with weights εi for
1 6 i 6 n, then we have δii = εi(δ). The system is equivalent to

(2.2) εk = εi + εj , (i < j) ∈ A,

and defines the torus T = ∩Ker(εk − εi − εj) ⊂ Tn with the weights
αi = εi |T .
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If A is an admissible part associated with Φ0 ∈ LTn (C) we define the slice
associated with (Φ0,A) as the subscheme LT,An,Φ0

of LTn = Spec(An) defined
by the quotient of An by the ideal generated by the Xk

ij − (Φ0)kij , (ij) ∈
A, i.e., LT,An,Φ0

' Spec(C[Xk
ij ]/ Jacn +〈Xα − (Φ0)α〉α∈A). Under the above

hypotheses, if Φ0 ∈ Σn(T ) and if A is an admissible part associated with
Φ0, the slice LT,An,Φ0

satisfies the following properties, cf. [6]:
i) Φ ∈ LTn (C) admits A as an admissible part iff we have Φkij 6= 0 for

all (ij) ∈ A;
ii) all laws of LT,An,Φ0

(C) admit A as an admissible part;
iii) LT,An,Φ0

(C) is contained in Σn(T ) and its isomorphism classes are the
traces of the H/H0-orbits in Σn(T )/H0 = Σn(T )/G0;

iv) Φ admits A as an admissible part iff there is s ∈ G0 such that
s ? Φ ∈ LT,An,Φ0

(C);
v) H2(Φ0,Φ0)T is the Zariski tangent space of LT,An,Φ0

at Φ0.

As a consequence, fixing A and Φ admitting A as an admissible part, all
these schemes LT,An,Φ are conjugated to the scheme LT,An defined by condi-
tions Xα = 1 for α ∈ A. Each admissible part A corresponds to an open set
Ωn(A) defined by the points such that X̄α 6= 0 for all α ∈ A, where X̄α is
the residual class in C at the point and Σn(T ) =

⋃
A Ωn(A). Moreover, the

schemes LT,An (C) ' Ωn(A)/G0 constitute local affine charts of Σn(T )/G0.

The slices LT,An,Φ0
(C) in Σn(T )/G0 define continuous families of LTn/G0 be-

cause the orbits are finite, the finite group H/H0 is contained in the group
of permutations of weights which are not the sum of two weights.
The local ring of the slice LT,An at Φ0, denoted by OTΦ0,A or simply O,

can be directly constructed from antisymmetry, Jacobi and T -invariance
relations and the fixation of the structure constants (Φ0)α for α ∈ A.
We can choose the fixed values 1 for these coordinates. This local ring
gives the universal deformation of Φ0 in the slice or equivalently the versal
deformation associated with A in the scheme LTn , [6].

Weight paths and filiations An −→ An+1

The local study of laws of LTn is made in relation to the construction of
nilpotent Lie algebras by central extensions:

0 −→ Cen+1 −→ (Cn+1,Φn+1) −→ (Cn,Φn) −→ 0.

We choose non-trivial extensions Φn+1 of the law Φn with weights of mul-
tiplicities 1. This allows us to write the coordinates in the form Xij . The
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torus T is extended on Cn+1 by adding a weight αn+1 ∈ T ? appearing in
the T -module structure of the two-homological group H2(Φn), which is not
null [7]. There are different possible choices of paths α1, α2, · · · , αn+1 called
“paths of weights” associated with the various weights of the T -modules
H2(Φp) 6= 0 for p 6 n. A path of weights is said to be simple if all weights
are different. With this procedure, if Σn0(T ) 6= ∅ for the smallest integer
n0 called an initialization of the path, then it is possible to keep the same
properties for all n > n0 . This enables us to construct the slices LT,Ann

by induction on n: we add one dimension with a vector en+1 of weight
αn+1 and the choice of a pair (i0 < j0) such that αi0 + αj0 = αn+1 gives
An+1 = An ∪ {(i0, j0)}. Hence, it appears:

• the new coordinates Xij with αi+αj = αn+1 (Xi0,j0 being fixed to
1);

• the new Jacobi polynomials Jn+1
ijk , i < j < k with αi + αj + αk =

αn+1.

An example of the induction process
with a 3-order nilpotent parameter

We consider the following sequence of simple weights αi defining the
torus T :

(2.3) αi = iα1 for 1 6 i 6 4, α5+k = α5 + kα1 for k > 0.

The set Σ7(T ) is the orbit of the Lie algebra a5,7: [e1, ei] = ei+1, i =
2, 3, 5, 6, [e2, e5] = e7. We can take A7 = {(12), (13), (15), (16), (25)} and
n0 = 7 is the initialization of the central extension induction process defined
by An+1 = An ∪ {(1n)} for n > n0.

For n = 8 we add the weight α8 = α5 + 3α1 and the coordinates X17 =
1, X26 and X35. Jacobi relation J125 gives X26 = −X35 +X25 and we have
a free parameter X35 = t and X26 = 1− t. For n = 9 we add α9 = α5 +4α1
and the coordinates X18 = 1, X27, X36 and X45. Jacobi relations J126
and J135 give: X36 = t − u and X27 = 1 − 2t + u, where X45 = u is
a new free parameter. For n = 10 we add α5 + 5α1 and the coordinates
X19 = 1, X28, X37 and X46. The Jacobi relations J127, J136 and J145 give
X46 = u, X37 = t − 2u, X28 = 1 − 3t + 3u. The last Jacobi relation J235
gives:

(2.4) u(2 + 3t) = 3t2,

which is the equation of the hyperbola xy = 1 applying the affine change of
variables x = 9t/4+3/2, y = u−t+2/3. For n = 11 we add the weight α5+
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6α1 and the coordinates X1,10 = 1, X29, X38 and X47. Relations J128, J137
and J146 give X47 = u, X38 = t− 3u and X29 = 1− 4t+ 6u. Relation J236
gives 2ut = 3u2 and J245 doesn’t provide any new information. Projecting
(2.4) in the residual field O/m(O) at each point of the slice, we obtain
ū(2 + 3t̄) = 3t̄2 and 2 + 3t̄ 6= 0 in C. The scheme is contained in the
principal open set defined by 2 + 3t 6= 0. In this open set, the slice is
defined by the relations u = 3t2

2+3t and t3(4− 3t) = 0; it is the spectrum of

C
[
t,

1
2 + 3t

]
/〈t3(4 − 3t)〉 isomorphic to (C[t]/〈t3〉) ⊕ C. The slice has two

points for t̄ = 0 and t̄ = 4/3 which give the following T -rigid laws:
(1) a5,11 for t̄ = 0, with nilpotent element t3 = 0 (non-reduced case);
(2) a′5,11 for t̄ = 4/3 (u = 8/9, regular case).
The scheme LT,A11

11 consists of a5,11(t) with t3 = 0 (u = 3
2 t

2 6= 0) and
a′5,11 for t = 4/3.
For n > 12 the algebra a′5,11 doesn’t have central extensions in the slice

defined by A12 = A11 ∪ {(1, 11)} but the algebra a5,n belongs to the slice
associated with An. We can state the following result, which can be proved
by induction on n > 11 :

Proposition 2.2. — The slices LT,Ann defined above with (2.3) and
admissible part An = {(25), (1i) for i 6= 4, 1 < i < n} for n > 7, are
affine schemes defined by the rings: C (n = 7), C[t] (n = 8), C[t, u] (n =
9), C[x, y]/〈xy−1〉 (n = 10), C

[
t, 1

2+3t

]
/〈t3(t−4/3)〉 (n = 11) and C[t]/〈t3〉

(n > 12).
For n > 11, this scheme is not reduced at a5,n. We have t3 = 0, t2 6= 0

and the versal deformation at point t̄ = 0, associated with An in LTn , is:
Xij = 1 for (ij) ∈ An; X2,5+k = 1− kt+ 3

4k(k − 1)t2 for n− 7 > k > 0;
X3,5+k = t− 3

2kt
2 for n− 8 > k > 0; X4,5+k = 3

2 t
2 for n− 9 > k > 0.

Other slices for (2.3)

A complete study of Σn/G0 gives the slices associated with all possible
admissible sets. Some of them for n = 11 include:

• The slice associated with A′11 = {(1j), (2k), j 6= 4, 6, 8; k = 5, 8, 9}
isomorphic to Spec(C[t]/〈t3(1− t)(4− 3t)〉) where t = X35. It con-
tains a new T -rigid law for t = 1.

• The slice associated with A′′11 = {(1j), (25), (35), for j 6= 2, 4} iso-
morphic to Spec(C[u]/〈u2(3u−2)〉) where u = X45; u is 2-nilpotent
at the new point X̄45 = X̄12 = 0.
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• The slice associated with A′′′11 = {(1j), (25), (35), (45), j > 4}
isomorphic to Spec(C[v]/〈v(2 − 3v)〉) where X12 = 2v, X13 = v.
For v̄ = 0 we have Xij = 1 for i 6 4 and j > 4 and 0 otherwise
with i < j. This rigid law can be extended in the slices associated
with A′′′n (n > 11).

Remark 2.3. — a) Different slices containing a same point are gene-
rally not isomorphic as scheme and the number of their components can
be different. By the universality of versal deformation [6], completed local
rings of slices at this point are isomorphic.
b) The slice associated with A′′′11 gives rigid laws with different numbers

of generators. If v 6= 0 we obtain a rigid law with 3 generators and if v = 0
the rigid law has 5 generators.

