
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Piotr PRZYTYCKI, Gabriela SCHMITHÜSEN & Ferrán VALDEZ

Veech Groups of Loch Ness Monsters
Tome 61, no 2 (2011), p. 673-687.

<http://aif.cedram.org/item?id=AIF_2011__61_2_673_0>

© Association des Annales de l’institut Fourier, 2011, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2011__61_2_673_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
61, 2 (2011) 673-687

VEECH GROUPS OF LOCH NESS MONSTERS

by Piotr PRZYTYCKI,
Gabriela SCHMITHÜSEN & Ferrán VALDEZ (*)

Abstract. — We classify Veech groups of tame non-compact flat surfaces. In
particular we prove that all countable subgroups of GL+(2, R) avoiding the set of
mappings of norm less than 1 appear as Veech groups of tame non-compact flat
surfaces which are Loch Ness monsters. Conversely, a Veech group of any tame flat
surface is either countable, or one of three specific types.
Résumé. — Nous classifions les groupes de Veech des surfaces de translation non

compactes domestiquées. En particulier, nous prouvons que tous les sous groupes
dénombrables de GL+(2, R) n’ayant pas d’éléments de norme plus petite que 1
apparaissent comme groupes de Veech des surfaces de translation non compactes
domestiquées et dont le type topologique est celui du monstre du Loch Ness. Réci-
proquement, tout groupe de Veech d’une surface domestiquée est dénombrable ou
bien conjugué à un des trois groupes que nous précisons dans cet article.

1. