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ON THE CANTOR-BENDIXSON RANK OF
METABELIAN GROUPS

by Yves CORNULIER

Abstract. — We study the Cantor-Bendixson rank of metabelian and virtually
metabelian groups in the space of marked groups, and in particular, we exhibit a
sequence (Gn) of 2-generated, finitely presented, virtually metabelian groups of
Cantor-Bendixson rank ωn.
Résumé. — On étudie le rang de Cantor-Bendixson des groupes métabéliens ou

virtuellement métabéliens dans l’espace des groupes marqués, et on exhibe notam-
ment une suite (Gn) de groupes virtuellement métabéliens de présentation finie à
deux générateurs, de rang de Cantor-Bendixson égal à ωn.

1. Introduction

Let G be a discrete group. Under pointwise convergence, the set N (G) of
normal subgroups is a Hausdorff compact, totally disconnected space. This
topology, sometimes referred to as the Chabauty topology, was studied in
many papers, including [6, 12, 7, 8, 11]. If Fd denotes the non-abelian free
group on d generators, we can view N (Fd) as the set Gd of marked groups
on d generators, through the identification N 7→ Fd/N .

As a topological space, the identification of Gd seems to be a difficult
problem. We focus here on the Cantor-Bendixson rank, which is defined as
follows. If X is a topological space, we define its derived subspace X(1) as
the subset of accumulation points in X. Iterating over ordinals

X(0) = X, X(α+1) = X(α)(1), X(λ) =
⋂
β<λ

X(β) for limit λ,

Keywords: Metabelian groups, space of marked groups, Cantor-Bendixson analysis,
Bieri-Strebel invariant, lattice of subgroups.
Math. classification: 20E15, 13E05, 20F05, 20F16, 57M07.



594 Yves CORNULIER

we have a non-increasing family X(α) of closed subsets. If x ∈ X, we write

CBX(x) = sup{α|x ∈ X(α)}

if this supremum exists, in which case it is a maximum. Otherwise we say
that x is in the condensation part (or perfect kernel) of X and we write
CBX(x) = C, where the symbol C is not an ordinal. If CBX(x) 6= C for all
x ∈ X, i.e. if X(α) is empty for some ordinal, we say that X is scattered.
If G is a group, we define its (intrinsic) Cantor-Bendixson rank cb(G) as
CBN (G)({1}).

Groups G with cb(G) = 0, which include finite groups and simple groups,
are called finitely discriminable and were considered in [11]. However, most
groups, like infinite residually finite groups, are not finitely discriminable.
Let us begin by a very simple example (contained in Proposition 4.1).

Proposition 1.1. — Let G be a finitely generated nilpotent group.
Then cb(G) = h(G), the Hirsch length of G.

For instance, we have cb(Zk) = k, which was already mentioned, without
proof, in [11, Section 6]. The reader can check it as an warm-up exercise;
precisely the statement to prove by induction is that if A is a finitely
generated abelian group virtually isomorphic to Zk, then it has Cantor-
Bendixson rank cb(A) = k.

So far all known examples either satisfied cb(G) < ω or cb(G) = C. Our
main result is to leap from ω to ωω.

Theorem 1.2. — Fix any d > 2. Then Gd contains points of Cantor-
Bendixson rank equal to any ordinal α < ωω. More precisely, for every
α < ωω, there exists a finitely presented, 2-generated metabelian-by-(finite
cyclic) group H with cb(H) = α.

The second statement implies the first as for every finitely presented
d-generated group H, the space Gd contains N (H) as a clopen subset.
Note that it is known that, on the other hand, as a particular case of [18,
Theorem 3], every non-elementary hyperbolic group G satisfies cb(G) = C

(another proof is given by [7] when G is torsion-free) and in particular
cb(Fd) = C.
A pleasant class of groups, for which the study of the Cantor-Bendixson

rank can be carried out, is the class of groups satisfying max-n, i.e. in which
there is no infinite increasing sequence of normal subgroups.

Proposition 1.3. — LetG be a group satisfying max-n. Then the space
N (G) is scattered. If moreover every quotient of G is residually finite, then
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we have cb(G) = sup{cb(H) + 1}, where H ranges over quotients groups
of G with infinite kernel.

An important class of groups with max-n is the class of finitely generated,
virtually abelian-by-polycyclic groups [14], and these groups are residually
finite (as well as their quotients) by a result of Roseblade [19]. In particu-
lar, this includes finitely generated, virtually metabelian groups, for which
however residual finiteness is much easier to obtain [15].

The gist of Theorem 1.2 is the study of the Cantor-Bendixson rank of
finitely generated metabelian groups. However in this case (metabelian in-
stead of virtually metabelian) we have a bound on the exponent of the
Cantor-Bendixson rank in terms of the number of generators. Recall the
(standard) wreath product H oG refers to the semidirect product H(G)oG.

Theorem 1.4. — Let G be a finitely generated metabelian group.
(1) Fix d > 0. Suppose that G sits inside an exact sequence

1→M → G→ Q→ 1,

where M is abelian and Q is abelian of Q-rank 6 d. Then

cb(G) < ωd+1.

Moreover, this bound is sharp, as the wreath product Zk oZd satisfies

cb(Zk o Zd) = ωd · k

for all k > 1.
(2) If G is d-generated and d > 2, then

cb(G) 6 ωd · (d− 1),

with equality if and only if G is isomorphic to the free metabelian
group on d generators.

(3) If G is d-generated and the above exact sequence is split, then
cb(G) < ωd, and this bound is sharp if d > 2.

We actually give a precise computation of cb(G) for any finitely generated
metabelian group. For a general finitely generated metabelian group G, we
proceed as follows. If N is a normal subgroup of G, define the G-Hirsch
length hG(N) as the supremum of lengths k of chains of normal subgroups
of G contained in N

N0 ⊂ N1 ⊂ · · · ⊂ Nk, Ni/Ni−1 infinite ∀i.

The Hirsch radical of G is the largest normal subgroup Hir(G) = N of G
such that hG(N) <∞. This is well-defined, since G satisfies max-n.

TOME 61 (2011), FASCICULE 2



596 Yves CORNULIER

In Section 3, we recall the notion of reduced length of modules intro-
duced in [10]; this is an ordinal-valued length characterized, when A is a
finitely generated commutative ring, by the property, for finitely generated
A-modules M

`′(M) = sup{`′(M/N) + 1 : N infinite A-submodule of M}.

Notably, if M has Krull dimension d > 0, then

ωd−1 6 `′(M) < ωd

(with ω−1 = 0). Let W (M) denote the largest A-submodule of M of Krull
dimension 6 1.