Nilpotent parameter at each order
in local rings of some slices

We begin with the following result:

Lemma 2.4. — Let a be a Lie algebra admitting a maximal torus with
weights αi on a diagonalizing basis ei, 1 6 i 6 k. We suppose e1 /∈ [a, a]
and let V be a C-space generated by vectors ek+i for 1 6 i 6 p, then:

i) We obtain a semi-direct Lie algebra product g = a⊕ V of a by the
abelian one V with the brackets: [e1, ej ] = ej+1 for k < j < k + p,

[ei, ej ] = 0 for i > 1, j > k.

ii) g admits a maximal torus defined by the weights αi; for 1 6 i 6 k,
β + jα1; for 0 6 j < p.

In this section we work on sequences of weights of rank two, generalizing
(2.3):

(2.5) α, m2α, · · · , mrα, β, β + α, β + 2α, · · · , β + sα.

with integers m1 = 1 < m2 < · · · < mr.

Notations

We write αi = iα for i ∈ {m1, · · · ,mr} and αb+k = β + kα where b
is an integer greater than mr. The coordinates are Xij for i, j, i + j ∈
{m1, · · · ,mr} and Xi,b+k for i ∈ {m1, · · · ,mr}, k + i 6 s. The indices are
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not consecutive but the additive writing is kept with Xij = Xi+j
ij . Jacobi

relations for 1 6 i < j 6 mr and i+ j + k 6 s are:

(2.6) Ji,j,b+k = XijXi+j,b+k −Xj,b+kXi,b+j+k +Xi,b+kXj,b+k+i = 0.

Lemma 2.5. — The sequence (2.5) is a simple path of weights for all
s > mr.

Proof. — We observe that the law defined by Xij = 0 for i < j 6 mr

and Xi,b+k = 1 for i = ml 6 mr and i + k 6 s satisfies (2.6). Any
maximal torus on this algebra containing T defined by (2.5) commutes
with T and has weights α′i on the same basis ei. If s > mr we obtain
adei(eb) = (ade1)i(eb) = eb+i for any i ∈ {m1, · · · ,mr} and the relations
β′+α′i = β′+ iα′ = α′b+i involve α′i = iα′. Consequently, we have a weight
system of rank 2 equal to (2.5). �

A particular case of special interest is provided by the sequence of weights:

(2.7) α, 2α, 3α, 5α, · · · , (2p+ 1)α, β, β + α, · · · , β + sα.

All T -invariant laws n for (2.7) trivially satisfy:
1) The sum a = Ce2 ⊕ (⊕06l6pCe2l+1) is a subalgebra of n whose

brackets are given by [e2, e2i−1] = cie2i+1, 1 6 i 6 p. If ci 6= 0
for 1 6 i 6 p, then a is isomorphic to the well-known filiform Lie
algebra f0p+2 : [x1, xi] = xi+1, 1 < i < p+ 2.

2) The Lie algebra n is the semi-direct product of a by the abelian
ideal ⊕sk=0Ceb+k (this is generally true for (2.5)).

3) The following n = p+ 3 + s dimensional Lie algebra with a ' f0p+2
is T -invariant:

bp,n :


[e1, e2] = e3
[e2, e2i−1] = e2i+1 1 < i 6 p
[ei, eb+k] = eb+k+i i = 1, 2; k + i 6 s.

We can define by induction the following sets Apn for n > p+ 5:

App+5 = {(1, 2), (1, b), (1, b+ 1), (2, b), (2, 2l − 1) for 2 6 l 6 p},
Apn+1 = Apn ∪ {(1, b+ s)}.(2.8)

Theorem 2.6. — The sets Apn (p > 1) are admissible sets of bp,n for
n > p+ 5 and the slices associated are the spectrum of the following rings
with τ a free variable: C (n = p + 5), C[τ ] (p + 6 6 n 6 3p + 5) and
C[τ ]/(τp+1) (n > 3p+ 6).

For n > p+ 6, a versal deformation of bp,n associated with Apn in LTn is
given by:
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Xij = 1 for (ij) ∈ Apn, X2,b+k = 1 − kt (0 6 k 6 s − 2), X2l+1,b+k =
clt

l (0 6 l 6 p, 2l + 1 + k 6 s), where cl is obtained in (2.15).
The local parameter t = X3b is free for p+ 6 6 n 6 3p+ 5 and nilpotent

tp+1 = 0, tp 6= 0 for n > 3p+ 6.

Proof. — For n > p+5, one checks that (2.7) defines a maximal torus on
bp,n and Apn is admissible. The coordinates of the scheme LTn are X12, X2i,

i ∈ {3, 5, · · · , 2p − 1} and Xi,b+j , i ∈ {1, 2, 3, 5, · · · , 2h + 1} with h =
min(p, [ s−1

2 ]) and i + j 6 s. After fixing Xij = 1 for (i, j) ∈ Apn, the
remaining parameters areX2,b+j for j > 1 andXi,b+j for i = 3, 5, · · · , 2h+1
and i+ j 6 s.

If i = 1, the equation (2.6) becomes:

(2.9) X1jXj+1,b+k = Xj,b+k −Xj,b+k+1

where j is odd or equal to 2 and j+k+1 6 s. This gives Xj,b+k+1 = Xj,b+k
for odd j > 3 and we have:

(2.10) Xj,b+k = Xj,b, j = 3, 5, · · · , 2h+ 1; 0 6 k 6 s− j.

If j = 2 in (2.9), using (2.10) we obtain the relation X2,b+k+1 = X2,b+k −
X3,b. By the repeated application of this latter relation, we obtain the
following:

(2.11) X2,b+m = 1−mX3,b, 0 6 m 6 s− 2.

If i = 2 in (2.6), from the relations (2.10) and (2.11) it follows that:

(2.12) X2,jXj+2,b+k = −jXj,bX3,b, j = 3, 5, · · · , 2p+ 1; j + 2 + k 6 s.

Observe that X2,j = 1 if j + 2 6 2p + 1 and Xj+2,b = 0 if j + 2 > 2p + 1.
Using (2.10), the relation (2.12) becomes:

(2.13) Xj+2,b = −jXj,bX3,b, j 6 2p− 1;

(2.14) 0 = −(2p+ 1)X2p+1,bX3,b, j = 2p+ 1.

In view of these equalities from j = 3 to 2m− 1, we obtain for 1 6 m 6 p:

(2.15) X2m+1,b = (−1)m−1 (2m− 1)!
2m−1(m− 1)! (X3,b)m.

Thus, if s 6 2p+ 2, we have 2m+ 1 6 2p+ 2 and formula (2.15) gives the
components X2l+1,b for 5 6 2l+ 1 6 2p+ 1. If s > 2p+ 3, (2.14) becomes:

(2.16) (X3,b)p+1 = 0.

Finally if i > 2 the equality (2.6) becomesXj,b+kXi,b+j+k=Xi,b+kXj,b+k+i,

that is trivial with (2.10). �
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Remark 2.7. — Case p = 1. We denote by a4,n for n > 7, the Lie algebra
defined by the non null brackets [ei, ej ] = ei+j for i < j if (i = 1, j 6= 3),
(i = 2, j > 4) or (i = 3, j > 4). It is isomorphic to b1,n and its versal
deformation a4,n(t) defined by t = X34 is a continuous family for n = 7, 8.
Condition t2 = 0 for n > 9 corresponds to the non null quadratic Rim
function calculated in [2].

Corollary 2.8. — The Lie algebra bp,n satisfies:
i) for n > p+ 6, H2(bp,n, bp,n)T = CΦ̄1;
ii) for n > 3p + 6, we have a truncated deformation

∑p
k=0 τ̄

kΦk with
an obstruction ωp+1 6= 0 in H3(bp,n, bp,n)T .

Proof. — Applying Proposition 1.2 to the slices, Theorem 2.6 gives defor-
mations satisfying tp+1 =0 and tp 6=0. Consequently, we obtain ωp+16=0. �

Algebras gp,n = T ⊕ bp,n, defined as semi-direct products by the torus T
on bp,n, satisfy hypotheses of the reduction theorem in [6]. Thus, the local
study of gp,n in Ln+2 is equivalent to that of bp,n in LTn . We can summarize
it in the following statement:

Corollary 2.9. — The group H2(gp,n, gp,n) is null for n = p+ 5 and
equal to CΦ̄1 6= 0 for n > p+ 5. Moreover,

i) for n = p+ 5, gp,n is rigid and Lp+7 is reduced at this point;
ii) for p + 6 6 n 6 3p + 5, Φ1 is tangent to a continuous family in

Ln+2;
iii) for n > 3p + 5, gp,n is rigid in Ln+2 and Φ1 is tangent to a versal

deformation
∑
k>0 t

kΦk with tp+1 = 0, tp 6= 0. This corresponds to
an obstruction ωp+1 6= 0 in H3(gp,n, gp,n) and ωk = 0 for k 6 p.

Remark 2.10. — Obstructions to deformation equations can appear at
each order in schemes LTn and Lm.

