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PRESCRIBING GAUSS CURVATURE OF SURFACES IN
3-DIMENSIONAL SPACETIMES

APPLICATION TO THE MINKOWSKI PROBLEM IN
THE MINKOWSKI SPACE

by Thierry BARBOT,
François BÉGUIN & Abdelghani ZEGHIB (*)

Abstract. — We study the existence of surfaces with constant or prescribed
Gauss curvature in certain Lorentzian spacetimes. We prove in particular that ev-
ery (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact
spacetime with constant non-negative curvature is foliated by compact spacelike
surfaces with constant Gauss curvature. In the constant negative curvature case,
such a foliation exists outside the convex core. The existence of these foliations,
together with a theorem of C. Gerhardt, yield several corollaries. For example, they
allow to solve the Minkowski problem in Min3 for data that are invariant under
the action of a co-compact Fuchsian group.
Résumé. — Nous étudions l’existence de surfaces à courbure de Gauss constante

ou prescrite dans certains espaces-temps lorentziens. Nous montrons en particulier
que tout espace-temps (non-élémentaire) globalement hyperbolique spatialement
compact maximal à courbure constante positive ou nulle de dimension 3 est feuilleté
en surfaces de Cauchy à courbure de Gauss constante. Dans le cas des espaces-temps
à courbure constante strictement négative, le complémentaire du cœur convexe est
feuilleté par des surfaces de Cauchy à courbure de Gauss constante. On combinant
ces résultats d’existence de feuilletages avec un théorème de C. Gerhardt, on obtient
un certain nombre de corollaires. Par exemple, on résout le problème de Minkowski
dans Min3 pour des données qui sont invariantes par l’action d’un groupe fuchsien
cocompact.

1. Introduction

Surfaces with constant Gauss curvature embedded in a three-dimensional
space have always played a important role in Riemannian geometry and

Keywords: Gauss curvature, K-curvature, Minkowski problem.
Math. classification: 53C50, 53C42, 53C80.
(*) Work supported by ANR project GEODYCOS.
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geometric analysis. It seems however that — unlike surfaces with constant
mean curvature — they have not attracted much attention in mathematical
relativity. One reason might be that people think that these surfaces do not
generalize appropriately in higher dimensions: Hypersurfaces with constant
sectional curvature embedded in a n-dimensional space are rigid and rare
for n > 4. Observe nevertheless that, from the point of view of geometri-
cal analysis, Gauss curvature should not be considered as a scalar intrinsic
curvature (the sectional curvature), but rather as a scalar extrinsic cur-
vature: The K-curvature, i.e. the product of the eigenvalues of the second
fundamental form. From this viewpoint, the mean curvature and the Gauss
curvature both belong to the family of so-called F -curvatures (see below),
and hypersurfaces with constant “Gauss” curvature are not rigid anymore
in dimension n > 4. In spite of the privileged connection between hyper-
surfaces with constant mean curvature and the Dirichlet problem for the
Einstein equation, we think that it could be interesting to consider other
kinds of hypersurfaces with constant F -curvature in mathematical relativ-
ity. In particular, we think that surfaces with constant Gauss curvature
could play an interesting role in (2+1)-gravity.
In the present paper, we study the existence of surfaces with constant

Gauss curvature (which we callK-surfaces) in 3-dimensional maximal glob-
ally hyperbolic spatially compact vacuum spacetimes. We prove that each
such spacetime with non-negative curvature admits a unique foliation by
K-surfaces. This foliation will provide us with a canonical time function on
the spacetime under consideration.

Let us start by some general introduction, first on the problematic of
existence of privileged time functions on spacetimes, and then on the class
of spacetimes we are interested in.

1.1. Geometric times on MGHC spacetimes

MGHC spacetimes. — Recall that a Lorentz manifold M is globally
hyperbolic if it admits a Cauchy hypersurface, i.e. a spacelike hypersurface
which intersects every inextendible causal curve at exactly one point. A
classical result of R. Geroch states that the existence of a single Cauchy
hypersurface implies the existence of a foliation by such hypersurfaces.
More precisely, recall that a time function on a spacetime is a submersion
t : M → R strictly increasing along every future-oriented causal curves.
Geroch’s result states that a globally hyperbolic spacetime admits a time
function whose levels are Cauchy hypersurfaces.
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SURFACES WITH CONSTANT K-CURVATURE IN 3D SPACETIMES 513

A globally hyperbolic spacetime is said to be spatially compact if its
Cauchy hypersurfaces are compact. This is equivalent to having a time
function which is a proper map, or equivalently, a time function with com-
pact levels. A globally hyperbolic spacetime (M, g) is maximal if every
isometric embedding of M in another globally hyperbolic spacetime of the
same dimension is onto. For short, we shall write MGHC for “maximal
globally hyperbolic spatially compact”. MGHC spacetimes are the tamest
Lorentz manifolds from the geometric analysis viewpoint. These spacetimes
appear as cosmological models in mathematical Relativity (MGHC space-
times satisfying the strong positivity energy condition are sometimes called
cosmological spacetimes).

Geometric time functions. — The simplest examples of MGHC space-
times are metric products, i.e. spacetimes of the type M = (R,−dt2) ⊕
(Σ, h), where (Σ, h) is a compact Riemannian manifold.

Let (M, g) be a MGHC spacetime. From a topological viewpoint, M is
always homeomorphic to the product R×Σ, where Σ is a Cauchy hypersur-
face of M . More precisely, a MGHC spacetime M can always be written as
a topological product R×Σ, where the first projection (t, x)→ t is a time
function, and ({t} × Σ)t∈R is a foliation of M by spacelike hypersurfaces.

From a metrical viewpoint, (M, g) is in general far from being isometric to
a direct product. In the (t, x) coordinates given by the topological splitting
M ' R × Σ, the metric on M has the ADM form: g = −N(t, x)dt2 ⊕
(ωtdt+ ht), where ht is a one parameter family of Riemannian metrics on
Σ, ωt a one parameter family of 1-forms on Σ, N(t, x) a function (called the
lapse function), and Xt the dual (with respect to ht) of (1/2)ωt is the shift
(non-autonomous) vector field. (One can roughly say at this stage that a
Lorentz structure on a MGHC space with topology R × Σ, is a curve in
Met(Σ), the space of Riemannian metrics of Σ up to isotopy).
The topological splitting M ' R×Σ are by no means unique. Nonethe-

less, it is natural and worthwhile to ask if there are privileged splittings (or
time function) for a given MGHC spacetime? It is specially exciting to ask
what remains from the couple of the orthogonal foliations after perturba-
tion of a direct product metric −dt2 ⊕ h?
So the general question we are posing is to produce canonical geometric

foliations by Cauchy hypersurfaces, or equivalently geometric time func-
tions, which yield a kind of measurement of the default for (M, g) to be a
metric product. Actually, asymptotic behaviour, singularities, shocks, and
similar questions are meaningful only in a “natural” coordinates system
(which does not create artificial singularities).

TOME 61 (2011), FASCICULE 2
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Rigid time functions. — Let us first give some examples of local geo-
metric conditions on time functions (we keep the same notations as above):

– Static time: ∂
∂t is a Killing vector field and is orthogonal to the level

sets of the time function (t, x) 7→ t. In this case g = −N(x)dt2⊕h0.
– Static geodesic time: Same as above, with the additional require-
ment that ∂

∂t has geodesic trajectories. This characterize the direct
product case, g = −dt2 ⊕ h0.

– Homothetically static-geodesic case: g = −dt2 ⊕ w(t)h0 for some
function w.

All these examples are very rigid. Observe that, in these examples, the
time function t : M → R is a solution of a system of PDEs describing the
extrinsic geometry of its level sets. A less rigid situation is the case where
the time function is assumed to be a solution of a single (scalar) geometric
PDE; This is the case of so-called F-time functions.

F-time functions. — Let F : Rn → R be a map which is invariant by
permutation of the coordinates. The F-curvature of a hypersurface Σ em-
bedded in a (n+ 1)-dimensional spacetime M is defined by evaluating the
function F on the eigenvalues of the second fundamental form of Σ.

In the particular case where F is the (arithmetic) mean of eigenvalues, the
F -curvature is the mean curvature. We are going here to consider the case
where F is the opposite of the product of eigenvalues; In the particular case,
the F -curvature is called the Gauss-Killing-Kronecker-Lipschitz-curvature
or K-curvature. Such functions are automatically unique (see §1.3).

A F-time function is a time function t : M → R such that each level set of
t−1(a) has constant F-curvature, and such that the F-curvature of the level
set t−1(a) is an increasing function of a (in other words, the F-curvature
of the level sets increases along future-directed causal curves).

Constant mean curvature versus constant K-curvature. — A CMC-
hypersurface is a hypersurface with a constant mean curvature. A K-
hypersurface is a hypersurface with a constant K-curvature.

From a PDE point of view, since one takes a linear sum in the definition
of the mean curvature, the equation defining CMC hypersurfaces is the
simplest one (among all the equation defining hypersurfaces with constant
F-curvature). It is quasi-linear. In all the other cases, the PDE is fully
non-linear of Monge-Ampère type.

ANNALES DE L’INSTITUT FOURIER



SURFACES WITH CONSTANT K-CURVATURE IN 3D SPACETIMES 515

Following G. Darboux, one could say that CMC hypersurfaces play a
crucial role in physics, whereas K-hypersurfaces in geometry!(1) Despite
the marriage of geometry and physics via the Theory of General Relativity
(some decades after Darboux), K-hypersurfaces remain mostly ignored by
physicists nowadays, whereas CMC hypersurfaces are the subject of much
attention. In fact one of the central and natural questions in Relativity is
whether a given class of spacetimes admits CMC foliations?
One explanation of the success of CMC hypersurfaces in General Rel-

ativity is that the Cauchy problem for Einstein equations (in vacuum)
can be formulated as a hyperbolic-elliptic well posed PDE system, in a
CMC gauge. Roughly speaking, one can incorporate the CMC condition
in the ADM representation of the metric, and set a well posed system,
that is if initial data satisfy “CMC constraints”, then, the system has a
solution. This solution is a Ricci flat Lorentz manifold extending the given
initial Riemannian manifold, together with a canonical CMC foliation on
a neighbourhood of it. In other words, one has a kind of a CMC flow.
It is natural to try to extend this consideration to the K-curvature case,

that is to write the Einstein equations in a K-gauge. This does not seem
easy because of the the non-linear coupling of equations.
One beautiful corollary of CMC gauges is the regularity of global CMC

foliations. If one knows that the ambient Lorentz metric is (real) analytic,
then the locally defined CMC foliation given by the CMC flow is analytic
(by analyticity of solutions of analytic hyperbolic systems with analytic
initial data). Therefore, if one knows that the spacetime has a CMC folia-
tion, and moreover, any CMC hypersurface is a leaf of it, then this foliation
must be analytic (since it is locally defined by the CMC flow). One achieve-
ment of the present article is to show existence of K-foliations as well as
uniqueness of K-hypersurfaces, but we can not yet deduce its analyticity,
since we were not able to treat the Einstein equations in a K-gauge.

Other geometric time functions. — A time function (x, t) 7→ t is of
Gauss type if the metric has the form −dt2⊕ gt. If a level {t}×Σ is given,
then the others levels are obtained by pushing along orthogonal geodesics.
The cosmological time (CT for short) enjoys this property. It will be one
important tool in our study of K-times.

(1)“On peut dire que la courbure totale a plus d’importance en Géométrie ; comme elle
ne dépend que de l’élément linéaire, elle intervient dans toutes les questions relatives à
la déformation des surfaces. En Physique mathématique, au contraire, c’est la courbure
moyenne qui paraît jouer le rôle prépondérant”, [29, Livre V, chapitre II].

TOME 61 (2011), FASCICULE 2
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1.2. MGHC spacetimes of constant curvature

In the present paper, we restrict ourselves to MGHC spacetimes of con-
stant curvature. Such spacetimes have locally trivial geometry, being locally
isometric to the Minkowski space Min3, de Sitter space dS3 or anti-de Sit-
ter space AdS3. However, the topology and the global geometry of these
spacetimes may be highly nontrivial. Actually, all the questions studied
in the present paper concern the global geometry of the spacetimes under
consideration.
Focussing our attention on spacetimes with constant curvature is clearly

an important restriction. Nevertheless, let us recall that, from a physi-
cal viewpoint, every 3-dimensional solution of the vacuum the Einstein
equations has constant curvature. Actually, 3-dimensional spacetimes with
constant curvature have received much attention in the last fifteen years
because of the role they play in quantum gravity (see for instance [25]),
and since the discovery of the so-called BTZ black holes models ([8]).
Moreover, from a purely mathematical viewpoint, 3-dimensional MGHC
spacetimes with constant curvature are the Lorentzian analogs of the Rie-
mannian hyperbolic ends, which play a fundamental role in 3-dimensional
topology. More formally, there exists a duality between hyperbolic ends and
3-dimensional MGHC spacetimes of positive constant curvature, which al-
lows to translate some of our results on MGHC spacetimes into results on
hyperbolic ends (see §12).
The theory of 3-dimensional MGHC spacetimes of constant curvature

naturally splits into two cases: The spacetimes whose Cauchy surfaces have
genus 0 or 1 are called elementary, whereas the spacetimes whose Cauchy
surfaces have genus at least 2 are called non-elementary. As suggested by
the terminology, the global geometry of elementary spacetimes is much
easier to understand than those of non-elementary spacetimes. In some
sense, elementary spacetimes can be considered as “particular” or “exact”
solutions of the Einstein equations, for which all geometrical problems can
be solved explicitly “by hand” (see e.g. [2, §10.2 and §10.3]). Nevertheless,
since tools are quite different, we will restrict ourselves to non-elementary
spacetimes.
All the spacetimes we shall consider in the sequel are not only time-

orientable, but actually time-oriented. If M is a non-elementary 3-dimen-
sional MGHC spacetime of constant curvature Λ > 0, then M is always
either past complete (all past directed causal geodesic rays are complete), or
future complete. Reversing the time-orientation if necessary, we will always
assume we are in the second case. Note that a non-elementary 3-dimensional
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MGHC spacetime of constant curvature Λ < 0 is always neither past nor
future complete.

1.3. Some definitions: K-surfaces, K-slicings, K-times

Let (M, g) be a (time-oriented) 3-dimensional spacetime. Given a space-
like surface Σ inM , the second fundamental form kΣ

x of Σ at x is defined by
kΣ
x (X,Y ) = −〈∇Xn, Y 〉 where n is the future oriented unit normal vector

of Σ. The K-curvature (or Gauss-Killing-Kronecker-Lipschitz curvature) of
Σ at x is κΣ(x) = −λ1(x)λ2(x), where λ1(x) and λ2(x) are the principal
curvatures of Σ at x, i.e. the eigenvalues of the second fundamental form
kΣ
x . Note that, in the case where the spacetime M has constant (sectional)

curvature Λ, the Gaussian (i.e. sectional) curvature of Σ is RΣ = Λ + κΣ,
and its scalar curvature is 2RΣ.

A K-surface in M is a spacelike surface with constant K-curvature. Ob-
serve that, in the case where M has constant curvature, being a K-surface
is equivalent to having constant Gaussian curvature.
From now on, we assume (M, g) to be globally hyperbolic and spatially

compact. We define a K-slicing of M as a foliation of M by compact K-
surfaces. Note that a K-slicing of M is always a trivial foliation, all the
leaves of which are Cauchy surfaces of M . Equivalently, the leaves of a
K-slicing of M are always the level sets of a certain time function.

Remark 1.1 (Slicing versus Foliation). — Our choice of the term “slic-
ing” instead of the familiar one “foliation” (in the mathematical literature)
is to emphasize the fact that we are dealing only with topologically trivial
foliations, e.g. with all leaves compact. However, one could imagine to study
general K-foliations with non-trivial dynamics. Although we will not inves-
tigate the question here, we guess that, in our context of MGHC spacetimes
of constant curvature, any K-foliation is in fact a slicing. A similar question
about CMC-foliations of the 3-dimensional Euclidean space is handled in
[50].

A K-slicing need not be unique in general. In order to get some unique-
ness, we need to define a more restrictive notion. A C2 spacelike surface Σ
inM is said to be convex (resp. strictly convex) if it has non-positive (resp.
negative) principal curvatures. Similarly, Σ is concave or strictly concave
if the principal curvatures are non-negative or positive. A K-time on M

is a time function τ : M → R such that, for every a ∈ τ(M), the level set
τ−1(a) is a compact strictly convex K-surface with K-curvature equal to

TOME 61 (2011), FASCICULE 2
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a. Of course, the level sets of any K-time define a K-slicing of M . Never-
theless, the K-slicings defined by K-times are quite specific since all the
leaves have negative principal curvatures, and since the K-curvature of the
leaves increases with time. Note that the range τ(M) of a K-time is always
included in (−∞, 0).

The maximum principle implies that K-times are unique. More precisely,
if M admits a K-time τ : M → R, then, for every a ∈ τ(M), the only com-
pact K-surface of K-curvature a inM is the level set τ−1(a). In particular,
the only K-slicing on M is the one defined by the level sets of τ (see §4.4).

1.4. Purpose of the paper

In the present paper, we are going here to consider the following ques-
tions:

– the existence of K-time (or K-slicings) in 3-dimensional MGHC
spacetimes of constant curvature,

– the existence of Cauchy surfaces of prescribed K-curvature in 3-
dimensional MGHC spacetimes of constant curvature,

– the Minkowski problem in the 3-dimensional Minkowski space.
The results concerning the last two items are essentially application of the
first one.

2. Statements of results

2.1. K-slicings of MGHC spacetimes with constant curvature

The following is our main result:

Theorem 2.1. — Let M be a 3-dimensional non-elementary MGHC
spacetime with constant curvature Λ. If Λ > 0, reversing the time orienta-
tion if necessary, we assume that M is future complete.

• If Λ > 0 (flat case or locally de Sitter case), thenM admits a unique
K-slicing. The leaves of this slicing are the level sets of a K-time
ranging over (−∞,−Λ).

• If Λ < 0 (locally anti-de Sitter case), then M does not admit any
global K-slicing, but each of the two connected component of the
complement of the convex core(2) of M admits a unique K-slicing.
The leaves of the K-slicing of the past of the convex core are the

(2)About the notion of convex core, see §5.3.
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level sets of a K-time ranging over (−∞, 0). The leaves of the K-
slicing of the future of the convex core are the level sets of a reverse
K-time(3) ranging over (−∞, 0).

Let us make a few comments on this result.

Gaussian curvature. — Since the Gaussian curvature of a surface is
R = Λ +κ, the Gaussian curvature of the leaves of the K-slicings provided
by Theorem 2.1 varies in (−∞, 0) when Λ > 0, and in (−∞,Λ) when Λ < 0.

CMC times. — It is our interest on CMC-times that led us to extend
our attention to more general geometric times. Existence of CMC times on
MGHC spacetimes of constant non-positive curvature and any dimension
was proved in [1, 2]. For spacetimes locally modelled on the de Sitter space,
there are some restrictions but not in dimension 3.

Regularity. — The slicings provided by Theorem 2.1 are continuous. It
follows from their uniqueness (i.e. they are canonical). Extra smoothness is
not automatic (e.g. the cosmological time is C1,1, but not C2). Here, we can
hope that our K-slicings are (real) analytic, and even more, they depend
analytically on the spacetime (within the space of MGHC spacetimes of
curvature Λ and fixed topology). All this depends on consideration of the
Einstein equations in a K-gauge.

Non-standard isometric immersions of H2 in Min3. — It was observed
by Hano and Nomizu [41], that the hyperbolic plane H2 admits non stan-
dard isometric immersions in the Minkowski space Min3 (i.e. different from
the hyperbola, up to a Lorentz motion).
Theorem 2.1, applied in the flat case, yields a K-slicing with (exactly)

one isometric copy of H2 in R1,2, invariant by the holonomy group Γ ⊂
SO(1, 2) n R3 (since the curvature varies from −∞ to 0). This isometric
immersion is different from the standard one as soon as Γ 6⊂ SO(1, 2)n{0}.
Observe that, in higher dimension, Hn is rigid in Minn+1. Indeed, the

theory of rigidity of submanifolds in the Euclidean space extends straight-
forwardly to the Minkowski space. From this theory, a hypersurface with
a second fundamental form of rank >3 is rigid. By Gauss equation, any
isometric immersion of a hyperbolic space in a Minkowski space is non-
degenerate, and hence has the required condition on the rank, whence n>3.

(3)A reverse K-time on N is a function τ : N → R which is strictly decreasing along
every future oriented causal curve, and such that, for every a, the level set τ−1(a) is a
compact locally strictly concave surface of constant K-curvature equal to a.

TOME 61 (2011), FASCICULE 2
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Spacetimes as curves in the Teichmüller space. — For the sake of sim-
plicity, let us restrict ourselves here to the case Λ = 0, i.e. that of flat
spaces. Denote by Σ the abstract topological surface homeomorphic to a
Cauchy surface of M , and by Met(Σ) the space of Riemannian metrics
on Σ up to isotopy. Any time function of M gives rise to a family (Σt, gt)
of Riemannian metrics on Σ (well-defined up to isotopy) parametrized by
the given time. We have in particular, associated to our three favourite, K,
CMC and CT times, three curves inMet(Σ):

MetK (resp. Metcmc and Metct) : t→ gt ∈Met(Σ).

Now, let Teich(Σ) be the Teichmüller space of Σ, i.e. the space of hyper-
bolic metrics (of curvature−1) on Σ, up to isotopy. Then, we have associated
curves:

TeichK (resp. Teichcmc and Teichct) : t→ [gt] ∈ Teich(Σ).

Thus, Met(t) is the Riemannian metric of the t-level, and Teich(t) is its
underlying complex structure.
Let us note the following facts (but we cannot give here a complete

overview):
(1) The curves MetK , Metcmc, Metct, TeichK , Teichcmc, Teichct en-

code the metric properties and the geometry of the spacetime M .
(2) These curves all coincide exactly when the spacetime (M, g) is static

(i.e. its universal cover is the solid lightcone).
(3) In the vein of V. Moncrief’s work on the “reduction of the Einstein

equations to the Teichmüller space” in a CMC gauge in dimen-
sion 2 + 1 [52], one can show in general that all the above curves
in Teich(Σ) have canonical lift in T ∗(Teich(Σ)) or alternatively
T (Teich(Σ)). There, they define (semi-)flows. In the CT-case, this
is nothing but the grafting [18].

(4) It is an essential question to study the behaviour of these curves
in both Met(Σ) and Teich(Σ) when the parameter tends to one
or the other extremity of the existence interval. A delicate point
is that there are many compactifications for Teich(Σ) and also
many notions of convergences for sequences inMet(Σ). We have for
instance, equivariant Gromov topology, convergence of spectrum,
where in general the limit is a real tree. For existing asymptotic
study, see for instance [22] in the CT-case and [4] in the CMC-case,
and a forthcoming paper.

(5) One advantage of theK-slicing is that TeichK(t) is directly given by
MetK(t), that is we don’t need to uniformize it since it has constant
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curvature t (by definition of the parameter). In this case, all notions
of convergence inMet(Σ) (up to scaling) and in Teich(Σ), coincide.