Theorem 1.5. — Let G be a finitely generated metabelian group in an
extension

1→M → G→ Q→ 1,
with M,Q abelian, and view M as a Z[Q]-module. Then

(1) We have cb(G) = `′(M/W (M)) + hG(Hir(G)).
(2) In particular, if d is the Krull dimension of the Z[Q]-module M , we

have
`′(M) 6 cb(G) < `′(M) + ω.

(3) If P is a prime ideal in Z[Q], if Z[Q]/P has Krull dimension d > 2,
M is isomorphic to a torsion-free Z[Q]/P -module of rank r, and
the action of Q on M is faithful, then cb(G) = ωd−1 · r.

To prove the finite presentability of the virtually metabelian groups in
Theorem 1.2, we apply a general criterion due to Bieri and Strebel [4]. This
criterion is explained in Section 6. Besides, it is important that the groups
in Theorem 1.2 are finitely presented: indeed, if G is a group with d given
generators, then N (G) is always closed in Gd, but is open if and only if G
is finitely presented (see [11, Lemma 1.3]). Otherwise we can define cbe(G)
as the Cantor-Bendixson rank of G as an element of Gd. By [11, Lemma 1],
this does not depend on the choice of a finite generating family of G. If
G is finitely presented then cbe(G) = cb(G). Groups with cbe(G) = 0,
called isolated groups, are finitely presented and are the main subject of
the paper [11]. On the other hand, we have the following result, which was
asserted without proof in [11, Section 6] in the case of Z o Z. We give here
a proof in Section 8.

Proposition 1.6. — Let H,G be finitely generated groups, with H 6=
{1} and G infinite. Then

cbe(H oG) = C.

ANNALES DE L’INSTITUT FOURIER
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Question 1.7. — Is it true that any infinitely presented, finitely gen-
erated metabelian group satisfies cbe(G) = C?

With L. Guyot, we obtain a positive answer in the special case of abelian-
by-cyclic finitely generated groups, for instance for Z[1/6] o2/3 Z.

Question 1.8. — The bounds given in Theorem 1.4 are not optimal
when the metabelian group is assumed finitely presented. What are then
the optimal bounds?

Let X be a topological space. The least α such that X(α) = X(α+1) is
called the Cantor-Bendixson rank of X and is denoted by CB(X). This is
always well-defined, since the non-increasing chain (X(α)) always stabilizes.
For instance, CB(X) = 0 if and only if X is perfect. In general, CB(X)
is the supremum of CBX(x) + 1, where x ranges over the points not in
the condensation part of X. By Theorem 1.2, for every d > 2, we have
CB(Gd) > ωω. If G is a group, and if cb(G) 6= C, then CB(N (G)) >
cb(G) + 1. This is an equality under the assumptions of Proposition 1.3,
but not in general: for instance, in [11, Proof of Theorem 5.3], an isolated
group G was given with a normal subgroup K such that G/K is free of
rank two. Then since G is isolated, cb(G) = 0, but it follows from Theorem
1.2 that CB(N (G)) > ωω, because since G/K is finitely presented, N (G)
contains N (G/K) as clopen subset.

Last but not least, we can ask

Question 1.9. — For 2 6 d <∞, do we have CB(Gd) > ωω?

I do not have any clue how to construct a finitely generated group G

with cb(G) = ωω, although it does probably exist. Since Gd is compact
metrizable, CB(Gd) is a countable ordinal. It would be surprising if its
value would depend on d > 2.

Outline. The groups referred to in Theorem 1.2 are constructed in Section
2, at the end of which we indicate why they satisfy the claimed property;
this relies on results of Sections 3, 5, and 6. The assertions in Proposition
1.3 are particular cases of Lemma 3.6, Proposition 3.14 and Corollary 3.15.
The inequality in Theorem 1.4(1) follows from Theorem 1.5(2), and the
example in Theorem 1.4(1) is obtained in Section 4. Theorem 1.4(2),(3)
are obtained in Section 7. Theorem 1.5 is proved in Paragraph 3.4.

Section 2 essentially extends the introduction. Sections 4, 5, and Para-
graph 7.2 partly rely on Section 3. At this notable exception, the different
sections can be read independently.
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2. Examples of finitely presented virtually metabelian
groups

2.1. Construction

Let us describe the groups we need to obtain the second assertion of
Theorem 1.2. We postpone all the proofs to Paragraph 2.2. The easiest
(and most natural) construction provides a 4-generated group; we then
explain how to reduce to 3, and then 2 generators.

Fix the integer d > 1, and d formal variables (xi), which for convenience
we view as indexed by Z/dZ. Consider the ring Ad = Z[(xi), s−1] where s =∏
i(xi−x2

i ). Then Z2d = ZZ/dZ×ZZ/dZ acts by multiplication onAd, where,
if the canonical basis is denoted by ((ei), (fi)), ei acts by multiplication by
xi and fi by multiplication by 1− xi.

The semidirect product Hd = Ad o Z2d has a faithful representation by
square 2-matrices over Ad

(0, ei) 7→
(
xi 0
0 1

)
; (0, fi) 7→

(
1− xi 0

0 1

)
; u = (1, 0) 7→

(
1 1
0 1

)
,

whose image is the set of all matrices of the form(∏
i x

ni
i (1− xi)mi P

0 1

)
, ((ni), (mi)) ∈ Z2d, P ∈ Ad.

Proposition 2.1. — The (2d + 1)-generated metabelian group Hd is
finitely presented, and

cb(Hd) = ωd.

The finite presentability of Hd is obtained from the computation of the
Bieri-Strebel geometric invariant carried out in Section 6.
The computation of the Cantor-Bendixson rank essentially relies on the

computation of the Cantor-Bendixson rank of the ring Ad (i.e. of the ideal
{0} in the set of ideals of Ad), which was proved in [10] to be equal to ωd.

Next, we can form the semidirect productHdoZ/dZ, where Z/dZ (whose
canonical generator we denote by σ) permutes shifts the variables. This
group is virtually metabelian, and is generated by {u, e1, f1, σ}. As it con-
tains Hd as a subgroup of finite index, it is finitely presented as well.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.2. — The 4-generated virtually metabelian group Γd =
Hd o Z/dZ is finitely presented and satisfies

cb(Γd) = ωd.

Now the proof relies on the study of the space of Z/dZ-invariant ideals
in Ad. This fits in the context of modules endowed with an action of a
finite group, and was not considered in [10], so we prove the necessary
preliminaries in Section 5.

To pass from 4 to 3 generators, assume that d is odd and replace σ
by the generator γ of Z/2dZ which acts on Ad by ring automorphisms,
mapping xi to 1−xi+1 for all i ∈ Z/dZ. In particular γd sends xi to 1−xi
and γd+1 = σ. So the group Γ′d generated by {u, e1, γ} contains Γd as a
subgroup of index 2. For similar reasons, it has Cantor-Bendixson rank ωd.
Finally, to get a 2-generated group, we consider the subgroup Λd gener-

ated by {ue1, γ}. Denote by Λ′d the normal subgroup generated by ue1, so
that Λd = Λ′d o 〈γ〉.