3. Elimination procedure in the search
for nilpotent elements in global schemes LTn

An existence theorem

Let Φ0 be a law, A be an admissible set associated with Φ0, O be its
local ring in the slice LT,An , U ⊂ C[Xij ] be the ideal generated by Xα − 1
for α ∈ A and π be the projection of An to the quotient An = An/U where
U = U/ Jacn . The image of

√
0 ⊂ An by π is contained in

√
0̄ ⊂ An. If
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Φ0 is rigid, then m(O) =
√

0̄ in O [6]. Writing O = (An)M as the localized
ring by the maximal ideal M associated with Φ0, each u ∈ m(O) is v/f
where v ∈M and f /∈M ; u and v have the same nilpotency order l: ul = 0,
ul−1 6= 0. We are looking for P ∈ C[Xij ] such that π(P̄ ) = v. Moreover,
if P ∈

√
Jacn, then π(P̄ l−1) = vl−1 6= 0 and the nilpotency order of P̄

in An is greater than or equal to l. The existence of such a P (given by
P = Q · H) is assumed by the following Theorem 3.2. This result is also
true for the schemes Lm and needs the following lemma:

Lemma 3.1. — Let K = C[X1, . . . , Xr], W = C[Y1, . . . , Ys] and let Ψt :
K ⊗C W → W be the morphism defined by Ψt(f(X,Y )) = f(t, Y ) for
t ∈ Cr. If J is an ideal of K ⊗C W , then Ψt(J) is an ideal of W and the
ideal L = ∩tΨt(J), for t ∈ (C∗)r, is {P ∈W ;∃Q ∈ K,QP ∈ J}.

Proof. — If P ∈ L, for each t there are polynomials gti(X,Y ) ∈ K ⊗CW

such that:

P (Y ) = Ψt

(∑
i

gti(X,Y )fi(X,Y )
)

=
∑
i

gti(t, Y )fi(t, Y )

where fi(X,Y ) are generators of J . The polynomials gti(X,Y ) can be writ-
ten as

gti(X,Y ) =
∑
γ

atiγ(X)Y γ

where γ is a multi-index for the monomials Y γ = Y γ1
1 · · ·Y γss , and

P (Y ) =
∑
i

(∑
γ

atiγ(t)Y γ
)
fi(t, Y ), ∀t ∈ (C∗)r.

If we consider fi(X,Y ) =
∑
β Qiβ(X)Y β and P (Y ) =

∑
δ cδY

δ with fixed
polynomials Qiβ(X) ∈ K and fixed cδ ∈ C, it follows that
(3.1)

P (Y ) =
∑
δ

cδY
δ =

∑
δ

∑
β+γ=δ

(∑
i

atiγ(t)Qiβ(t)
)
Y δ, ∀t ∈ (C∗)r.

Then (3.1) gives the set of the following equalities indexed over δ :

(3.2)
∑

β+γ=δ

(∑
i

λiγ(X)Qiβ(X)
)

= cδ.

This is a linear system of equations in λiγ(X) with coefficients Qiβ(X)
which can be solved over the field of fractions C(X) by the pivot method.
Writing the solutions λiγ(X) = hiγ(X)/qiγ(X), it suffices to take the poly-
nomial Πiγqiγ = Q and consequently we have PQ ∈ J . �
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Theorem 3.2. — Let u = v/f be a l-nilpotent element in m(O), with
O the local ring in the local chart (or slice) associated with an admissible
set A at Φ0 for LTn/G0. If H ∈ C[Xβ ;β /∈ A] satisfies H̄ = v ∈ Ān and
G0 ? H ⊂ C∗.H, then H̄ l = 0 and there is Q ∈ C[Xα;α ∈ A] such that
(Q.H)l is in Jacn, i.e., Q.H is l-nilpotent in An.

Proof. — We have u = v/f with f /∈ M , v ∈ C[Xij ]/(〈Xα − 1, α ∈
A〉+ Jacn), vl = 0, vl−1 6= 0, i.e., there are polynomials gα such that

H l +
∑
α∈A

(Xα − 1)gα ∈ Jacn .

The action ? of G0 stabilizes Jacn and C∗.H l. For t = (tα)α∈A, tα ∈ C∗,
there is s ∈ G0 with (s ? X)α = Xα/tα by definition of A and we obtain:

λH l +
∑
α

(Xα − tα
tα

)
s ? gα ∈ Jacn

with λ ∈ C∗. This relation involves H l ∈ Ψt(Jacn) for each t. By applying
Lemma 3.1, there exists Q ∈ C[Xα;α ∈ A] with Q.H l ∈ Jacn and thus
(QH)l ∈ Jacn . �

Remark 3.3. — In the examples dealt with in this paper, H can be
chosen as a simple coordinate and the condition G0 ?H ⊂ C∗H is satisfied.
If H is a homogeneous polynomial, we can choose Q to be homogeneous
because the homogeneous parts of (HQ)l are in Jacn as well.

Although it is possible to solve the linear system (3.2) with P = H l,

in practice this linear system is very laborious. For the examples proposed
in this section, we prefer to use a different method in order to find global
nilpotent elements. We proceed by eliminating coordinates Xβ (β /∈ A)
from the Jacobi polynomials Jk, 1 6 k 6 N . If m is the number of distinct
coordinates Xij (i < j) and N the number of the Jacobi polynomials Jk,
then nilpotent elements can appear under the condition:

(3.3) N > m− |A|.

Elimination in F [X]

Let F be a factorial ring and F [X] be the polynomial ring in one variable
X. If f1 = AXp + P and f2 = BXq + Q are two polynomials in X with
p > q, deg(P ) < p, and deg(Q) < q, we denote D a H.C.F. of A and B,
A = A′D, B = B′D and then we can obtain the polynomial

f3 = B′f1 −A′Xp−qf2 = B′P −A′Xp−qQ
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of degree smaller than p in variable X. If deg(f2) > deg(f3), we now con-
sider the pair (f2, f3); otherwise we consider the pair (f3, f2). We can apply
the same operation again to f2 and f3 to obtain f4 and so on. Finally, we
obtain a well-defined element of F denoted by {f1, f2}X . This element can
be null.
In this work, we eliminate a coordinate Xβ where β is an index (ij)

from two Jacobi polynomials J1 and J2, which depend on this coordinate.
The polynomial obtained, denoted by {J1, J2}β , is homogeneous and also
belongs to the ideal Jacn .

The method

It is relative to the choice of an admissible set A. If β /∈ A we consider
the list constituted by all the Jk depending on Xβ . If we fix from this
list one Ji as a pivot, we calculate all the different polynomials {Jk, Ji}β
with k 6= i. Then, we have a new list, in which we have replaced each
Jk by this new polynomial {Jk, Ji}β and where the pivot Ji, depending
on Xβ , doesn’t appear in it. We proceed by successively eliminating the
coordinates indexed by β1, · · · , βl /∈ A. In all examples encountered, the
condition (3.3) is satisfied and we can choose pivots such that {Jk, Ji}β 6= 0.
This possibility allows us to obtain polynomials depending on the variables
indexed over A and only one variable Xρ with ρ /∈ A. This is the best
possibility on account of the following result:

Lemma 3.4. — If two polynomials f and g in Jacn only depend on the
Xα, α ∈ A, and Xρ for one unique ρ /∈ A, then {f, g}ρ = 0.

Proof. — The polynomial h = {f, g}ρ belongs to Jacn and only depends
on coordinates indexed by A. By definition of admissible set A associated
with a law Φ0, the parameters (s ? Φ0)α, for α ∈ A and s ∈ G0, are
independent and generate an open set Ω 6= ∅ in C|A|. The polynomial h, null
on LTn (C), depends on variables indexed by A only and then h(G0 ?Φ0) =
h(Ω) = 0; h is null on the closure of Ω, i.e., h = 0. �

Remark 3.5. — a) The polynomials obtained after elimination generally
depend on the choice in the order of the βi and the pivots.
b) If a non-null polynomial depends on variables indexed by A′ ∪ {ρ}

with A′ ⊂ A, then A′ ∪ {ρ} is not contained in an admissible set (proof of
Lemma 3.4).
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Irreducible polynomials in the radical of Jacn

We say that a polynomial is irreducible in an ideal of C[Xij ] if it doesn’t
have non-trivial factors in this ideal. In

√
Jacn, such a polynomial can be

written P = P1P2 · · ·Pr where the Pi are irreducible in C[Xij ] and distinct
up to a factor in C∗. If we denote P̂i the polynomial Πk 6=iPk, we have the
following criterion:

Proposition 3.6. — A product of different irreducible polynomials
P = Πr

k=1Pk is irreducible in
√

Jacn iff for each i ∈ {1, . . . , r}, there is
a law Φ ∈ LTn (C) with P̂i(Φ) 6= 0.

Proof. — Notice that P is irreducible in
√

Jacn iff P̂i /∈
√

Jacn for all i.
Thanks to the Hilbert nullstellensatz, it means that P̂i is not identically
null on LTn (C). �

Corollary 3.7. — The number of irreducible components of LTn (C) is
bigger than the number of factors in any irreducible polynomial of

√
Jacn.

Under the assumptions for path of weights, we can state:

Lemma 3.8. — If a polynomial is irreducible in
√

Jacn, then it is irre-
ducible in

√
Jacm for m > n.

Proof. — If P = Πr
k=1Pk is an irreducible polynomial in

√
Jacn, for each

i ∈ {1, . . . , r} there is Φ ∈ LTn (C) with P̂i(Φ) 6= 0. The law Φ × 0m−n,
direct product of Φ by the abelian law 0m−n on Cm−n, belongs to LTm(C)
and satisfies P̂i(Φ× 0m−n) = P̂i(Φ) 6= 0. �

For each irreducible polynomial P in
√

Jacn, we call nilpotency order
of P in the ring An the unique number ν > 1 such that P ν ∈ Jacn and
P ν−1 /∈ Jacn . The quotient P̄ in An satisfies P̄ ν = 0 and P̄ ν−1 6= 0. If
P = Πr

k=1Pk is irreducible in
√

Jacn with nilpotency order ν in An, then
each irreducible polynomial Q in Jacn with factors Pk for 1 6 k 6 r,

satisfies Q = P ν1
1 · · ·P νrr and ν = Max16k6r(νk).