Affine foliations. — It is interesting to compare our results (existence of
CMC-slicings and K-slicings) with similar results in the context of (equi-
)affine geometry, in particular with the beautiful theory of affine spheres
(see [48]): For every hypersurface Σ in the affine space Rn+1, endowed
with a parallel volume form, one can define its affine principal curvatures
λ1, λ2, . . . , λn. The hypersurface is an affine hypershere if all these affine
principal curvatures are equal and constant along Σ. It is equivalent to
require that all the affine normals either intersect at one point, or are
mutually parallel. If λ1 = λ2 = · · · = λn < 0, the affine sphere is hyperbolic.
Calabi’s conjecture states that:

(1) Every hyperbolic affine sphere which is complete for its “affine”
metric is asymptotic to the boundary of a proper open convex cone,

(2) Conversely, for every λ < 0, every proper open convex contains a
unique hyperbolic affine sphere of affine principal curvatures λ.

The first part has been solved by Cheng and Yau under the hypothesis
that the affine sphere is complete for an Euclidean metric on Rn+1, hy-
pothesis removed later by Li. Most interesting for us is the second part,
proved by Sasaki and Gigena. It shows that any proper open cone admits
a natural foliation by hyperbolic affine spheres, which can be considered as
hypersurfaces of (affinely) constant scalar curvature, or as well of constant
mean curvature.
For more details, see [48, Chapter 2], where the authors also discuss

the method of C. P. Wang for constructing all hyperbolic affine 2-spheres
which admit the action of a discrete subgroup of the equiaffine group with
compact quotient.

2.2. Duality hyperbolic-de Sitter, K-slicings of hyperbolic ends

The duality between the de Sitter space dS3 and the hyperbolic space H3

(see §12) will allow us to deduce the existence of K-surfaces in hyperbolic
ends from the existence of K-surfaces in MGHC spacetimes of constant
positive curvature. So we will be able to recover the following result of
F. Labourie:

Theorem 2.2 ([44]). — A 3-dimensional hyperbolic end possesses a K-
slicing with K-curvature ranging in (0, 1).

TOME 61 (2011), FASCICULE 2
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Some explanations on hyperbolic ends can be found in §12. Note that,
in the Riemannian setting, the K-curvature of a surface is just the product
λ1λ2 of the principal curvatures.

Remark 2.3.
(1) It was observed by Mess that the dS3-case of our main Theorem 2.1

can be deduced from Labourie’s Theorem, using the duality between
dS3 and H3.

(2) Our proof here of Theorem 2.1 in the dS3-case is completely dif-
ferent from Labourie’s one for hyperbolic ends. Actually, we think
that our method gives the natural framework for approaching many
results of existence of “geometric” surfaces or foliation, even in the
hyperbolic setting.

2.3. Surfaces with prescribed K-curvature

The barriers method (see §3.1) allows one to find a surface with constant
K-curvature κ in between two surfaces with (non-constant) K-curvatures
bounded respectively from below and above by κ. This is an important
ingredient in our proof of Theorem 2.1. This method generalizes to the
case where κ is not a constant any more, but rather a function (see [35]
or section 13). Using this generalization and Theorem 2.1, we will get the
following existence result:

Theorem 2.4. — Let M be a 3-dimensional non-elementary MGHC
spacetime with constant curvature Λ. If Λ > 0, reversing the time-
orientation if necessary, we assume that M is future complete. Let f be
a smooth function onM admitting a range contained in a compact interval
[a, b] ⊂ ]−∞, min(0,−Λ)[. Then, there is a Cauchy surface Σ is M with
K-curvature κΣ(x) = f(x) for every x ∈ Σ.

In particular:

Corollary 2.5. — Let M be as above. Let Σ0 be the abstract topo-
logical surface homeomorphic to the Cauchy surfaces of M , and let f0 be
a smooth real-valued function on Σ0, such that the range of f0 is a con-
tained in a compact interval [a, b] ⊂ ]−∞,min(0,−Λ)[. Then, there exists
an embedding of φ : Σ0 ↪→ M such that Σ = φ(Σ0) is a Cauchy surface in
M , and the K-curvature of Σ at φ(x) is equal to f0(x) for every x ∈ Σ0.
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2.4. The Minkowski problem

Let us recall the classical formulation of the Minkowski problem (see for
instance [27, 33, 44, 53]). If S is a closed convex smooth surface in the
Euclidean space R3, then its Gauss map νS : S → S2 is a diffeomorphism,
and one can consider the map KS := κS ◦ ν−1

S : S2 → (0,+∞), where κS
is the K-curvature of S. The Minkowski problem consists in characterizing
the functions on the sphere S2 which have the form KS for some surface S.

This problem can be transposed in the Lorentzian setting, by replacing
the Euclidean space R3 by the Minkowski space Min3, requiring the surface
S to be spacelike (but not compact!), and replacing the sphere S2 by the
hyperbolic space H2. Using Theorem 2.1 and a barrier theorem of Gerhardt
([35]), we are able to solve the Minkowski problem in Min3 in the particular
case where the functionKS is invariant under a co-compact Fuchsian group
Γ ⊂ SO(1, 2) = Isom(H2):

Theorem 2.6. — Let Γ be a co-compact Fuchsian subgroup of SO(1, 2),
and f : H2 → (−∞, 0) be a Γ-invariant smooth function. Then there exists
a strictly convex spacelike surface S in Min3 such that f = κS ◦ (νS)−1,
where νS : S → H2 is the Gauss map of S and κS : S → (0,+∞) is the
K-curvature (= Gauss curvature) of S. Moreover, if Γ is a subgroup of
SO(1, 2) n R3 = Isom(Min3) which projects bijectively on Γ, then there
exists a unique such (convex) surface S which is Γ-invariant.

A few comments on the Minkowski problem in Min3:

(1) There is no uniqueness in general for the Minkowski problem in
Min3. For example, for f = −1, any isometric copy of H2 in Min3
is a solution of the Minkowski problem. The uniqueness in Theo-
rem 2.6 strongly relies on the convexity and Γ-invariance hypothe-
ses.

(2) Despite the obvious and natural interest of the Minkowski problem
in the Lorentzian setting, there seems to be very little work on this
problem. We know essentially two substantial contributions: [47] by
A. M. Li and [40] by B. Guan, H.-Y. Jian and R. Schoen. In the
last paper, the authors proved a result similar to ours (equally in
dimension 2 + 1), with the invariance condition replaced by pre-
scribing the asymptotic behaviour at infinity. Finally, the referee
points to us the unpublished work of Igor Iskhakov who studied
similar questions in a polyhedral framework, see [42].
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(3) There are generalizations of the Minkowski problem in other direc-
tions, still in a Riemannian setting, but for ambient spaces differ-
ent from Rn. The point here is to define a substitute of the Gauss
map. This is indeed possible for universal spaces of constant cur-
vature Sn+1 and Hn+1. One can quote here recent works by C.
Gerhardt which solve the corresponding Minkowski problem (for
convex bodies)[36, 33], and a previous work of F. Labourie on an
equivariant Minkowski problem for surfaces in the hyperbolic space
H3 [44]. Finally, the Minkowski problem admits generalizations to
other curvatures (see for instance [39, 58]).

2.5. Related works

The general mathematical framework unifying our contributions here is
that of prescribing (extrinsic) curvatures of hypersurfaces in M . Such a
hypersurface N is sometimes called of Weingarten type, i.e. it is an F-
hypersurface in the sense that: F (

−→
λ (x)) = F (λ1(x), . . . , λn(x)) = f(x),

where f is a given function on N , and F is a function of the principal
curvatures. For instance, one asks the following general questions about
them:

– A Dirichlet problem,
– A Dirichlet problem at infinity, also said “entire hypersurfaces prob-
lem” (i.e. existence of complete hypersurfaces with a prescribed as-
ymptotic behaviour),

– Existence of F-slicings. This requires M to be topologically trivial,
or that the slicing is defined on an end of M ,

– A natural generalization consists in considering curvature functions
F (
−→
λ , ν), i.e F also depends on a normal vector ν.

– Finally, regarding any of these questions, one specifies whether M
is Riemannian or Lorentzian.

As said previously, there is a wide literature on the CMC case (also called
the H-curvature). Let us quote some recent achievements concerning the
K-curvature:

– The Dirichlet problem for the K-curvature in the Minkowski space
was studied in particular by P. Delanoë [30] and B Guan [38].

– Entire K-hypersurfaces were studied by B. Guan, H.-Y Jian and
R. Schoen [40]. (The corresponding CMC case was considered by
A. Treibergs [60], and that on the “finite” Dirichlet problem, by
Bartnik and Simon [14]).
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– In [15, 61] P. Bayard and afterwards J. Urbas solved the Dirich-
let problem for the scalar curvature in the Minkowski space of any
dimension. Remark that for our dimension 2 + 1, the scalar and K-
curvatures coincide. Also [16] solved the entire hypersurface prob-
lem for the scalar curvature.

– C. Gerhardt and O. Schnürer [34, 57] proved criteria for the solv-
ability of the Dirichlet problem on general Lorentz manifolds, and
for various curvature functions,

– Existence of K-slicings of hyperbolic ends in 3-dimension was
proved by F. Labourie (see §2.2 ), and generalized by G. Smith
for higher dimensional quasi-Fuchsian ends, where the K-curvature
is replaced by a variant, governed by the “special Lagrangian” equa-
tion [59],

– Recently, R. Mazzeo and F. Pacard [49] considered manifolds that
are merely asymptotically hyperbolic and admitting a conformal
compactification. They prove existence of various geometric folia-
tions near their boundary.

Acknowledgments. — We would like thank the referee for his valuable
corrections, remarks and suggestions.

3. Ingredients of the proofs

Before going into the details, we present the main ingredients of the
proofs of our results. Let (M, g) be a non-elementary 3-dimensional MGHC
spacetime with constant curvature Λ. If Λ > 0, reversing the time-
orientation if necessary, we can (and we do) assume that M is future com-
plete. To prove our main Theorem 2.1, we have to construct a K-slicing on
M (or on the complement of the convex core of M if Λ < 0). Here are the
main ingredients of this construction:

3.1. Existence of barriers

A very general principle states that the existence of a surface with pre-
scribed curvature should follow from the existence of so-called barriers. In
our context, the suitable result was proved by C. Gerhardt:

Definition 3.1. — For κ ∈ R, a pair of κ-barriers is a pair of disjoint
strictly convex Cauchy surfaces Σ−,Σ+ in M such that:
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a. Σ− is in the past of Σ+,
b. the K-curvature of Σ− is bounded from above by κ,
c. the K-curvature of Σ+ is bounded from below by κ.

Theorem 3.2 (Gerhardt, [34](4) ). — Given a real number κ < −Λ, if
(M, g) admits a pair of κ-barriers (Σ−,Σ+), then (M, g) admits a strictly
convex Cauchy surface Σ with constant K-curvature κ. Moreover, the
Cauchy surface Σ is in the future of Σ− and in the past of Σ+.

Remark 3.3. — The sign convention of Gerhardt for the K-curvature is
the opposite of ours (this is the reason why the main result of [34] asserts
that one can find a Cauchy surface with constant Gauss curvature k for
any k > 0 provided that there is a pair of barriers).

Also note Gerhardt uses the past directed unit normal vector to define
the principal curvatures; It follows that a surface which is called convex
in [34, 35, 33] is called concave here, and vice-versa. This is not a problem
since all the result are valid both for convex and concave surfaces (one
needs to be careful with the definition of the barriers).

Thanks to this barriers Theorem, to find surfaces of constantK-curvature
reduces to find κ-barriers. We will use it to exhibit in §9.1 at least one K-
surface, and also to find local K-slicings (see §3.5). It will also be useful
to find global K-slicing, but this last step will decompose in two cases, the
case Λ > 0 and the case Λ < 0.

In the former case, we will prove directly:

Theorem 3.4. — Assume Λ is non-negative. There exists ε > 0 such
that there exists a pair of κ-barriers for every κ ∈ (−Λ− ε,−Λ).

Theorem 3.4 will be obtained by using previously known results on the
existence of locally strictly convex Cauchy surfaces in flat spacetimes, and
some estimates on the behaviour of theK-curvature when one pushes such a
Cauchy surface along the orthogonal geodesics. Theorem 3.4 together with
Gerhardt’s theorem show the existence of a convex Cauchy surface Σκ with
constant K-curvature κ in M for every κ ∈ (−Λ − ε,−Λ). Using classical
arguments and some informations on our barriers, we will prove that the
family of Cauchy surfaces (Σκ)κ∈(−Λ−ε,−Λ) is a foliation of a neighbourhood
of the future end of M . This will provide us with a “local K-slicing” on a
neighbourhood of the future end of M (in the case Λ > 0).

(4)The main result of [34] is stronger than the result stated above (see §13). For instance,
it remains true in Lorentzian spacetimes of non-constant curvature, and admits natural
generalizations in higher dimensions.
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The case Λ < 0 will be treated differently, using some duality argument,
see §3.6.

3.2. Systole and distance to the past singularity

Let τ be the cosmological time on M (see §4.1 for more details). A
major (and the most original) ingredient of our proof of Theorem 2.1 is the
following result, which relates the systole of a Cauchy surface Σ in M and
the “distance from Σ to the past singularity of M”.

Theorem 3.5. — For every ε > 0, there exists a constant α > 0 such
that, for any Cauchy surface Σ, if inf τ|Σ is smaller than α then the systole
of Σ is smaller than ε.

This statement should be understood as follows: If the systole of a Cauchy
surface Σ in M is not too small, then no point of Σ is close to the past
singularity of M . We will use this to prove that a sequence (Σn)n∈N of
Cauchy surfaces with K-curvature bounded away −∞ remains far from
the initial singularity (see §3.4).
The proof of Theorem 3.5 strongly relies on some fine knowledge of the

geometry of MGHC spacetimes with constant curvature. We think that this
Theorem 3.5 is not only a crucial step in the proof of our main result, but is
also interesting in its own right. It can be used in various type of situations
to prove that a sequence of Cauchy surfaces is relatively compact.

3.3. Decreasing sequences of convex Cauchy surfaces

Another ingredient of our proof of Theorem 2.1 is the fact that the limit
of a decreasing sequence of convex Cauchy surfaces is always “spacelike”.
More precisely:

Theorem 3.6. — Let (Σn)n∈N be a sequence of convex Cauchy sur-
faces(5) in M . Assume that this sequence is decreasing (i.e. I+(Σn+1) ⊃
I+(Σn) for every n), and that the set Ω =

⋃
n>0 I

+(Σn) is not the whole
spacetime M . Let Σ∞ = ∂Ω (note that the Ω is a locally geodesically con-
vex set, and thus Σ∞ is a convex topological surface). Then all the support
planes of Σ∞ are spacelike.

(5)or generalized Cauchy surfaces, see §4.2.
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Note that Σ∞ is not a Cauchy surface in general. An easy (but important)
corollary of Theorem 3.6 is the fact that a decreasing sequence of convex
Cauchy surfaces is always “uniformly spacelike”. To make this precise, let
us denote by T−1M the set of all couples (x, P ) where x is a point ofM and
P is a totally geodesic spacelike plane passing through x. The set T−1M is
naturally identified with the subset of the tangent bundle TM ofM made of
all couples (x, v) where v is a future-directed tangent vector of squared norm
−1 (the identification is of course through the correspondence between a
totally geodesic spacelike plane and its future-directed unit normal vector).
This endows T−1M with a natural topology. Clearly, T−1M is not compact
(a sequence of spacelike planes may converge to a null plane!).

Definition 3.7. — A sequence of spacelike surfaces (Σn)n∈N is uni-
formly spacelike if, for every sequence (xn)n∈N with xn ∈ Σn:

– either the sequence (xn)n∈N escapes from any compact subset ofM ,
– or the sequence (xn, Pn)n∈N, where Pn is the tangent plane of the

surface Σn at xn, stays in a compact subset of T−1M .

Corollary 3.8. — Let (Σn)n∈N be a sequence of convex Cauchy sur-
faces in M . Assume that this sequence is decreasing, and that the set
Ω =

⋃
n>0 I

+(Σn) is not the whole spacetime M . Then (Σn)n∈N is uni-
formly spacelike.

3.4. Sequences of convex Cauchy surfaces
with constant K-curvature

Using the two results discussed above, we will get a quite precise de-
scription of the possible asymptotic behaviour of a decreasing sequence of
convex Cauchy surfaces with constant K-curvature.

Theorem 3.9. — Let (Σn)(n∈N) be a sequence of strictly convex Cauchy
surfaces in M , such that, for every n ∈ N, the surface Σn has constant K-
curvature κn. Assume that this sequence is bounded away from the future
end of M (i.e. the cosmological time is bounded from above on

⋃
n Σn).

If κn → κ with −∞ < κ < min(0,−Λ), then the sequence (Σn)n∈N
is precompact in the C∞ topology. In particular, (Σn) is bounded away
from the past singularity of M (there exists a Cauchy surface Σ such that
Σn ⊂ I+(Σ) for all n), and there exists a subsequence of (Σn) converging
to a smooth surface Σ∞ with constant K-curvature κ.
On the contrary, if κn → −∞, then Σn is covering, that is the union over

n ∈ N of the sets I+(Σn) equals the whole spacetime M .
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The proof of this theorem involves several ingredients:
– an easy lemma which provides a uniform upper bound for the di-
ameter of the Σn’s,

– Margulis’ Lemma which tells that a uniform upper bound for the
diameter of the Σn’s yields some uniform lower bound for the systole
of the Σn’s (in the case where the sequence (κn)n∈N is bounded from
below),

– Theorem 3.5 which implies that the Σn’s remain far from the initial
singularity (in the case where he sequence (κn)n∈N is bounded from
below),

– Theorem 3.6 which roughly says that any limit point Σ∞ of the
sequence (Σn)n∈N is uniformly spacelike,

– a result of Schlenker which says that a C0 limit of convex spacelike
surfaces either is a smooth surface or contains a complete geodesic
ray,

– the geometric description of non-elementary MGHC spacetimes of
constant curvature which entails the fact that such spacetimes never
contain any complete geodesic ray.

3.5. Perturbation of Cauchy surfaces with constant K-curvature

A classical calculation yields:

Proposition 3.10. — Assume that (M, g) admits a strictly convex
Cauchy surface Σ with constant K-curvature κ < −Λ. Then, one can find
a strictly convex Cauchy surface Σ− in the past of Σ such that the K-
curvature is strictly bounded from above by κ (i.e. such that (Σ−,Σ) is a
pair of κ′-barriers for every κ′ < κ such that κ′ is close enough to κ).

The surface Σ− can be obtained simply by pushing slightly Σ along the
geodesics orthogonal to Σ. Proposition 3.10 and Theorem 3.2 show that, if
M admits a convex Cauchy surface Σ with constant K-curvature κ < −Λ,
then some neighbourhood of Σ in the past of Σ is foliated by convex Cauchy
surfaces with constant K-curvature. Together with Theorem 3.9, this will
allow us to prove that any local K-slicing on M can be extended towards
the past until it reaches the past singularity of M (i.e. until one gets a K-
slicing on a neighbourhood of the past end of M). Since, in the case Λ > 0
(flat and de Sitter case), we have already explained how to get a local
K-slicing on a neighbourhood of the future end of M (see §3.1), this will
complete the proof of Theorem 2.1 in the flat case and in the de Sitter case.
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3.6. Duality between convex and concave surfaces
in the anti-de Sitter space

All the arguments developed above in the case Λ > 0 (flat and de Sitter
case) apply in the case Λ < 0 (anti-de Sitter case), except for one: If Λ < 0,
then M is neither future complete nor past complete, and pushing along
orthogonal geodesics does not provide, as explained in §3.1, a family of
κ-barriers foliating a neighbourhood of the future end of M .
So, in the anti-de Sitter case, one needs an alternative argument to com-

plete the proof of Theorem 2.1. The proof goes as follows (see §11): From
[12] we know that the spacetime contains a maximal Cauchy surface Σ.
The set of points at Lorentzian distance π/4 from Σ is an union of two
Cauchy surfaces Σπ/4, Σ−π/4, one in the future of Σ, the other in the past
of Σ. These two surfaces have both constant K-curvature −1, and are thus
κ-barriers. As discussed just above, we cannot prove that the future of
Σ−π/4 is foliated by K-surfaces. However, the arguments used in the flat
and de Sitter cases ensure that the past I−(Σ−π/4) admits a K-time rang-
ing over (−∞,−1). Similarly, the future I+(Σπ/4) of Σπ/4 admits a reverse
K-time. Now the key point is that there is a natural duality between convex
and concave spacelike surfaces in AdS3, preserving the property of having
constant K-curvature. Therefore, the dual of the K-slicing of I+(Σπ/4) is
a K-slicing of the future of Σ−π/4 in the past of the convex core, extending
the K-slicing of I−(Σ−π/4).

3.7. Ingredients of the proofs of Theorems 2.2, 2.4 and 2.6

As already explained in the introduction, Theorem 2.2 is an easy corol-
lary of the existence of K-slicing for non-elementary 3-dimensional MGHC
spacetimes of de Sitter type, and of the duality between the de Sitter space
dS3 and the hyperbolic space H3. Theorems 2.2 and 2.4 will follow from
a generalized version of the Gerhardt’s barriers theorem cited above and
from Theorem 2.1: The barriers needed to apply Gerhardt’s Theorem will
be certain leaves of the K-slicing provided by Theorem 2.1.

3.8. Organization of the paper

Section 4 is devoted to some general preliminaries on time functions, sur-
faces with constant curvature, etc. In Section, 5, we recall the main geomet-
rical properties of MGHC spacetimes with constant curvature. In Section 6,
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we establish the desired relations between the systole of a Cauchy surface
and the distance from this Cauchy surface to the initial singularity (The-
orem 3.5). In Section 7, we prove that the limit of a decreasing sequence
of convex Cauchy surfaces is always uniformly spacelike (Theorem 3.6). In
Section 8, we prove Theorem 3.9 concerning decreasing sequence of Cauchy
surfaces with constant K-curvature. In Section 9, we explain how to con-
struct barriers; iIn particular, we prove Theorem 3.4 and Proposition 3.10.
In Section 10 and 11, we prove our main Theorem 2.1 concerning the exis-
tence of K-slicings of 3-dimensional non-elementary MGHC spacetimes of
constant curvature. In Section 12, we explain the duality between dS3 and
H3, and how to deduce Theorem 2.2 from Theorem 2.1. In Section 13, we
deduce Theorem 2.4 from Theorem 2.1 and Gerhardt’s barrier theorem. In
Section 14, we consider the Minkowski problem and prove Theorem 2.6.

4. Cosmological time, Cauchy surfaces,
maximum principle

For all basic Lorentzian notions such as chronological orientation, past/
future, causal past/future, achronal subsets, acausal subsets, edgeless
achronal subsets, Cauchy surfaces, global hyperbolicity, and maximal glob-
ally hyperbolic space, we refer to [54, 17]. Recall that MGHC is the acronym
for “maximal globally hyperbolic spatially compact”.