Proposition 2.3. — The metabelian group Λ′d is finitely presented, as
well as Λd. It lies in an extension

1→M → Λ′d → Q→ 1,

with Q ' Z2d, freely generated by the images of all uei and ufi, and M

is isomorphic as a Z[Q]-module to the kernel of the ring homomorphism of
Z[Q] onto Z[1/2] mapping all generators to 1/2. Moreover, we have

cb(Λd) = cb(Λ′d) = ωd.

2.2. Proofs

The finite presentability of Hd is a consequence of Corollary 6.6, us-
ing Bieri-Strebel’s characterization of finitely presented metabelian groups
(Theorem 6.1). So its overgroups of finite index Γd and Γ′d are also finitely
presented. Finally Lemma 6.7 implies that Λ′d is finitely presented, as well
as its overgroup of finite index Λd.

All the groups G = Hd,Γd,Γ′d,Λd,Λ′d arise in an extension

1→M → G→ R→ 1,

where R contains Z2d as a subgroup of finite index, and M is an ideal in
Ad. For G = Hd,Γd,Γ′d, M = Ad; in the two last cases, M 6= {0} because
[ue1, uf1] 6= 1. As the Krull dimension of Ad is d + 1, by Corollary 5.3,
`′Q(M) = ωd in all cases. Since M satisfies the hypotheses of Corollary
3.18, we obtain `′(G) = `′Q(M) = ωd.

TOME 61 (2011), FASCICULE 2
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3. Length and Cantor-Bendixson rank

3.1. Length of noetherian modules

Let A be a ring (not necessarily commutative). Recall that an A-module
M has finite length if there is an upper bound on the length d of increasing
chains

0 = M0 ⊂M1 ⊂ · · · ⊂Md = M

of A-submodules of M , and the least bound is called the length of M . By
a theorem of Jordan and Hölder, modules of finite length can be charac-
terized as modules that are simultaneously noetherian (every increasing
chain of submodules stabilizes) and artinian (every decreasing chain sta-
bilizes). However in general, most noetherian modules have infinite length
and it is natural to expect a notion of ordinal length. This was first done by
Bass [2] (in a commutative setting), using well-ordered decreasing chains
of submodules. Then Gulliksen [13] provided the inductive definition which
follows, slightly less intuitive at first sight, but more handy to deal with.

Definition 3.1. — Define inductively, for every noetherian A-module,
its ordinal length `(M) = `A(M) as

`(M) = sup{`(M/N) + 1 : N nonzero A-submodule of M}.

This has to be viewed as an inductive definition: the starting point is
`({0}) = sup(∅) = 0. In more generality, if X is a noetherian partially
ordered set, we can define an ordinal-valued function on X by `(x) =
sup{`(y) + 1 : y > x}. The uniqueness of ` follows from noetherianity of
X. For the existence, set Mx = {y : y > x}, consider the set V of u ∈ X
such that there exists a function ` satisfying the inductive condition on
Mu. If V 6= X, then its complement contains a maximal element u. So for
any x > u, the number `(x) is uniquely defined. Therefore the inductive
definition shows that ` can be defined on Mu, contradicting that u /∈ V .
Here, the partially ordered set is the set of quotients of the module M .

If α is a non-zero ordinal, there exists a unique ordinal β such that
ωβ 6 α < ωβ+1, and we write β = deg(α).

Definition 3.2. — Let M be a noetherian A-module. The Krull di-
mension of M is defined as the ordinal deg(`(M)) if M 6= {0}, and −1 if
M = {0}.

ANNALES DE L’INSTITUT FOURIER
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The more usual notion of Krull dimension, used in the non-commutative
setting, is called the “deviation of the poset of submodules of M” (see [17,
Chap. 6]). We do not need this definition, but it is important to mention
that it is equivalent to the one given here [13, Theorem 2.3]. Moreover,
when A is commutative, it coincides [17, Chap. 6.4] with the very classical
notion of Krull dimension defined in terms of chains of prime ideals, defined
inductively as

dim(M) = sup{dim(A/P)+1 : P non-minimal prime ideal of A/Ann(M)}.

Let A again be arbitrary (not necessarily commutative) and let M be a
noetherian A-module. If `(M) = ωα for some ordinal α, we say that M is
critical, or α-critical. This means that the Krull dimension of M is α, but
the Krull dimension of any proper quotient of M is < α. A critical series
for M is a composition series

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M,

where each Mi/Mi−1 is αi-critical and

α1 6 · · · 6 αk.

A critical series always exists for M [17, 6.2.20], and in practice is easy to
write down. It is a particular case of [13, Theorem 2.1] that we then have

`(M) = ωαk + · · ·+ ωα1 ;

if nα is the number of i such that αi = α, then the family of non-negative
integers (nα) is finitely supported, and we can rewrite this formula as

`(M) =
∑
α

ωα · nα (sum in reverse order).

In particular, we have

Proposition 3.3. — Let A be a commutative noetherian ring, P a
prime ideal such that A/P has Krull dimension α > 1. Let M be a torsion-
free A/P -module of rank r. Then `A(M) = ωd · r.

Proof. — Let (Mi) be a critical series as above. We have αi 6 α for all i.
Since M is torsion-free over A/P , so is M1, so we have α1 = α. Therefore
αi = d for all i; sinceMi/Mi−1 is a subquotient ofM , this implies that it is
torsion-free; since it is critical, it is torsion-free of rank one. In particular,
k = r. The formula above gives `(M) = ωd · r. �

TOME 61 (2011), FASCICULE 2
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3.2. General lengths

Let H be a semigroup. An H-group is by definition a group G endowed
with an action of H by group endomorphisms.

Example 3.4. — If A is a ring and M is an A-module, then M is an
A-group, where A is viewed as a multiplicative semigroup.

An H-group satisfies H-max-n if every non-decreasing sequence of H-
stable normal subgroups of G stabilizes. When G is an H-group and N an
H-stable normal subgroup of G, the group N has natural action of both H
and G, hence of the semidirect product G o H, which we denote by GH
for short.
Let G be an H-group satisfying H-max-n. We can define by induction

the length of G as
`H(G) = sup(`H(G/N) + 1),

where G/N ranges over all proper H-quotients of G. Here of course we
assume sup(∅) = 0, which gives `H({1}) = 0.

Lemma 3.5. — For any ordinal β 6 `(M), there exists a H-quotient
G/N of G such that `H(G/N) = β.