The examples

With the tori chosen in the following examples, we can adopt graded
indexation for structure constants of laws [ei, ej ] = Xijei+j , 1 6 i < j 6 n,
and for Jacobi polynomials:

(3.4) Jijk = XijXi+j,k +XjkXj+k,i +XkiXk+i,j

where i+ j + k 6 n.

ANNALES DE L’INSTITUT FOURIER



STUDY OF OBSTRUCTIONS IN JACOBI SCHEMES 475

a) The Torus α1, 2α1, 3α1, α4 + kα1 (k > 0). We have 3 families of
Jacobi polynomials for p > 4 : J12p (n = p+3 > 7), J13p (n = p+4 > 8)
and J23p (n = p + 5 > 9). Inequality (3.3) is satisfied for n > 9. The
elimination process relative to the admissible set An = {(1k), (24) for 1 <
k < n, k 6= 3} gives:

Proposition 3.9. — The monomial X12X17X18(X34)2 is irreducible in
Jacn for n > 9. The monomial X12X17X18X34 is irreducible in

√
Jacn and

two-nilpotent in An.

Proof. — We obtain X12X17X18(X34)2 by eliminating the variables X36,

X27, X35, X26 andX25 from the 6 Jacobi polynomials for n = 9. According
to Proposition 3.6, the monomial X12X17X18X34 is irreducible in

√
Jacn,

however it doesn’t belong to Jacn (n > 9) because in the local study of
the scheme LT,An at point a4,n appears the condition (X̄34)2 = 0, X̄34 6= 0
(Remark 2.7). Thus, we deduce the irreducibility of X12X17X18(X34)2 in
Jacn . �

b) The torus α1, 2α1, 3α1, 4α1, α5 + kα1 (k > 0). This torus
corresponds to the example in Proposition 2.2. We have Jacobi polynomials
Jijk for 1 6 i < j 6 4 and k > 5.
For n > 11 we consider the admissible set An = {(1k), (25) for 1 < k <

n, k 6= 4}. Condition (3.3) is satisfied and we can consider the elimination
procedure associated with An. For n = 11, if we eliminate X2k for k > 6,
X3k for k > 6 and X4k for k > 5 from the Jacobi polynomials, keeping only
the variable X35 not indexed by An, we obtain the following polynomial:

I1 = (X12)3(X18)2X19X110(3X12X35 − 4X25X17)(X35)3 ∈ Jac11 .

Hence,

(3.5) P = X12X18X19X110X35(3X12X35 − 4X17X25) ∈
√

Jac11.

Proposition 3.10. — If T is defined by the weights iα1 for 1 6 i 6 4
and α5 + jα1 for j > 0, we have for n > 11:

i) P , cf. (3.5), is irreducible in
√

Jacn;
ii) P gives a nilpotent element of order ν = 3 in An.

Proof. — i) According to the Lemma 3.8, it suffices to prove the irre-
ducibility for n = 11. Thanks to Proposition 3.6, we are looking for a law
Φ ∈ LT11(C) such that P̂α(Φ) 6= 0 for each irreducible factor of P indexed
by α.
If α represents the factor 3X12X35 − 4X17X25, then we have P̂α(Φ) 6= 0

for the law a′511 defined in section 2. If α = (35), we have P̂α(Φ) 6= 0 for
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the law a511. Ifα = (12), then the following Lie algebra law Φ satisfies
P̂α(Φ) 6= 0: Φ12 = Φ13 = 0, Φij = 1, for (ij) different to (12) or (13), i < j.

If ak is given by a law of LT,Akk (C), for 8 6 k 6 10, with Φ35 6= 0, 4/3, we
can construct a law Φ as in Lemma 2.4 giving the Φij of ak for i < j 6 k,

Φ1j = 1 for k < j < 11 and Φij = 0 for i < j otherwise. We have
P̂(1k)(Φ) 6= 0, concluding i).
ii) We project a power P k in the ring of slice associated with An, n > 11.

We obtain the polynomial (X̄35)k(3X̄35−4) and the projection on the local
ring at point a5n gives −4(X̄35)k which is not null for k = 2. Then P̄ k is
null in An for k > 3, but it is not null for k = 2. �

c) The torus kα (k > 1). We have the Jacobi (3.4) for 1 6 i < j < k.
The inequality (3.3) is satisfied for n > 12. For n = 12, an elimination
process associated with An = {(1k), (23), 1 < k < n}, shown later in the
“calculation with a computer” section, gives the polynomial:

I = −36(X12)5(X13)4(X17)3(X18)3(X19)2X110X111(X34)5

(X16X24 − 10X12X34) ∈ Jac12 .

Hence, we obtain the polynomial:

f = X12X13X17X18X19X110X111X34(X16X24 − 10X12X34) ∈
√

Jac12.

Taking into account the identity X13X16X24 − X16J123 = X15X16X23,
the following polynomial in

√
Jac12 with variables indexed on A12 ∪ {34}

satisfies Proposition 3.11:

(3.6) P = X12X17X18X19X110X111X34(X15X16X23 − 10X12X13X34).

Proposition 3.11. — If T is defined by the weights αk = kα for
1 6 k 6 n, then for n > 12 we have :

i) P , cf. (3.6), is irreducible in
√

Jacn;
ii) P gives a nilpotent element of order ν = 5 in the quotient ring An.

Proof. — i) It suffices to prove the irreducibility for n = 12 and we
proceed as in proof of Proposition 3.10. If α represents the non-monomial
factor of P , (3.6), then we have P̂α(Φ) 6= 0 for the Witt algebra w12:
Φij = i− j. If α = (34), then we have P̂34(Φ) 6= 0 for fn.
If α = (12), it suffices to check that the following law Φ belongs to

LT12(C) with P̂12(Φ) 6= 0: Φ12 = Φ4k = Φ5k = 0 (k > 4), Φij = 1 for
i < j otherwise. If ak is a Lie algebra in LT,Akk (C) for 7 6 k 6 11 with
Φ34 6= 0, 1/10, we construct the law Φ as in Lemma 2.4 by giving the Φij
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of ak for i < j 6 k, Φ1j = 1 for k < j < 12 and otherwise Φij = 0 for i < j.

Also, we have P̂(1k)(Φ) 6= 0 for the other factors, concluding i).
For ii): Observe that P = f −QJ123 and that P 5 = f5 + SJ123 belongs

to Jacn because f5 is a multiple of I. Hence, it gives P̄ 5 = 0 in the quotient
An. If we project a power P k in the ring defining the slice associated with
the admissible set An, then we obtain X̄ij = 1 for (ij) ∈ An and P̄ k =
(X̄34)k(1− 10X̄34)k. This expression is not null in the local ring associated
with fn for k 6 4, thanks to the local study in Proposition 1.6. Then,
P̄ 4 6= 0 and the nilpotency order of P in An is ν = 5. �

Corollary 3.12. — The scheme LTn has at least 8 irreducible compo-
nents for n > 12.

Calculation with a computer

Taking into account all the Jacobi polynomials (3.4) for n = 12, the
polynomial I has been obtained from the polynomial J246 after applying
the elimination method. In this process, the order of elimination of the
variables and the election of the pivot associated with each variable are
shown in the following table:

order variable pivot order variable pivot order variable pivot
1) X57 J156 7) X38 J128 13) X36 J126
2) X48 J138 8) X29 J3

236 14) X27 J2
234

3) X39 J129 9) X46 J145 15) X35 J134
4) X2,10 J3

147 10) X37 J127 16) X26 J1
125

5) X56 J146 11) X28 J2
136 17) X25 J124

6) X47 J137 12) X45 J135 18) X23 J123

where the pivot J3
147 has been obtained from Jacobi polynomial J147 after

eliminating, by this process, the variables X57, X48 and X39. The pivot
J3

236 is also obtained by eliminating the variables X56, X47 and X38 in the
polynomial J236. The polynomial J2

136, after the elimination of the variables
X46 and X37 in J136. The pivot J2

234, by eliminating X45 and X36 in J234
and finally, J1

125 is obtained by elimination of the variable X35 in J125.
We have used the symbolic computational package MAPLE to execute

this calculation.

TOME 61 (2011), FASCICULE 2



478 Roger CARLES & M. Carmen MÁRQUEZ

4. A second geometry obtained with generators and
relations: subschemes of ideals in Grassmannians

Generalities

A Lie algebra g with a finite number r of generators is built as the quo-
tient of a free Lie algebra Lr to r generators by an ideal J: 0 −→ J −→
Lr −→ g −→ 0. Two quotients of Lr are isomorphic iff the ideals are
conjugated by the automorphism group Aut(Lr). If Cp(g) is the central
descending series of g, a nilpotent Lie algebra Lr/J of dimension n satisfies
Cn(Lr/J) = Cn(Lr)/J = 0, i.e., Cn(Lr) ⊂ J. Such an algebra is also the
quotient of the finite dimensional Lie algebra M = Lr/Cn(Lr) by the ideal
J/Cn(Lr). In this work we define Jn(Lr) as the set of ideals of codimen-
sion n in Lr containing Cn(Lr); it is identified with a subscheme of the
grassmannian Grm−n(Lr/Cn(Lr)) for dim(M) = m. The nilpotent laws of
dimension n are obtained for 2 6 r 6 n. For m > n, the grassmannian
Grm−n(M), with its natural reduced structure of scheme, contains as sub-
scheme the set Jn(Lr) of n-codimensional ideals J/Cn(Lr) of M defined by
the simple polynomial relations [x, J] ⊂ J for x ∈ Lr. This is the “minimal”
definition of an ideal which is provided by its current algebraic character-
ization. Such a scheme is generally not reduced. Each point {J} defines
the Lie algebra quotient n = Lr/J, hence giving a second geometry for the
nilpotent laws.

