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RIGIDITY OF RANK-ONE FACTORS OF COMPACT
SYMMETRIC SPACES

by Andrew CLARKE

Abstract. — We consider the decomposition of a compact-type symmetric
space into a product of factors and show that the rank-one factors, when consid-
ered as totally geodesic submanifolds of the space, are isolated from inequivalent
minimal submanifolds.
Résumé. — Nous considérons la décomposition d’un espace symétrique de type

compact et nous montrons que les facteurs de rang 1, considérés comme sous-
variétés de cet espace, sont isolés de toutes les sous-variétés minimales inéquiva-
lentes.

1. Introduction

Questions of isolation phenomena for minimal submanifolds have been
posed for many years. Perhaps the most studied case is for minimal sub-
manifolds of the sphere. Lawson [8], Chern, do Carmo and Kobayashi [3],
Barbosa [1], Fischer-Colbrie [4] and others studied minimal submanifolds of
the sphere using a range of techniques and obtained existence and unique-
ness results. An important part of this study was initiated by Simons [12],
who used a rigidity-isolation result for minimal hypersurfaces of Sn to show
that a minimal cone in euclidean space constructed as a blow-up limit from
the given minimal graph was over a totally geodesic subset in the sphere.
This was an important part of his extension of the Bernstein theorem to
dimensions up to n = 7.
Minimal submanifolds of other specific geometric spaces have also been

studied. Much work has been done on the classification of totally geodesic
submanifolds of riemannian symmetric spaces. This is particularly tractable

Keywords: Minimal submanifolds, rigidity, symmetric spaces.
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492 Andrew CLARKE

because of the identification of these spaces with Lie triple systems. This
allows the representation theory and algebra of the ambient isometry group
to be considered. Gluck, Morgan and Ziller [5] and Thi [13] used the ter-
minology of calibrations to study the homologically volume minimizing cy-
cles in Grassmannians and Lie groups respectively. W.T. Hsiang and W.Y.
Hsiang [6] constructed non-totally geodesic minimal hypersurfaces diffeo-
morphic to spheres in a range of compact-type symmetric spaces. Mok,
Siu, Yeung and others (see for example [10]) proved rigidity theorems for
harmonic maps for Hermitian symmetric spaces of non-compact type, and
gave criteria for the maps to be holomorphic or for the image to be totally
geodesic.
In the case at hand we consider the decomposition of a compact-type

Riemannian symmetric space into irreducible components and consider the
closed minimal submanifolds that are close, in a concrete sense, to the fac-
tors. If the factor has rank equal to one and has non-exceptional isometry
group, any nearby closed minimal submanifold must be another factor in
the decomposition. The nearness that we consider implies that the sub-
manifold is the graph of a map from the factor to the other components so
the result can also be thought of as an isolation-type statement for maps
between symmetric spaces.

Theorem 1.1. — Let X be a symmetric space of compact type. Sup-
pose that X decomposes as X = X1 × X2 where X1 is of rank-one, and
is not the Cayley Plane. Then there is a C3 neighbourhood of the stan-
dard embedding of X1 as a factor such that any minimal immersion in this
neighbourhood is as another factor in the decomposition.

This result follows from Theorems 3.1, 7.2 and 7.5.
This work was completed while the author was a student at SUNY Stony

Brook. He would like to acknowledge the enormous generosity and guidance
given by his advisor, Blaine Lawson.

2. Preliminaries

We recall the important calculation of Simons that showed that the sec-
ond fundamental form of a minimal submanifold satisfies a second order
elliptic equation. That is, we define the Second Fundamental Form A of a
submanifold M ⊆ X to be

AνY = −(∇Y ν)T

ANNALES DE L’INSTITUT FOURIER



RIGIDITY OF RANK-ONE FACTORS. 493

where ν is a normal vector to M and Y is tangent to M . A priori, ν
must be defined locally but it is clear that this definition is independent
of the extension. A is thus a section of the Riemannian vector bundle
Hom(NM , S(M)) of endomorphisms from the normal bundle to symmetric
transformations of the tangent bundle. The transpose of A satisfies

〈AνY, Z〉 = 〈ν,B(Y, Z)〉, B(Y, Z) = (∇Y Z)N

for Y, Z tangent vectors to M . B is a section of Hom(S(M), NM ). We say
that M ⊆ X is minimal if Aν is trace-free for all normal vectors ν. Simons
[12] was able to calculate the rough Laplacian of A. He showed that if M
is minimal, ∇2A can be algebraically expressed only in terms of A itself,
together with the ambient curvature and its covariant derivative. That is,

∇2A = −A ◦
∼
A−A

∼
◦A+R(A) +R′.

A
∼
and

∼
A are quadratic expressions in A and R′ ≡ 0 if X is locally symmet-

ric. He also showed A
∼
and

∼
A universally and uniformly satisfy the inequality

〈A ◦
∼
A+A

∼
◦A,A〉 6 q‖A‖4

where q = 2− 1
codimM . With this inequality, and the assumption that X is

symmetric, we can largely overlook these terms from here. The exact defi-
nition of

∼
A and A

∼
are given in [12] but we will only require this inequality.

A is a section of Hom(NM , S(M)) so the pointwise norm of A is given by

‖A‖2 = tr(A∗A) =
∑
jk

‖Aνjek‖2

=
∑
kl

‖B(ek, el)‖2

where {ek} and {νj} are orthonormal bases for TM and NM respectively.
The other term R(A) is also a section of Hom(NM , S(M)) and is given

by

〈R(A)WX,Y 〉 =
p∑
i=1


2〈Rei,YB(X, ei),W 〉+ 2〈Rei,XB(Y, ei),W 〉
−〈AW (X), Rei,Y ei〉 − 〈AW (Y ), Rei,Xei〉
+〈Rei,B(X,Y )ei,W 〉 − 2〈AW (ei), Rei,XY 〉


where R is the curvature tensor for the ambient space. The principal result
of this paper comes from a control of this term in a particular case.

TOME 61 (2011), FASCICULE 2
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The case that we consider is where X is a Riemannian symmetric space.
We summarise some standard facts that we will use later. A fuller refer-
ence for this material is [7]. A (connected) Riemannian manifold X is a
Riemannian symmetric space if for each point p ∈ X there is an isometry
σp of X that fixes p and has derivative −Id at p. This in particular implies
that X = G/H is homogeneous and the symmetry σp induces an involutive
automorphism σ of the isometry group G and hence of g. The Lie algebra
g splits

g = h + m

into the +1 and−1 eigenspaces of the automorphism. The ensemble (g, h, σ)
is referred to as a symmetric Lie algebra. The space m can be identified
with the tangent space to X at a fixed point p.
The algebraic structures of (g, h, σ) can be related to the Riemannian

geometry of X by making the fundamental observation (see [7]) that the
set of tensors on m that are invariant under the action of h are in a one-
to-one correspondence with the set of tensor fields on X that are invariant
under the action of G.
We assume that g is semi-simple, and that the Killing form is negative

definite. This is the condition for the symmetric space to be of compact
type. The negative of the Killing form, restricted to m, defines a positive
definite h-invariant bilinear form. It therefore corresponds to a G-invariant
Riemannian metric on the space X. We will take this as our background
metric. The Riemannian curvature of X is given by, using the identification
of TpX and m,

RX,Y Z = −[[X,Y, ]Z].

The Ricci curvature is given by

Ric(X,Y ) = trm(Z 7→ −[X, [Y, Z]]).

This is an h-invariant bilinear form on m. If h acts irreducibly on m this
must be a multiple of the metric (as can be seen by simultaneously diago-
nalizing this with the metric). That is, Ric(X,Y ) = ρ〈X,Y 〉 and necessarily
ρ > 0. In general, if g is semi-simple, m splits into the sum of irreducible
representations of h and the Ricci tensor is a multiple of the metric when
restricted to each irreducible factor. That is,

m = m1 + · · ·+ mk,

Ric = ρ1〈 , 〉|m1 + · · ·+ ρk〈 , 〉|mk

ANNALES DE L’INSTITUT FOURIER
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and Ric(X,Y ) > ρ〈X,Y 〉 for all X,Y ∈ m where ρ = mini ρi. ρ can be
taken to be the smallest Ricci curvature of any unit tangent vector to the
manifold X.

The rank of a symmetric space is defined to be the dimension of a max-
imal subspace V ⊆ m for which [X,Y ] = 0 for all X,Y ∈ V . This is
analogous to the dimension of a maximal torus in a Lie group. This also
corresponds to the maximal dimension of a tangent subspace on which the
sectional curvature vanishes identically. Accordingly, compact-type sym-
metric spaces of rank-one have strictly positive sectional curvature.
Furthermore, the compact-type rank-one spaces can be easily classified

(see [2]). There are only Sn, RPn, CPn, HPn and OP2. The final space is
the 16-dimensional Cayley plane. In contrast to the other examples it does
not exist in an infinite family and has as set of isometries the exceptional
Lie group F4. We will from this point only consider the non-exceptional
rank-one spaces. The important geometric property that these spaces have
is that they admit the Hopf fibrations of spheres fibred by totally geodesic
spheres. For example, one can define the map S4n+3 → HPn by sending a
point to the quaternion line that it spans. The fibres of the map are of the
form S4n+3 ∩He for e ∈ S4n+3 ⊆ Hn+1 and so are totally geodesic.

3. Rigidity of Sphere Factors

We now consider the ambient space to be X = Sp × X2 where X2 is a
symmetric space of compact type and M ⊆ X is a p-dimensional minimal
submanifold. As above, we denote by ρ the smallest Ricci curvature of any
direction tangent to X.

We also consider the projection π2 : M → X2 of the submanifold to the
second factor. We also denote the derivative of this map by π2. This acts as
a bundle map on M , from TM to TX2 |M . We will assume that the uniform
size of this map is small in operator norm.

Theorem 3.1. — There exists Λ > 0 such that if M is a p-dimensional
closed minimal submanifold of Sp ×X2 that satisfies

‖π2‖ < Λ

‖A‖2 < ρ

q

then M = Sp × {x} for some x ∈ X2. Here again q = 2− 1
dimX2

.

For the proof of this theorem we consider the second order equation of
Simons given in the previous section. In the case at hand the term R′

TOME 61 (2011), FASCICULE 2
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vanishes because the ambient space is symmetric. We can also control the
term R(A).

Theorem 3.2. — There exists C = C(p,X2) > 0 such that for any
p-dimensional closed minimal submanifold M of the symmetric space X =
Sp ×X2 for which ‖π2‖ 6 Λ the term R(A) satisfies

〈R(A), A〉 >
(

(2ρ+ 1
p− 1)− CΛ2

)
‖A‖2.

This is the main technical result of this paper and the proof will be given
in Section 5.

Proof. — (Of Theorem 3.1) The proof is quite short. Take Λ2 = (ρ +
1
p−1 )/C. In this case, if ‖π2‖ 6 Λ we have 〈R(A), A〉 > ρ‖A‖2. We consider
the equation of Simons and using integration by parts we see

0 6
∫
M

‖∇A‖2 6 −
∫
M

〈A,∇2A〉

=
∫
〈A ◦ Ã+A

∼
◦A−R(A), A〉

6
∫
q‖A‖4 − ρ‖A‖2

= q

∫
‖A‖2(‖A‖2 − ρ

q
).

Thus, if ‖A‖2 < ρ/q uniformly on M we must have A ≡ 0 and M is totally
geodesic. That is, for this value of Λ the hypotheses imply thatM is totally
geodesic. By Theorem 4.2 we can take a Λ so that we can conclude that
M = Sp × {pt} �

A similar theorem can be given where we consider the intrinsic scalar
curvature K of M . We note that this curvature is with respect to the
metric induced on M from the ambient space.

Theorem 3.3. — There exists Λ > 0 such that if Mp ⊆ Sp × X2 is a
closed minimal submanifold that satisfies

‖π2‖ < Λ
p

2 −K <
ρ

q

then M = Sp × {pt}.

Proof. — If one inspects the proof of Theorem 3.1, one can see that, for
a given Λ > 0, if ‖π2‖ < Λ and

‖A‖2 −
(2ρ+ 1

p−1 )− CΛ2

q
< 0

ANNALES DE L’INSTITUT FOURIER
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uniformly on M , then necessarily A ≡ 0. By the Gauss equation, we have

‖A‖2 =
∑
ij

‖B(ei, ej)‖2 =
∑
i 6=j
〈RXei,ej

ej , ei〉 −
∑
i 6=j
〈RMei,ej

ej , ei〉

=
∑
i 6=j
〈RXei,ej

ej , ei〉 −K.

The ambient curvatures are obtained from the two factors by

〈RXei,ej
ej , ei〉 = ‖[π1ei, π1ej ]‖2 + ‖[π2ei, π2ej ]‖2

6
1

2(p− 1) + Λ2K2
2 .

Here K2 is the maximum sectional curvature of a plane tangent to X2 (see
Section 5). Thus,

‖A‖2 6 p

2 + p(p− 1)K2
2Λ2 −K,

‖A‖2 −
(2ρ+ 1

p−1 )− CΛ2

q
6
p

2 −K −
(2ρ+ 1

p−1 )− (C + p(p− 1)K2
2 )Λ2

q
.

We can take Λ > 0 so that the right hand side equals
p

2 −K −
ρ

q
.

Thus, if p
2 − K < ρ/q and ‖π2‖ < Λ uniformly on the submanifold, then

necessarily A ≡ 0. As before, by Theorem 4.2, we can find a Λ > 0 so that
M must be Sp × {pt}. �

4. Isolation of Totally Geodesic Factors in Products

In this section we consider the totally geodesic submanifolds of symmetric
spaces. It is a basic result of the theory that complete totally geodesic
submanifolds of a symmetric space X with corresponding symmetric Lie
algebra g = m+h are in a one-to-one correspondence with subspaces t ⊆ m

that satisfy [[t, t], t] ⊆ t. These subspaces are called Lie Triple Systems.
Let (g, h, σ) be a symmetric Lie algebra with g semi-simple and of com-

pact type. We will assume that this structure is reducible in that g splits
as

g = (m1 + h1) + (m2 + h2).

We consider the case that the first factor is the symmetric Lie algebra for
the round sphere. That is, (g1, h1, σ) = (so(n+1), so(n), σ). The important
features of this space are that it has rank one and that we know all of its Lie

TOME 61 (2011), FASCICULE 2
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triple systems. The totally geodesic subspaces of the sphere are the great
spheres of the various dimensions and so have corresponding symmetric Lie
algebras (conjugate to) (so(p+ 1), so(p), σ). For notational reasons we will
continue to refer to the first factor as m1.

Proposition 4.1. — Let t be a Lie triple system contained in m1 +m2.
Consider the orthogonal projection π2 : t→ m2. Suppose that ‖π2‖ 6 Λ <

1.
Then the subalgebra t + [t, t] is simple and isomorphic to so(p+ 1).

Proof. — It is clear that the subspace k = t + [t, t] is a subalgebra of g.
We consider the totally geodesic subspace π1(t) ⊆ m1. This is clearly a Lie
triple system of m1 and so corresponds to a totally geodesic subspace of X1.
By hypothesis, X1 = Sn and the corresponding totally geodesic subspace
is a great sphere. This has isometry group SO(p+ 1).

We consider π1 : t→ m1. The assumption that ‖π2‖ < 1 implies that π1
is injective. We claim that π1 is injective when considered on k = t + [t, t].
Let x = X1 +X2, y = Y1 +Y2 ∈ t where Xi, Yi ∈ mi. We can suppose that
X1 and Y1 are non-zero. Then,

[x, y] = [X1, Y1] + [X2, Y2]
and π1[x, y] = [X1, Y1].

Suppose that [X1, Y1] = 0. We have assumed that the symmetric Lie alge-
bra (g1, h1, σ) has rank one. This means that the dimension of a maximal
subspace of m1 on which the brackets vanish is equal to one. In other words,

[X1, Y1] = 0 =⇒ X1 = λY1.

We can rescale x and y so that λ = 1. Then, x− y = X2 − Y2 ∈ kerπ1 ∩ t.
This implies that x = y and [x, y] = 0. That is, π1 is injective on [t, t] and
so π1 : k→ m1 + h1 is an isomorphism to its image.
Hence, k ∼= so(p+ 1) and the symmetries correspond. �

In particular the algebra k is simple so the map π2 : k → m2 + h2 is
either identically zero or an isomorphism to its image. In the first case, if
T ⊆ X1 × X2 is the corresponding totally geodesic subspace, π2(T ) is a
point. In the second case, π2 : T → π2(T ) is a covering map. We show that
if ‖π2‖ < Λ for Λ sufficiently small the second case cannot occur.

Theorem 4.2. — There exists Λ > 0 such that if T is a p-dimensional
totally geodesic submanifold of Sn×M2 and ‖π2‖ 6 Λ then T ⊆ Sn×{pt}.

Proof. — We suppose that π2(T ) is not a point. In this case, it is a totally
geodesic submanifold of the same dimension as T . By the area formula [11]

ANNALES DE L’INSTITUT FOURIER
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we have

vol(π2(T )) =
∫
π2(T )

dHp(y)

6
∫
π2(T )

∫
π−1

2 (y)
dH0(t)dHp(y) =

∫
T

Jπ2(x)dHp(x).

The Jacobian terms are given, in the current case by,

(Jπ2)2 = det((dπ2)∗(dπ2)) 6 Λ2p

and vol(π2(T )) 6 Λpvol(T ).

Similarly, by considering the projection to the other factor one can see that

vol(T ) 6 1
(1− Λ2)p/2

vol(Sp)

where Sp has the metric induced from that on Sn in this case. Thus,

vol(π2(T )) 6
( Λ2

1− Λ2

) p
2 vol(Sp).(4.1)

However, we can note that for (complete) totally geodesic submanifolds,
the ambient geodesic spray from a tangent plane maps to the submanifold.
As such, we can also note that the function F defined by

F (V ) = vol
(

expo(U ∩ V )
)
,

is continuous and bounded away from zero, where V ∈ G(p, ToX2) and U is
a fixed open set containing the origin in ToX2 containing no tangential cut
points. This fact, together with Equation 4.1 implies that if T ⊆ Sn ×X2
is totally geodesic and ‖π2‖ < Λ for sufficiently small Λ, then π2 ≡ 0.

�

5. Proof of Theorem 3.2

In this section we give the proof of Theorem 3.2. We restate it here.

Definition 5.1. — Let X = X1 ×X2 be a compact-type Riemannian
symmetric space with metric induced from the Killing form. Let g = h1 +
m1 + h2 +m2 denote the decomposition of the Lie algebra of Killing fields.
Define

K1 = max{‖[X,Y ]‖; X, Y ∈ m1, |X| = |Y | = 1}
= max{

√
sec(σ); σ is a plane tangent to X1}

K2 = max{‖[X,Y ]‖; X, Y ∈ m2, |X| = |Y | = 1}

We let N = dim(X1 ×X2) be the dimension of the ambient manifold.

TOME 61 (2011), FASCICULE 2
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Theorem 3.2. — There exists C = C(p,M2) > 0 such that for any
0 < Λ 6 1 and for any p-dimensional closed minimal submanifold M of the
symmetric space X = Sp ×X2 for which ‖π2‖ 6 Λ the term R(A) satisfies

〈R(A), A〉 >
(

(2ρ+ 1
p− 1)− CΛ2

)
‖A‖2.

The term R(A) is an section of the bundle Hom(NM , S(M)) and is given
by the expression

(5.1) 〈R(A)WX,Y 〉 =
p∑
i=1


2〈Rei,YB(X, ei),W 〉+ 2〈Rei,XB(Y, ei),W 〉
−〈AW (X), Rei,Y ei〉 − 〈AW (Y ), Rei,Xei〉
+〈Rei,B(X,Y )ei,W 〉 − 2〈AW (ei), Rei,XY 〉


That is, R(A) = (1)+· · ·+(6). We will calculate the inner products 〈(1), A〉
etc. and compare them in each case to ‖A‖2. For example,

〈(1)WX,Y 〉 = 2
∑
i

〈Rei,YB(X, ei),W 〉

The first observation that we make on these terms is of the symmetry
between some of them.

Lemma 5.2. —

〈(2), A〉 = 〈(1), A〉
〈(4), A〉 = 〈(3), A〉.

Proof. — This follows immediately by observing that in Equation 5.1,
for fixed normal vector W , the terms (1) and (2), and (3) and (4) are
respectively transposes of one another. They will then have the same inner
product with the symmetric transformation A. �

We let N be the dimension of X.

Lemma 5.3. — Let M be a p-dimensional minimal submanifold of the
symmetric space Sp × X2. Suppose that π2 satisfies ‖π2‖ 6 Λ. Then the
second fundamental form for M satisfies

〈(1), A〉 = > −2p2(N − p)(K2
1 +K2

2 )Λ2‖A‖2.

ANNALES DE L’INSTITUT FOURIER
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Proof. — The term (1) is defined by

〈(1)WX,Y 〉 = −2
∑
i

〈[[ei, Y ], B(X, ei)],W 〉

= 2
∑
i

〈[ei, [B(X, ei),W ]], Y 〉

〈(1), A〉 =
∑
j,k

〈(1)ηjek, A
ηj (ek)〉

= 2
∑
ijk

〈[Aηj (ek), ei], [B(ei, ek), ηj ]〉.

We now note that if the symmetric Lie algebra splits as g = h1+m1+h2+m2
the terms in the Lie bracket calculation above are given as the sum from
the respective factors. That is,

〈(1), A〉 = 2
∑
ijk

〈[π1A
ηj (ek), π1ei], [π1B(ei, ek), π1ηj ]〉

+2
∑
ijk

〈[π2A
ηj (ek), π2ei], [π2B(ei, ek), π2ηj ]〉

= 〈(1), A〉1 + 〈(1), A〉2.

We assume that the projection π2 defined on the tangent space satisfies
‖π2‖ 6 Λ. One can note that ifM is the same dimension as the first factor,
this implies that π1, when acting on the normal bundle, also has norm
bounded by Λ. Then,

〈(1), A〉1 = 2
∑
ijk

〈[π1A
ηj (ek), π1ei], [π1B(ei, ek), π1ηj ]〉

> −2
∑
ijk

K1|π1A
ηj (ek)||π1ei| ·K1|π1B(ei, ek)||π1ηj |

> −2p2(N − p)K2
1Λ2‖A‖2

An identical calculation is made for the second term. �

Lemma 5.4. — IfM is a p-dimensional minimal submanifold of Sp×X2
then the second fundamental form of M satisfies

〈(3), A〉 > ρ‖A‖2 − p(N − p)2(K2
1 +K2

2 )Λ2‖A‖2.

Proof. — (3) is give by

〈(3), A〉 = −
∑
i

〈AW (X), Rei,Y ei〉.

The term on the right hand side looks very much like the ambient Ricci
curvature operator, except that one must note that the trace is only over

TOME 61 (2011), FASCICULE 2
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the tangent space to the submanifold rather than the ambient space. We
can get around this fact by assuming that the submanifold is close to an
irreducible factor.

〈(3)WX,Y 〉 =
∑
i

〈AW (X), Rei,Y ei〉

= −
∑
i

〈[[AW (X), ei], ei], Y 〉

〈(3), A〉 = −
∑
ijk

〈[[Aηj (ek), ei], ei], Aηj (ek)〉

= −
∑
ijk

〈ad(Aηj (ek)) ◦ ad(Aηj (ek))ei, ei〉

= −
∑
jk

trm((ad(Aηj (ek))2)−
∑
jkl

‖[Aηj (ek), ηl]‖2

since {ei, ηl} forms an orthonormal basis for TX ,

=
∑
jk

Ric(Aηj (ek), Aηj (ek))−
∑
jkl

‖[Aηj (ek), ηl]‖2

> ρ‖A‖2 −
∑
jkl

‖[Aηj (ek), ηl]‖2

As in the proof of Lemma 5.3, one can estimate the remaining term.

‖[Aηj (ek), ηl]‖2 = ‖[π1A
ηj (ek), π1ηl]‖2 + ‖[π2A

ηj (ek), π2ηl]‖2

6 Λ2(K2
1 +K2

2 )‖Aηj (ek)‖2 6 (K2
1 +K2

2 )Λ2‖A‖2

so 〈(3), A〉 > ρ‖A‖2 − p(N − p)2(K2
1 +K2

2 )Λ2‖A‖2.

�

Lemma 5.5. — The fifth factor of R(A) satisfies

〈(5), A〉 > −p3(K1 +K2
2 )Λ2‖A‖2.

Proof. — The fifth term in the expression for R(A) is given by

〈(5)WX,Y 〉 =
∑
i

〈Rei,B(X,Y )ei,W 〉

= −
∑
i

〈[[ei, B(X,Y )], ei],W 〉

=
∑
i

〈AX(πN [ei, [ei,W ]]), Y 〉
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〈(5), A〉 =
∑
ijk

〈Aek
(πN [ei, [ei, ηj ]]), Aek

(ηj)〉

=
∑
ijkl

〈Aek
(πN [ei, [ei, ηj ]]), el〉〈el, Aek

(ηj)〉

=
∑
ijkl

〈[ei, [ei, B(ek, el)]], ηj〉〈ηj , B(ek, el)〉

= −
∑
ikl

‖[B(ek, el), ei]‖2

The desired inequality can be obtained by observing

‖[B(ek, el), ei]‖2 = ‖[π1B(ek, el), π1ei]‖2 + ‖[π2B(ek, el), π2ei]‖2

6 Λ2‖B(ek, el)‖2K2
1 + Λ2‖B(ek, el)‖2K2

2

6 (K2
1 +K2

2 )‖A‖2Λ2,

and so 〈(5), A〉 > −p3(K2
1 +K2

2 )Λ2‖A‖2.

�

Note here that the hypothesis ‖π2‖ 6 Λ implies that |π2(e)| 6 Λ for unit
tangent vectors and |π1η| 6 Λ for unit normal vectors. This holds only if
the dimension of the submanifold is the same as that of the first factor. We
have used this in each of the above calculations.
Also note that to this point we have not used the fact that the first factor

is the round sphere. We require this in the following calculation. In this case
we also consider the maps πTπ2 and πTπ1 where πT is the projection from
TX to TM . The assumption that ‖π2‖ 6 Λ is equivalent to the requirement
that

∑
i λ

2
i 6 Λ2 where the λ2

i ’s are eigenvalues of πTπ2.

Lemma 5.6. — Under the assumption that 0 6 Λ < 1 uniformly on M ,
the sixth and final term of R(A) satisfies

〈(6), A〉 > 1
p− 1‖A‖

2 −
(p2 + 2
p− 1 + 2p2(N − p)K2

2

)
Λ2‖A‖2.

Proof. — The term (6) satisfies

〈(6)WX,Y 〉 = −2
∑
i

〈AW (ei), Rei,XY 〉

= 2
∑
i

〈AW (ei), [[ei, X], Y ]〉

= 2
∑
i

〈−[[ei, X], AW (ei)], Y 〉

so 〈(6), A〉 = 〈(6), A〉1 + 〈(6), A〉2

TOME 61 (2011), FASCICULE 2



504 Andrew CLARKE

That is,

〈(6), A〉1 = 2
∑
ijk

〈 1
2(p− 1)

(
− 〈π1ei, π1A

ηj (ei)〉π1ek

+ 〈π1ek, π1A
ηj (ei)〉π1ei

)
, π1A

ηj (ek)〉

(p− 1)〈(6), A〉1 =
∑
ijk

−〈πTπ1ei, A
ηj (ei)〉〈πTπ1ek, A

ηj (ek)〉

+ 〈B(πTπ1ek, ei), ηj〉〈ηj , B(πTπ1ei, ek)〉

= −
∑
ijk

λ2
kλ

2
i 〈ei, Aηj (ei)〉〈ek, Aηj (ek)〉

+
∑
ik

(1− λ2
i )(1− λ2

k)‖B(ei, ek)‖2

> −
∑
ik

λ2
iλ

2
k〈B(ei, ei), B(ek, ek)〉+

∑
ik

‖B(ei, ek)‖2

−
∑
ik

(λ2
i + λ2

k)‖B(ei, ek)‖2

> ‖A‖2 − p2Λ2‖A‖2 − 2Λ2‖A‖2.

In the third equality we have used that the submanifold is minimal.

〈(6), A〉2 = −2
∑
ijk

〈[[π2ei, ek], π2A
ηj (ei)], Aηj (ek)〉

= −2
∑
ijk

〈[π2ei, ek], [π2A
ηj (ei), Aηj (ek)]〉

> −2
∑
ijk

K2Λ ·K2Λ‖Aηj (ei)‖‖Aηj (ek)‖

> −2p2(N − p)K2
2Λ2‖A‖2.

�

Collecting the results from the Lemmas 5.3 to 5.6 if we define

C(p,X2) =
(

4p2(N − p) + 2p(N − p)2 + p3
)

(K2
1 +K2

2 )

+
(p2 + 2
p− 1 + 2p2(N − p)K2

2

)
,

then we can conclude that the tensor R(A) satisfies

〈R(A), A〉 >
(

2ρ+ 1
p− 1 − CΛ2

)
‖A‖2.

This concludes the proof of Theorem 3.2.
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6. Riemannian Submersions

In this section we review the basic definition of Riemannian submersions,
with a particular interest in the way the tensors and curvatures behave for
submanifolds of the spaces. We consider submersions π : M → M . That
is, π is surjective and has surjective derivative at all points in M . The
preimage of a point in M is a submanifold of M .

Definition 6.1. — Let M and M be Riemannian manifolds. The sub-
mersion π is a Riemannian submersion if π∗ is an isometry when restricted
to the orthogonal space to the fibres. That is,

π∗ : TpF⊥ → Tπ(p)M is an isometry

for all fibres F = π−1(π(p)) of the submersion.

We call TpF the vertical space and TpF⊥ the horizontal space. We re-
spectively denote by V and H the projections to these spaces.
We assume that the fibres of the Riemannian submersion are totally

geodesic.

Definition 6.2. — The O’Neill tensor of the submersion is given by

AXY = V∇HXHY +H∇HXVY.

Let R and R be the Riemannian curvatures of M and M respectively.
Also denote by S(X,Y ) = 〈RY,XX,Y 〉 for X and Y tangent to M , and
S(X,Y ) = 〈RY,XX,Y 〉 for X and Y tangent toM . Then, from [9], we have

S(π∗X,π∗Y ) = S(X,Y ) + 3|AXY |2,
S(X,V ) = |AXV |2

where X and Y are horizontal vectors and V is vertical.
For p ∈M let {ei} and {νj} be orthonormal bases for the horizontal and

vertical subspaces respectively. We denote

K(p) = scalar curvature of M at p,
K(p) = scalar curvature of M at π(p),

τ(p) =
∑
j,k

S(ej , νk),

= twisting curvature at p
r(p) = scalar curvature of the fibre π−1(π(p)) at p.

Theorem 6.3. — [9] K = K + τ − r.
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We combine the study of submersions with that of submanifolds. In par-
ticular we suppose that M is a submanifold of X and M is a submanifold
of X such that the following diagram commutes.

M
f̄−−−−→ X

π

y yπ
M

f−−−−→ X

We suppose the fibres are totally geodesic in each case and that f̄ is a
diffeomorphism on the fibres.

Theorem 6.4. — [9] M is a minimal submanifold of X if and only if
M is a minimal submanifold of X.

We can use the Gauss equation to compare the twisting curvature for
the submersions M →M and X → X. We have

SX(ej , νk)− SM (ej , νk) = ‖B(ej , νk)‖2 − 〈B(ej , ej), B(νk, νk)〉

= ‖B(ej , νk)‖2 > 0.

The twisting curvature terms will similarly be denoted τM and τX for the
two submersions.
Finally, we note that if M ⊆ X = X1 × X2 and M ⊆ X = X1 × X2

then the projections π2 from M and M respectively to X2 have the same
uniform norm.

7. Rigidity of Rank-One Factors

In this section we extend the previous calculations to the case where the
submanifold M is close to a rank-one factor of X other than the sphere.
That is, we take X = X1×X2 where X1 is one of either RPn, CPn or HPn.
The first case follows immediately, because the curvature tensor of RPn

coincides, up to a factor, with that of Sn. For the other spaces, we use the
fact that they admit Hopf-fibrations of spheres with totally geodesic fibres.
We can then use the Riemannian submersion framework developed in the
previous section.

Lemma 7.1. — Let M be a 2n-dimensional minimal submanifold of the
compact-type symmetric space CPn ×X2 and let M ⊆ S2n+1 ×X2 be the
minimal submanifold that fibres over M . Then,

τM 6
1
2 .
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Proof. — We can assume that {ei} and {ν} form bases for the horizontal
and vertical spaces respectively and together diagonalize the map πTπ1 on
M . In particular, π1ν = ν because ν is vertical and |π1ei| = λi.

SM (ei, ν) 6 SX(ei, ν)
= ‖[π1ei, π1ν]‖2 + ‖[π2ei, π2ν]‖2

= 1
4nλ

2
i 6

1
4n.

Thus, τM (p) 6 1
4n2n = 1

2 . �

Theorem 7.2. — There exists Λ > 0 such that ifM is a 2n-dimensional
closed minimal submanifold of CPn ×X2 that uniformly satisfies

‖π2‖ 6 Λ

(n+ 1)−K <
ρ

q
.

Then M = CPn × {pt} and K ≡ n+ 1.

Proof. — Let M ⊆ S2n+1 ×X2 be the closed minimal submanifold that
fibres over M . The fibres in this case are totally geodesic circles so r = 0.
Then,

2n+ 1
2 −K = 2n+ 1

2 −K + τ 6 n+ 1−K

so by Theorem 3.3 we can conclude the result. �

Corollary 7.3. — There is a C3-open neighbourhood of the standard
embedding of CPn in CPn × X2 in the set of immersions such that any
minimal immersion contained in it is conjugate to the standard one.

We now consider closed 4n-dimensional minimal submanifolds of HPn ×
X2. For such a minimal submanifoldM there is minimal submanifoldM of
S4n+3×X2 that fibres over it. The fibres are totally geodesic in bothM and
S4n+3×X2 and so, with respect to the metric that we have considered, have
scalar curvature 3

4n+2 . In an identical way to Lemma 7.1 we can calculate
τM .

Lemma 7.4. — For p ∈M ⊆ S4n+3 ×X2,

r(p) = 3
4n+ 2

τM (p) 6
3n

2n+ 1 .
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Theorem 7.5. — Let M be a closed 4n-dimensional minimal subman-
ifold of HPn×X2 and let K be its intrinsic scalar curvature. Suppose that
M satisfies, for Λ given above,

‖π2‖ 6 Λ,
4n(n+ 2)

2n+ 1 −K <
ρ

q
.

Then M is totally geodesic. There exists a possibly smaller Λ such that
these hypotheses imply that M is a totally geodesic factor HPn × pt.

The proof is identical to that of Theorem 7.2.

Corollary 7.6. — There is a C3-open neighbourhood of the standard
embedding of HPn in HPn × X2 in the set of immersions such that any
minimal immersion contained in it is conjugate to the standard one.
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