4.1. Cosmological time

In any spacetime (M, g), we can define the cosmological time (see [5]).

Definition 4.1. — The cosmological time of a spacetime (M, g) is the
function τ : M → [0,+∞] defined by

τ(x) = Sup
{

Length(γ) | γ ∈ R−(x)
}
,

where R−(x) is the set of all past-oriented causal curves starting at x, and
Length(γ) the Lorentzian length of the causal curve γ.

In general, this function may have a very bad behaviour: For example,
if (M, g) is Minkowski space or the de Sitter space, then τ(x) = +∞ for
every x.

Definition 4.2. — A spacetime (M, g) is said to have regular cosmo-
logical time, if
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(1) M has finite existence time, i.e. τ(x) < +∞ for every x in M ,
(2) for every past-oriented inextendible causal curve γ : [0,+∞)→M ,

limt→∞ τ(γ(t)) = 0.

Regular spacetimes admit many interesting properties ([5, Theorem 1.2]):
In particular, they are globally hyperbolic, and their cosmological time is a
locally Lipschitz time function. A common and important feature of all non-
elementary MGHC spacetimes of constant curvature is that up to reversal
of the time orientation, they have regular cosmological time ([1, 2, 18]).

Remark 4.3. — For every spacetime (M, g) one can also introduce the
reverse cosmological time τ̌ : M → [0,+∞] of a spacetime (M, g), defined
by τ̌(x) = Sup

{
Length(γ) | γ ∈ R+(x)

}
, where R+(x) is the set of all

future-oriented causal curves starting at x. In other words, τ̌ is the cos-
mological time of the spacetime obtained by reversing the time-orientation
of (M, g).

4.2. Generalized Cauchy surfaces

Let (M, g) be a globally hyperbolic spacetime.
First of all, we recall how Geroch proved that M is diffeomorphic to

a product Σ × R (see [37]). Select a Cauchy-time t : M → R, i.e. a time
function such that every level {t = a} is a Cauchy surface. Let X be the
vector field −∇t, i.e. minus the gradient of t, and let φt be the flow of X.
Let finally Σ be the level set {t = 0}. Then, the map F : Σ × R → M

defined by F (x, t) = φt(x) is the required diffeomorphism.
It follows then nearly immediately from the definitions that every achro-

nal subset E of M is the image by F of the graph of a locally Lipschitz
function u : Λ→ R, where Λ is a subset of Σ:

E =
{

(x, t) ∈ Λ× R | t = u(x)
}
.

If the achronal subset is edgeless then Λ is open and u is proper. Further-
more, if E is edgeless achronal and compact, then Λ = Σ. In particular, Σ
is compact too (i.e. M is spatially compact), and every inextendible causal
curve intersects E.
Following the spirit of [37], we thus can define:

Definition 4.4. — A generalized Cauchy surface in a MGHC spacetime
is a compact achronal edgeless subset.
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Now, let us observe that, in the above discussion, X can be replaced by
any future-oriented Lipschitz-regular timelike vector field on M . The only
difference is that the associated flow φt might be non-complete, but this
does not matter: Applying the process above we obtain an (bilipschitz)
identification F : Ω→M where Ω is an open domain in Σ×R defined by:

Ω =
{

(x, t) ∈ Σ× R | u−(x) < t < u+(x)
}

where Σ is any Cauchy surface in M and u− (respectively u+) is upper
semi-continuous (respectively lower semi-continuous). We still have at our
disposal a nice description of compact achronal edgeless subsets, i.e. gen-
eralized Cauchy surfaces: They are graphs of locally Lipschitz functions
u : Σ → R satisfying u− < u < u+. In the sequel, we will use this later
remark with X being the opposite of the gradient of a cosmological time
function, and the surface Σ being the level set τ−1(1).

4.3. Convex surfaces

Let (M, g) be a time-oriented spacetime. Recall that a C2 spacelike sur-
face Σ ⊂ M is said to be convex (resp. strictly convex) if its second fun-
damental form is a negative (resp. negative definite) quadratic form. It is
not hard to prove that Σ is convex if and only if its future I+(Σ) is locally
geodesically convex (every point in M has an arbitrarily small neighbour-
hood U such that U ∩ I+(Σ) is geodesically convex). The advantage of the
later characterization is that its extends to non-smooth hypersurfaces:

Definition 4.5. — An achronal edgeless set Σ ⊂M (e.g. a generalized
Cauchy surface) is said to be convex if its future I+(Σ) is locally geodesi-
cally convex.

The three model spacetimes Min3, dS3 and AdS3 admits some locally
projective models (usually called Klein models). These models allow to
reformulate the definition of convexity in the case where (M, g) is a 3-
dimensional spacetime with constant curvature. Indeed in this particular
case, every point p0 ∈ M admits arbitrarily small convex charts centered
at p0, i.e. causally convex and geodesically convex neighborhood U0 such
that there is a diffeomorphism ϕ0 : U0 → V0 where V0 is an open domain
in the vector space R3 with coordinates (x, y, z) satisfying the following
properties:

(1) ϕ0(p0) = 0,
(2) ϕ0 maps nonparametrized geodesics in U0 to affine segments in V0,
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(3) ϕ∗ ∂
∂x0

is a future oriented timelike vector field,
(4) V0 is the domain {x2 + y2 < 1,−1 < z < 1},
(5) for every t ∈ ]−1,+1[ the hypersurface ϕ−1

0 ({z = t}) is a totally
geodesic spacelike surface acausal in U0,

(6) the image by ϕ0 of I+
U0

(p0) (resp. I−U0
(p0)) is the open domain {z >

0, z2 > x2 + y2} (resp. {z < 0, z2 > x2 + y2}).
Moreover, for any spacelike Cauchy surface Σ,

(7) for any convex chart centered at p0 ∈ Σ, the image under ϕ0 of the
intersection Σ∩U0 is the graph of a Lipschitz map (x, y) 7→ f(x, y),

(8) Σ is convex (resp. concave) if and only if for any sufficiently small
convex chart centered at a point p0 of Σ the function f is concave
(resp. convex).

Another important property of spacetimes with constant curvature is
the abundance of totally geodesic subspaces. Let M be a 3-dimensional
spacetime with constant curvature, and Σ be a spacelike surface in M . A
lower support plane of Σ is a 2-dimensional (necessarily spacelike) totally
geodesic space P ⊂M such that:

(1) P intersects Σ at some point p,
(2) Σ is locally contained in the future of P ; More precisely, there exists

a convex neighbourhood U of p such that Σ ∩ U ⊂ J+
U (P ).

One defines similarly the notion of upper support plane (by replacing “fu-
ture” by “past” in the above definition). Using convex charts, it is easy to
see that a spacelike surface Σ is convex (resp. concave) if and only if it
admits a lower (resp. upper) support plane at each of its points.

4.4. Maximum principle and K-times

Let (M, g) be a (time-oriented) MGHC spacetime. Recall that a K-time
on M is a time function κ : M → R such that every level set κ−1(a) is a
hypersurface of constantK-curvature a. One of the most important features
of theK-times is their uniqueness. This property is a consequence of the so-
called maximum principle. In the following proposition, don’t forget that
in our convention, principal curvatures of convex spacelike surfaces are
negative.

Proposition 4.6 (Maximum Principle). — Let Σ1,Σ2 be two convex
spacelike surfaces in M . Assume that Σ1,Σ2 meet at some point x, and
that Σ2 is in the future of Σ1. Then, the principal curvatures of Σ1 are
greater than or equal to those of Σ2.
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To prove this, one only needs to write the surfaces Σ1,Σ2 as the graphs of
some functions f1, f2 over the exponential of their common tangent plane at
x, and to compare the Hessians of f1 and f2 at x. See, e.g. [12, Lemma 2.3].

Corollary 4.7 (Uniqueness of K-times). — Assume that M admits a
K-time κ : M → R. Then, for every a ∈ τ(M), the level set Ca := κ−1(a)
is the unique compact K-surface of K-curvature a in M . In particular, the
unique K-slicing on M is the one defined by the level sets of κ.

Proof. — Let Σ ⊂M be a compact K-surface with K-curvature a0. For
every a ∈ κ(M), let Ca := κ−1(a). Define

a− := inf
Σ
κ, a+ = sup

Σ
κ.

Since Σ is compact, Σ meets Ca− and Ca+ . Moreover, Σ is in the future of
Ca− , and in the past of Ca+ .
Let x− be a point where Σ meets Ca− . The maximum principle implies

that the principal curvatures Σ at x− are smaller than or equal to those of
Ca− . By definition of a K-time, the surface Ca− is strictly convex, i.e. has
negative principal curvatures. It follows that the principal curvatures of Σ
at x− are negative. Moreover, the product of the principal curvatures of Σ
(resp. Ca−) at x− is equal to −a0 (resp. −a−). It follows that a0 6 a− < 0.
Now, we see that the principal curvature of Σ are negative at every point

of Σ. Indeed, they are negative at x−, and their product is everywhere equal
to −a0 6= 0. Let x+ be a point where Σ meets Ca+ . By definition of a+ and
since κ is a K-time, Σ is in the past of Ca+ . Hence, the maximum principle
implies that the principal curvatures curvatures of Σ at x+ are bigger than
those of Ca+ . Now, recall that the principal curvatures of Σ and Ca+ are
negative, and the product of principal curvatures of Σ (resp. Ca+) is equal
to a0 (resp. a+). It follows that a0 > a+.

So we have a+ 6 a 6 a− and a− 6 a+. It follows that a = a− = a+.
Since Σ is in the future of Ca− and in the past of Ca+ , we obtain the
equality Σ = Ca− = Ca+ . �

Remark 4.8. — The strict convexity of the level sets of κ is crucial in
the above proof.
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5. Geometry of 3-dimensional MGHC spacetimes of
constant curvature

Before starting the proof of Theorem 2.1, we need to recall some general
facts on the geometry 3-dimensional MGHC spacetimes with constant cur-
vature. In particular, we need to describe the decomposition of every such
spacetime into simple “building blocks”.

5.1. Geometry of 3-dimensional MGHC flat spacetimes

In [51], Mess has proved that every MGHC flat spacetime can be obtained
as a quotient of domain of the Minkowski space Min3 by a discrete group
of isometries. More precisely:

Definition 5.1. — A future complete regular domain in Min3 is a do-
main of the form

E =
⋂
P∈Λ

I+(P )

where Λ is a set of lightlike affine planes in Min3, and I+(P ) denotes the fu-
ture of the lightlike plane P . Such a domain E is called non-elementary if Λ
contains three pairwise non-parallel planes. The notion of (non-elementary)
past complete regular domain is defined analogously.

Observe that every future (resp. past) complete regular domain E ⊂
Min3 is a convex set in Min3. Moreover, if E is non-elementary, then E is
a proper convex set, i.e. E does not contain any entire affine line of Min3.

Theorem 5.2 (Mess, [51]). — Every non-elementary 3-dimensional
MGHC flat spacetime is isometric to the quotient ΓrE of a non-elementary
future or past complete regular domain E ⊂ Min3 by a torsion-free discrete
subgroup Γ of Isom0(Min3) = SO0(1, 2) nR3. Moreover, the linear part of
Γ is a co-compact Fuchsian subgroup Γ of SO0(1, 2), and the projection
p : Γ→ Γ is one-to-one.
Conversely, for every torsion-free discrete subgroup Γ of Isom0(Min3) =

SO0(1, 2) n R3, such that the linear part Γ of Γ is a co-compact Fuchsian
subgroup of SO0(1, 2), and such that the projection p : Γ→ Γ is one-to-one,
there exists a non-elementary future (resp. past) complete regular domain
E ⊂ Min3 such that Γ preserves E, acts properly discontinuously on E, and
such that ΓrE is a non-elementary 3-dimensional MGHC flat spacetime.

The index 0 in Isom0(Min3) and SO0(1, 2) means “identity component
of the Lie group”.
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Remark 5.3. — This theorem entails the fact that every non-elementary
3-dimensional MGHC flat spacetime is either future complete (and past
incomplete) or past complete (and future incomplete).

The cosmological time of future complete 3-dimensional MGHC flat
spacetimes admits nice properties:

Proposition 5.4 (Bonsante, [23]). — The cosmological time τ̃ : E →
(0,+∞) is a C1,1 function, that is τ̃ is a C1 function, whose gradient ∇τ̃ is
a (locally) Lipschitz vector field. The levels of τ̃ are C1,1 Cauchy surfaces
in E.

5.2. Geometry of MGHC dS3-spacetimes

5.2.1. The 3-dimensional de Sitter space

Consider the quadratic form Q1,3 = −x2
1 + x2

2 + x2
3 + x2

4 on R4. The
linear model dS3 of the 3-dimensional de Sitter space is the hyperboloid
{Q1,3 = 1} endowed with the Lorentzian metric induced by Q1,3. This
spacetime is time-orientable; We choose the time orientation for which
the curve t 7→ (sinh t, cosh t, 0, 0) is future-oriented. Moreover, dS3 is glob-
ally hyperbolic and that the coordinate x1 is a time function on dS3. The
group of orientation and time orientation preserving isometries of dS3 is
the group O0(1, 3).
It is sometimes convenient to consider the Klein model DS3 of the de Sit-

ter space. By definition, DS3 is the image of dS3 by the radial projection
π : R4r{0} → S3, endowed with the push-forward of the Lorentzian metric
of dS3. The projection π : dS3 → DS3 is a diffeomorphism(6) . The boundary
of DS3 in S3 is the image under π of the cone {Q1,3 = 0}. This boundary is
the disjoint union of two round 2-spheres: S2

− := π({Q1,3 = 0} ∩ {x1 < 0})
and S2

+ := π({Q1,3 = 0} ∩ {x1 > 0}). Note that every future oriented
inextendible causal curve γ ⊂ DS3 “goes from S2

− to S2
+” (more precisely:

The α-limit and ω-limit sets of γ are single points lying respectively in S2
−

and S2
+).

Now denote by H3
− (resp. H3

+) the connected components of the hy-
perboloid {Q1,3 = −1} contained respectively in the half-space {x1 < 0}
(resp. {x1 > 0}), endowed with the Riemannian metric induced by Q1,3.

(6)Some authors define the Klein model of the de Sitter space as the projection of dS3
in the projective space RP3. We prefer to consider the projection in S3 instead of RP3,
in order to keep a time-orientable spacetime.
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Note thatH3
− andH3

+ are two copies of the 3-dimensional hyperbolic space.
The Klein models of H3

− (resp. H3
+) is the image H3

− (resp. H3
+) under the

projection π. Observe that S3 = H3
− t S2

− t DS3 t S2
+ t H3

+, and that S2
−

(resp. S2
+) is the topological boundary of H3

− (resp. H3
+) in S3.

The group O0(1, 3) is simultaneously the isometry group of the
Lorentzian space DS3, the isometry group of the hyperbolic spaces H3

−
and H3

+, and the conformal group of the spheres S2
− and S2

+.
A key ingredient in the sequel is the fact that the de Sitter space DS3

can be thought of as the space of (non-trivial open) round balls in S2
+.

Indeed, for every point x ∈ DS3, let us denote by ∂+I+(x) the set of the
future endpoints in S2

+ of all the future oriented timelike geodesic rays
starting at x. Then, for every x ∈ DS3, the set ∂+I+(x) is an open round
ball in S2

+. One can easily check that the map associating to x the round
ball ∂+I+(x) establishes a one-to-one correspondence between the points
in DS3 and the (non-trivial open) round balls in S2

+. Of course, there is a
similar identification between the points of DS3 and the round balls in S2

−.

5.2.2. Scannell’s description of MGHC dS3 spacetimes

We now sketch the correspondence between MGHC dS3 spacetimes and
compact Möbius surfaces. For more details (and for proofs of the facts
stated below), we refer to [55] or [2].
Let us consider a simply connected Möbius surface S (i.e. a surface en-

dowed with a (O0(1, 3),S2)-structure). We will construct a simply con-
nected spacetime B+

0 (S) associated to S and locally isometric to dS3. For
this purpose, we consider a developing map d : S → S2

+ (such a map d does
exists since S is a Möbius surface).
An (open) round ball U in S is an open domain in S such that the

developing map d to U is one-to-one in restriction to U , and such that
d(U) is an open round ball in S2

+. A round ball U ⊂ S is said to be proper
if the image under d of the closure U of U in S is the closure of d(U) in S2

+.
We will denote by B0(S) the set of proper round balls. The set B0(S) is

naturally ordered by the inclusion. For every element U of B0(S), we denote
by W (U) the subset of B0(S) made of the proper round balls U ′ such that
U ′ ⊂ U . Given two elements U, V of B0(S) such that U ⊂ V , we denote by
W (U, V ) the set of all proper round balls U ′ in S such that U ⊂ U ′ and
U ′ ⊂ V . The sets W (U, V ) generate a topology on B0(S) that we call the
Alexandrov topology. It can be proved that the set B0(S), equipped with
the Alexandrov topology, is a manifold.
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We already observed that the de Sitter space DS3, as a set, is canonically
identified with the space B0(S2

+) of all open round balls in the sphere S2
+.

Actually, the identification between DS3 and B0(S2
+) is an homeomorphism,

once B0(S2
+) is endowed with the Alexandrov topology.

The map D+ : B0(S) → DS3, composition of the developing map
d : B0(S) → B0(S2) and the identification of B0(S2) with DS3, is a lo-
cal homeomorphism. Hence, we can consider the pull-back by D+ of the
de Sitter metric on B0(S). We will denote by B+

0 (S) the manifold B0(S)
equipped with the pull-back by D+ of the de Sitter metric. By construction,
B+

0 (S) is a spacetime locally isometric to DS3.
Now suppose that the simply connected Möbius surface S considered

above is the universal cover of a compact Möbius surface Σ. Denote by
Γ the fundamental group of Σ. Then the developing map d : S → S2

+ is
Γ-equivariant: There exists a representation ρ : Γ → O0(1, 3) such that
d ◦ γ = ρ(γ) ◦ d for every γ ∈ Γ. It follows that ρ(Γ) acts by isometries on
the spacetime B+

0 (S). This action is free, and properly discontinuous. So,
we can consider the spacetime M+(Σ) := ρ(Γ) r B+

0 (S). Up to isometry,
this spacetime does not depend on the choice of the developing map d. The
important result for us is the following:

Theorem 5.5 (Scannell). — Every MGHC dS3-spacetime is past or fu-
ture complete. Every future complete MGHC dS3-spacetimeM is isometric
to the spacetime M+(Σ) for some compact Möbius surface Σ.

Remark 5.6. — The correspondence between Möbius surfaces and MGH
dS3-spacetimes is an equivalence of category. In particular, any isometric
map B+

0 (S1)→ B+
0 (S2) induces a complex projective map S1 → S2. More-

over, a construction similar to the one described above allows to associate a
hyperbolic end to every Möbius surface S. It follows that there is a duality
between MGH dS3-spacetimes and hyperbolic ends.

5.3. Geometry of MGHC AdS3-spacetimes

5.3.1. The 3-dimensional anti-de Sitter space

Consider the quadratic form Q2,2 = −x2
1 − x2

2 + x2
3 + x2

4 on R4. The 3-
dimensional anti-de Sitter space AdS3 is the quadric {Q2,2 = −1}, equipped
with the Lorentzian metric induced by Q2,2. We choose the time-orientation
for which the timelike curve θ → (cos θ, sin θ, 0, 0) is future-oriented. The
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group of isometries of AdS3 preserving the orientation and the time-
orientation is the connected component O0(2, 2) of the identity in O(2, 2).
Observe that the vector space of 2 by 2 matrices gl(2,R) endowed with

the quadratic form −det is isometric to (R4, Q2,2). Hence AdS3 is natu-
rally identified with SL(2,R) endowed with its Killing form. The actions
of SL(2,R) on itself by left and right translations preserves this Lorentzian
metric and commutes each other. Hence we have a natural isomorphism
O0(2, 2) ≈ (SL(2,R)× SL(2,R))/I where I = {(Id, Id), (− Id,− Id)}.
We will also consider the Klein model ADS3 of the anti-de Sitter space.

By definition, ADS3 is the image of AdS3 under the projection π : R4 r
{0} → RP3. The projection π : AdS3 → ADS3 is a two-fold covering. The
spacetime ADS3 is time-orientable(7) , since the antipodal map of R4 pre-
serves the time-orientation of AdS3. The isometric action of (SL(2,R) ×
SL(2,R))/I on AdS3 induces an action of PSL(2,R)×PSL(2,R) on ADS3.

We denote by Q the boundary of ADS3 in S3. This is a one-sheeted
hyperboloid in RP3, which notoriously admits two transverse rulings by
projective lines. This provides an identification between Q and RP1×RP1.
The isometric action of PSL(2,R) × PSL(2,R) on ADS3 extends to the
boundary Q, and the identification between Q and RP1 × RP1 can be
chosen so that PSL(2,R)×PSL(2,R) acts on Q coordinate by coordinate:

(γL, γR) · (θL, θR) = (γLθL, γRθR).

5.3.2. Mess’ description of non-elementary MGHC AdS3 spacetimes

We briefly recall the correspondence between non-elementary MGHC
AdS3-spacetimes and pairs of Fuchsian representations of a surface group.
For more details, see [51] or [12, 18, 10].
Let Γ be the fundamental group of a closed surface of genus g > 2,

and consider a pair of Fuchsian representations ρL, ρR : Γ → PSL(2,R).
Two such representations are always topologically conjugate: There is a
(unique) homeomorphism f : RP1 → RP1 such that:

∀γ ∈ Γ, ρR(γ) ◦ f = f ◦ ρL(γ).

The graph of f is a closed topological circle Λρ embedded in Q ≈ RP1×RP1

which is invariant under the action of Γ defined by ρ := (ρL, ρR). Moreover,
this topological circle Λρ ⊂ Q ⊂ RP3 is contained in an affine chart of RP3.

(7)This is the reason why we can project directly in RP3, contrary to the de Sitter case,
see footnote 6.
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Let E(Λρ) be the invisible domain of the topological circle Λρ: By defini-
tion, this is the set of all points p ∈ ADS3 such that there is no causal curve
γ ⊂ ADS3, contained in an affine chart of RP3, starting at p and ending at
a point x ∈ Λρ. The set E(Λρ) is contained in an affine chart of RP3, and
the intersection of the closure of E(Λρ) with Q is exactly the topological
circle Λρ.

Remark 5.7. — Since E(Λρ) is contained in an affine chart of RP3, the
pre-image of E(Λρ) under the projection π : AdS3 → ADS3 is the disjoint
union of two copies of E(Λρ).

The group ρ(Γ) acts freely and properly discontinuously on the invisible
domain E(Λρ). The quotient space M(ρ) = ρ(Γ) r E(Λρ) is a MGHC
spacetime with closed Cauchy surfaces of genus g. It turns out that every
non-elementary MGHC AdS3-spacetime can be obtained in this way:

Theorem 5.8 (Mess). — For g > 2, let Γg be the fundamental group of
the compact surface of genus g. Then every MGHC AdS3-spacetime with
Cauchy surface of genus g is isometric to M(ρ) = ρ(Γ) r E(Λρ) for some
Fuchsian representation ρ = (ρL, ρR) : Γg → PSL(2,R)× PSL(2,R).