Proof. — Let β be the smallest counterexample, and γ 6 α the smallest
ordinal > β such that `H(G/N) = γ for some H-quotient G/N . Then
the definition of `H(G/N) leads to the existence of N ′ such that β 6
`H(G/N ′) < γ, contradicting the definition of γ. �

Let NH(G) denote the set of H-stable normal subgroups of G. Let
cbH(G) denote the Cantor-Bendixson rank of {1} in NH(G).

Lemma 3.6. — Let G be an H-group satisfying H-max-n. Then NH(G)
is scattered and cbH(G) 6 `H(G).

Proof. — This is a straightforward induction on `H(G). �

However this result is not optimal in general (see Proposition 3.14).
If α, β are ordinals, their natural sum is defined inductively as follows

[21, XIV.28]

α⊕ β = max
(

sup
γ<α

((γ ⊕ β) + 1), sup
γ<β

((α⊕ γ) + 1)
)
,

with sup ∅ = 0. Recall that any ordinal α has a unique Cantor form [21,
XIV.19]

α =
∑
γ

ωγ · nγ ,

ANNALES DE L’INSTITUT FOURIER
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where the sum is indexed by γ ranging over the ordinals in decreasing
order, and (nγ) is a finitely supported family of non-negative integers. If
β =

∑
ωγ · n′γ is also in Cantor form, then their natural sum is

α⊕ β =
∑
γ

ωγ · (nγ + n′γ).

The following lemma generalizes Theorem 2.1 and Proposition 2.11 in [13].

Lemma 3.7. — Let G be an H-group with H-max-n, in an exact se-
quence of H-groups

1→M → G→ Q→ 1.
Then

`H(Q) + `GH(M) 6 `H(G) 6 `H(Q)⊕ `GH(M).
When G = M ×Q as an H-group,

`H(G) = `H(Q)⊕ `GH(M).

Proof. — All facts are directly obtained by induction on `H(G), in a
similar fashion. For instance, let us check that `H(G) 6 `H(Q)⊕ `GH(M).
If N is an H-invariant normal subgroup of G, then if N ∩M is non-trivial,
by induction

`H(G/(N ∩M)) 6 `H(Q)⊕ `GH(M/(N ∩M)) < `H(Q)⊕ `GH(M)

by definition of the natural sum. If N ∩M = {1} and the projection p(N)
of N on Q is non-trivial, then by induction

`H(G/N) 6 `H(Q/p(N))⊕ `GH(M) < `H(Q)⊕ `GH(M)

again by definition of the natural sum. In all cases, if N is non-trivial,
we get `H(G/N) < `H(Q) ⊕ `GH(M), so passing to the supremum we get
`H(G) 6 `H(Q)⊕ `GH(M). �

3.3. Reduced length

There is a well-defined notion of left Euclidean division for ordinals. In
particular, if α is an ordinal, it is easy to check that there is a unique ordinal
α′ such that α = ω · α′ + r with r < ω. For instance, 1′ = 0, (ωn+1)′ = ωn

for n < ω, and (ωα)′ = ωα for α > ω.

Definition 3.8. — Let G be a H-group satisfying H-max-n. Define
`′H(G) as (`H(M))′.

TOME 61 (2011), FASCICULE 2
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Proposition 3.9. — We have

`′H(G) = sup{`′H(G/N) + 1},

where G/N ranges over all H-quotients of G with `GH(N) > ω.

Proof. — Define `′′H(G) as above by the inductive formula

`′′H(G) = sup{`′′H(G/N) + 1 : `GH(N) > ω}.

Let us prove by induction on α = `H(G) that `′H(G) = `′′H(G). Let N be a
normal H-subgroup of G with `GH(N) > ω. By Lemma 3.7, we have

`H(G/N) + `GH(N) 6 `H(G).

So
ω · (`′H(G/N) + 1) 6 ω · `′H(G);

since we can “simplify” by ω on the left, this gives, using the induction
hypothesis

`′′H(G/N) + 1 6 `′H(G);
taking the supremum over N , we get `′′H(G) 6 `′H(G).
Conversely, take α < `′H(G). So ω ·α+ω 6 `H(G). By Lemma 3.5, there

exists a normal H-subgroup N of G with `H(G/N) = ω · α. In particu-
lar, `′H(G/N) = α, so by induction hypothesis, `′′H(G/N) = α. If we had
`GH(N) < ω then Lemma 3.7 would imply `H(G) < ω ·α+ω, a contradic-
tion. Therefore `′′H(G) > α. Since this holds for any α < `′H(G), we deduce
`′H(G) 6 `′′H(G). �

Lemma 3.10. — Let G be an H-group with H-max-n, in an exact se-
quence of H-groups

1→M → G→ Q→ 1.
Then

`′H(Q) + `′GH(M) 6 `′H(G) 6 `′H(Q)⊕ `′GH(M).
When G = M ×Q as an H-group,

`′H(G) = `′H(Q)⊕ `′GH(M).

Proof. — Since the sum and natural sum commute with α 7→ α′, this
immediately follows from Lemma 3.7. �

Lemma 3.11. — Let G be an H-group satisfying H-max-n. Then for
every H-stable normal subgroup F of G with `GH(F ) < ω, we have
`′H(G/F ) = `′H(G).
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Proof. — By definition of `′H , we have `′GH(F ) = 0. So this follows readily
from Lemma 3.10. �

Lemma 3.12. — Let G be an H-group satisfying H-max-n. Suppose
that G is residually finite as an H-group. Then

`H(G) < ω ⇔ `′H(G) = 0⇔ G is finite.

Proof. — The left-hand equivalence is true by definition of `′H , without
assuming residual finiteness. Clearly G finite implies `H(G) < ∞. Con-
versely if G is infinite, it has a decreasing sequence (Mn) of H-stable (fi-
nite index) normal subgroups, the sequence `H(G/Mn) is increasing and
`H(M) > ω. �

Definition 3.13. — Using Lemma 3.7, we can define, for every H-
groupG withH-max-n, EH(G), [resp.WH(G)], as its unique largest normal
H-invariant subgroup N with `H(N)<ω [resp. `′H(N)<ω, i.e. `H(N)<ω2].

It follows from Lemmas 3.7 and 3.10 that EH(G/EH(G)) = {1} and
WH(G/WH(G)) = {1}.

Proposition 3.14. — Let G be an H-group satisfying H-max-n. Sup-
pose that G is residually finite as an H-group, as well as all its H-quotients.
Then cbH(G) = `′H(G).

Proof. — Consider a counterexample G with `H(G) = α and assume
that the proposition is proved for every H-group with `H < α.
By Lemma 3.12, M = EH(G) is finite. Therefore if N is close enough

to {1} in NH(G), we have N ∩ M = {1}; if N 6= {1} this forces N to
be infinite. In this case, by induction cbH(G/N) = `′H(G/N) < `′H(G).
Accordingly, cbH(G) 6 `′H(G/N) + 1, so cbH(G) 6 `′H(G).