Torus

A maximal torus Tr on Lr, diagonalized by a family of generators ei, 1 6
i 6 r, where t(ei) = εi(t)ei, t ∈ Tr, is characterized by its weights ε =∑r
i=1 niεi and the multiplicities given by the Witt formula:

dε = dim(Lε) = 1
| ε |

∑
k|ni

µ(k) (| ε | /k)!
(n1/k)! · · · (nr/k)!

where Lε is the weight subspace of Lr associated with ε, | ε |=
∑
ni,

and µ the Möbius function. The Tr-module structure of M is given by the
decomposition ⊕|ε|<nLε. Let T be a subtorus of Tr; its weights on Lr are
the restrictions α = ε |T=

∑r
i=1 niαi with αi = εi |T , and let Π be the

set of this weights. We write Lr = ⊕αLα with Lα = ⊕{Lε;α = ε |T }. An
ideal stable by T can be written as J = ⊕αJα with Jα ⊂ Lα. The different
tori T employed are of maximal type, i.e., maximal over one Lie algebra
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at least. We denote by JTn (Lr) the subscheme of Jn(Lr) constituted of all
T -invariant ideals J satisfying the additional polynomial relations t(J) ⊂ J

for t ∈ T . The torus T operates on each quotient n = Lr/J. Let σn or
simply σ be a sequence called weight system {(α, n(α));α ∈ Π, n(α) ∈ N}
such that n(αi) = 1 for 1 6 i 6 r and

∑
α n(α) = n for n ∈ N; let

j(α) = dim(Lα)− n(α) for each α ∈ Π, and let P denote the set of α ∈ Π
with n(α) 6= 0. Let V σr (T ) be the set of ideals J ∈ JTn (Lr) such that
dim(Jα) = j(α), i.e., dim(nα) = n(α) for nα = Lα/Jα; V σr (T ) is a closed
subscheme of a product of grassmannians

V σr (T ) = {J = (Jα) ∈ ΠαGrjα(Lα), [Lr, J]α ⊂ Jα} ⊂ JTn (Lr).

In fact, it is a finite product of grassmannians because n(α) = 0 involves
Jα = Lα and Grj(α)(Lα) is trivial, so it can be omitted. The scheme JTn (Lr)
is a finite union of V σr (T ). Let Wσ

r (T ) be the open set of V σr (T ) consisting
of the ideals on which T is maximal.

Action groups

The normalizing subgroup N of T in Aut(Lr), i.e., the set of θ ∈ Aut(Lr)
with θTθ−1 = T , stabilizes V σr (T ) and Wσ

r (T ). The torus T is maximal on
Lr/J iff it is maximal in the subalgebra of derivations of Lr stabilizing J

[8]. We can state a lemma under the following hypothesis on P :
(H): Each linear automorphism of T ∗ stabilizing P and sending a base

B ⊂ {αi}16i6r in {αi}16i6r, stabilizes the part {αi}16i6r too.

Lemma 4.1. — Under conditions (H) and n(αi) = 1 (1 6 i 6 r) for σ,
two ideals in Wσ

r (T ) are conjugated by N iff the corresponding quotient
Lie algebras are isomorphic.

Proof. — The direct implication is obvious. Conversely, let Jk for k ∈
{1, 2} be two ideals of free Lr stable by T and such that the quotient alge-
bras Lr/Jk are isomorphic. The tori of derivations Tk on Lr/Jk, deduced
from T by tkpk = pkt if pk is the canonical projection on Lr/Jk and t ∈ T ,
being maximal, are conjugated by an isomorphism h from Lr/J1 to Lr/J2
(Mostow’s theorem) and we have T2 = hT1h

−1. Under these hypotheses,
we can find vectors xi, 1 6 i 6 r, associated with T -weights αi in Lr
such that Lαi = Cxi ⊕ (J1)αi . For each t ∈ T , there is a unique t′ ∈ T

with t′2h = ht1. The transpose of the linear automorphism t → t′ of T
is a linear automorphism L of T ∗: (Lα)(t) = α(t′), α ∈ T ∗. It keeps σ
and P because h is a Lie algebra isomorphism. With an indexation such
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that the weights αi for 1 6 i 6 s (s 6 r) satisfy (J1)αi ⊂ [Lr,Lr]αi , i.e.,
p1ei /∈ [Lr/J1,Lr/J1], we have that {p1ei}16i6s is a minimal generating
family of Lr/J1 as its image by h in Lr/J2. Each weight L−1(αi) of h(p1ei)
for 1 6 i 6 s is of the form αj , for 1 6 j 6 r. Notice that all weight
vectors in [Lr/J1,Lr/J1] are linear combinations of the αi, thus there is a
base B of T ∗ contained in {αi; 1 6 i 6 r} as L−1(B). Applying hypothesis
(H) to L−1, we define a permutation ζ of {1, · · · , r} such that L−1(αi) =
αζ(i), 1 6 i 6 r. We have t′2(h(p1xi)) = ht1(p1xi) = αi(t)h(p1xi), so
h(p1xi) 6= 0 is a weight vector for T2. In the same way, we can choose a
family yi, 1 6 i 6 r, associated with J2, satisfying the same properties
as xi and such that h(p1xi) = p2(yζ(i)). If p1xi /∈ [Lr/J1,Lr/J1], we take
xi = ei, and p2yζ(i) /∈ [Lr/J2,Lr/J2] gives yζ(i) = λieζ(i) +zζ(i) with λi 6= 0
and zζ(i) ∈ [Lr,Lr]. If p1xi ∈ [Lr/J1,Lr/J1], then p1ei, h(p1ei) and p2eζ(i)
are in their respective derived ideals and h(p1ei)−p2eζ(i) can be written as
p2zζ(i) with zζ(i) ∈ [Lr,Lr]. Setting θ(ei) = λieζ(i)+zζ(i), with λi = 1 in the
second case, we obtain an automorphism θ of Lr defined on the generators
ei, satisfying hp1 = p2θ and θ(J1) ⊂ J2. With relations αζ(i)(t′) = αi(t),
one checks equalities t′θ = θt for each t ∈ T and θ ∈ N. �

This lemma allows us to treat Lie algebras that don’t have a fixed number
of generators, which differs essentially from results of G. Favre in [8], where
this number is given by r. Hypothesis (H) is satisfied by all examples
studied in this paper.
The quotient space Wσ

r (T )/N gives the isomorphic classes of the n =
Lr/J. The neutral components N0 of N and of Aut(Lr)T are equal. The
finite group N/N0 operates on Wσ

r (T )/N0, giving the isomorphic classes.
If we compare Wσ

r (T ) to Σn(T ) and N0 to G0 in the affine description of
section 2, the problem is now to find good slices for Wσ

r (T )/N0.

Slices for Wσ
r (T )/N0

We impose the condition n(αi) = 1 for 1 6 i 6 r. Then, the s ∈ N0 sta-
bilize the weight subspaces Lα(α ∈ Π) and are defined on the generators by
s(ei) ≡ siei, mod [Lr,Lr] with si ∈ C∗ for 1 6 i 6 r. If eI = [ei1ei2 · · · eip ]
is a Lie product of generators ei where the brackets are omitted and
I = (i1i2 · · · ip), we have for s ∈ N0: s(eI) ≡ si1 · · · sipeI mod (Cp+1Lr)α,
and s(eα) ≡

∑
c(I)si1 · · · sipeI mod (Cp+1Lr)α for eα =

∑
c(I)eI ∈ Lα,

c(I) ∈ C.
We define a slice F of Wσ

r (T ) at point J (or n = Lr/J), associated with
the N0-action group, as a subscheme of Wσ

r (T ) transversal to the orbit of
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J at J, i.e., satisfying TJWσ
r (T ) = TJF ⊕ TJ(N0.J) with reduced scheme

structure on the orbit N0.J. A subscheme F is a slice if it is a slice at
each point. We can always construct such a subscheme by the “orbital
parameters fixing” method developed in [6].
The diagonal subgroup D ⊂ Aut(Lr) defined by the s such that s(ei) =

siei, si ∈ C∗, 1 6 i 6 r, is contained in N0. Condition n(αi) = 1 for
1 6 i 6 r involves that each s ∈ N0 can be written as s(ei) ≡ siei mod (J)
with si ∈ C∗ for 1 6 i 6 r if J is fixed in Wσ

r (T ). The invariant subgroup
U = {s ∈ N0; s(ei) ≡ ei mod (J)} is contained in the stabilizer subgroup
Stab(J) of J in N0. We have N0/U ' D and the quotient Stab(J)/U is
isomorphic to the neutral component D′ of the group Aut(Lr/J)T . Thanks
to the hypothesis n(αi) = 1 for 1 6 i 6 r, D′ can be identified with a
subgroup of D whose Lie algebra is T . The orbit Ω(J) of J by the N0
action can be identified with the space of classes

(4.1) Ω(J) ' N0/ Stab(J) ' D/D′

and the tangent of Ω(J) at J is Tr/T. In practice, the orbits Ω(J) are
obtained by the natural action of the subgroup D ⊂ N0 on ideals. Slices
are obtained (cf. examples section 5) by fixing a minimal family of lines
Cui (i ∈ I) in J which impose that T is a maximal torus, i.e., s(ui) ⊂
Cui (i ∈ I) for s ∈ D involve s ∈ D′. If Tr = T we have:

Remark 4.2. — The case of maximal rank T = Tr gives the slice F =
Wσ
r (T ) simply.

Schemes of ideals are Jacobi schemes

We denote by a calligraphic letter the set of representatives f in HomC
(Lr,Cn) whose kernel belongs to a grassmannian of Lr. For example, Jn(Lr)
is the set of C-linear maps from Lr to Cn such that Ker(f) is an ideal
in Jn(Lr). Similarly, we define Vσr (T ) = {f ∈ Hom(Lr,Cn)T ; Ker(f) ∈
V σr (T )} and so on. Such a f ∈ Jn(Lr) allows us to construct a Lie algebra
bracket Φf on Cn: Φf (x, y) = f([f−1(x), f−1(y)]), (x, y) ∈ (Cn)2, where
[ , ] is the bracket on Lr. Notice that (σ, s) ∈ Aut(Lr)×GLn(C) operates
on f ∈ Jn(Lr) by s ◦ f ◦ σ−1, thus Φsfσ−1 = s ? Φf and we can state the
following:

Lemma 4.3. — The algebraic map h : f −→ Φf from Jn(Lr) to Ln(C)
induces by quotient an injection on the classes:

Jn(Lr)/Aut(Lr) −→ Ln(C)/GLn(C).
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Proof. — The quotient of Jn(Lr) by the left action of GLn(C) is identi-
fied with Jn(Lr). �

By restriction toWσ
r(T ), h induces by quotient the injectionsWσ

r (T )/N→
LTn (C)/H and Wσ

r (T )/N0 → LTn (C)/G0.

Theorem 4.4. — Slices of Wσ
r (T ) associated with the action of N0 in

the scheme V σr (T ) can be identified with slices of Σn(T ) ⊂ LTn associated
with the G0 action in Jacobi schemes.

Proof. — Under hypotheses n(αi) = 1 for 1 6 i 6 r and T > 0, there
is t ∈ T such that α(t) > 0 for the weights and we have a partial order
relation > over the weights (in fact, total order) resulting from the order
in the real numbers α(t). If δ ∈ P is maximal for >, we have [n, nδ] = 0
and nδ is central in n. By induction on σ = (σ′, n(δ)), we construct

V σr (T ) = {J′ × Jδ ∈ V σ
′

r (T )×Grj(δ)(Lδ); [Lr, J′]δ ⊂ Jδ}.

If J′ ∈ V σ′r (T ), we can consider the subspaces Jδ of codimension n(δ) in Lδ
and containing [Lr, J′]δ. These subspaces of codimension n(δ) are identified
with their quotients J̄δ in E = Lδ/[Lr, J′]δ. This space E can be expressed
with the help of the T -module H2(n′) of homology of n′ = Lr/J

′ as:

E =
(

[Lr,Lr]
[Lr, J′]

)
δ

= [n̂′, n̂′]δ = H2(n′)δ.

If δ 6= αi for 1 6 i 6 r, we have Lδ = [Lr,Lr]δ, but the quotient Lr/[Lr, J′]
is an algebra n̂′, equal to the central extension of n′ by the kernel H2(n′)
defined in [3]. It is known that H2(n′)δ can be identified with the quotient
(∧2n′)δ/Ωδ, where Ωδ is the space generated by the vectors∫

(xyz)
x ∧ [y, z] = x ∧ [y, z] + y ∧ [z, x] + z ∧ [x, y], (x, y, z) ∈ n′α × n′β × n′γ ,

with α+ β + γ = δ. A subspace representative of codimension n(δ) in E is
a C−morphism fδ giving an exact sequence whose kernel contains Ωδ:

0 −→ Ker(fδ) −→ (∧2n′)δ −→ Cn(δ) −→ 0.

If (xi)16i6n′ is a basis of n′, and (yh)n′<h6n a basis of Cn(δ), we have

(4.2) fδ(xi ∧ xj) =
n∑

h=n′+1
Xh
ijyh
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with variables Xk
ij . The condition fδ(Ωδ) = 0 can be expressed by:

fδ

(∫
(ijk)

xi ∧ [xj , xk]
)

=
∫

(ijk)

∑
m

cmjkfδ(xi ∧ xm)

=
∑
h

(∫
(ijk)

∑
m

cmjkX
h
im

)
yh = 0,

i.e.,
∫

(ijk)
∑
m c

m
jkX

h
im = 0 for each (ijkh). These are the Jacobi relations

associated with the weight δ, satisfied by Lie algebras n, where cmjk are
structure constants of the quotient n′. Initialization of the induction is
made on a weight αi, 1 6 i 6 r, with σ1 = {(αi, 1)}. This gives trivial
V σ1
r (T ) because the abelian Lie algebra Cēi is associated with the ideal
⊕α6=αiLα.
We have proved that Vσr (T ) can be identified with the set of sequences

(fα1 , · · · , fβ , · · · , fδ) defined in (4.2) and seen as a linear morphism f . This
is the set of variables Xk

ij satisfying the Jacobi rules too. Observe that all
quotients of Ls(s 6 r) are quotients of Lr as well, thus the scheme Vσr (T )
(respectively Wσ

r (T )) can be identified with the open set of laws in LTn
(respectively Σn(T )) having less than r generators. The scheme V σr (T ) is
the set of ideals Ker(f) = Πβ Ker(fβ) as quotient scheme of Vσr (T ) by left
action of G0 ' ΠβGL(n(β)) and Wσ

r (T ) is an open subscheme of Vσr (T ).
The morphism Vσr (T ) −→ LTn (C) defined by h is an injective morphism
of Jacobi schemes. The subgroup N0 of Aut(Lr) operates right hand on
Vσr (T ) and G0 operates canonically by ? on LTn (C) and left hand on Vσr (T ).
These actions induce an action of G0 × N0 which is compatible with the
morphism h : f −→ Φf , Φsfu−1 = s ? Φf , (s, u) ∈ G0 ×N0. We obtain an
injection on the quotients V σr (T )/N0 −→ LTn (C)/G0, identifying the open
set Wσ

r (T )/N0 with an open set of Σn(T )/G0. Hence, h identifies each
(possible) slice of Wσ

r (T )/N0 with a slice of Σn(T )/G0. �

With formula of Theorem 1.8 (iii) of [3] under hypothesis n(αi) = 1, 1 6
i 6 r, we can state:

Theorem 4.5. — The Zariski tangent space of the scheme Wσ
r (T ) at a

point n = Lr/J defined by J is equal to HomC(J, n)L+T . The Zariski tangent
space to a slice of Wσ

r (T )/N0 is isomorphic to the second T -cohomological
adjoint group HomC(J, n)L+T /(Tr/T ).

Proof. — Let f0 : Lr −→ Cn ' n be a representative of the ideal J =
Ker(f0) ∈ Wσ

r (T ) and f = f0 + h be another representative in Wσ
r (T ),

with h small. The ideal condition for Ker(f) gives f0([y, x]) + h([y, x]) = 0
for (x, y) ∈ Ker(f) × Lr, but x can be written x0 + ξ with x0 ∈ J and ξ
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small, thus we have :

(4.3) f0([y, ξ]) + h([y, x0]) + h([y, ξ]) = 0

(4.4) f(x) = f0(ξ) + h(x0) + h(ξ) = 0.

The Lr-module action [y, f0(ξ)] defined by f0([y, ξ]) writes −h([y, x0]) −
h([y, ξ]) with (4.3) and −[y, h(x0)] − [y, h(ξ)]. With (4.4) we have conse-
quently at first order in (h, ξ): h([y, x0]) = [y, h(x0)]; it can be expressed
by y−invariance of h restricted to J. Similarly, the T -invariance of Ker(f)
gives an equivalence to (4.3) for t ∈ T :

f(t(x)) = f0(tξ) + h(tx0) + h(tξ) = 0.

If Cn is endowed with a T -module structure by tf0(x) = f0(tx) for (t, x) ∈
T × Lr, the term f0(tξ) can be written as tf0(ξ). We obtain at the first
order with (4.4) the equality h(tx0) = t(h(x0)). We have shown the first
assertion of the theorem. If F is a slice defined at point J, then the N0-orbit
of J at this point admits a Zariski tangent space isomorphic to Tr/T with
(4.1). The slice and the orbit are transversal at J, and the tangent space
of F is equal, as quotient of the tangent of Wσ

r (T ) by Tr/T , to H2(n, n)T
[3]. �

The semi-continuous mapping n → r = dim(n/[n, n]) involves a stratifi-
cation ∪r>r0Σ(r)

n (T ) on Σn(T ). The minimal value r0 gives an open stratum
Σ(r0)
n (T ). All quotients of Lρ are quotients of Lr if ρ < r, and from above

we have isomorphisms, for each r:

Wσ
r (T )/N0 ' ∪ρ6rΣ(ρ)

n (T )/G0.

5. Study of the rigidity in varieties of ideals

Proposition 5.1. — If g = T⊕n is a semi-direct product with maximal
T > 0, n(αi) = 1 for 1 6 i 6 r, then g is a complete Lie algebra and
conditions i) ii) iii) are equivalent:

i) g is rigid in Lm(C);
ii) n is rigid in LTn (C);
iii) n is rigid in V σr (T ) or Wσ

r (T ).
Local rings of the different slices at n are isomorphic and the obstructions

are the same.

Proof. — We have n(αi) = 1 for the generators ēi(1 6 i 6 s) of n, and
then Der(n)T = T and g is complete [4]. Equivalence i)⇔ ii) results from
reduction theorem [6] and ii)⇔ iii) from Theorem 4.4. �
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Example 1: Series of rigid Lie algebras defined by one relation

Let a, b > 0 be two integer numbers with (a, b) = 1 and r = a/b. We
consider the torus T ⊂ T2 on L2, T = Ker(bε2− aε1), α2 = rα1, with αi =
εi|T and Lmα1 = ⊕{Lpε1+qε2 ; p+qr = m} if m ∈ Q+. For ν = (a+1+r)α1
we obtain the two-dimensional space Lν = L(a+1)ε1+ε2 ⊕ Lε1+(b+1)ε2 . If
we write a vector u ∈ Lν as u1 + u2, according to this sum, and if 〈u〉 is
the ideal generated by u in L2, then u1 6= 0, u2 6= 0 and m > a + 1 + r

involve that the ideal J(m) = 〈u〉 + (⊕k>mLkα1) is T -invariant and T is
maximal on L2/J(m). The weight systems σn of this quotients, associated
with T , satisfy hypotheses of Proposition 5.1. The group N0 is defined by
s(ei) = siei, si ∈ C∗, on the generators e1, e2, and the orbit of J(m) is
given by the action on Cu: s(u) = sa+1

1 s2u1 + s1s
b+1
2 u2. It is an open set

in the projective space P1(Lν) of the lines of Lν . A slice is given by fixing
Cu in Lν . Thus, we obtain isolated points and the algebras L2/J(m) are
rigid in the schemes V σn2 (T ) and LTn , according to Proposition 5.1. The
two-T -cohomological group of these algebras, calculated with formula [3],
is 0. If the dimension of Lν is greater than or equal to 3, then we can obtain
continuous families by this method.
The second example proposed here shows how an obstruction appears in

this formalism.

Example 2: The local study of a4,n defined by
generators and relations

Let L3 be the free Lie algebra with 3 generators indexed by e1, e2, e4, T be
the torus Ker(ε2−2ε1) ⊂ T3 with weights αi satisfying α2 = 2α1 and L3 =
⊕Lm be the graduation defined by Lm = ⊕{Lpε1+qε2+rε4 ; m = p+2q+4r}.
We search for a sequence of T -invariant ideals J6 ⊃ J7 ⊃ J8 · · · of L3 such
that the quotients are isomorphic to a4,n (Remark 2.7). The weights on
a4,n are α1, 2α1, 3α1, α4 + pα1. These ideals contain the ideal I generated
by the subspaces Lpα1+qα4 with p > 3 and q = 0, or p > 0 and q > 1.
We have L1 = Ce1, L2 = Ce2, L3 = C[e1, e2], L4 = Ce4 + C[e1, [e1, e2]],
L5 = L5α1 ⊕ Lα4+α1 and Jn = I +

∑
m>n L

m for n = 4, 5.
For n = 6, we have L6 = L6α1⊕Lα4+2α1 , and we fix the line in Lα4+2α1 =

C(ade1)2e4+C[e2, e4], C-generated by a vector a[e2, e4]+b[e1, [e1, e4]], ab 6=
0. It is stabilized by the subgroup of the (s1, s2, s4) ∈ (C∗)3 such that
s2 = (s1)2. The choice ab 6= 0 breaks the T3-invariance and T becomes
maximal as a torus over J6 and the quotient as well. This corresponds to
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the initialization in the induction process. All choices ab 6= 0 give the same
quotient, up to an isomorphism, and we choose u = [e2, e4] − [e1, [e1, e4]],
J6 = Cu+ I +

∑
m>6 L

m. For n = 7, we have L7 = L7α1 ⊕ Lα4+3α1 , and

Lα4+3α1 = C(ade1)3e4 ⊕ C[e1, [e2, e4]]⊕ C[e2, [e1, e4]]

contains [e1, u]. The 2-dimensional spaces V , C[e1, u] ⊂ V ⊂ Lα4+3α1 , are
given by an additional vector

v = λ[e1, u] + x[e1, [e2, e4]] + y[e2, [e1, e4]] /∈ C[e1, u],

with x 6= 0 or y 6= 0. The ideals J7 = Cv + 〈u〉 + I +
∑
m>7 L

m define by
quotient the family a4,7(t). For n = 8, we have L8 = L8α1 ⊕ Lα4+4α1 and
J8 = 〈u〉 + 〈v〉 + I +

∑
m>8 L

m. For n = 9, the ideal J9 must contain the
ideal 〈u〉+ 〈v〉+ I+

∑
m>9 L

m and we study its codimension in L3 i.e., the
dimension of Lα4+5α1/(〈u〉+ 〈v〉+ I)α4+5α1 depending on v. This quotient
is isomorphic to E/(〈u〉+〈v〉)α4+5α1 , where E is a T3-invariant complement
subspace of the intersection with I in Lα4+5α1 . We can generate E with
the following vectors:

µ=(ade1)5e4 in Lε4+5ε1 , ν = (ade1)3[e2, e4] and ρ = (ade1)2([e4, [e1, e2]])

in Lε4+ε2+3ε1 ; σ = ade1(ade2)2e4 and δ = [[e1, e2], [e2, e4]] in Lε4+2ε2+ε1 .

We calculate the dimension of (〈u〉+ 〈v〉)α4+5α1 , which is equal to the rank
of the system of the following vectors written over the basis {µ, ν, ρ, σ, δ}:

(ade1)3u, (ade1)([e2, u]), [[e1, e2], u], (ade1)2v, [e2, v].

The dimension of E is equal to 5 and the dimension of (〈u〉 + 〈v〉)α4+5α1

depending on (x, y) ∈ C2 is given by one of the two following cases:
If x + y 6= 0, the dimension is 5 and there is not possible extension for

a4,8(t), t 6= 0.
If x+y = 0, the dimension is 4 and we have an extension corresponding to

t = 0. Moreover, if y = −x 6= 0, the algebra corresponds to an isolated point
J9, rigid in the variety Wσ

r (T ) or Σ9(T )(⊂ LT9 ). In this case we obtain a
constraint between the vectors generating the weight space (〈u〉+〈v〉)α4+5α1

given by:

D(v) +D′(u) = (ade2 − (ade1)2)v + (λ(ade1)3 + yade1ade2

− (λ+ x+ 2y)ade2ade1)u ∈ I +
∑
m>9

Lm.
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Calculation of H2(a4,n, a4,n)T

We have:

H2(a4,n, a4,n)T '
{
f ∈ HomC(〈v〉, a4,n)L+T ; f(〈u〉 ∩ 〈v〉) = 0

}
.

We replace Jn by 〈u〉 + 〈v〉 in Theorem 4.5. The vector f(u) = hē6 co-
rresponds to α4 + 2α1. Observe that T3 is embedded in natural way in
Hom(Jn, a4,n)L+T with T3(u) 6= 0, hence there is δ ∈ T3 such that f0 =
f − hδ is null on 〈u〉.
With this formula, the cohomological group is null for n = 6. For n = 7,

we have a representative f in the class defined by f(v) = aē7 and f(u) =
f([e1, u]) = 0. For n = 8, we have f([e1, v]) = [e1, f(v)] = a[e1, ē7] = aē8
and f(〈u〉) = 0. For n = 9, f is compatible with the constraint expressed
by:

f(Dv +D′u) = f(Dv) = Df(v) = a(ade2 − (ade1)2)ē7 = 0.

Thus, we have representatives f 6= 0 defined by f(v) = aē7, a ∈ C∗ for
n > 7 and the second cohomological group is C. Rigidity for n > 9 involves
the existence of an obstruction. We calculate this obstruction, illustrating
the last method.

Remark 5.2. — In the case where the second T -cohomological group
becomes null in a central extension, compatibility of f with the constraints
is not satisfied and f = 0.

Obtaining a nilpotent element in the scheme of ideals

Theorem 4.4 allows us to obtain a nilpotent element in the slice of
Wσ

3 (T ) by applying the simple ideal condition for J9. It suffices to show
here that the vector (ade1)2v belongs to the space generated by (ade1)3u,
ade1ade2(u), (ad[e1, e2])u and (ade2)v modulo I. Thus, we have:

(ade1)2v ≡ p(ade1)3u+q(ade1ade2)u+r(ad[e1, e2])u+s(ade2)v, mod (I)

where parameters p, q, r, s, λ, x, y are chosen in the local ring of the scheme
at the point J9. Writing this equality on the basis vectors µ, σ, δ, ν and ρ, we
obtain the following equalities respectively: (a) p = λ; (b) q = −s(λ+x+y);
(c) r = s(λ+ x+ 2y); (d) p− q − λs = λ+ x+ y; (e) − 2q + r − 3λs = y.

From (d) and (e), we deduce (x+y)(s−1) = 0 and (s−1)y = −3s(x+y).
Dividing by y in the local ring because ȳ 6= 0 (second case x+y = 0 above),
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we have s(x+ y)2 = 0 and (s− 1)2 = 0. The parameter s can be inverted
in the local ring and we obtain (x+ y)2 = 0.
Note that (x, y) ∈ C2 − {(0, 0)} corresponds to a law satisfying, in the

quotient by Jn: v̄ = x[e1, [e2, e4]] +y[e2, [e1, e4]] = 0. If y 6= 0, then we have
[e2, [e1, e4]] = −xy [e1, [e2, e4]] and we can write −x/y = 1 − t with t given
in Remark 2.7.
The case y = 0 involves [e1, [e2, e4]] = 0 with x 6= 0 and defines the

algebras:

[e1, e2] = e3, [e1, e4] = e5, [e1, e5] = e6,

(A7) [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = −e7,

for n = 7 and, by adding the following brackets:

(A8) [e1, e7] = e8, [e2, e6] = 2e8, [e3, e5] = −e8,

for n = 8. The nilpotent condition (x+ y)2 = 0 for n > 9 gives t2 = 0 and
we state:

Proposition 5.3. — If T is defined by the weights α1, 2α1, 3α1, α4 +
kα1(k > 0) with multiplicities one and if A = {(24), (1k) for 1 < k <

n, k 6= 3}, a slice of the scheme Wσ
3 (T ) is given, up to isomorphism, by:

• The union of the scheme LT,An and the point {An} for n = 7, 8;
• LT,An = {a4,n(t)} where t = x+y

y is a 2-nilpotent parameter for
n > 9.

Case r > r0

If T is the torus defined in Proposition 5.3. then the set A′n = {(1j), j >
4, (24)(34)} is admissible in LTn (C) for n > 7. The associated slice is given
by X12 = t, X1j = 1(j > 4), X24 = 1, X25 = 1 − t, X34 = 1 for n = 7,
addingX17 = 1, X26 = 1−2t andX35 = 1 for n = 8. If n > 9 we have t = 0,
thus we obtain the following rigid Lie algebra satisfyingH2(n(4)

n , n
(4)
n )T = 0:

n(4)
n : [xi, xj ] =

{
xi+j for 1 6 i 6 3, 4 6 j 6 n− i
0 otherwise i < j.

This algebra is the unique 4-generated Lie algebra in Σn(T ) for n > 7
belonging, as quotient L4/Jn, to W

σ
4 (T ). We have dim(L3α1) = 2 and we

obtain the algebras above as quotients of L4 by 7-codimensional ideals J7
where the projection (J7)3α1 on L3α1 = Lε3 ⊕ Lε1+ε2 is the line generated
by te3 − [e1, e2] for t ∈ C. If t 6= 0, then the quotients L4/J7 are in fact
quotients of L3 describing the open set of 3-generated algebras. If t = 0,
then we obtain n

(4)
7 with J7 ⊂ [L4,L4].
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Conclusion

Extrapolating this work, the idea that rigidity is a property which is not
dependent on the particular choice of a geometry constitutes a valid new
slant. Most generally, we can imagine a notion of continuous family attached
to the category and not depending on a particular geometrical representa-
tion. Theorem 4.4 and Proposition 5.1 certainly move in this direction with
two different geometrizations for an important class of nilpotent Lie alge-
bras. This explains why different methods in classifications of nilpotent Lie
algebras give the same continuous families, with different parameterizations
depending only on the choice of a local chart.

BIBLIOGRAPHY

[1] R. Carles, “Sur certaines classes d’algèbres de Lie rigides”,Math. Ann. 272 (1985),
p. 477-488.

[2] ———, “Un exemple d’algèbres de Lie résolubles rigides, au deuxième groupe de
cohomologie non nul et pour lesquelles l’application quadratique de D. S. Rim est
injective”, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 14, p. 467-469.

[3] ———, “Sur la cohomologie d’une nouvelle classe d’algèbres de Lie qui généralisent
les sous-algèbres de Borel”, J. of Alg. 154 (1993), no. 2, p. 310-334.

[4] ———, “Construction des algèbres de Lie complètes”, C. R. Acad. Sc. Paris 318
(1994), p. 711-714.

[5] ———, “Déformations dans les schémas définis par les identités de Jacobi”, Ann.
Math. Blaise Pascal 3 (1996), no. 2, p. 33-62.

[6] R. Carles & T. Petit, “Versal deformations and versality in central extensions of
Jacobi schemes”, Transformation Groups 14 (2009), no. 2, p. 287-317.

[7] J. Dixmier, “Cohomologie des algèbres de Lie nilpotentes”, Acta Scientiarum Math.
16 (1955), no. 3-4, p. 246-250.

[8] G. Favre, “Système de poids sur une algèbre de Lie nilpotente”,Manuscripta Math.
9 (1973), p. 53-90.

[9] A. Fialowski, “Deformations of Lie algebras”, Math. USSR Sbornik 127(169)
(1985), p. 476-482, English translation: Math. USSR Sb. 55 (1986), no. 2, p. 467-
473.

[10] ———, “An example of formal deformations of Lie algebras”, in NATO Confer-
ence on Deformation Theory of Algebras and Applications, Il Ciocco, Italy, 1986,
Proceedings, Kluwer, Dordrecht, 1988, p. 375-401.

[11] A. Fialowski & D. Fuchs, “Construction of miniversal deformations of Lie alge-
bras”, J. Funct. Analysis 161 (1999), p. 76-110.

[12] M. Gerstenhaber, “On the deformations of rings and algebras”, Ann. of Math.
79 (1964), p. 59-103.

[13] A. Nijenhuis & R. W. Richardson, “Cohomology and deformations in graded Lie
algebras”, Bull. Amer. Math. Soc. 72 (1966), p. 1-29.

TOME 61 (2011), FASCICULE 2



490 Roger CARLES & M. Carmen MÁRQUEZ

[14] G. Rauch, “Remarque sur les constantes de structure des C-algèbres de Lie de
dimension finie”, C. R. Acad. Sc. Paris 266 (1968), p. 330-332.

[15] R. W. Richardson, “On the rigidity of semi-direct products of Lie algebras”, Pac.
J. Math. 22 (1967), p. 339-344.

Manuscrit reçu le 21 mai 2009,
révisé le 15 février 2010,
accepté le 27 avril 2010.

Roger CARLES
Université de Poitiers
Laboratoire de Mathématiques et Applications
UMR 6086 du CNRS
8692 Futuroscope Chasseneuil (France)
carles@math.univ-poitiers.fr
M. Carmen MÁRQUEZ
Universidad de Sevilla
Departamento de Geometría y Topología
Apdo. 1160
41080-Sevilla (Spain)
cmgarcia@us.es

ANNALES DE L’INSTITUT FOURIER

mailto:carles@math.univ-poitiers.fr
mailto:cmgarcia@us.es

	Introduction
	1. Return to Gerstenhaber's method of formal deformations. The integration of a 2-cocycle
	Generalities on deformations in the schemes bold0mu mumu LnRLnRCa3LnRLnRLnRLnR
	Generalities on formal deformations in the schemes bold0mu mumu LnRLnRCa5LnRLnRLnRLnR
	The obstruction bold0mu mumu 22Ni-Ri2222
	Strong integrability for a 2-cocycle
	Application to the study of obstructions for bold0mu mumu fn (n7)fn (n7)Raufn (n7)fn (n7)fn (n7)fn (n7)

	2. The local ring method for studying the schemes bold0mu mumu LnTLnTCa1LnTLnTLnTLnT
	Generalities on the local ring method
	Admissible part bold0mu mumu AACa-PeAAAA associated with bold0mu mumu 00Ca-Pe0000 and slice
	Weight paths and filiations bold0mu mumu An -3muAn+1An -3muAn+1Ca-PeAn -3muAn+1An -3muAn+1An -3muAn+1An -3muAn+1
	An example of the induction process  with a 3-order nilpotent parameter
	Other slices for (2.3)
	Nilpotent parameter at each order  in local rings of some slices
	Notations

	3. Elimination procedure in the search  for nilpotent elements in global schemes bold0mu mumu LnTLnTCa-PeLnTLnTLnTLnT
	An existence theorem
	Elimination in bold0mu mumu F[X]F[X]Ca-PeF[X]F[X]F[X]F[X]
	The method
	Irreducible polynomials in the radical of bold0mu mumu `39`42`"613A``45`47`"603AJacn`39`42`"613A``45`47`"603AJacnCa-Pe`39`42`"613A``45`47`"603AJacn`39`42`"613A``45`47`"603AJacn`39`42`"613A``45`47`"603AJacn`39`42`"613A``45`47`"603AJacn
	The examples
	Calculation with a computer

	4. A second geometry obtained with generators and relations: subschemes of ideals in Grassmannians
	Generalities
	Torus
	Action groups
	Slices for bold0mu mumu Wr(T)/N0Wr(T)/N0FaWr(T)/N0Wr(T)/N0Wr(T)/N0Wr(T)/N0
	Schemes of ideals are Jacobi schemes

	5. Study of the rigidity in varieties of ideals
	Example 1: Series of rigid Lie algebras defined by one relation
	Example 2: The local study of a4,n defined by  generators and relations
	Calculation of bold0mu mumu H2(a4,n,a4,n)TH2(a4,n,a4,n)TCa3H2(a4,n,a4,n)TH2(a4,n,a4,n)TH2(a4,n,a4,n)TH2(a4,n,a4,n)T
	Obtaining a nilpotent element in the scheme of ideals
	Case bold0mu mumu r>r0r>r0Ca3r>r0r>r0r>r0r>r0

	Conclusion
	Bibliography