One can also define the convex hull Conv(Λρ): It is simply the convex
hull of Λρ in any affine chart U ' R3 of RP3 containing Λρ (it does not
depend on the choice of U). It turns out that Conv(Λρ) r Λρ is contained
in ADS3. The complement of Λρ in the convex hull Conv(Λρ) is contained
in E(Λρ). The projection of Conv(Λρ)rΛρ inM(ρ) is a closed region C(ρ),
diffeomorphic to S × [−1,+1], that we call convex core of the spacetime
M(ρ). The convex core C(ρ) can also be defined using the cosmological time
and the reverse cosmological time of M(ρ):

– The spacetime M(ρ) has a regular cosmological time τ : M(ρ) →
(0, π), as well as a regular reverse cosmological time τ̌ : M(ρ) →
(0, π).

– The set {τ 6 π/2} (respectively {τ̌ 6 π/2}) is called the past tight
region (resp. the future tight region) and denoted by M−(ρ) (resp.
M+(ρ)).

– The convex core C(M) corresponds to the set {τ 6 π/2, τ̌ 6 π/2}.
Hence, it is the intersection between the past tight region M−(ρ)
and the future tight region M+(ρ).

– The cosmological time τ (resp. the reverse cosmological time τ̌) is
a C1,1 function in restriction to M−(ρ) (resp. M+(ρ)).
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5.4. Canonical decomposition of MGHC spacetimes
of constant curvature

In this section, M denotes a non-elementary MGHC spacetime of con-
stant curvature Λ. Recalling the metric if necessary, we may (and we do)
assume that Λ = 0 (flat case), +1 (dS3 case) or −1 (AdS3 case). Moreover,
in the nonnegative curvature case Λ > 0 one can assume, up to a time
reversal, that M is future complete.

In order to treat simultaneously the three possible cases, we define M0
to be:

– the whole spacetime M in the flat and in the dS3 case,
– the past tight region of M in the anti-de Sitter case,

and we consider the functions fΛ : R→ R and gΛ : R→ R defined as follows:
fΛ(t) = t and gΛ(t) = 1 if Λ = 0 (flat case),
fΛ(t) = sinh t and gΛ(t) = cosh t if Λ = +1 (dS3-case),
fΛ(t) = sin t and gΛ(t) = cos t if Λ = −1 (AdS3-case).

Analyzing the cosmological time τ of M , and following the same train of
thoughts as in the flat case ([23]), one gets:

Fact and definitions 5.9. — M0 admits a canonical decomposition.
Each element of this decomposition is:
1) either a thin block isometric to R× (0,+∞) or S1× (0,+∞) endowed

with the metric fΛ(t)2dx2 − dt2,
2) or a solid block isometric to Σ×(0,+∞) endowed with the Lorentzian

metric fΛ(t)2ds2
hyp−dt2 where (Σ,ds2

hyp) is the interior of a hyperbolic
surface with boundary.

Every maximal subset of M0 foliated by thin blocks of the canonical
decomposition is isometric to S1× (−`/2, `/2)× (0,+∞) endowed with the
metric fΛ(t)2dθ2 +gΛ(t)2dx2−dt2, and is called a Misner block of width `.
Moreover, the parameter t in the above is the (regular) cosmological time τ .

Fact 5.10. — For every a ∈ (0, π/2), there exists a measured lamina-
tion La in the surface Ca = τ−1(a), such that:

1) The leaves of La are the intersections of Ca with the thin blocks of
the canonical decomposition of M0.

2) The connected components of Ca r La are the intersections of Ca
with the solid blocks of the canonical decomposition of M0.

3) The intersection of Ca with a Misner block associated with the
canonical decomposition ofM0 is a annulus inM0 foliated by closed
leaves of La.
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Fact 5.11. — The gradient of the cosmological time defines a Lipschitz
map N : M0 → C−∞ where C−∞ is a hyperbolic surface. The image under N
of the union of the thin blocks of the canonical decomposition is a geodesic
lamination L−∞ on C−∞. The transverse measures of the laminations La
induce a transverse measure on L−∞. Moreover:
1) The pre-image (for N) of a non-weighted leaf of L−∞ is a thin block of

the canonical decomposition of M0 which is not included in a Misner
block.

2) The pre-image of a connected component of C r L−∞ is a solid block
of the canonical decomposition of M0.

3) The pre-image of a leaf of L−∞ which carries a weight ` > 0 is a Misner
block of width ` associated with the canonical decomposition of M0.

Remark 5.12. — Note that, since C is compact, a leaf of L which carries
a non-zero weight is necessarily closed, and that there are only finitely many
such leaves in L. It follows that there are only finitely many Misner blocks
associated with the canonical decomposition of M0.

Remark 5.13. — In the dS3 and flat case Λ > 0, the hyperbolic surface
C−∞ can be interpreted as the future conformal boundary at infinity ofM . In
the AdS3-case Λ = −1, the hyperbolic surface C−∞ admits a (non-smooth)
isometric embedding, as a pleated surface, in the MGHC spacetime M
in which M0 is the past tight region. This pleated surface is actually the
topological boundary ofM0 inM , i.e. the (π/2)-level set of the cosmological
time τ . The pleating lamination is the measured geodesic lamination L−∞
defined above.

Remark 5.14. — Still in the AdS3-case Λ = −1, the future tight region
M+ of M also admits a canonical decomposition associated with a hy-
perbolic surface C+

∞ and a measured geodesic lamination L+
∞ which are in

general different from the hyperbolic surface C−∞ and the measured geodesic
laminations L−∞.

Remark 5.15. — Supports of measured geodesic laminations in hyper-
bolic surfaces have zero Lebesgue measure, but it is not true that the com-
plement in La of the Misner blocks has zero Lebesgue measure. Actually,
the area of Ca for the induced metric depends continuously on the mea-
sured lamination L−∞. In the case where La is simplicial, i.e. a simple closed
geodesic of length L with a weight l, this area is the sum of the area of
C∞ and the area of the inserted annulus, i.e. alL. It follows that in general
the area of Ca is 2π(2g − 2) + al(L∞), where l(L∞) is the length of the
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measured lamination (cf § 7 of [21]). In particular, even if Ca has no Misner
block, the lamination La has nonzero Lebesgue measure.

6. Upper bound of the systole

The purpose of this section is to prove Theorem 3.5. We use the notations
defined in the preceding section. In particular, (M, g) is a MGHC spacetime
of constant curvature Λ, and M0 is:

– the whole spacetime M in the flat and in the dS3 case,
– the past tight region of M in the anti-de Sitter case.

We denote by τ : M0 → (0,+∞) the cosmological time of M0. We denote
by N the opposite of the gradient of τ , and by (φt)t∈R the flow associated to
N . We denote by τmax the supremum of τ over M0 (recall that τmax = +∞
if Λ = 0 or +1, and τmax = π/2 if Λ = −1). For every a ∈ (0, τmax), we
denote by Ca the a-level of τ . As explained in §4.2, there is a Lipschitz
parametrization of M0 obtained simply by pushing the surface C1 along
the flow φt. More precisely, the map

Φ: C1 × (0, τmax) −→M0

(x, t) 7−→ φt−1(x)

is a global bi-Lipschitz homeomorphism. Recall that the cosmological time
τ defines a measured lamination L1 on the surface C1. The lamination L1
induces a decomposition of M0 as a disjoint union of “buildings blocks”,
each of which being:

– a solid block Φ(U × (0, τmax)) associated to a connected component
U of C1 r L1,

– or a thin block Φ(γ × (0, τmax)) associated to a non-closed leaf γ
of L1,

– or a Misner block Φ(A× (0, τmax)) associated to a maximal annulus
A ⊂ C1 foliated by closed leaves of L1 (such a Misner block can
itself be decomposed as a disjoint union of thin blocks associated
to the closed leaves of L1 foliating A).

6.1. The expanding character of the cosmological flow

Here, we consider a Lipschitz curve c : [a, b]→M0 which is spacelike (i.e.
the velocity c′(s) is almost everywhere spacelike). We denote by c1 : [a, b]→
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M0 the projection of curve c on the Cauchy surface C1 along the flow φt.
Observe that

(6.1) c1(s) = φ1−τ(c(s))(c(s)).

It follows that c1 is a Lipschitz curve. In particular, the length of the
spacelike curve c1 is well defined.

Proposition 6.1. — Assume that the curve c is contained in the past
of the Cauchy surface C1 (i.e. the restriction of the cosmological time τ to
the curve c is bounded from above by 1). Then:

(i) the length of c is smaller than or equal to the length of c1,
(ii) the cosmological time variation |τ(c(b)) − τ(c(a))| is smaller than

or equal to the length of c1.

Proof. — For s ∈ [a, b], let t(s) = τ(c(s)), so that c(s) = φt(s)−1(c1(s)).
Since the curve c is spacelike, one has, for almost every s ∈ [a, b],

0 6 |c′(s)|2.

On the other hand, the equality c(s) = φt(s)(c1(s)) yields almost every-
where:

|c′(s)|2 =
∣∣∣t′(s)N(c(s)) + d

(
φt(s)−1

)
(c1(s)) · c′1(s)

∣∣∣2
=
∣∣∣d(φt(s)−1

)
(c1(s)) · c′1(s)

∣∣∣2 + t′(s)2|N(c(s))|2

=
∣∣∣d(φt(s)−1

)
(c1(s)) · c′1(s)

∣∣∣2 − t′(s)2.

Indeed, d
(
φt(s)−1) (c1(s)) · c′1(s) is tangent to the level Ct(s), which is or-

thogonal to N = −∇τ , and |N |2 = −1. In particular, for almost every s,
one has

(6.2) |c′(s)|2 6
∣∣∣d(φt(s)−1

)
(c1(s)).c′1(s)

∣∣∣2 .
Moreover, the map φt−1 : C1 → Ct is contracting for every t < 1 (see [23,
Lemma 7.4]) (8) . It follows that, for almost every s, one has

(6.3)
∣∣∣d(φt(s)−1

)
(c1(s)).c′1(s)

∣∣∣2 6 |c′1(s)|2.

Putting together inequalities (6.2) and (6.3), one gets that |c′(s)| 6 |c′1(s)|
for almost every s. Integrating over [a, b], one gets that the length of c is
smaller than or equal to the length of c1.

(8) It does not follow directly from the fact that it is obviously true on C1 r L1 and in
every Misner block in C1, since the union of non-closed leaves in L1 may have non-zero
Lebesgue measure (cf Remark 5.15).
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From the above inequalities, one gets, for almost every s ∈ [a, b]

t′(s)2 6
∣∣∣d(φt(s)−1

)
(c1(s))(c′1(s))

∣∣∣2 6 |c′1(s))|2 .

Integrating over the interval [a, b], one gets that |τ(c(b))−τ(c(a))| = |t(b)−
t(a)| is smaller than or equal to the length of c1, as wanted. �

6.2. Key estimates

As in the previous paragraph, we consider a spacelike Lipschitz curve
c : [a, b]→M0, and we denote by c1 the projection of c on the level set C1
along the flow φt. There is one particular situation where Proposition 6.1
can be dramatically improved: When the curve c is contained in a solid
block or in a thin block.

Proposition 6.2. — Assume that c is contained in a solid block, or in
a thin block. Denote by ` the length of c1. Then, one has

ν−1
Λ · exp(−`) 6 τ(c(b))

τ(c(a)) 6 νΛ · exp(`)

where νΛ is a constant (depending on Λ but not on M), and

length(c) 6 µΛ(τ(c(a)), `)

where µΛ : (0, 1) × (0,+∞) → (0,+∞) is a universal function (depending
on Λ but not on M) such that: For every L > 0, the map τ 7→ µΛ(τ, L) is
increasing and limτ→0 µΛ(τ, L) = 0.

Remark 6.3. — The last estimate should be interpreted as follows:
Given the length of the projection of the curve c on the cosmological level
set C1, if the cosmological time takes a small value somewhere on c, then
the length of c is small.

Proof of Proposition 6.2: Static blocks. — Assume that c is contained
in a solid block. This block is of the formM0(U) := Φ(U × (0, τmax)) where
U is a connected component of C1 r L1. If ds2

hyp denotes the hyperbolic
metric, then (M0(U), g) is locally isometric to H2×(0, τmax) equipped with
the metric (see §5.4):

• g0 = τ2ds2
hyp − dτ2 in the flat case,

• g0 = sinh2(τ)ds2
hyp − dτ2 in the dS3 case,

• g0 = sin2(τ)ds2
hyp − τ2 in the AdS3 case.
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The flat case. — Let T = log(τ). Then (M0(U), g) is locally isometric
to H2 × (0,+∞) equipped with the Lorentzian metric

g0 = exp(2T )(ds2
hyp − dT 2) = t2(ds2

hyp − dT 2).

This metric is conformally equivalent to the metric k = ds2
hyp − dT 2. In

particular, the curve c is spacelike for the metric k. Therefore, the same
arguments (for the metric k) as in the proof of Proposition 6.1 show that
T -variation |T (c(a) − T (c(b))| is smaller than or equal to the length of c1
(note that the length of c1 for the metric g0 = exp(2T )(ds2

hyp−dT 2) and for
the metric k = ds2

hyp−dT 2 are equal, since T = 0 on c1). Since T = log(τ),
this yields the desired inequality:

exp(−`) 6 τ(c(b))
τ(c(a)) 6 exp(`).

For any s ∈ [a, b], if we replace b by s in the above arguments, one gets
exp(−`) 6 τ(c(s))/τ(c(a)) 6 exp(`). In particular,

τ(c(s)) 6 τ(c(a)) exp(`).

Now, the same calculations as in the proof of Proposition 6.1 (for the
metric k) show that |c′(s)|2k 6 |c′1(s)|2k where | · |k denotes the norm of a
vector for the metric k. Using |c′(s)|2k = τ(c(s))2.|c′(s)|2g0

and |c′1(s)|2k =
τ(c1(s))2|c′1(s)|2g0

= |c′1(s)|2g0
, we get

|c′(s)|g0 6 τ(c(s))|c′1(s)|g0 .

Putting together the two last inequalities above, one obtains

lengthg(c) = lengthg0(c) =
∫ b

a

|c′(s)|g0ds

6 τ(c(a)) exp(`)
∫ b

a

|c′1(s)|g0ds

= τ(c(a))` exp(`).

We have thus proved Proposition 6.2 in the case Λ = 0, with ν0 = 1 and
µ0(τ, `) = ` exp(`)τ .

The dS3 case. — Let T = log(tanh( τ2 )) (note that τ 7→ log(tanh( τ2 )) is
the antiderivative of τ 7→ 1

sinh(τ) ). Then (M(U), g) is locally isometric to
H2×]0, Tmax[ endowed with the metric:

g1 = sinh(τ)2(ds2
hyp − dT 2).

As in the flat case, the T -variation c is therefore at most `. The inequality

exp(−`) 6 tanh(τ(c(b))/2)
tanh(τ(c(a))/2) 6 exp(`)
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follows. This yields

ν−1
1 exp(−`) 6 τ(c(b))

τ(c(a)) 6 ν1 exp(`)

where ν1 = e+1
e−1 is the upper bound of τ

tanh(τ/2) on [0, 1]. Now, by the same
arguments as in the flat case, we get for every s ∈ [a, b]

tanh(τ(c(s)/2)) 6 tanh(τ(c(a)/2)) exp(`)

and

|c′(s)|g1 6 sinh(τ(c(s)))|c′1(s)|g1 = 2 tanh(τ(c(s))/2)
1− tanh2(τ(c(s))/2)

|c′1(s)|g1 .

Putting these two last inequalities together, and integrating over [a, b], we
obtain as wanted length(c) 6 µ1(τ(c(a)), `) for

µ1(τ, `) = 2l exp(`) tanh(τ/2)
1− exp(2`) tanh2(τ/2)

.

The AdS3 case. — Similar the dS3 case, after replacing sinh and tanh
by tan and sin. The constant ν−1 is the supremum of τ

tan(τ/2) over [0, π/2],
and the universal map µ−1 is:

µ−1(τ, `) = 2` exp(`) tan(τ/2)
1 + exp(2`) tan2(τ/2)

.

This completes the proof of Proposition 6.2 is the case where c is con-
tained in a solid block. �

Proof of Proposition 6.2: Thin block. — Now, we assume that c is con-
tained in a thin block M0(γ) := Φ(γ × (0, τmax)) where γ is leaf of L1.
The block (M0(γ), g) is isometric to R × (0, τmax) (if γ is not closed) or
S1 × (0, τmax) (if γ is closed) equipped with the metric (see §5.4):

• g0 = τ2dθ2 − dτ2 in the flat case,
• g0 = sinh2(τ)dθ2 − dτ2 in the dS3 case,
• g0 = sin2(τ)dθ2 − dτ2 in the AdS3 case.

The end of the proof is exactly the same as in the case where c is contained
in a solid block, replacing ds2 by dθ2. �

6.3. Proof of Theorem 3.5

We consider a constant ε > 0 and a spacelike Cauchy surface Σ in M0,
such that the systole of Σ bigger than or equal to ε (i.e. that any closed
curve in Σ whose length is less than ε is homotopically trivial).
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The discussion in §4.2 shows that we can write Σ as a graph over C1.
More precisely, there exists a map t : C1 → (0, τmax) such that

Σ =
{
φt(x)−1(x) | x ∈ C1

}
.

Observe that this definition of the function t yields

τ
(
φt(x)−1(x)

)
= t(x)

for every x ∈ C1. We will prove that the function t : C1 → (0, τmax) is
bounded from below by a constant αε > 0. Using the equality above, this
will imply that the restriction of the cosmological time τ to the surface S
is bounded from below by αε. Theorem 3.5 will follow.

Remark 6.4. — Assume that the systole of the cosmological level set
C1 is bigger than or equal to ε. Let t̂(x) = min(t(x), 1). Then the systole
of the surface Σ̂ := {φt̂(x)−1(x) | x ∈ C1} where t̂(x) = min(t(x), 1) is also
greater than or equal to ε. And of course, if t̂ is bounded from below by
some constant αε, then t is also bounded from below by αε. Therefore, in
the sequel, we can (and we will) assume than that t is bounded from above
by 1. In other words, we will assume that the surface S is in the past of
the cosmological level set C1.

6.3.1. Decomposition of the lamination L1

We denote by Lc1 (resp. Lnc1 ) the union of the closed (resp. non-closed)
leaves of the lamination L1. Since L1 is a measured lamination, Lc1 and Lnc1
are closed. Indeed, if Lnc1 were not closed, there would be a bunch of leaves
of Lnc1 spiraling on some closed leaf γ of Lc1. But then, the measure of any
small arc transverse to γ would be infinite. Contradiction.
Therefore, Lc1 and Lnc1 are sublaminations of L1. So we have a decom-

position of L1 into two disjoint sublaminations Lc1 and Lnc1 , the first one
made only of closed leaves, the second one without closed leaves.
Observe that the support of Lc1 is exactly the intersection of the surface

C1 with the Misner blocks of M0. In particular, this support of Lc1 is a
finite union of disjoint annuli in C1, each of these annuli being foliated by
leaves of Lc1.

6.3.2. Estimates of t on Lc1

Lemma 6.5. — There exists a constant ηc > 0 such that t(x) > ηc for
every x in the support of the lamination Lc1.
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Proof. — Let us first recall that the support of the lamination Lc1 is
exactly the intersection of the surface C1 with the Misner blocks of M0.
The intersection of C1 with a Misner block is an annulus foliated by leaves of
Lc1, all of which have the same length. There are only finitely many Misner
blocks in M0. Therefore there are only finitely many possible lengths for
the leaves of Lc1. We denote these lengths by `1, . . . , `k.

Now, let x ∈ C1 be a point in the support of the lamination Lc1. Denote
by γ1,x the leaf of Lc1 containing x, and by γx be the projection of γ1,x
on the surface Σ along the flow φt (of course, it follows that γ1,x is the
projection of γx on the surface C1). From Proposition 6.2, we get

length(γx) 6 µΛ(t(x), `i)

where `i is the length of the closed leaf γ1,x. This closed leaf γ1,x is not
homotopically trivial in C1 (since the image of γ1,x under the Gauss map
N : C1 → C∞ is a closed leaf of the geodesic lamination L∞, i.e. a closed
geodesic in the hyperbolic surface C∞). Hence the closed curve γx is not
homotopically trivial in Σ. So our assumption on the systole of Σ and the
above estimate on the length of γx implies

µΛ(t(x), `i) > ε.

It remains to choose a constant ηc > 0 such that µΛ(τ, `i) < ε for every
τ 6 η and every i ∈ {1, . . . , k}. The above inequality implies that t(x) > ηc
for every x in the support of Lc1. This completes the proof of Lemma 6.5. �

6.3.3. Estimates of t on Lnc1

We will prove the following:

Lemma 6.6. — There exists a constant ηnc > 0 such that t(x) > ηnc

for every x ∈ Lnc1 .

Proof. — For every x ∈ L1, we denote by L1(x) the leaf of L1 contain-
ing x. The idea of the proof is to construct, for every x ∈ Lnc1 , a closed
homotopically non-trivial loop containing x, by closing long segment of
the leaf of L1(x). Recall that a lamination L is minimal if every leaf of it
is dense (in its support). We will use the following fact (see for example
Proposition (iii) in [46]): The lamination Lnc1 is a union of finitely many
minimal sublaminations L1

1, . . . ,Lk1 .
Let i ∈ {1, . . . , k}. Going to a double cover if necessary, we assume

that the lamination Li1 is orientable. Since Li1 is minimal (and compact),
there exists `i ∈ R such that every x ∈ Li1 is (`i, ε2 )-recurrent: Tthere is a
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segment α1,x starting at x in the leaf L1(x), such that the length of α1,x
is at most `i, and such that the ends of α1,x can be joined by a small arc
β1,x transverse(9) to L1 of length at most ε

2 .
For any x ∈ Li1, we consider the concatenation of the arcs α1,x and β1,x.

This is a closed loop γ1,x. This loop γ1,x can be perturbed to get a loop
transverse to the lamination L1. So, by Poincaré-Bendixon Theorem, γ1,x
is homotopically non trivial in C1. We denote by γx the projection of the
loop γ1,x on Σ along the flow φt. Of course, γx is the concatenation of the
projections αx and βx of the arcs α1,x and β1,x.
Since α1,x is contained in a thin geodesic cone, we can apply Proposition

6.2 to this arc. We get that the length of αx is bounded from above by
µΛ(t(x), `x), where `x is the length of αx. On the other hand, according to
the Proposition 6.1 and Remark 6.4, the length of the arc βx is less than
the length of the arc β1,x. In particular, it is less than ε/2. So we get an
upper bound for the length of the loop γx:

length(γx) 6 sup
`6`i

µΛ(t(x), `) + ε/2.

Since γx is a non-homotopically trivial loop in Σ, and since the systole
is bounded from below by ε, we get

ε 6 ε/2 + sup
`6`i

µΛ(t(x), `),

which leads to
ε/2 6 sup

`6`i
µΛ(t(x), `).

Now, let ηnc be a positive number such that, if τ 6 ηnc, then

sup
`6`i

µΛ(τ, `) < ε/2

for every i ∈ {1, . . . , k}. The inequalities above imply that t(x) > ηnc for
every x ∈ Lnc1 . �

6.3.4. Estimates on C1 r L1

Let δ be the diameter of the Cauchy surface C1 (for the Riemannian
metric induced by g on C1).

Lemma 6.7. — Let η = min(ηc, ηnc), where ηc, ηnc are the positive
numbers defined in Lemma 6.5 and 6.6. Then

t(x) > νλ exp(δ)η for every x ∈ C1 r L1.

(9)By such, we mean that β1,x always intersects L1 with the same orientation.
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Proof. — Any point x ∈ C1 r L1 can be joined to a point y ∈ L1 by
a path c1 of length at most δ. We can assume the whole of c1 but y is
contained in C1 r L1, that is the curve c1 minus y is contained in a solid
block. The first inequality in Proposition 6.2 yields:

t(x) > νΛ exp(δ)t(y).

Since y ∈ L1 = Lc1 ∪ Lnc1 , Lemmas 6.5 and 6.6 yield

t(y) 6 η.

Putting together the two inequalities above, we get t(x) > νλ exp(δ)η, as
wanted. �

6.3.5. Conclusion

Using Lemmas 6.5, 6.6 and 6.7 together with the decomposition

C1 := Lc1 ∪ Lnc1 ∪ (C1 r L1),

we get a uniform positive lower bound for t on C1. Since φt(x)−1(x) ranges
over Σ when x ranges over C1, and since τ

(
φt(x)−1(x)

)
= t(x), this yields

a uniform positive lower bound for the cosmological time τ on Σ. This
completes the proof of Theorem 3.5. �

7. Sequences of convex Cauchy surfaces

The aim of this section is to prove Theorem 3.6 and Corollary 3.8.
Let us recall what are the objects and the hypotheses. We consider a

3-dimensional non-elementary MGHC spacetime (M, g) of constant cur-
vature, and a sequence (Σn)(n∈N) of (locally) convex generalized Cauchy
surfaces in M (see §4.2 and 4.3). We assume that this sequence is decreas-
ing (i.e. I+(Σn+1) ⊃ I+(Σn) for every n), and we assume that the set
Ω =

⋃
n∈N I

+(Σn) is not the whole M .
We want to prove that every support plane of Ω is spacelike (Theo-

rem 3.6), and that the Σn’s are uniformly spacelike (Corollary 3.8; See
definition 3.7).
Observe that Ω is a future domain, that is, for every x in Ω, we have

I+(x) ⊂ Ω. It follows that the boundary Σ∞ = ∂Ω is a closed (but non-
compact in general) edgeless achronal subset (see [54, §14, Corollary 27]),
hence a topological surface.
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Lemma 7.1. — The set Σ∞ is the set of limits inM of sequences (pn)n∈N
with pn ∈ Σn.

Proof. — Let p be an element of Σ∞, and let c : ] − ∞,+∞[→ M be
an inextendible future timelike curve with c(0) = p. Since every Σn is a
Cauchy surface, for every n there is a unique real number tn such that c(tn)
belongs to Σn. Then c(]tn,+∞[) is contained in I+(Σn). Since p does not
belong to Ωn we have tn > 0. Since the sequence (Σn)n∈N is decreasing, the
sequence (tn)n∈N is also decreasing and admits a limit t̄. Then c(t̄) belongs
to Σ∞: We obtain t̄ = 0 since Σ∞ is achronal.
Conversely, if p is a limit of a sequence (pn)n∈N with pn ∈ Σn, it belongs

to the closure of Ω. If p belongs to Ω, then it belongs to some Ωn0 . The
same then would be true for all the pn with n sufficiently big, but this is
impossible for n > n0. Hence, p belongs to the boundary Σ∞ = ∂Ω. �

Let p ∈ Σ∞, and let ϕ : U → V be a convex chart centered at p. By our
discussion in §4.3, the surfaces ϕ(Σn ∩ U) are graphs of convex functions.
Using Lemma 7.1, it follows that there is a convex map (x, y) → z =
f∞(x, y) such that ϕ(U ∩ Σ∞) is the graph of f∞. In other words, the
topological surface Σ∞ is convex.

Proof of Theorem 3.6. — Since Σ∞ is achronal, it is quite immediate
that a support plane of Σ∞ cannot contain a timelike curve. Hence, we
must show that no support plane to Σ∞ at p is lightlike.
Assume by contradiction that Σ∞ admits a lightlike hyperplane H at p

in a convex chart U centered at p. On one hand, Σ∞ ∩ U is contained in
J+
U (H). On the other hand, Σ∞ ∩ U is contained in the causal past of the

future I+
U (p). But H ∩ J+

U (p) = H⊥ is a null segment, and hence this null
segment is contained in Σ∞.

More formally, we have proved that there is a future-oriented null geo-
desic segment c : [0, 1] → M with c(0) = p such that every c(t) belongs to
Σ∞. Let ĉ : [0, T [→M be the inextendible geodesic ray extending c in the
future. Let T ′ be the sup of times t such that ĉ(t) belongs to Σ∞. Observe
that T ′ > 0. Assume T ′ < T . Since Σ∞ is closed, q = ĉ(T ′) belongs to Σ∞.

Since there is a null geodesic segment [p, q] contained in Σ∞, there is only
one support plane to Σ∞ at q: The null plane containing ĉ(t) for 0 < t near
T ′. The argument above then implies that ĉ(t) belongs to Σ∞ for t > T ′

and close enough to T ′. This contradicts the definition of T ′. Therefore,
T ′ = T , that is, the whole future oriented null ray ĉ is contained in Σ∞.

Now, for every n, the point p = c(0) is in the past of Σn, and Σn is a
Cauchy surface, thus, the inextendible geodesic ray ĉ intersects I+(Σn).
Since I+(Σn) ⊂ I+(Σ∞), it follows that the geodesic ray ĉ intersects

TOME 61 (2011), FASCICULE 2



554 Thierry BARBOT, François BÉGUIN & Abdelghani ZEGHIB

I+(Σ∞). This contradicts the fact that Σ∞ is achronal and ĉ(t) is con-
tained in Σ∞. �

Proof of Corollary 3.8. — Assume that the sequence (Σn)n∈N is not
uniformly spacelike. Then one can find a sequence of points (xn)n∈N, with
xn ∈ Σn, such that:

– extracting a subsequence if necessary, the sequence (xn)n∈N con-
verges towards a point x ∈M ,

– if Pn is the unique support plane of Σn at x, then, extracting a sub-
sequence if necessary, the sequence (xn, Pn)n∈N converges towards
a couple (x, P ) where P is a null plane at x.

By Lemma 7.1, the point x is on the topological surface Σ. For every n,
since Pn is the support plane of Σn at xn, the surface Σn is in the future
of the totally geodesic plane Pn. Using again Lemma 7.1, it follows that Σ
is in the future of the null plane P . Since x ∈ Σ∩P , this implies that P is
a support plane of Σ at x, contradicting Theorem 3.6.

As a consequence, the sequence (Σn)n∈N is uniformly spacelike. �

8. Sequences of Cauchy surfaces of constant K-curvature

The present section is devoted to the proof of Theorem 3.9. Recall that we
are considering a 3-dimensional non-elementary MGHC spacetime (M, g)
of constant curvature Λ, and a decreasing sequence of Cauchy surfaces
(Σn)n∈N in M , such that, for every n, the surface Σn is locally strictly
convex and has a constant K-curvature κn < −Λ (note that this condition
is automatically satisfied if Λ 6 0 since locally strictly convex surfaces have
negative K-curvature).
We will see later that (κn)n∈N is automatically a decreasing sequence of

real numbers (see Remark 10.3). Anyway, we do not really need this here:
We only need to assume that

κn → κ ∈ [−∞,min(−Λ, 0)) when n→∞.

If κ > −∞, we have to prove that the sequence Σn converges to a smooth
surface Σ∞ of constant K-curvature κ. If κ = −∞, we have to prove that
M =

⋃
n∈N I

+(Σn).

8.1. The κ > −∞ case

The main idea of the proof is to apply a result of Schlenker which de-
scribes the asymptotic behaviour of a sequence of immersions of a disc
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in a Lorentzian space of constant curvature, when the sequence of immer-
sions itself does not converge, although the sequence of metrics obtained by
pulling-back the Lorentzian metric of constant curvature by the immersions
does converge (see Theorem 8.5 below for a precise statement).
We consider the surfaces Σn as the images of embeddings fn : Σ ↪→ M ,

where Σ is a fixed abstract compact surface. For every n, we denote by gn
the Riemannian metric induced on the Cauchy surface Σn by the Lorentzian
metric g. We can write

gn = |κn|
1
2 .ĝn

where ĝn is a metric on Σn with constant K-curvature −1. We denote by
[ĝn] the class of the pull-back metric f∗n ĝn in the moduli space Mod(Σ), i.e.
the space of hyperbolic metrics on Σ up to isometries.

Lemma 8.1. — The sequence ([ĝn])n∈N is relatively compact in Mod(Σ).

Proof. — Since (Σn)n∈N is a decreasing sequence of Cauchy surfaces,
all of them lie in the past of Σ0. They lie in the past of a level set of the
cosmological time ofM , say the level set Ca. By Proposition 6.1, this implies
that the diameter of (Σn, gn) is uniformly bounded from above by the
diameter of the level set Ca. Since κ 6= 0, deleting a finite number of elements
of the sequence (Σn)n∈N if necessary, we can assume that the K-curvatures
κn are bounded away from 0. It follows that the diameter of (Σn, ĝn) is
also uniformly bounded from above. By the collar neighbourhood lemma,
this implies that the systole of (Σn, ĝn) is uniformly bounded away from 0.
It follows that the sequence ([ĝn])n∈N is relatively compact in Mod(Σ) (see
for example [24, Theorem 6.6.5]). �

Lemma 8.1 can be reformulated as follows:

Corollary 8.2. — For every n ∈ N, one can select the smooth em-
bedding fn : Σ ↪→ M such that fn(Σ) = Σn and such that the sequence
(f∗n ĝn)n∈N is relatively compact in the space of the Riemannian metrics on
Σ endowed with C∞ topology. �

Since the sequence (κn)n∈N converges, the sequence (f∗ngn)n∈N is also
relatively compact in the space of the Riemannian metrics on S endowed
with C∞ topology. Extracting a subsequence if necessary, we get a sequence
of embeddings (that we still denote by (fn)n∈N) of Σ in M such that the
sequence of metrics (f∗ngn)n∈N converges in the C∞ topology towards a
metric g∞ on Σ.

Now, let us consider a point x in Σ. For every n, let yn := fn(x).
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Lemma 8.3. — The sequence of points (yn)n∈N = (fn(x))n∈N has a
convergent subsequence.

Proof. — For every n ∈ N, the point yn belongs to the surface Σn. So,
it is enough to prove that all the Σn’s are contained in a compact region
of M .
On the one hand, since the sequence (Σn)n∈N is decreasing, all the Σn’s

are contained in the past of the Cauchy surface Σ0. On the other hand, we
have seen that the sequence of the systoles of the (Σn, ĝn)’s is bounded away
from 0 (proof of Lemma 8.1). Since the sequence (κn)n∈N is bounded away
from 0 (deleting a finite number of surfaces Σn if necessary), it follows that
the sequence of the systoles of the (Σn, gn)’s is also bounded away from 0 .
By Theorem 3.5, this implies that all the Σn’s are contained in the future
of some level set Ca of the cosmological time of M . As a consequence, all
the Σn’s are contained in the compact subset I+(Ca) ∩ I−(Σ0) of M . �

Lemma 8.4. — The sequence of 1-jets (j1fn(x))n∈N has a convergent
subsequence.

Proof. — By Lemma 8.3, up to extracting a subsequence, we may assume
that the sequence of points (yn)n∈N converges towards a point y ∈M . For
every n ∈ N, the positive definite quadratic form qn := (f∗ngn)|TxΣ is the
pull back by dfn(x) of the positive definite quadratic form sn := gn|TynΣn .
On the one hand, the sequence (qn)n∈N converges towards the positive def-
inite quadratic form q on g∞|TxΣ. On the other hand, Corollary 3.8 implies
that, up to extracting a subsequence, the sequence of subspaces TynΣn
converges towards a spacelike plane P in TyM , and thus the sequence of
quadratic forms (sn)n∈N converges towards the positive definite quadratic
form s = g|P . Since the space of linear maps leaving invariant a positive
definite quadratic form is compact, it follows that, up to extracting a sub-
sequence, the sequence of linear maps dfn(x) converges towards a linear
map d : TxΣ→ P such that q is the pull-back of s by d. �

Schlenker’s result only concerns embeddings of discs in a simply con-
nected Lorentzian space. So we need to lift everything to the universal cov-
ering. The universal covering of Σ is the 2-disc D. The universal covering
M̃ of M is a convex open domain in X = Min3, dS3 or ÃdS3. Corollary 8.2
and Lemma 8.4 implies that, for every n ∈ N, we can find a lift Σ̃n of Σn
in X, a lift f̃n : D ↪→ X of fn such that:

– the sequence of metrics (f̃∗n g̃n)n∈N converges towards a Riemannian
metric g̃∞ on D in the C∞ topology (where g̃n is the Riemannian
metric induced on Σ̃n by the Lorentzian metric of X),
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– for every x̃ ∈ D the sequence of 1-jets (j1f̃n(x̃))n∈N has a convergent
subsequence.

Now, we argue by contradiction: We assume that the sequence of sur-
faces Σn does not converge in the C∞ topology towards a smooth surface
S of constant curvature κ. It follows in particular that the sequence of
embeddings (fn)n∈N does not converge in the C∞ topology. A fortiori, the
sequence of embeddings (f̃n)n∈N does not converge in the C∞ topology. So
we are under the assumption of Schlenkers result:

Theorem 8.5 (see [56], Théorème 5.6). — Let (f̃n)n ∈ N : D → X be
a sequence of uniformly elliptic immersions(10) of a disc D in a simply
connected Lorentzian spacetime of constant curvature (X, g̃). On the one
hand, assume that the metrics f̃∗n g̃ converges in the C∞ topology towards
a Riemannian metric g̃∞ on D, and that there exists a point x ∈ D such
that the sequence of 1-jets (j1f̃n(x))n∈N converges. On the other hand,
assume that the sequence (f̃n)n∈N does not converge in the C∞ topology
in a neighbourhood of x. Then there exists a maximal geodesic γ of (D, g̃∞)
and a geodesic arc Γ of (X, g̃) such that the sequence (f̃n|γ)n∈N converges
towards an isometry f∞ : γ → Γ. �

By this theorem, there exists a maximal geodesic γ of (D, g̃∞) and a
geodesic segment Γ in X, such that fn|γ converges towards an isometry
from f∞ : γ → Γ. Since g̃∞ is obtained by lifting a Riemannian metric on
a compact surface, it is geodesically complete. In particular, the geodesic
γ has infinite length. And, as a consequence, the geodesic arc Γ also has
infinite length. But since fn(Σ) ⊂ M̃ for every n, the geodesic arc Γ must
be contained in the closure of M̃ in X. Moreover, in the AdS3-case, Γ must
be contained in the closure of the complement of the lift of the convex core
of M (since all the Σn’s are contained in the complement of the convex
core of M). This contradicts the following proposition:

Proposition 8.6. — Let (M, g) be a non-elementary 3-dimensional
MGHC spacetime with constant curvature Λ. If Λ > 0 (flat case or lo-
cally de Sitter case), then there is no complete spacelike geodesic in M . If
Λ < 0 (locally anti-de Sitter case), then every complete spacelike geodesic
of M is contained in the convex core of M .

(10)An immersion f of a (n− 1)-dimensional manifold N in a n-dimensional Lorentzian
space X of constant curvature Λ such that f(N) is spacelike and has constant K-
curvature κ < −Λ is a typical example of uniformly elliptic immersion.
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Proof. — In the flat case, we know that the spacetime is a quotient Γ̄rE
where E is a proper convex domain, i.e. contains no complete affine line
(see [51]): The proposition follows.

In the locally anti-de Sitter case, we observe that any complete spacelike
geodesic c in M lifts to a complete spacelike geodesic in E(Λρ) ⊂ ADS3.
Such a geodesic admits two extremities in Q = ∂ADS3. But these two
extremities must belong to the closure of E(Λρ) in ADS3. The intersection
between this closure and Q is reduced to Λρ: Hence, the spacelike geodesic
under consideration has extremities in Λρ. It follows that c is contained in
the convex core.

The remaining case is the locally de Sitter case. Let c : R → M be the
spacelike geodesic, parametrized by arc-length, and let c̃ : R → M̃ be its
lifting in the universal covering. The composition ζ̃ = D ◦ c̃ with the devel-
oping map is a complete spacelike geodesic in dS3. In particular, the image
of ζ̃ is contained in a 2-plane P of dS3 ⊂ R1,3.
Reversing the time-orientation if necessary, we can assume that (M, g) is

future complete. Then (M̃, g) is isometric to the spacetime B0(S) associated
to a simply connected Möbius surface S (naturally homeomorphic to the
universal cover of the compact Σ) (see §5.2.2). It follows that the future of
the image of c̃ in M̃ is isometric to the universal covering Ω̃(∆) - here the
geodesic ∆ of H3 is the intersection between H3 and the orthogonal P⊥ in
R1,3.
Now we observe that Ω̃(∆) can also be described as B0(CP1 − {0,+∞})

if 0,∞ denotes the extremities of ∆. In other words, we have an embedding
F : B0(C∗)→ B0(S). According to Remark 5.6, we have a map f : C∗ → S,
inducing a holomorphic map f̄ : C∗ → Σ. But since Σ has genus > 2 such
an holomorphic map must be constant: This is a contradiction. �

The contradiction we have obtained shows that our assumption was ab-
surd. Therefore, the sequence of Cauchy surfaces (Σn)n∈N towards a surface
Σ∞ in the C∞ topology. Clearly, this implies that Σ∞ is a convex Cauchy
surface with constant K-curvature κ = lim κn. This completes the proof of
Theorem 3.9 in the case where κn → κ > −∞.

8.2. The κ = −∞ case

We are left to consider the case where κn → −∞. In this case, we want
to prove:

⋃
n I

+(Σn) = M .
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We argue by contradiction: We suppose that the convex domain Ω :=⋃
n I

+(Σn) is not the whole spacetime M . Then Σ∞ := ∂Ω is non-empty.
As discussed in the beginning of §7, Σ∞ is a topological surface. Consider an
open set with compact closureN in Σ∞, and choose a local time function on
a neighbourhood of N . This local time function allows to decompose some
neighbourhood (with compact closure) W of N as a product W = N × I
where I is an interval in R and {x} × I is timelike for every x ∈ N . Using
Lemma 7.1, we see that this allows to write, for every n large enough,
the surface Σn ∩W as a graph over N . By Corollary 3.8, this sequence of
graphs is uniformly spacelike. Obviously, this implies that the area of the
local surface Σn∩W does not tend to 0 when n→∞. In particular, the area
of the Cauchy surface Σn does not tend to 0 when n→∞. This contradicts
the Gauss-Bonnet formula: Up to a multiplicative constant (depending on
the genus of the Cauchy surfaces of M) the area of Σn equals − 1

Λ+κn .
This completes the proof of Theorem 3.9.

9. Construction of barriers

This section is essentially devoted to the proof of Theorem 3.4 and Propo-
sition 3.10. The proof of Theorem 3.4 can be divided into two steps:

– first, we show that every 3-dimensional future complete non-
elementary MGHC spacetime with constant curvature Λ > 0 con-
tains a convex Cauchy surface Σ with K-curvature strictly bounded
from above by −Λ,

– then we push Σ along the geodesics orthogonal to Σ in order to
get convex Cauchy surfaces whose K-curvature is arbitrarily close
to −Λ.

Proposition 3.10 will be an easy consequence of our estimates on the be-
haviour of the principal curvatures when one pushes a surface along the
orthogonal geodesics.
It is important at this stage to recall our conventions. Let Σ be a spacelike

surface in (M, g). Recall that the second fundamental form of Σ is defined
by II(X,Y ) = −〈∇Xn, Y 〉 where n is the future oriented unit normal of
Σ. The principal curvatures λ1, λ2 of Σ are the eigenvalues of the second
fundamental form, and the K-curvature of Σ equals −λ1λ2. For example,
with these conventions, ifM is the Minkowski space R1,2 endowed with the
Lorentzian metric −dt2+dx2+dy2, the surface {−t2+x2+y2 = −c2, t > 0}
has principal curvatures λ = µ = −c.
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9.1. Existence of a Cauchy surface with controlled curvature

9.1.1. The flat case

We will prove the following result:

Proposition 9.1. — Every non-elementary 3-dimensional future com-
plete flat MGHC spacetime contains a locally strictly convex Cauchy sur-
face (in particular, a Cauchy surface with negative K-curvature).

Equivalently, every non-elementary 3-dimensional flat MGHC spacetime
contains a Cauchy surface with negative principal curvatures. In order to
prove this Proposition 9.1, we will use the existence of constant mean cur-
vature surfaces in flat MGHC spacetimes and the following proposition
which is essentially due to A. Treibergs:

Proposition 9.2. — Let (M, g) be a non-elementary MGHC flat space-
time. Then, every constant mean curvature Cauchy surface in M has neg-
ative principal curvatures.

Proof. — Any Cauchy surface with constant mean curvature Σ inM lifts
as a complete spacelike surface with constant mean curvature S ' Σ̃ in the
Minkowski space. It is shown in [60] (see also [27]) that such a surface S is
either strictly convex (i.e. has negative principal curvatures), or splits as a
direct product of a curve by an affine line. The splitting case is excluded in
our context, since we have assumed that our spacetime is non-elementary.
The proposition follows. �

Proof of Proposition 9.1. — In [3] and [1], it was shown that every
future complete flat spacetime contains a Cauchy surface S with constant
mean curvature −1 (see [3, 1]). Together with Proposition 9.2, this proves
Proposition 9.1. �

9.1.2. Transferring properties of CMC hypersurfaces from flat
to dS3 and AdS3 spacetimes

Now, we would like to get an analog of Proposition 9.1 in dS3 and AdS3-
spacetimes. For this purpose, we will use a correspondence between CMC
hypersurfaces in flat spacetimes, CMC hypersurface in dS spacetimes and
CMC hypersurfaces in AdS spacetimes, very similar to a statement discov-
ered by H. Hopf in the 50’s, in the context of CMC surfaces in Euclidean
3-spaces:
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Proposition 9.3 (See e.g. [7]). — Let Σ be a compact surface, η be a
Riemannian metric on Σ with scalar curvature Rη, and h be a quadratic
differential on Σ. Let Λ and H be two real numbers. There exists an isomet-
ric embedding of (Σ, η) as a spacelike Cauchy surface with constant mean
curvature H having h as the second fundamental form in some MGHC
spacetime (M, g) with constant curvature Λ if and only if the two following
conditions are satisfied:

(1) the quadratic differential h0 = h−H · η (i.e. the trace free part of
h) is the real part of a holomorphic quadratic differential,

(2) the Gauss equation Rη + detη(h0) = Λ−H2 is satisfied.

Remark 9.4. — If (Σ, η, h) satisfies conditions (1) and (2), then:
– one can take as a spacetime (M, g) the Cauchy development of the

solution of the Einstein equations with a cosmological constant Λ,
in a CMC gauge, with initial Cauchy data (Σ, η, h),

– (S, η, h) is called a CMC (H,Λ)-initial Cauchy data.

The following immediate corollary of Proposition 9.3 will allow us to
transfer properties of CMC hypersurfaces in flat spacetimes into properties
of CMC hypersurfaces in dS3 and AdS3 spacetimes.

Corollary 9.5. — A CMC (H,Λ)-initial data (Σ, η, h = h0 + Hη)
gives rise to a CMC (H ′,Λ′)-initial data of the form (Σ, η, h′ = h0 +H ′η)
provided that

Λ′ −H ′2 = Λ−H2.

Remark 9.6. — Assume that (Σ, η, h = h0+Hη) is a CMC (H,Λ)-initial
data and (Σ, η, h′ = h0 + H ′η) is a CMC (H ′,Λ′)-initial data. Denote by
λ, µ (resp. Λ′, µ′) the principal curvatures of Σ seen as a CMC (H,Λ)-initial
Cauchy data (resp. as a CMC (H ′,Λ′)-initial Cauchy data). Then

λ′ = λ+ (H ′ −H) and µ′ = µ+ (H ′ −H).

9.1.3. The dS3 case

We will prove the following result:

Proposition 9.7. — Every non-elementary 3-dimensional future com-
plete MGHC spacetime with constant curvature Λ = +1 contains a convex
Cauchy surface with K-curvature strictly bounded from above by −Λ.
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Proof. — Consider a non-elementary 3-dimensional future complete
MGHC spacetime (M, g) with constant curvature +1. It was proved in [2]
that (M, g) admits a Cauchy hypersurface Σ with constant mean curva-
ture −

√
2. Denote by η and h the first and the second fundamental forms

of Σ. Then (Σ, η, h = h0 −
√

2η) is a CMC (−
√

2, 1)-initial Cauchy data.
So, by Corollary 9.5, (Σ, η, h′ = h0 − η) is a CMC (−1, 0)-initial Cauchy
data (i.e. (Σ, η) admits an isometric embedding in a flat MGHC spacetime
with constant mean curvature −1 and second fundamental form h′). De-
note by λ and µ (resp. λ′ and µ′) the principal curvatures of Σ seen as a
CMC (−

√
2,+1) initial Cauchy data (resp. as a CMC (−1, 0) initial Cauchy

data). According to Proposition 9.2, the principal curvatures λ′ and µ′ are
negative. Using Remark 9.6, this implies that

λ < −
√

2 + 1 and µ < −
√

2 + 1

(in particular, λ and µ are negative, so that Σ is convex in M .) Moreover,
since λ+ µ = 2H = −2

√
2, the above inequality yields

−
√

2− 1 < λ < −
√

2 + 1 and −
√

2− 1 < µ < −
√

2 + 1.

These bounds on λ, µ and the equality λ+ µ = −2
√

2 imply that

−λ · µ < −1,

i.e. that the K-curvature of the Cauchy surface Σ in M is strictly bounded
from above by −Λ, as wanted. �

9.1.4. The AdS3 case

The arguments developed above are not sufficient to get a directly a con-
vex Cauchy surface in every AdS3 spacetime. Nevertheless, these argument
provide us with a Cauchy surface with controlled principal curvatures:

Proposition 9.8 (See also Lemma 3.11 in [43]). — Every non-
elementary 3-dimensional MGHC spacetime with constant curvature Λ =
−1 contains a maximal Cauchy surface (i.e. a Cauchy surface with constant
mean curvature 0). Moreover, the principal curvatures of this maximal sur-
face stay within the interval (−1, 1).

Proof. — Consider a 3-dimensional non-elementary MGHC spacetime
(M, g) with constant curvature −1. It was proved in [12] that (M, g) ad-
mits a maximal Cauchy surface Σ. Denote by η and h the first and the
second fundamental forms of Σ. Then (Σ, η, h = h0) is a CMC (0,−1)-
initial Cauchy data. So, by Corollary 9.5, (Σ, η, h′ = h0 − η) is a CMC
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(−1, 0)-initial Cauchy data. Denote by λ and µ (resp. λ′ and µ′) the prin-
cipal curvatures of Σ seen as a CMC (0,−1) initial Cauchy data (resp. as a
CMC (−1, 0) initial Cauchy data). According to Proposition 9.2, the prin-
cipal curvatures λ′, µ′ are negative. Using Remark 9.6, this implies λ < 1
and µ < 1. Since H = −(λ + µ) = 0, it follows that −1 < λ < 1 and
−1 < µ < 1. �

Remark 9.9. — In subsection 9.4, we will explain how to show that every
non-elementary MGHC spacetime with constant curvature −1 contains a
convex (and a concave) Cauchy surface.

9.2. Pushing a Cauchy surface along the orthogonal geodesics

Let (M, g) be an (arbitrary) 3-dimensional spacetime. Let Σ be a space-
like surface in M . For every x ∈ Σ, denote by n(x) the future oriented unit
normal vector of Σ at x. For t small enough, the map

φtΣ : Σ −→M

x 7−→ expx(t · n(x))

is well-defined, and is an embedding. For such a t, the surface

Σt := φtΣ(Σ)

is obviously a compact spacelike surface, hence a Cauchy surface. We say
that the Cauchy surface Σt := φtΣ(Σ) is obtained by pushing Σ along
orthogonal geodesics for a time t.
In our situation, since the ambient curvature Λ is constant, one can

compute explicitly the principal curvatures of the surface Σt:

Proposition 9.10. — Pick a point x ∈ Σ and a real number t. We
assume that the map φtΣ is well-defined (i.e. that the geodesics that are
orthogonal to Σ exists for a time at least t). We denote by λ, µ the principal
curvature of Σ at x.
1. The flat case. Assume that (M, g) is flat (i.e. locally isometric to

Min3). If λ.t 6= 1 and µ.t 6= 1 then φtΣ is an embedding in the neighborhood
of x, and the principal curvature of the surface Σt at the point φt(x) are

λt = λ

1− λt and µt = µ

1− µt .

2. The dS3-case. Assume that (M, g) has positive constant curvature
(i.e. is locally isometric to dS3). If λ tanh(t) 6= 1 and µ tanh(t) 6= 1 then φtΣ
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is an embedding in the neighborhood of x, and the principal curvature of
the surface Σt at the point φt(x) are

λt = λ− tanh(t)
1− λ tanh(t) and µt = µ− tanh(t)

1− µ tanh(t) .

3. The AdS3-case. Assume that (M, g) has negative constant curvature
(i.e. is locally isometric to AdS3) If λ tan(t) 6= 1 and µ tan(t) 6= 1 then φtΣ
is an embedding in the neighborhood of x, and the principal curvature of
the surface Σt at the point φtΣ(x) are

λt = λ+ tan(t)
1− λ tan(t) and µt = µ+ tan(t)

1− µ tan(t) .

Proof. — Straightforward computation. �

As an immediate corollary, we get:

Corollary 9.11. — Pick a point x ∈ Σ. Denote by H (resp. κ) the
mean curvature (resp. the K-curvature) of the surface Σ at x. For t small
enough, denote by κt the K-curvature of the surface Σt at φtΣ(x). Then,

∂κt
∂t |t=0

= 2(κ+ Λ)H.

Remark 9.12. — In particular, the K-curvature of Σt at φtΣ(x) increases
with t (for t close to 0) provided that the surface Σ is convex and has a
K-curvature κ strictly bounded from above by −Λ.

9.3. Proof of Theorem 3.4

We consider a 3-dimensional non-elementary MGHC spacetime (M, g)
with constant K-curvature Λ > 0. Reversing the time orientation if neces-
sary, we assume that (M, g) is future complete.

Proposition 9.13. — If Σ is a convex Cauchy surface in M whose
K-curvature is strictly bounded from above by −Λ, then:

(1) for every t > 0, the map φtΣ : Σ → M is well-defined and is an
embedding,

(2) for every t > 0, the Cauchy surface Σt := φtΣ(Σ) is convex and has
a K-curvature strictly bounded from above by −Λ,

(3) the K-curvature of Σt tends uniformly towards −Λ when t→∞.

Proof. — The map φtΣ is defined for every t > 0 because the space-
time was assumed to be future complete. The other assertions follow from
Proposition 9.10. �
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Proposition 9.1 (in the case Λ = 0) or Proposition 9.7 (in the case
Λ = +1) provide us with a convex Cauchy surface Σ with K-curvature
strictly bounded by −Λ. Choose ε > 0 such that the K-curvature of Σ is
bounded from above by −Λ − ε. Let κ ∈ (−Λ − ε,Λ). By item 1 and 2 of
Proposition 9.13, for every t > 0, the surface Σt = φtΣ(Σ) is well-defined,
convex, and has K-curvature strictly bounded from above by −Λ. More-
over, by item 3 of Proposition 9.13, for t > 0 large enough, the K-curvature
of Σt is strictly bounded from below by κ. Therefore, for t > 0 large enough,
(Σ,Σt) is a pair of κ-barriers. This completes the proof of Theorem 3.4.

9.4. Convex and concave Cauchy surfaces in AdS3 spacetimes

Proposition 9.14. — Let (M, g) be a non-elementary 3-dimensional
MGHC spacetime of AdS3 type (i.e. with negative constant curvature).
Then M contains two Cauchy surfaces with constant K-curvature −1, one
strictly convex and the other strictly concave.

Proof. — Let Γ be the fundamental group of the Cauchy surfaces of
M . By Theorem 5.8, there exists a representations ρ : Γ → PSL(2,R) ×
PSL(2,R), a curve Λρ in ∂ADS3 associated to ρ, and a open set E(Λρ) in
ADS3 such that M ' ρ(Γ) r E(Λρ). We will need the following lemma:

Lemma 9.15. — Let Σ be a Cauchy surface in M , and S be a lift of Σ
in E(Λρ). Let t0 be a real number such that the map φtS : S → AdS3 is an
immersion for every t between 0 and t0. Then St0 = φt0S (S) is contained in
E(Λρ) and projects to a Cauchy surface Σt0 in M .

Remark 9.16. — A posteriori, the surface Σt0 can of course be obtained
by pushing Σ along the orthogonal geodesics for a time t0. Nevertheless,
one cannot define Σt0 directly inM (without passing to the universal cover)
since one does not know a priori that the geodesics ofM that are orthogonal
to Σ exist for a long enough time (recall that M is neither past nor future
complete).

Let us postpone the proof of Lemma 9.15, and complete the proof of
Proposition 9.14. According to Proposition 9.8, the spacetime M admits
a maximal Cauchy surface Σ whose principal curvatures stay within the
interval (−1, 1). Let S be a lift of Σ in E(Λρ). We denote by λ(x), µ(x) the
principal curvatures of the surface S at x. Since |λ(x)| < 1 and |µ(x)| < 1
for every x ∈ Σ, Proposition 9.10 implies that the map φtS is an immersion
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for every t ∈ [−π/4, 0]. Therefore, Lemma 9.15 implies that S−π/4 is em-
bedded, contained in the domain E(Λρ), and projects to a Cauchy surface
Σ−π/4 in M , which is obtained by pushing the surface Σ along orthogonal
geodesics for a time (−π/4). Moreover, Proposition 9.10 implies that, for
every x ∈ S, the principal curvatures of the surface S−π/4 at the point
φ
−π/4
S (x) are

λ−π/4(x) = λ(x)− 1
1 + λ(x) and µ−π/4(x) = µ(x)− 1

1 + µ(x) .

In particular, the Cauchy surface S−π/4 is strictly convex and has constant
K-curvature −1. It follows immediately that the Cauchy surface Σ−π/4 is
also strictly convex, and has constant K-curvature −1.
The same arguments show that the Cauchy surface Σπ/4 is well-defined,

strictly concave, and has constant K-curvature −1. �

We are left to prove Lemma 9.15. The key point is the following:

Sub-lemma 9.17. — Let Σ̃ be the (abstract) universal cover of the sur-
face Σ and φ : Σ̃→ ADS3 be a Γ-equivariant(11) immersion, such that φ(Σ̃)
is spacelike. Then φ is a proper embedding, and φ(Σ̃) is contained in E(Λρ).

Proof of Sub-lemma 9.17. — Since φ(Σ̃) is spacelike, the Lorentzian met-
ric of AdS3 induces a Riemannian metric on φ(Σ̃). Let us denote by g the
pull-back (by φ) of this Riemannian metric on Σ̃. Since φ is Γ-equivariant,
this Riemannian metric g is Γ-invariant. And since Γ is co-compact, g is
complete. Therefore, φ is a locally isometric immersion of the complete Rie-
mannian surface (Σ̃, g) in ADS3. By a lemma of Mess (see [51, Lemma 6]),
this implies that φ is a proper embedding, and that φ(Σ̃) is achronal(12) . In
particular, φ(Σ̃) is a closed achronal surface in ADS3. As explained in §5.3.2,
this implies that the boundary in ADS3 ∪ ∂ADS3 is the curve Λρ (see [10,
Theorem 10.13]). This implies that the Cauchy development D(φ(Σ̃)) is
contained in E(Λρ) (see [12, Proposition 5.18]); In particular, the surface
φ(Σ̃) is contained in E(Λρ) . �

Proof of Lemma 9.15. — Let Σ̃ be the (abstract) universal cover of
Σ, and choose a Γ-equivariant homeomorphism φ0 : Σ̃ → S. For every t

between 0 and t0, the map φtS : S → St is ρ(Γ)-equivariant (since the

(11)By such, we mean that, for every x̃ ∈ Σ̃ and every γ ∈ Γ, one has φ(γ ·x) = ρ(γ)·φ(x̃).
(12)Remember that this means that every timelike curve in ÃdS3 cannot intersect a lift
of φ(Σ̃) at two different points. We define this property in ÃDS3 (rather than in ADS3)
because ADS3 itself is not a causal space: Any two points of ADS3 can be joined by a
timelike curve in ADS3.
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group ρ(Γ) acts by isometries of ADS3). Therefore, the map φt := φtS ◦
φ0 : Σ̃ → ADS3 is a Γ-equivariant immersion, and St = φt(Σ̃) is spacelike.
By Lemma 9.17, it follows that St is properly embedded and contained
in E(Λρ). In particular, St0 is contained in E(Λρ). So, we have proved
that the map φt0 : Σ̃ → ADS3 is a ρ(Γ)-equivariant embedding, and that
the spacelike surface St0 = φt0(Σ̃) is contained in E(Λρ). It follows that
St0 projects to a compact spacelike surface in M ' ρ(Γ) r E(Λρ). To
conclude the proof, we recall that every compact spacelike surface in a
MGHC spacetime is a Cauchy surface. �

9.5. Proof of Proposition 3.10

We consider a 3-dimensional non-elementary MGHC spacetime (M, g)
with constant K-curvature Λ. We assume that (M, g) admits a Cauchy
surface Σ which is strictly convex (i.e. has negative principal curvatures)
and has constantK-curvature κ < −Λ. Note that, since Σ is strictly convex,
the mean curvature of Σ is negative.

For t small enough, we define the map φtΣ and the surface Σt as in
Subsection 9.2. For t < 0, the Cauchy surface Σt is of course in the past
of Σ. For t small enough, the principal curvatures of Σt are close to those
of Σ. In particular, for t small enough, the Cauchy surface Σt is strictly
convex. Moreover, Corollary 9.11 implies that, for t < 0 small enough, the
K-curvature curvature of Σt is strictly bounded from above by κ (see also
Remark 9.12). This completes the proof of Proposition 3.10. �

Remark 9.18. — In the case here Λ is negative (AdS3 spacetimes), there
is an analog statement concerning concave surfaces:
Assume that (M, g) admits a strictly concave Cauchy surface Σ with con-
stant K-curvature κ. Then, in the future of Σ (and arbitrarily close to Σ)
one can find a strictly concave Cauchy surface whoseK-curvature is strictly
bounded from below by κ.

10. K-slicings of flat and dS3 spacetimes

We are now ready to prove the existence of K-slicings of non-elementary
3-dimensional MGHC spacetimes of constant curvature curvature. In the
present §, we will only consider the cases of flat and locally de Sitter space-
times (items 1 and 2 of Theorem 2.1). The case of locally anti-de Sitter
spacetime (item 3 of Theorem 2.1) will be treated in §11.
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All along this section, we consider a non-elementary 3-dimensional
MGHC spacetime (M, g) of constant curvature curvature Λ > 0. Reversing
time-orientation if necessary, we assume that (M, g) is future complete. As
explained in section 3, we will first get a local K-slicing (i.e. a K-slicing of
some open subset of M), and then extend this local K-slicing to a global
one.

10.1. Local K-slicings

Definition 10.1. — A local K-slicing in M is a 1-parameter family
(Σκ)κ∈I of Cauchy surfaces in M such that:

(1) the parameter set I is an interval included in (−∞,−Λ),
(2) for every κ ∈ I, the Cauchy surface Σκ is convex and has constant

K-curvature equal to κ.
The set U =

⋃
κ∈I Σκ is called the support of the local K-slicing.

Note that, in the above definition, one does not require the Σκ’s to be
pairwise disjoint, or to depend continuously on κ. Actually, these properties
are automatically satisfied:

Lemma 10.2. — Every local K-slicing (Σκ)κ∈I satisfies the following
monotonicity property: For every κ1, κ2 ∈ I such that κ1 < κ2, the Cauchy
surface Σκ1 is strictly in the past of the Cauchy surface Σκ2 .

In particular, if (Σκ)κ∈I is a local K-slicing, then the Σκ’s are pairwise
disjoint.
Proof of Lemma 10.2. — Consider a local K-slicing (Σκ)κ∈I in M , pick

up two real numbers κ1, κ2 ∈ I such that κ1 < κ2, and assume that Σκ1 is
not strictly in the past of Σκ2 .
Since M is future complete, the map φt = φtΣκ2

does exists for every
t > 0. Moreover, since Σκ2 is convex and Λ = 0 or 1, Proposition 9.13
implies that φtΣκ2

is an embedding for every t > 0. So, for every t > 0,
Σtκ2

:= φtΣκ2
(Σκ2) is a smooth Cauchy surface. For t > 0 large enough,

the Cauchy surface Σtκ2
is strictly in the future of the Cauchy surface Σκ1 .

Therefore, we may consider the infimum tmin of all real numbers t > 0
such that Σtκ2

is in the future of Σκ1 . Clearly, the surfaces φt(Σκ2) and
Σκ1 intersect at some point x (otherwise, tmin would not be minimal).
From Proposition 9.13 and Remark 9.12, theK-curvature of Σκ2) is strictly
bounded from below by κ2. Since κ1 < κ2, it follows in particular that the
K-curvature of the surface Σtκ2

at x is strictly bigger than those of the
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surface Σκ1 . This contradicts the maximum principle (see §4.4) since the
surface Σtκ2

is in the future of the surface Σκ1 . �

Remark 10.3. — Actually, the argument of the above proof shows that:
If Σ,Σ′ are two convex Cauchy surfaces in M , whose K-curvatures are
strictly bounded from above by −Λ, and such that the supremum of the
K-curvature of Σ is smaller than the infimum of the K-curvature of Σ′,
then Σ is in the past of Σ′.

In particular, for every κ < −Λ, there exists at most one convex Cauchy
surface with constant K-curvature κ.

Lemma 10.4. — If (Σκ)κ∈I is a local K-slicing in M , then the surface
Σκ depends continuously on κ.

Proof. — Consider κ0 ∈ I, and a neighbourhood V of the Cauchy surface
Σκ0 . We have to prove that, for κ close enough to κ0, the Cauchy surface
Σκ is contained in V .

By definition of a local K-slicing, the Cauchy surface Σκ0 is convex,
and has constant K-curvature κ. For t small enough, the Cauchy surface
Σtκ0

= φtΣκ0
(Σκ0) is well defined, contained in V , convex, has K-curvature

strictly bounded from above by −Λ. Moreover, by Remark 9.12, for t > 0
(resp. t < 0) small enough, the K-curvature Cauchy surface Σtκ0

is strictly
bounded from below by κ . Therefore, there exists η > 0 and ε > 0, such
that the surfaces Σ−ηκ0

and Σηκ0
are contained in V , and such that (Σ−ηκ0

,Σηκ0
)

is a pair of κ-barriers for every κ ∈ (κ0−ε, κ0+ε). By Theorem 3.2, it follows
that, for every κ ∈ (κ0− ε, κ0 + ε), the neighbourhood V contains a convex
Cauchy surface with constant K-curvature κ. By the uniqueness explained
in Remark 10.3, it follows that the Cauchy surface Σκ is contained in V

for every κ ∈ (κ0 − ε, κ0 + ε). �

Lemma 10.2 and 10.4 show that a localK-slicing is indeed a slicing (i.e. a
foliation) of some open subset U ofM . Moreover, Lemma 10.4 implies that
the support U of a local K-slicing (Σκ)κ∈I has “no hole”: For every κ1, κ2 ∈
I such that κ1 < κ2, the intersection I+(Σκ1)∩ I−(Σκ2) is contained in U .

10.2. Construction of a local K-slicing

Theorem 3.4 provides us with a non-empty open interval I0 := ]−Λ −
ε,−Λ[ such that, for every κ ∈ I0, there exists a pair of κ-barriers. Using
these barriers and Theorem 3.2, we get for every κ ∈ I0 a convex Cauchy
surface Σκ with constant K-curvature equal to κ. The family (Σκ)κ∈I0 is
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by definition a local K-slicing. We denote by U0 the support of this local
K-slicing.

Lemma 10.5. — The set U0 is a neighbourhood of the future end of M ,
i.e. it contains the whole future of a Cauchy surface of M .

Proof. — Thanks to Lemmas 10.2 and 10.4, it is enough to prove that the
Cauchy surface Σκ “escapes towards the future end of M” when κ→ −Λ:
More precisely, if K is a compact subset of M , then K is in the past of the
surface Σκ for every κ close enough to −Λ.

In order to prove this, we consider any convex Cauchy surface Σ̂ in M
such that the curvature is strictly bounded from above by −Λ (for ex-
ample, one might take Σ̂ to be a leaf of our local K-slicing). The map
φt

Σ̂
: Σ̂ → M is well-defined and is an embedding for every t > 0 (item 1

of Proposition 9.13). For t > 0, denote by κmax(t) the supremum of the
K-curvature of the surface Σ̂t = φt

Σ̂
(S). By item 2 of Proposition 9.13, one

has κmax(t) < −Λ for every t > 0. By Remark 10.3, the surface Σκ is in
the future of Σ̂t for every κ > κmax(t).
But of course, by definition of the surface Σ̂t, it “escapes towards the

future end of M” when t→∞. Therefore, the Cauchy surface Σκ escapes
towards the future end of M when κ→ −Λ. �

10.3. Getting a global K-slicing

We say that a local K-slicing (Σ′κ)κ∈I′ extends a local K-slicing (Σκ)κ∈I
if I ⊂ I ′ and Σ′κ = Σκ for κ ∈ I. Our goal is to prove that our local K-
slicing (Σκ)κ∈I0 can be extended to get K-slicing (Σκ)κ∈]−∞,−Λ[ whose
support is the whole manifold M .
For this purpose, we consider a local K-slicing (Σκ)κ∈I which extends

our initial local K-slicing (Σκ)κ∈I0 , and is maximal among the local K-
slicings extending (Σκ)κ∈I0 . We denote by U the support of (Σκ)κ∈I . We
have to prove that I = (−∞,−Λ) and U = M .
Assume that I 6= (−∞,−Λ). Then, there exists α ∈] − ∞,−Λ[ such

that I = ]α,−Λ[ or I = [α,−Λ[. On the one hand, Theorem 3.9 tells us
that the first possibility cannot occur. Indeed, if I = ]α,−Λ[, then there
exists a convex Cauchy surface Σα with constant K-curvature α such that
I+(Σα) = U . Clearly, (Σκ)κ∈[α,−Λ) is a local K-slicing which extends the
local K-slicing (Σκ)κ∈I , contradicting the maximality of (Σκ)κ∈I . On the
other hand, Proposition 3.10 implies that the second possibility cannot
occur either. Indeed, if I = [α,−Λ[, then Proposition 3.10 provides us
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with a surface Σ such that (Σ,Σα) is a pair of κ barriers for every κ

smaller than α and close enough to α. Using Theorem 3.2, we get a convex
Cauchy surface Σκ with constant K-curvature κ for every κ ∈]α′, α[ for
some α′ < α. So, we get a local K-slicing (Σκ)κ∈]α′,−Λ[ which extends
(Σκ)κ∈I , contradicting the maximality of (Σκ)κ∈I .
So, we have proved that I = ]−∞,−Λ[. Using once again Theorem 3.9,

we see that this implies that U = M . Henceforth, (Σκ)κ∈I is a global K-
slicing of our spacetimeM . This completes the proof of Theorem 2.1 in the
flat case and in the locally de Sitter case.

11. K-slicings of AdS3-spacetime

The strategy used in section 10 to get K-slicings on flat and dS3-
spacetimes does not fully apply in the AdS3-setting, the main problem
being the lack of an analog of Proposition 9.13(13) . This will force us to
use completely different arguments, based on the duality between strictly
convex and strictly concave Cauchy surfaces in MGHC AdS3-spacetimes.

11.1. Duality in AdS3-spacetimes

We will now recall the duality between points and totally geodesic hy-
perplanes in the anti-de Sitter space. Then, we will explain how this du-
ality between points and totally geodesic hyperplanes induces a duality
between strictly convex and strictly concave Cauchy surfaces with con-
stant K-curvature. Most (if not all) the material contained in this section
is well-known by experts; The duality between point and hyperplanes was
already discussed by H. S. M. Coxeter in a 1943 (see [28]).

11.1.1. Duality between points and totally geodesic planes in ADS3

We consider the quadratic form Q2,2 = −x2
1 − x2

2 + x2
3 + x2

4 on R4. We
recall that the three-dimensional anti-de Sitter space AdS3 is the quadric
{Q2,2 = −1} endowed with the Lorentzian metric induced by Q2,2. Duality
phenomena are more easily described in the Klein model ADS3 of the three-
dimensional anti-de Sitter space; We recall that ADS3 is the projection of
AdS3 in RP3, so that AdS3 is a two-fold cover of ADS3.

(13)There can be no analog of Proposition 9.13 in the AdS3-setting, simply because
MGHC AdS3-spacetimes are neither future complete, nor past complete.

TOME 61 (2011), FASCICULE 2



572 Thierry BARBOT, François BÉGUIN & Abdelghani ZEGHIB

Given a set E ⊂ RP3, let Ê denote the cone in R4 whose projection in
RP3 is equal to E. Then, let Ê⊥ denote the Q2,2-orthogonal of Ê in R4,
and E⊥ denote the projection of Ê⊥ in RP3. Finally, let E∗ denote the
intersection between E⊥ and ADS3. Equivalently, E∗ is the projection in
RP3 of Ê⊥ ∩AdS3.
If x is a point in ADS3, one easily checks that x∗ is a spacelike totally

geodesic plane in ADS3. Conversely, if P is a spacelike totally geodesic
plane in ADS3, then P ∗ is a point in ADS3. And clearly, for every point x
and every spacelike totally geodesic plane P in ADS3, we have:

(11.1) (x∗)∗ = x (P ∗)∗ = P.

Remark 11.1. — If P is a spacelike totally geodesic plane in ADS3, it
is easy to verify that every geodesic of ADS3 which is orthogonal to P

passes through the point P ∗. Moreover, the length of a geodesic segment,
orthogonal to P , and going from P to P ∗ is exactly π/2. In other words,
P ∗ is obtained by pushing P along the orthogonal geodesics for a time π/2
(or −π/2).

11.1.2. Duality between strictly convex and concave surfaces in ADS3

Let S be a (smooth) spacelike surface in ADS3. For every x ∈ S, we
denote by PS,x the totally geodesic plane in ADS3 which is tangent to S
at x. Then we define the dual set S∗ ⊂ ADS3 of S as follows:

S∗ =
{

(PS,x)∗ | x ∈ S
}
.

Remark 11.2. — Let y be a point in ADS3. Using (11.1), one can easily
show that the point y belongs to the set S∗ if and only if the totally geodesic
plane y∗ is tangent to the surface S at some point.

If S is an arbitrary spacelike surface, the set S∗ is not a surface in general;
For example, if S is a totally geodesic plane, then S∗ is a single point. But
everything goes well whenever S is strictly convex (or concave) spacelike
surface:

Proposition 11.3. — If S is a strictly convex (resp. strictly concave)
spacelike surface, then the set S∗ is strictly concave (resp. strictly convex)
spacelike surface.

In order to prove this proposition, we consider the set PADS3 of all space-
like totally geodesic planes in ADS3; This set has a natural structure of
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three-dimensional manifold. For every spacelike surface S, we consider the
map

PS : S −→ PADS3

x 7−→ PS,x

The following fact is an immediate consequence of the definition of the
second fundamental:

Fact 11.4. — Given a spacelike surface S in ADS3 and a point x ∈ S,
the second fundamental form of S at x is non-degenerate if and only if the
derivative at x of the map PS has maximal rank.

Proof of Proposition 11.3. — We assume S is a strictly convex spacelike
surface in ADS3.

First step: S∗ is an immersed surface. Since S is strictly convex, for
every x ∈ S, the second fundamental form of S at x is non-degenerate.
Using Fact 11.4, it follows that, for every x ∈ S, the derivative at x of
the map PS has maximal rank. Therefore, the map PS : x 7→ PS,x is an
immersion of S in PADS3 . Moreover, the map P 7→ P ∗ is obviously a local
diffeomorphism between PADS3 and ADS3. Therefore the map x 7→ (PS,x)∗
defines an immersion of S in ADS3. The range of this map is the set S∗;
Therefore S∗ is an immersed surface.

Second step: S∗ is an injectively immersed spacelike concave surface. Let
y ∈ S∗. By definition of S∗, there exists a point x ∈ S such that y = (PS,x)∗.
We will prove that the totally geodesic plane x∗ meets S∗ at y, and that
S∗ is contained in the past of x∗ in a neighbourhood of y.

Since the point x belongs to the totally geodesic plane PS,x, the point
y = (PS,x)∗ belongs to the totally geodesic plane x∗. In other words, the
totally geodesic plane x∗ meets the surface S∗ at y. Now let us consider
a sequence (yk)k∈N of points of S∗ converging to y when k → ∞. By
Remark 11.2, for every k > 0, the totally geodesic plane y∗k is tangent to
the surface S at some point xk. Since S is strictly convex, this implies
that S is in the future of the plane y∗k in some neighbourhood Uk of the
point xk (and the size of the neighbourhood Uk does not depend of k
provided that the xk’s stay in a compact subset of S). Moreover, if k is
large, the totally geodesic plane y∗k is close to the totally geodesic plane
y∗ = ((PS,x)∗)∗ = PS,x. Since S is strictly convex, this implies that xk is
close to x when k is large. It follows that, for k large enough, the point x
is in the neighbourhood Uk. In particular, for k large enough, the point x
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is in the future of the totally geodesic plane y∗k. It follows that, for k large
enough, the point yk = (y∗k)∗ is in the past of the totally geodesic plane x∗.
So, we have proved that the totally geodesic plane x∗ meets the immersed

surface S∗ at y, and that there exists a neighbourhood U of the point y in
S∗ such that S∗ is contained in the past of x∗ in U . It follows that x∗ is the
unique totally geodesic plane which is tangent to S∗ at y, and that S∗ is
“locally contained” in the past of this totally geodesic plane. Since y is an
arbitrary point in S∗, this shows that S∗ is injectively immersed, spacelike
and concave (see §4.3).

Third step: S∗ is strictly concave. Since we already know that S∗ is
concave, we only need to prove that the second fundamental form of S∗
is non-degenerate at each point of S∗. According to Lemma 11.4, it is
equivalent to prove that the map PS∗ : y 7→ PS∗,y is an immersion of S∗ in
PADS3 .
We have proved during the second step that, for every point y ∈ S∗, if

x is the unique point of the surface S such that y = (PS,x)∗, then x∗ is
the unique totally geodesic plane tangent to S∗ at y, that is PS∗,y = x∗.
Moreover, we have proved in the first and second step above that the map
x 7→ (PS,x)∗ is an injective immersion of the surface S in ADS3, and that
the range of this immersion is the surface S∗. It follows that the map
(PS,x)∗ 7→ x is an immersion of S∗ in ADS3. Since the map x 7→ x∗ is
obviously a local diffeomorphism from ADS3 to PADS3 , this shows that the
map

PS∗ : S∗ −→ PADS3

y = (PS,x)∗ 7−→ x∗ = PS∗,y

is an immersion. Therefore, the surface S∗ is strictly concave. �

In the proof above, we have seen that, for every point y ∈ S∗, if x is the
unique point of the surface S such that y = (PS,x)∗, then PS∗,y = x∗, and
therefore (PS∗,y)∗ = (x∗)∗ = x. This shows that:

Corollary 11.5. — If S is a strictly convex (resp. strictly concave)

spacelike surface, then (S∗)∗ = S and the map
∣∣∣∣ S∗ → (S∗)∗
y 7→ (PS,y)∗ is the

inverse of the map
∣∣∣∣ S → S∗

x 7→ (PS,x)∗ .
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Proposition 11.6. — Let S be a strictly convex or strictly concave
spacelike surface. Let x0 be a point in S, and y0 = (PS,x0)∗ be the corre-
sponding point in S∗. If λ, µ are the principal curvatures of S at x0, then
the principal curvatures of S∗ at y0 are −λ−1,−µ−1.

Proof. — Here, it is easier to work in R4 instead of RP3. Let S̃ be one
of the two lifts of S in AdS3 ⊂ R4. For every x ∈ S̃, let n

S̃,x
∈ TxAdS3 be

the future-directed unit normal vector of S at x. Since AdS3 ⊂ R4, we can
see n

S̃,x
as an element of TxR4. The key point is the following observation:

Claim 11.7. — For every x ∈ S̃, the canonical isomorphism between
TxR4 and R4 maps the vector n

S̃,x
∈ TxR4 to one of the two lifts in R4 of

the point (PS,x)∗.

Let y ∈ R4 be the image of n
S̃,x

under the canonical isomorphism be-
tween TxR4 and R4. For every linear subspace Vx of TxR4, denote by
Vx ⊂ R4 the image of Vx under this isomorphism. Since P

S̃,x
is a totally geo-

desic plane of AdS3, there exists a linear hyperplane H of R4 such that P
S̃,x

is a connected component of H ∩ AdS3. Clearly, H = R.x⊕ TxPS̃,x. Since
the vector n

S̃,x
belongs to TxAdS3, the point y belongs to TxAdS3 = x⊥.

Since the vector n
S̃,x

is orthogonal to TxS̃ = TxPS̃,x, the point y belongs to
(TxPS̃,x)⊥. Hence the point y belongs to (R.x⊕TxPS̃,x)⊥ = H⊥ = (P

S̃,x
)⊥.

Moreover the Q2,2-norm of the vector n
S̃,x

is −1. Hence the point y be-
longs to AdS3 = {z ∈ R4 | Q2,2(z) = −1}. So we have proved y belongs to
(P
S̃,x

)⊥ ∩AdS3. The projection of this intersection in RP3 is by definition
the point (PS,x)∗. This completes the proof of the claim.
The above claim shows that, if we identify TxR4 with R4 for every x ∈ R4,

then the Weingarten map of S at x0 is identified with the derivative at x0
of the map x 7→ (PS,x)∗. Of course the same is true if we replace S by S∗:
The Weingarten map of S∗ at y0 is identified with the derivative at y0 of
the map y 7→ (PS∗,y)∗. Together with Corollary 11.5, this shows that the
Weingarten map of S at x0 is identified with the opposite of the inverse of
the Weingarten map of S∗ at y0. The proposition follows. �

Corollary 11.8. — If S is a spacelike surface with constant K-
curvature κ6=0, then S∗ is a spacelike surface with constant K-curvature
κ−1.

Proof. — Every surface with non-zero constant K-curvature is either
strictly convex or strictly concave. Therefore the corollary is an immediate
consequence of Proposition 11.6. �
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It is interesting to observe that the dual S∗ of a spacelike surface S can
also be defined by pushing along orthogonal geodesics:

Proposition 11.9. — For every spacelike surface S in ADS3, the dual
S∗ of S is obtained by pushing S along orthogonal geodesic for a time π/2
(or a time −π/2).

Proof. — Let S be a spacelike surface in ADS3. For every x ∈ S, we
denote by nS,x the future-directed unit normal vector of S at x. For ev-
ery t ∈ R, let

St := {expx (t · nS,x) | x ∈ S}
the set of points at distance t from S along an orthogonal geodesic (St is
not necessarily a surface when |t| is large). We shall prove that Sπ/2 = S∗

(the same arguments apply to show that S−π/2 = S∗).
Consider a point y in S∗. There exists a point x ∈ S such that y = P ∗S,x.

Since the surface S and the totally geodesic plane PS,x are tangent at x,
the vector nS,x is orthogonal to PS,x. Using Remark 11.1, it follows that
the point y = P ∗S,x coincides with the point expx

(
π
2 · nS,x

)
. In particular,

y ∈ Sπ/2.
Conversely, consider a point y ∈ Sπ/2. There exists a point x ∈ S such

that y = expx
(
π
2 · nS,x

)
. The same argument as above shows that (PS,x)∗ =

expx(π2 · nS,x) = y. In particular, y ∈ S∗. �

11.1.3. Duality for convex and concave surfaces in MGHC
AdS3-spacetimes

Now we consider a MGHC spacetime M of constant curvature −1. Ac-
cording to Theorem 5.8, there exists a representation ρ : Γ→ PSL(2,R)×
PSL(2,R) (where Γ is the fundamental group of the Cauchy surfaces ofM)
and an open set E(Λρ) ⊂ ADS3 such that M is isometric to the quotient
M(ρ) := ρ(Γ) r E(Λρ).

Recall that E(Λρ) is the invisible domain of a topological circle Λρ ⊂
∂ADS3. The intersection of the convex hull of Λρ with ADS3 is contained
in E(Λρ); We denote it by Conv(Λρ). Of course, Conv(Λρ) is Γ-invariant,
and the projection of Conv(Λρ) in M(ρ) := ρ(Γ) rE(Λρ) is, by definition,
the convex core C(M) ofM . The complement of C(M) inM ' ρ(Γ)rE(Λρ)
admits two connected components, one, denoted by B− and called the past
end region, contained in the past of C(M), and the other, denoted by B+
and called the future end region, contained in the future of C(M). Since
C(M) = {x ∈M | τ̌(x) 6 π/2, τ(x) 6 π/2}, we have:

B− =
{
x ∈M | τ̌(x) > π/2

}
, B+ =

{
x ∈M | τ(x) > π/2

}
.
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Let Σ be a strictly convex Cauchy surface inM ' ρ(Γ)rE(Λρ). Consider
the lift S of Σ in E(Λρ) ⊂ ADS3. Then S is a strictly convex spacelike
surface in ADS3. So we can consider the dual S∗ of S as defined in the
previous paragraph. By Proposition 11.3, S∗ is a strictly concave spacelike
surface in ADS3. Since the surface S is ρ(Γ)-invariant, so is the surface
S∗ (the duality is clearly a Isom(Q2,2)-equivariant operation). Moreover,
since S is strictly convex, Proposition 9.10 shows that φtS : S → ADS3 is an
immersion for every t ∈ [0, π/2), and step 1 of the proof of Proposition 11.3
shows that φπ/2S : S → ADS3 is an immersion. Hence, Lemma 9.15 shows
that the surface S∗ = Sπ/2 is contained in E(Λρ), and projects to a compact
spacelike strictly concave surface Σ∗ = Σπ/2 in M ' ρ(Γ) r E(Λρ). Note
that Σ∗ is a Cauchy surface in M since this is the case for every compact
spacelike surface. We say that Σ∗ is the dual of the Cauchy surface Σ.
Of course, one defines similarly the dual Σ∗ of a strictly concave Cauchy
surface in M ; In this case, Σ∗ is strictly convex Cauchy surface.

Corollary 11.5 implies that (Σ∗)∗ = Σ for every strictly convex (resp.
concave) Cauchy surface Σ in M . By Corollary 11.8, if Σ has constant
K-curvature κ, then Σ∗ has constant K-curvature κ−1.

Lemma 11.10. — Let Σ be a strictly convex Cauchy surface in M '
ρ(Γ) r E(Λρ). Then, Σ is contained in B−. Moreover, the future push-
forward Σt along the geodesics normal to Σ is a well-defined Cauchy surface
in M for every t in [0, π/2], and the dual surface Σ∗ coincide with Σπ/2.

Proof. — The first statement follows from the fact that since Σ is strictly
convex, its causal future is convex, and the fact that Conv(Λρ) is contained
in any convex subset of M . The other statement follows from Lemma 9.15.

�

11.2. Proof of Theorem 2.1 in the AdS3-case

Let (M, g) be a non-elementary MGHC spacetime with constant curva-
ture Λ = −1. Recall that we denote by B± the past end regions of M .
In order to prove Theorem 2.1, we have to construct a K-slicing on B+,
and a K-slicing on B−. The starting point of our construction will be the
Cauchy surfaces Σ− and Σ+ provided by Proposition 9.14. Recall that Σ−
is a strictly convex Cauchy surface and Σ+ is a strictly concave Cauchy
surface, both with constant K-curvature −1. According to Lemma 11.10,
Σ− is contained in B−, and similarly, Σ+ is contained in B+. It follows from
their definition (surfaces at distance ±π/4 of a maximal Cauchy surface)
that Σ− and Σ+ are dual one to the other.
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11.2.1. Construction of the K-slicings on I−(Σ−) and I+(Σ+)

The Cauchy surface Σ− is convex and has constant K-curvature −1.
Using Proposition 11.3, we get a convex Cauchy surface Σ−− in the past
of Σ− and a real number ε > 0, such that (Σ−−,Σ−) is a pair of κ-barriers
for every κ ∈ (−1 − ε,−1). Together with Theorem 3.2, this shows the
existence, for every κ ∈ (−1− ε,−1), of a convex Cauchy surface Σ−κ with
constant K-curvature κ. We set Σ−1 := Σ−. Then (Σ−κ )κ∈(−1−ε,−1] is a
local K-slicing. Now, we consider a local K-slicing (Σκ)κ∈I which extends
(Σκ)κ∈(−1−ε,−1], and is maximal for this property. The same arguments
as in §10.3 show that (−∞,−1] ⊂ I and that the support of (Σκ)κ∈I
contains the past I−(Σ−) of the Cauchy surface Σ−. So, we have proved
the following:

Proposition 11.11. — There exists a local K-slicing (Σ−κ )κ∈(−∞,−1]
whose support is the past I−(Σ−) of the Cauchy surface Σ−. �

Of course, similar arguments show that:

Proposition 11.12. — There exists a local K-slicing (Σ+
κ )κ∈(−∞,−1]

whose support is the future I+(Σ+) of the Cauchy surface Σ+. �

11.2.2. Construction of the K-slicings on B− r I−(Σ−) and B+ r I+(Σ+)

Proposition 11.11 provides us with a localK-slicing (Σ−κ )κ∈(−∞,−1] whose
support is the past of the Cauchy surface Σ−. To complete the proof of The-
orem 2.1 in the AdS3-case, we need to extend this local K-slicing, and get
a K-slicing (Σ−κ )κ∈(−∞,0) whose support is the whole B−. For this purpose,
we use the duality between convex and concave Cauchy surfaces: For every
κ ∈ (−1, 0), we set

Σ−κ :=
(

Σ+
1/κ

)∗
(this definition is not chasing its own tail since the surface Σ+

1/κ has already
been defined for κ ∈ (0, 1); See Proposition 11.12).

Claim 11.13. — The families of Cauchy surfaces (Σ−κ )κ∈(−∞,0) is a local
K-slicing whose support is included in the end region B−.

Proof. — For κ 6 −1, we already know that the Cauchy surface Σ−κ is
a convex and has constant K-curvature κ. Moreover, for κ ∈ (−1, 0), we
know that the Cauchy surface Σ+

1/κ is strictly concave and has constant
K-curvature 1

κ . Together with Proposition 11.6 this implies that, for κ ∈
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(−1, 0), the Cauchy surface Σ−κ := (Σ+
1/κ)∗ is convex, has constant K-

curvature κ, and is contained in B−. This shows that (Σ−κ )κ∈(−∞,0) is a
local K-slicing. According to Lemma 11.10, the support of this K-slicing
must be contained in B−. �

Claim 11.14. — For every point x ∈ B−, there exists κ ∈ (−∞, 0) such
that x is in the past of the Cauchy surface Σ−κ .

Proof. — We denote by τ̌ : M → (0, π) the reverse cosmological time of
M . Recall that

(11.2) B− = {x ∈M | τ̌(x) > π/2}.

The support of the local K-slicing (Σ+
1/κ)κ∈[−1,0) = (Σ+

κ )κ∈(−∞,−1] is a
neighbourhood of the future end of M (recall that this means that it con-
tains the future of a Cauchy surface; Do not confuse with the end region).
Since τ̌ is regular, this implies that

(11.3) lim
κ→0

sup
x∈Σ+

1/κ

τ̌(x) = 0.

Now, recall that, for every κ ∈ [−1, 0), the surface Σ−κ = (Σ+
1/κ)∗ is ob-

tained by pushing the surface Σ+
1/κ under the time (−π/2) along orthogo-

nal geodesics. In particular, every point of Σ−κ is the past end of a geodesic
segment orthogonal to Σ+

1/κ of length −π/2. This implies that, for every
κ ∈ [−1, 0), the length of a timelike curve joining the surface Σ−κ to the
surface Σ+

1/κ is at most π/2 (recall that, in a globally hyperbolic space-
time, the supremum of the lengths of the timelike curves joining a surface
Σ to a point p is realized by a timelike geodesic orthogonal to Σ). Together
with (11.3), this implies that

(11.4) lim
κ→0

sup
x∈Σ−κ

τ̌(x) 6 π

2

(actually, this inequality turns out to be an equality since, for every κ,
the surface Σ−κ is convex, thus contained in B− = {x ∈ M | τ̌(x) >

π/2}). Inequality (11.4) and equality (11.2) show that for every point x ∈
B−, there exists κ ∈ (−1, 0) such that x is in the past of the Cauchy
surface Σ−κ . �

Claim 11.14 together with Lemma 10.4 show that the support of the
local K-slicing (Σ−κ )κ∈(−∞,0) is the whole past end region B−. Of course,
similar arguments show that the support of the K-slicing (Σ+

κ )κ∈(−∞,0) is
the whole future end region B+. This completes the proof of Theorem 2.1
in the locally anti-de Sitter case.
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12. K-slicings of hyperbolic ends

In this section, we explain how Theorem 2.2 can be seen as a corol-
lary of Theorem 2.1 (more precisely, of the existence of K-slicings in non-
elementary MGHC dS3-spacetimes). We will not go into too many details
for several reasons:

– Theorem 2.2 is not a new result; It was proved by F. Labourie some
fifteen years ago (using techniques rather different from ours),

– the main tool which allows to translate a result concerning non-
elementary MGHC dS3-spacetimes into a result concerning hyper-
bolic ends is the so-called dS3 ↔ H3 duality. This duality is com-
pletely similar to the AdS3 ↔ AdS3 duality described in the previ-
ous section,

– this duality was already observed and used by Mess in [51, § 6]
to prove that locally de Sitter MGHC spacetimes admit K-slicings
using Labourie’s result. Here we adopt the reverse point of view:
We explain how to deduce Labourie’s result from the existence of
K-slicings on locally de Sitter MGHC spacetimes.

12.1. dS3 ↔ H3 duality

12.1.1. Duality between points and totally geodesic planes

Consider the quadratic form Q1,3 = −x2
1 + x2

2 + x2
3 + x2

4 on R4. Recall
that dS3 is the hyperboloid {Q1,3 = 1} endowed with the Lorentzian metric
induced by Q1,3. Also recall the each of the two sheets of the hyperboloid
{Q1,3 = −1} is a copy of the 3-dimensional hyperbolic space; We denote
them by H3

− and H3
+. For every set A ⊂ R4, we denote by A⊥ the Q2,2-

orthogonal of A in R4. We choose an orientation on R4.
Let x be a point in dS3 ⊂ R4. Then x⊥ is an hyperplane in R4, and the

restriction of Q1,3 to x⊥ has signature (+,+,+). It follows that x⊥ ∩H+
3

is a totally geodesic plane in H+
3 . We denote this totally geodesic plane

by x∗. The orientation of R4 and the choice of x (rather than −x) defines
an orientation on x⊥, and subsequently on x∗. Conversely, let P be an
oriented totally geodesic plane in H3

+. Then P⊥ is a oriented line in R4,
and the restriction of Q1,3 to P⊥ is negative definite. It follows that P⊥
intersects dS3 at two (antipodal) points, and the orientation on P⊥ allows
to distinguish choose one of these two points that we denote by P ∗. Clearly,
for every point x ∈ dS3 and every totally geodesic plane P ⊂ H3

+, one has
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(x∗)∗ = x and (P ∗)∗ = P . This defines a duality between the points of dS3
and the totally geodesic planes in H3

+ ' H3.
Now, let x be a point in H3

+. One can check that x⊥ ∩ dS3 is a spacelike
totally geodesic space in dS3; We denote this totally geodesic plane by
x∗. Conversely, let P be a spacelike totally geodesic plane in dS3. The
intersection P⊥ ∩H3

+ is reduced to a point, that we denote by P ∗. Clearly,
for every point x ∈ H3

+ and every spacelike totally geodesic plane P ⊂ dS3,
one has (x∗)∗ = x and (P ∗)∗ = P . This defines a duality between the points
of H3

+ ' H3 and the spacelike totally geodesic planes in dS3.

12.1.2. Duality between convex surfaces in dS3
and convex surfaces in H3

+

Let S be a strictly convex spacelike surface in dS3. Using exactly the
same construction as in §11.1.2 (but now using the duality between points
and planes described in §12.1.1 instead of those described in §11.1.1), one
can to define a strictly convex S∗ ⊂ H+

3 such that the support planes of
S (resp. S∗) are the duals of the points of S∗ (resp. S). Conversely, given
a strictly convex surface in H3

+, one can define a strictly convex spacelike
surface in dS3 such that the support planes of S (resp. S∗ are the duals
of the points of S∗ (resp. S). Then, for every strictly convex (resp. strictly
convex spacelike) surface S inH3

+ (resp. dS3), one has (S∗)∗ = S. Moreover,
the same arguments as in the proof of Proposition 11.6 allow to prove:

Proposition 12.1. — Let S be a strictly convex (resp. strictly convex
spacelike) surface in H3

+ (resp. dS3). If S has constant K-curvature κ, then
S∗ has constant curvature −κ−1.

12.1.3. Duality between MGHC dS3-spacetimes
and hyperbolic ends

Definition 12.2. — A (geometrically finite) hyperbolic end is a hyper-
bolic 3-manifold (M, g) such that:

– M is homeomorphic to Σ× (0,+∞) where Σ is a closed surface,
– if (M, ḡ) is the metric completion of M , and Σ̄ = M rM , then

(Σ̄, ḡ) is a hyperbolic surface homeomorphic to Σ,
– (Σ̄, ḡ) is concave, i.e. there is no geodesic in M connecting two
elements of Σ̄,

– (Σ̄, ḡ) is a pleated surface.
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Let (M, g) be a hyperbolic end. It admits a conformal boundary homeo-
morphic to Σ. This conformal boundary is naturally endowed with a Möbius
structure. As explained in §5.2.2, every compact surface with negative Euler
characteristic endowed with a Möbius structure defines a non-elementary
MGHC dS3-spacetime. We shall denote by (M∗, g∗) the non-elementary
MGHC dS3-spacetime associated to (Σ̄, ḡ). We say that (M∗, g∗) is the
dual of the hyperbolic end (M, g).
Conversely, for every non-elementary MGHC dS3-spacetime (M, g), one

can define a geometrically finite hyperbolic end (M∗, g∗). We say that
(M∗, g∗) is the dual of (M, g).

12.1.4. Duality between convex surfaces in MGHC dS3-spacetimes
and convex surfaces in hyperbolic ends

Consider a non-elementary MGHC dS3-spacetime (M, g) and the hyper-
bolic (M∗, g∗) which is dual to (M, g).
Let Σ be a strictly convex Cauchy surface inM . Then Σ lifts to a strictly

convex immersed spacelike surface S ⊂ dS3. The dual surface S∗ is a strictly
convex immersed surface in H3

+. It can be checked that S∗ projects to a
compact (strictly convex) surface Σ∗ in M∗.

Conversely, if Σ is a strictly convex surface in M∗, one can lift Σ to a
strictly convex surface S in H3

+, consider the dual S∗ of S , and project S∗
to a strictly convex Cauchy surface Σ∗ in ((M∗)∗, (g∗)∗) = (M, g).
For every strictly convex Cauchy (resp. compact) surface Σ in (M, g)

(resp. in (M∗, g∗)), one has (Σ∗)∗ = Σ. Moreover, if Σ has constant K-
curvature a, then Σ∗ has constant K-curvature −1/a.

12.2. Sketch of proof of Theorem 2.2

Consider a hyperbolic end (M, g). Consider the future complete non-
elementary MGHC dS3-spacetimes (M∗, g∗) dual to the hyperbolic end
(M, g). According to Theorem 2.1, (M∗, g∗) admits a K-time κ∗ : M∗ →
(−∞,−1). For every a ∈ (−∞, 0), the level set Σ∗a := (κ∗)−1(a) is a strictly
convex Cauchy surface in M∗ with constant K-curvature equal to a. Then
Σa := (Σ∗a)∗ is a strictly convex compact surface in M with constant K-
curvature −1/a. Then {Σa}a∈]−∞,−1[ is a family of compact surfaces with
constant K-curvature in M . Using the fact that {Σ∗a}a∈]−∞,−1[ is a trivial
foliation of M∗, it is quite easy to prove that {Σa}a∈]−∞,−1[ is a trivial
foliation of M . Theorem 2.2 follows.
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13. Surfaces with prescribed K-curvature

In this section, we prove Theorem 2.4 and Corollary 2.5. This theorem
will follow from :

– the existence K-times on MGHC spacetimes with constant curva-
ture (Theorem 2.1) which will provide us with a pair of barriers,

– a generalization of Theorem 3.2 (Theorem 13.2 below), which as-
serts that surfaces with prescribed K-curvature exist as soon as
barriers exist.

Definition 13.1. — Let (M, g) be a 3-dimensional globally hyperbolic
spacetime with compact Cauchy surfaces. Let f : M → (−∞, 0) be a
smooth function. A pair of f -barriers is a pair of disjoint strictly convex
Cauchy surfaces Σ−,Σ+ in M , such that:

a. Σ− is in the past of Σ+,
b. κΣ−(x) 6 f(x) for every x ∈ Σ−,
c. κΣ+(x) > f(x) for every x ∈ Σ+.

Theorem 13.2 (Gerhardt, [34]). — Let (M, g) be a 3-dimensional spa-
tially compact globally hyperbolic spacetime, and f : M →] − ∞, 0[ be
a smooth function. Assume that M admits a pair of f -barriers (Σ−,Σ+).
ThenM admits a strictly convex Cauchy surface Σ such that κΣ(x) = f(x)
for all x ∈ Σ.

Remark 13.3. — We recall that the sign conventions of Gerhardt are
different from ours (see Remark 3.3). This is the reason why the function f
is required to be strictly positive in [34], whereas it is required to be strictly
negative in the statement above.

Proof of Theorem 2.4. — Consider a 3-dimensional non-elementary
MGHC spacetime (M, g) with constant curvature Λ. Recall that in the
Λ > 0 case we assume that (M, g) is future complete (see Remark 5.3). Let
f : M0 → R be a smooth function such that the range of f is contained in a
compact interval [a, b] ⊂ ]−∞, min(0,−Λ)[. Define M0 as follow: M0 = M

is Λ > 0 (flat and locally de Sitter case), and M0 is the past of the convex
core of M if Λ < 0 (anti de Sitter case). By Theorem 2.1, there exists a
K-time κ : M0 → ]−∞,min(−Λ, 0)[. Consider the level sets of κ:

Σ− := κ−1(a) and Σ+ := κ−1(b).

By definition of a K-time, Σ−,Σ+ are two strictly convex Cauchy surfaces
with constant K-curvature respectively equal to a and b, and Σ− is in
the past of Σ+. In particular, (Σ−,Σ+) is a pair of f -barriers. Therefore
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Theorem 13.2 applies in our situation and provides us with a strictly convex
Cauchy surface Σ such that κΣ(x) = f(x) for every x in Σ. �

Proof of Corollary 2.5. — Write M as a topological product Σ0 × R,
consider the function f : M → R defined by f(x, t) = f0(x) where x ∈ Σ0
and t ∈ R, and apply Theorem 2.4 to the function f . �

14. The Minkowski problem

The purpose of this section is to prove Theorem 2.6. As for the proof
of Theorem 2.4, we will use Theorem 2.1 to get a pair of barriers, and
then, a theorem of Gerhardt which asserts that surfaces with prescribed K-
curvature exist as soon as barriers exist. As a preliminary step, we will need
to translate Theorem 2.6 into a statement concerning a function defined on
the unit tangent bundle of a non-elementary MGHC flat spacetime.

We begin by stating Gerhardt’s result:

Theorem 14.1 (Gerhardt, see [35]; See also Remarks 3.3 and 13.3). —
Let (M, g) be a spatially compact globally hyperbolic spacetime. Let Ω
be an open subset of M bounded by two disjoint strictly convex Cauchy
surfaces Σ− and Σ+, where Σ− is assumed to be in the past of Σ+. Denote
by T−1Ω the bundle of future-oriented unit timelike tangent vectors over Ω:

T−1Ω = {(x, ν) ∈ TM | x ∈ Ω , ν is future-oriented and g(ν, ν) = −1}.

Consider a smooth function Φ: T−1Ω→ R with the two following proper-
ties:

(i) there is a negative constant c1 such that, for all (x, ν) ∈ T−1Ω,

Φ(x, ν) 6 c1 < 0,

(ii) there are some constants c2, c3 ∈ R such that, for all (x, ν) ∈ T−1Ω,

|||dxΦ(x, ν)||| 6 c2
(
1 + ‖ν‖2

)
and |||dνΦ(x, ν)||| 6 c3 (1 + ‖ν‖)

where dxΦ and dνΦ are the derivatives of Φ with respect to x and ν,
where ||| · ||| is the operator norm associated to an arbitrary aux-
iliary Riemannian metric on M , and ‖ν‖ is the norm of ν for this
Riemannian metric(14) .

Assume that (Σ−,Σ+) is a pair of Φ-barriers, that is:

(14)More precisely, we choose a Riemannian metric η on M , we observe that for every
(x, ν) ∈ TM there is a canonical identification between T(x,ν)(TxM) ' TxM , and we
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– for every x ∈ Σ−, one has κΣ−(x) 6 Φ(x, νΣ−(x)),
– for every x ∈ Σ+, one has κΣ+(x) > Φ(x, νΣ+(x)).

Then there exists a strictly convex Cauchy surface Σ in M such that, for
every x ∈ Σ, one has

κΣ(x) = Φ
(
x, νΣ(x)

)
.

In order to show that Theorem 14.1 applies in our situation, we shall
need the following elementary lemma:

Lemma 14.2. — Let Γ is a co-compact Fuchsian group in SO(1, 2), and
f : H2 → R be a Γ-invariant function. See H2 as the upper sheet of the
hyperboloid x2

1 + x2
2 − x2

3 = −1 in R3, and consider an arbitrary Euclidean
norm ‖.‖ on R3. Then there exists a constant c such that, for every n ∈ H2,

|||df(ν)||| 6 c

where ||| · ||| is the operator norm(15) associated to the Euclidean norm ‖·‖.

Proof. — Let ‖ · ‖Lor :=
√
x2

1 + x2
2 − x2

3 be the Lorentzian pseudo-norm
on R3 which is preserved by SO(1, 2), and 〈., .〉Lor be the associated
Lorentzian pseudo-scalar product. We will prove the lemma for the Eu-
clidean norm ‖ · ‖Euc :=

√
x2

1 + x2
2 + x2

3; The general case of an arbitrary
Euclidean norm will follow, up to a change of the constant c.
We denote by ∇f the Lorentzian gradient of f (i.e. the gradient with

respect to the hyperbolic norm on H2 induced by ‖ · ‖Lor). First observe
that, for every ν ∈ H2, and every vector v ∈ TνH2 ⊂ R3, we have:

‖v‖Euc > ‖v‖Lor.

Now, observe that, for every ν ∈ H2, the restriction of 〈·, ·〉Lor to the plane
TνH2 is positive definite. Hence, for every ν ∈ H2 and every v ∈ TνH2, the
Cauchy Schwarz inequality for the restriction of 〈·, ·〉Lor to TνH2 yields:

|〈(∇f)(ν), v〉Lor| 6 ‖(∇f)(ν)‖Lor ‖v‖Lor.

set:

‖v‖ :=
√
η(v, v)

|||dxΦ(x, ν)||| := sup
v∈TxM

|dxΦ(x, ν).v|
‖v‖

|||dνΦ(x, ν)||| := sup
v∈T(x,ν)(T−1

x Ω)⊂T(x,ν)(TxM)'TxM

|dνΦ(x, ν).v|
‖v‖

(15)More precisely, |||df(ν)||| = sup
v∈TνH2⊂TνR3'R3

|df(ν).v|
‖v‖

.
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As a consequence, for every ν ∈ H2 and every v ∈ TνH2, we have:

|df(ν).v| = |〈(∇f)(ν), v〉Lor|
6 ‖(∇f)(ν)‖Lor ‖v‖Lor

6 ‖(∇f)(ν)‖Lor ‖v‖Euc.

But since ∇f(ν) is Γ-equivariant, where Γ is co-compact, its hyperbolic
norm ‖∇f(ν)‖Lor is uniformly bounded from above. The lemma follows. �

Now we are in a position to prove Theorem 2.6. We consider a co-compact
Fuchsian subgroup Γ in SO(1, 2), a subgroup Γ of SO(1, 2) n R3 which
projects bijectively on Γ, and a Γ-invariant function f : H2 → R.

Theorem 5.2 states that there exists a future-complete regular domain
E = E(Γ) in Min3 such that the action of Γ on E is free and properly
discontinuous, and such that M := Γ r E is a non-elementary future-
complete MGHC flat spacetime. We consider the bundle

T−1 Min3 =
{

(x, ν) ∈ T Min3 | ν future-oriented, 〈ν, ν〉 = −1
}
,

and we canonically identify T−1 Min3 with Min3×H2. Then we consider
the function F : T−1 Min3 ' Min3×H2 → (−∞, 0) defined by

F (x, ν) := f(ν).

The group Γ acts on T−1 Min3 by

g · (x, ν) = (g · (x), dg · x(ν)) = (g · (x), g(ν))

(where g ∈ Γ ⊂ SO(1, 2) nR3 and g ∈ Γ ⊂ SO(1, 2) is its linear part) and

Γr(T−1 Min3) = T−1M =
{

(x, ν) ∈ TM | ν future-oriented, 〈ν, ν〉 = −1
}
.

Since the function f is Γ-invariant, the function F is Γ-invariant. Hence F
induces a function Φ: T−1M → (−∞, 0).
Consider a Cauchy surface Σ inM = ΓrE. Then Σ lifts to a Γ-invariant

spacelike surface S in E ⊂ Min3. Let νS , νΣ, κS , κΣ be respectively the
Gauss map of S, the Gauss map of Σ, the K-curvature of S and the K-
curvature of Σ. We have the following equivalences

f(ν) = κS ◦ (νS)−1(ν) for every ν ∈ range(νS) ⊂ H2

⇐⇒ F (x, νS(x)) = κS(x) for every x ∈ S
⇐⇒ Φ(x, νΣ(x)) = κΣ(x) for every x ∈ Σ.

Therefore, in order to prove Theorem 2.6, it is enough to find a strictly
convex Cauchy surface Σ in M such that

(14.1) Φ
(
x, νΣ(x)

)
= κΣ(x) for every x ∈ Σ.
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We want to use Theorem 14.1 to get such a Cauchy surface Σ. So, we
have to prove that the function Φ satisfies the conditions (i) and (ii) in the
statement of Theorem 14.1, and we have to find a pair of Φ-barriers.

The function f : H2 → (−∞, 0) is continuous and Γ-invariant. The group
Γ is co-compact. Hence, the range of f is a compact interval [a, b] ⊂
(0,+∞). The range of the function Φ: T−1M → (−∞, 0) is the same com-
pact interval [a, b]. In particular, condition (i) of Theorem 14.1 is satisfied.
By Theorem 2.1, the spacetime M admits a K-time κ : M → (−∞, 0).

We consider the Cauchy surfaces Σ− := κ−1(a) and Σ+ := κ−1(b). By
definition of a K-time, the Cauchy surface Σ− is strictly convex and has
constant K-curvature a, the surface Σ+ is strictly convex Cauchy and has
constantK-curvature b, and Σ− is in the past of Σ+. In particular, (Σ−,Σ+)
is a pair of Φ-barriers in the sense defined in the statement of Theorem 14.1.

We denote by Ω the open subset of M bounded by the Cauchy surfaces
Σ− and Σ+. Observe that Ω is relatively compact in M . We denote by O
the lift of Ω in M .

Since the function F is independent of x, we have dxF (x, ν) = 0 for
every (x, ν) ∈ T−1 Min3. Hence we have dxΦ(x, ν) = 0 for every (x, ν) ∈
T−1 Min3. In particular, the first inequality in condition (ii) of Theorem 14.1
is satisfied.

Let η be a Riemannian metric on M . One can lift η to a Γ-invariant
Riemannian metric h on E ⊂ Min3. For every (x, ν) ∈ T−1M , if (x̃, ν̃) ∈
T−1 Min3 ' Min3×H2 is a lift of (x, ν), then

(14.2) dνΦ(x, ν) = d
ν̃
F (x̃, ν̃) = df(ν̃).

According to Lemma 14.2, for every x̃ ∈ O, there exists a constant c
x̃
, such

that, for every ν̃ ∈ H2,

|||df(ν̃)|||
x̃
6 cx̄

where ||| · |||
x̃
is the operator norm associated to the Euclidean norm h

x̃
on

R3 ' T
x̃

Min3. Now observe that sup
ν̃∈H2 |||df(ν̃)|||x̄ depends in a bounded

way of x̃ as far as x̃ stays in O; Indeed the Riemannian metric h and the
derivative df are Γ-equivariant and ΓrO = Ω is relatively compact. Hence,
there exists a constant c such that, for every x̃ ∈ O and every ν̃ ∈ H2,

|||df(ν̃)|||
x̃
6 c.

Using equality (14.2), this implies that, for every (x, ν) ∈ T−1Ω,

|||dνΦ(x, ν)||| 6 c
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where |||dνΦ(x, ν)||| is the operator norm of dνΦ(x, ν) associated to the
Riemannian metric η. In particular, the second inequality in condition (ii)
of Theorem 14.1 is satisfied.
So all the hypotheses of Theorem 14.1 are satisfied. Hence this theo-

rem provides us with a strictly convex Cauchy surface Σ in M satisfy-
ing (14.1). In order to achieve he proof of Theorem 2.6 the only remaining
point is to prove the uniqueness of Γ-solution for a given uniform lattice Γ
of SO(1, 2) nR3.

Let S1, S2 be two such Γ-invariant solutions. For any t, let Sti be the
surface obtained by pushing Si along the normal geodesics during the time
t. Let t1 be the minimal time such that St11 lies in the future of S2. Since
S1 and S2 projects in the quotient as compact Cauchy surfaces, t1 is well-
defined and finite. Exchanging S1 with S2 if necessary, one can assume
t1 > 0. Then S2 and St11 are tangent at a common point x. This point is
at Lorentzian distance t1 from a point y in S1 along a timelike geodesic
orthogonal to S1 at y. This geodesic is also orthogonal to St1 , and thus
to S2, at x. Hence νS1(y) = νS2(x). Since they are both solutions of the
same Minkowski problem, κS1(y) = κS2(x). But the K-curvature strictly
increases by pushing along normal geodesics (Remark 9.12): At one hand,
the K-curvature of St11 is bounded from above by κS2 (since it lies in the
future of S2); On the other hand, if t1 > 0, it should be strictly bigger
than κS1(y). It follows that t1 is 0: S1 lies in the future of S2. In particular,
t2 > 0. Permuting the role of S2 and S1, we prove similarly that S2 lies in
the future of S1. Hence S1 = S2. Theorem 2.6 follows.
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