Conversely, consider any ordinal β < α and a finite subset I of G− {1}.
Then G has a proper quotient G/N with `GH(N) > ω (so N is infinite)
and `′H(G/N) = β, and has an H-stable normal finite index subgroup L

with L ∩ I = ∅; necessarily N ∩ F 6= {1}. As L/(L ∩N) is finite, we have
`′GH(L/(L ∩N)) < ω. So by Lemma 3.11, `′H(G/(L ∩N)) = `′H(G/L) = β

and cbH(G/(L ∩ N)) = β again by induction. Thus every neighbourhood
of {1} in NH(G) contains an element of Cantor-Bendixson β. As this holds
for every β < α, we get cbH(G) > α = `′H(G). �

Examples with `′H(G) < cbH(G) < `H(G) were obtained in
[10, Lemma 15].

Corollary 3.15. — Under the same assumptions, CB(NH(G)) =
cbH(G) + 1.
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Proof. — Set α = cbH(G). Then by Proposition 3.14, N (G)(α) is con-
tained in the set of finite normal H-invariant subgroups of G (it is actually
equal in view of Lemma 3.11) and contains {1}. The assumption H-max-n
then implies that the non-empty set N (G)(α) is finite, so N (G)(α+1) = ∅
and CB(N (G)) = α+ 1. �

Lemma 3.16. — Let G be an H-group with H-max-n and N an H-
stable normal subgroup of G contained in EH(G) (resp. WH(G)). Then
`H(G) = `H(G/N) + `GH(N) (resp. `′H(G) = `′H(G/N) + `′GH(N)). More-
over, `(G/EH(G)) and `′(G/WH(G)) are not successor ordinals.

Proof. — The first statement is a particular case of Lemmas 3.7 and
3.10, since when α, β are ordinals with β finite, α⊕ β = α+ β.

If `H(G) = α+ 1, then by definition of `H , for some non-trivial H-stable
normal subgroup N , we have `H(G/N) = α. From the left-hand inequality
in Lemma 3.7 we deduce `H(N) 6 1, so `H(N) = 1, so N ⊂ EH(G) and
EH(G) is non-trivial. Similarly if `′H(G) is a successor ordinal, WH(G) is
non-trivial. This proves the second statement. �

Suppose that we have an extension of H-groups

1→M → G→ Q→ 1,

for which we want to compute `′H(G).

Proposition 3.17. — Let G be an H-group with H-max-n lying in an
extension

1→M → G→ Q→ 1
with `′H(Q) <∞. Then

`′H(G) = `′GH(M/WGH(M)) + `′GH(WH(G)).

Proof. — By Lemma 3.16, `′H(G) = `′H(G/WH(G))+`′GH(WH(G)). Now
WH(G) ∩M = WGH(M), we have an extension

1→M/WGH(M)→ G/WH(G)→ Q′ → 1,

for some quotient Q′ of Q.
We consider two cases.
• M/WGH(M) = {1}. Then G = WH(G) and the lemma holds.
• M/WGH(M) 6= {1}. Then by Lemma 3.16, `′GH(M/WGH(M)) is a

limit ordinal, so as `′H(Q′) < ω, we get

`′H(Q′) + `′GH(M/WGH(M)) = `′GH(M/WGH(M)).
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By Lemma 3.10

`′GH(M/WGH(M)) 6 `′(G/WH(G)) 6 `′GH(M/WGH(M)) + `H(Q′);

and by Lemma 3.16, `′(G/WH(G)) is a limit ordinal and `′H(Q′) <
ω, so we thus get `′(G/WH(G)) = `′GH(M/WGH(M)). �

Corollary 3.18. — Under the same hypotheses, ifM contains its own
centralizer in G and WGH(M) = {1}, then

`′H(G) = `′GH(M).

3.4. Proof of Theorem 1.5

Lemma 3.19. — Let G be anH-group with max-n. Then if finite, `′H(G)
is the supremum of lengths k of chains of GH-subgroups 1 = N0 ⊂ · · · ⊂
Nk = G with `′H(Ni/Ni−1) > 1 for all i.

Proof. — If we have such a chain, then it follows from Lemma 3.7 that
`′H(G) > k. The converse is a trivial induction on `′H(G). �

Let us now prove Theorem 1.5. It follows from the discussion in Para-
graph 3.1 that if M is a noetherian module over a commutative ring, then
dim(M) 6 1 (Krull dimension) if and only if `′(M) < ω. Therefore the def-
initions of W (M) given in the introduction and in Paragraph 3.3 coincide.
Besides, we have
Suppose that G is residually finite as well as its quotients and N is a nor-

mal subgroup. By Lemma 3.19, if `′G(N) < ω, then it coincides with hG(N)
as defined in the introduction. Similarly, W (G) coincides with Hir(G), also
defined in the introduction. Also, cb(G) = `′(G) by Proposition 3.14.

Given these remarks, we see that (1) of the theorem appears as a partic-
ular case of Proposition 3.17.

For (2), the left-hand inequality is clear since `′G(M) 6 `′G(G) = cb(G).
Finally (3) is a consequence of (1). Indeed, W (M) = {0} and `′(M) =

ωd−1 ·r by Proposition 3.3; moreover Hir(G) = {1}. Indeed, sinceW (M) =
{1} (M being now written multiplicatively), Hir(G) ∩M = {1}. In par-
ticular, Hir(G) centralizes M . Since the action of Q on M is faithful, this
implies that the projection of Hir(G) on Q is trivial, hence Hir(G) ⊂ M ,
hence Hir(G) = {1}.

TOME 61 (2011), FASCICULE 2



608 Yves CORNULIER

4. Some examples

Proposition 4.1. — If G is a virtually polycyclic group, then `′(G) 6
h(G), the Hirsch length of G. The equality `′(G) = h(G) holds if and only
if G is supersolvable (e.g. G is nilpotent).

Proof. — Indeed, by Lemma 3.12, if finite, `′(G) is the greatest number
of infinite subfactors in a normal series of G. On the other hand, h(G) is
the greatest number of subfactors in a subnormal series of G. To say that
G is supersolvable just means that there exists a normal series in which all
infinite subfactors are cyclic, whence the equality. If G is virtually poly-
cyclic, there exists a normal series with exactly `′(G) infinite subfactors,
all torsion-free (at the cost of adding some finite subfactors in the normal
series). If G is not supersolvable, then one of these infinite subfactors has
to have rank at least two, so h(G) > `′(G). �

Example 4.2. — If G = Zk oF with F finite, then `′(G) is the number
of irreducible representations in which Qk decomposes under the action
of F .

Proposition 4.3. — For all d > 0, n > 1,

`′(Zk o Zd) = ωd · k.

Proof. — The group G = Zk o Zd can be written as Z[Q]k o Q with
Q = Zd. As Z[Q] is a domain of Krull dimension d+1, we have `′Q(Z[Q]k) =
ωd · k by Proposition 3.3. Now, if d > 1, Corollary 3.18 applies to give
`′(G) = ωd · k. The case d = 0 is a particular case of Proposition 4.1. �

Denote by Cm the cyclic group of order m and by δ(m) the total number
factors in a prime decomposition of m (e.g. δ(18) = 3).

Proposition 4.4. — For all d > 1,

`′(Cm o Zd+1) = ωd · δ(m); `′(Cm o Z) = δ(m) + 1.

Proof. — The group G = Cm o Zd+1 can be written as Z/mZ[Q] o Q.
The Z[Q]-module Z/mZ[Q] can be written as an iterated extension of
δ(m) modules, each of the form Z/pZ[Q]. As the latter is a domain of
Krull dimension d + 1, it has `′ = ωd. Now Lemma 3.10 implies that
`′(Z/mZ[Q]) = ωd · δ(d).
IfQ = Z, then in the principal ideal domain Z/pZ[Q], every nonzero ideal

has finite index, so `′Q(Z/pZ[Q]) = 1. So Z/mZ[Q] has a normal series
of length δ(m) in which each subfactor has `′Q = 1, so `′Q(Z/mZ[Q]) =
δ(m) by Lemma 3.10. Again by Lemma 3.10, we deduce that `′(G) =
δ(m) + 1. �
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5. Actions of finite groups

Let A be a ring and G a group acting on A by ring automorphisms.
We call a GA-module an A-module endowed with a G-action by group
automorphisms, such that, for all g ∈ G, a ∈ A and m ∈ M , we have
g(am) = (ga)(gm).

A GA-submodule is the same as a G-invariant A-submodule. In partic-
ular, if G is finite, a module is finitely generated, resp. Noetherian as an
A-module if and only if it so as a GA-module.
Assume now that M is a Noetherian GA-module and that G is finite.

We consider the length and reduced length as defined in Section 3, with H
the underlying multiplicative semigroup of A. As we do this all along this
section, we drop the index A on `′.
So the definitions of Section 3 read as

`′G(M) = sup{`′G(M/N)|N non-Artinian GA-submodule of M}

and

`′(M) = sup{`′(M/N)|N non-Artinian A-submodule of M},

as it was defined in [10]. Clearly, `′G(M) 6 `′(M).
Suppose that A is Noetherian, and, to simplify the exposition, that it has

finite Krull dimension. Let M be a finitely generated A-module of Krull
dimension d > 1. We have (see Section 3)

`(M) = ωd · `d(M) + o(ωd)

where o(ωd) denotes some ordinal < ωd and and `d(M) is a positive integer.
Similarly define `G,d(M) so that `(M) = ωd · `G,d(M) + o(ωd). Note that a
priori `d(M) is a non-negative integer.

Proposition 5.1. — Suppose that A is Noetherian of finite Krull di-
mension d, and G is finite of order n. Let M be a finitely generated GA-
module, of Krull dimension 6 d (as an A-module). Then

`G,d(M) 6 `d(M) 6 n`G,d(M).

Proof. — The left-hand inequality is an obvious consequence of `G(M) 6
`(M). We prove the right-hand inequality by induction on `(M) + d. First,
if `d(M) = 0 this is trivial. So we suppose `d(M) > 1.
Since M has Krull dimension d, there exists an associated prime ideal

of coheight d, i.e. a A-submodule N of M with `(N) = ωd. Let N ′ be the
GA-submodule generated by N : it is generated by the gN for g ∈ G and
therefore is, as an A-module, a quotient of Nn. So `d(N ′) 6 n`d(N) = n.
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By [10, Lemma 7], `d is additive on exact sequences of modules of Krull
dimension 6 d. If `(N ′) < `(M), the inequality to proves holds for both N ′
and M/N ′, so by additivity holds for M .
So suppose `(M) 6 `(N ′). Then `d(M) 6 `d(N ′) 6 n. So we just have

to prove that `G,d(M) > 1, or equivalently that `G(M) > ωd. If d = 0
this is obvious. Otherwise, for any integer m, M has a submodule L with
ωd−1 · mn 6 `(L) < ωd. Replacing L by

⋂
g∈G gL if necessary, we can

suppose that L is G-invariant. By induction hypothesis, `G,d−1(M/L) >
m. So `G(M) > ωd−1 · m. Since this holds for any m, we deduce that
`G(M) > ωd. �

Corollary 5.2. — Under the same hypotheses, if `′(M) = ωd, then
`′G(M) = ωd.

Corollary 5.3. — Let G be a finite group, A be a finitely generated
domain of Krull dimension d > 1 with a G-action, and I a non-zero G-
invariant ideal in A. Then `′G(I) = ωd−1.

Proof. — In view of Corollary 5.2, it is enough to check that `′(I) =
ωd−1, which is a particular case of Proposition 3.3. �

The following lemma is well-known.

Lemma 5.4. — Let A be a Noetherian ring and M a finitely generated
A-module. Then M is residually Artinian as an A-module.

Proof. — Pick a non-zero element x0 in M . Let W be a maximal A-
submodule of M not containing x0. We claim that M/W is Artinian.
We can suppose thatW = {0}, i.e. that x0 is contained in every non-zero

A-submodule of M and we have to prove that M is Artinian.
If M is non-Artinian, then it has an associate ideal P such that A/P is

not a field. So M contains an A-submodule N isomorphic to A/Q. Pick
a non-zero non-invertible element a in A/P . By a standard application of
Artin-Rees’ lemma, we have

⋂
n>0 a

nN = {0}. By the assumption on x0,
we get anN = {0} for some n, i.e. an(A/P ) = 0, and therefore as P is
prime, we obtain a ∈ P , a contradiction. �

Lemma 5.5. — Let G be a finite group, A be a Noetherian ring with
a G-action, and M a finitely generated GA-module. Then M is residually
Artinian as a GA-module.

Proof. — Pick a non-zero element x0 inM . Then there exists by Lemma
5.4 an A-submodule N of M such that x0 /∈ N and M/N is Artinian.

If N ′ =
⋂
g∈G gN , then M/N ′ embeds into

∏
g∈GM/gN , so is Artinian

as well. Moreover, N ′ is a GA-submodule and x0 /∈ N ′. �
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Proposition 5.6. — Let G be a finite group, A be a finitely generated
ring with a G-action, and M a finitely generated GA-module. Then the
Cantor-Bendixson rank of M as a GA-module, i.e. the Cantor-Bendixson
rank of {0} in the set of GA-submodules of M , is `′G(M).

Proof. — Any Artinian finitely generated A-module is finite: this is a
classical consequence of the Nullstellensatz (see for instance [10, Lemma
13]). Therefore, using Lemma 5.5, M is residually finite as a GA-module.
So the proposition appears as a particular case of Proposition 3.14. �

6. The Bieri-Strebel invariant and tensor products

In all this section, we consider a finitely generated metabelian group G,
inside an extension

1→M → G→ Q→ 1,
with Q abelian and M abelian. So M is a finitely generated Z[Q]-module.

If v ∈ Hom(Q,R), we set Qv = {q ∈ Q|v(q) > 0}. We set

Γ(M) = {v ∈ Hom(Q,R)|M is not a finitely generated Qv-module} ∪ {0}.

This is a closed subset [4, Proposition 2.2] of the vector space Hom(Q,R),
and is further studied in [5]. We write Γ±(M) = Γ(M) ∩ (−Γ(M)).

Theorem 6.1 (Bieri-Strebel [4]). — The finitely generated metabelian
group G is finitely presented if and only if

Γ±(M) = {0}.

Lemma 6.2. — Fix v ∈ Hom(Q,R)− {0}. Let V be the Qv-submodule
generated by some finite generating subset of the Q-module M . Then we
have the equivalences

• v /∈ Γ(M);
• qV = V for every q ∈ Q;
• qV ⊂ V for some q with v(q) < 0.

Proof. — Let us first check that the two first assertions are equivalent.
Suppose that qV 6= V for some q ∈ Q. Replacing q by q−1 if necessary we
can suppose that v(q) > 0. So qV ⊂ V , and we deduce that the sequence
(q−nV ) of Qv-submodules of M is strictly increasing, so that M is not
noetherian, hence not finitely generated as a Qv-module, i.e. v ∈ Γ(V ).

Conversely the assumption qV = V for all q ∈ Q clearly implies that V
is a Q-module, hence V = M , so M is a finitely generated Qv-module.
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The second assertion clearly implies the third, and the converse holds
because the set of q satisfying qV ⊂ V is a subsemigroup, and clearly Q is
generated as a subsemigroup by Qv ∪{q} whenever q /∈ Qv. So qV ⊂ V for
all q ∈ Q, and multiplying by q−1 we get V ⊂ q−1V for all q ∈ Q, so as Q
is closed under inversion, qV = V for all q ∈ Q. �

Suppose that Q = Q1 × Q2, and let Ai be the ring generated by Qi.
Suppose M = M1 ⊗Z M2, where Mi is a finitely generated Ai-module,
and M is naturally viewed as a Q-module. We have the identification
Hom(Q,R) = Hom(Q1,R)×Hom(Q2,R).

Lemma 6.3. — We have the inclusion

Γ(M) ⊂ Γ(M1)× Γ(M2)

Proof. — Suppose that (v1, v2) /∈ Γ(M1)×Γ(M2), say v1 /∈ Γ(M1). Con-
sider Vi ⊂Mi as in Lemma 6.2. So there exists q1 ∈ Q1 with v1(q1) < 0 and
q1V1 = V1. So v(q1, 1) = v1(q1) < 0 and (q1, 1)(V1 ⊗ V2) ⊂ (q1V1 ⊗ V2) =
V1 ⊗ V2. So the Qv-submodule V generated by V1 ⊗ V2 is (q1, 1)-stable,
hence it is a Q-submodule, so v /∈ Γ(M). �

Corollary 6.4. — If Γ±(M1) = {0} and Γ±(M2) = {0} then Γ±(M) =
{0}.

Here is a classical example (below the coefficient ring Z can be replaced
by Z/kZ). Write R+ = [0,∞).

Lemma 6.5. — Suppose that A = M = Z[u, (u + u2)−1], Q = Z2 acts
by (m,n) · P (u) = P (u)um(1 + u)n. Then Γ(M) = R+(1, 0) ∪R+(0, 1) ∪
R+(−1,−1). In particular, Γ±(M) = {0}.

Proof. — First observe that A = M has a ring automorphism of order
three given by u 7→ −(1 + u)/u 7→ −1/(u + 1) 7→ u. This implies that

Γ(M) is invariant under the matrix
(
−1 1
−1 0

)
of order three, which rotates

(0, 1) 7→ (1, 0) 7→ (−1,−1). So it is enough to check that (0, 1) belongs to
Γ(M), but not (a, b) if a, b > 0.
If v(m,n) = n, then Z[Qv] consists exactly of Z[u, u−1]. So (0, 1) ∈ Γ(M).
Consider v(m,n) = am+bn with a, b > 0. Let V be the Z[Qv]-submodule

of Z[Q] generated by 1. This is clearly a ring, so we just have to check that
it contains u, u−1, (1+u)−1. Since a > 0, u ∈ V . Therefore Z[u] ⊂ V . Since
a > 0, we know that v(n,−1) > 0 for large n, so V contains (−u)n/(1 + u)
for large n, which can be written as (1−(1+u))n/(1+u) = P1(u)+1/(1+u)
with P1(u) ∈ Z[u]. So 1/(1 + u) ∈ V . As b > 0, V contains (1 + u)n/u for
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large n. Since we can write (1 + u)n/u = P2(u) + 1/u with P2(u) ∈ Z[u],
we deduce that V contains u−1. �

AsM is the tensor product of k copies of Z[u, (u2 +u)−1], from Corollary
6.4 we get

Corollary 6.6. — If M = A = Z[u1, . . . , uk, s
−1] where s =

k∏
i=1

(u2
i +

ui), then Γ±(M) = {0}.

We will also need the following easy consequence of Theorem 6.1.

Lemma 6.7. — Let G be a finitely presented metabelian group in an
exact sequence

1→M → G→ Q→ 1

with M and Q abelian. Let H be a subgroup of G whose projection on Q
is surjective (i.e. HM = G). Then H is finitely presented as well.

Proof. — By assumption we have an exact sequence

1→M ∩H → H → Q→ 1.

SoM∩H is a Q-submodule ofM , hence is finitely generated as a Q-module,
so H is finitely generated. Next, we see that Γ(M ∩H) ⊂ Γ(H) (this uses
the fact that the rings ZQv implied in the definition of the Bieri-Strebel
invariant, are noetherian, as localizations of polynomial rings, although
they may be infinitely generated). So Theorem 6.1 implies that H is finitely
presented. �

7. Free and split metabelian groups

7.1. Free metabelian groups

Let FMd = 〈x1, . . . , xd〉 denote the free metabelian group on d genera-
tors. Consider the extension

1→M → FMd → Q→ 1

with Q ' Zd and M = [FMd,FMd].

Proposition 7.1. — As a Z[Q]-module,M is torsion-free of rank d−1.
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Proof. — The Magnus embedding of FMd is the following. We consider
matrices (

t m

0 1

)
with t ∈ Q and m in N , the free Z[Q]-module of rank d with basis (ei).
The Magnus embedding i is given by

xi 7→
(
ui ei
0 1

)
.

This is a well-defined map whose injectivity is due to Magnus [16]. In
particular, M embeds as a Z[Q]-module into N , so is torsion-free. Let r
denote its rank. Denote by N0 the A-submodule of N consisting of all∑
aiei (ai ∈ A) satisfying

∑
i(1− ui)ai = 0.

Lemma 7.2. — We have M ⊂ N0. In particular r 6 d− 1.

Proof. — Write [x, y] = x−1y−1xy and xy = y−1xy. For convenience we
identify FMd to its image by i. It is enough to prove that [t, v] ∈ N0 for
all t, v ∈ FMd.
We have, in any group, the equality [t1t2, v] = [t1, v]t2 .[t2, v]. As N0 is an

A-submodule, it follows that for every v, the set of t such that [t, v] ∈ N0
is closed under multiplication, and similarly it is closed under inversion,
hence is a subgroup. The analog fixing t also holds. So it is enough to check
[t, v] ∈ N0 for t, v ranging over group generators. A computation gives

[xi, xj ] = u−1
i u−1

j ((1− uj)ei − (1− ui)ej),

which belongs to N0. �

Besides, we have r > d − 1. Indeed, as we just mentioned, for j > 1 we
have

uiuj [x1, xj ] = (1− uj)e1 − (1− u1)ej ;
this is a Z[Q]-free family of cardinality d− 1. �

Theorem 7.3. — For every d > 2 we have

`′(FMd) = ωd · (d− 1).

Moreover, for any proper quotient G of FMd, we have `′(G) < ωd · (d− 1).

Proof. — As the Krull dimension of Z[Q] is > 2 and M is torsion-free as
a Z[Q]-module, Corollary 3.18 implies that `′(FMd) = `′(M), and `′(M) =
ωd · (d− 1) by Propositions 7.1 and 3.3. �

In view of Proposition 3.14, Theorem 7.3 implies Theorem 1.4(2).
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7.2. Split metabelian groups

In this section, we prove Theorem 1.4(3).

Proposition 7.4. — Fix d > 1. Let G be a d-generated metabelian
group in a split exact sequence

1→M → G→ Q→ 1.

Then `′(G) < ωd.

Proof. — Assume that `′(G) > ωd. If the Q-rank of Q is less than d,
then `′(G) < ωd holds (even if the exact sequence is not split). So Q is
free abelian of rank d; in particular, M = [G,G]. For the same reason, the
Krull dimension of M has to be equal to d+ 1. Modding out by its torsion
submodule, we can assume that M is a nonzero torsion-free Z[Q]-module.

Now, given a splitting, write the generators as miei, with ei ∈ Q (ith
basis vector) and mi ∈M . The argument in the proof of Lemma 7.2 shows
that [G,G] is contained in the Q-submodule generated by the elements

(1− uj)mi − (1− ui)mj ,

where ui is the indeterminate in Z[Q] corresponding to ei. Since [G,G] =
M , we deduce thatM = IM , where I is the ideal generated by all 1−ui. As
this is a proper ideal and M is torsion-free finitely generated, Nakayama’s
Lemma implies that M = {0}, a contradiction. �

Remark 7.5. — This upper bound works more generally for the slightly
broader class of finitely generated (metabelian) groups having two abelian
subgroups Q,M withM normal, such that G = MQ. This class has the ad-
ditional advantage to be stable under quotients, and any element G = MQ

in this class is actually a quotient of a finitely generated split metabelian
group, namely M oQ.

Let us now prove that the bound given in Theorem 1.4 (3) is sharp.
Continue with Q free of rank d as above, assume d > 2, and define the ring

An = Z[Q]/(2− u2)n

Consider the semidirect product Gn = An o Q. Define mi ∈ An with
m1 = 1, m2 = 0, and arbitrary mi for i > 3.

Lemma 7.6. — The group Gn is generated by the family (miei)16i6d;

Proof. — Let H be the group generated by this family, and set N =
H∩M , which is an ideal of An. It contains in particular u1u2[m1e1,m2e2] =
(1 − u2). As 1 + (1 − u2) is nilpotent by construction, 1 − u2 is invertible
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(using a formal series), so N contains the element 1 of H, hence N = An.
Therefore H = Gn. �

Lemma 7.7. — We have `′(An) = ωd−1 · n.

Proof. — Using Lemma 3.10, it is enough to check that

`′
(
(2− x2)kAn/(2− x2)k+1An

)
= ωd−1.

As An is a domain, the Z[Q]-module (2−x2)kAn/(2−x2)k+1An is isomor-
phic to An/(2−x2)An, which is the domain of Laurent polynomials in d−1
variables over Z[1/2], so by Proposition 3.3, `′(An/(2− x2)An) = ωd−1 as
expected. �

From Lemma 7.6, Lemma 7.7 and Corollary 3.18, we deduce

Proposition 7.8. — For every d > 2, the split metabelian group Gn is
d-generated and `′(Gn) = ωd−1 · n.

8. Wreath products

Proposition 1.6 is a particular case of the following more general result.
LetH,G be any finitely generated groups, andX a G-set with finitely many
orbits. Then the permutational wreath product H oX G, which is defined
as the semidirect product H(X) o G (with the shifting action), is finitely
generated.

Proposition 8.1. — Assume that the diagonal action of G on X2 has
infinitely many orbits, and that H 6= {1}. Then cbe(H oX G) = C.

Proof. — We assume for the sake of simplicity that X is G-transitive;
the extension of the proof to the general case is left as an exercise.
So we can write X = G/L. Set Γ = H oX G. Consider the finitely gener-

ated group S presented as

〈H,G|[H,L]〉.

This group is finitely generated and possesses Γ as a quotient in a nat-
ural way. We are going to topologically embed a Cantor set into the set
of quotients of S, so that the image contains Γ, which will imply that
cbe(Γ) = C.
Consider an infinite subset J of G−L such that for any distinct g, h ∈ J ,

g, g−1 /∈ LhL. If I is any subset of J , define ΓI as the quotient of S by
all [H, gHg−1] for all g /∈ L such that LgL ∩ (I ∪ I−1) = ∅. Then from [9,
Lemma 2.3] we deduce that for any g ∈ J , we have [H, gHg−1] = {1} if
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and only if g /∈ I. Therefore the map I → ΓI is injective, so it embeds a
Cantor set into the set of quotients of S, identified with N (S), and maps
in particular ∅ to Γ. We claim that this map is continuous at ∅. Indeed,
let In → ∅. Let g be a relation in Γ. Then g is a consequence of finitely
many relators, so g = 1 in ΓJ−F for some finite subset F of J . As In → ∅,
eventually In ∩ F = ∅, so ΓIn

is a quotient of ΓJ−F , so g = 1 in ΓIn
. Thus

Γ is a condensation point. �
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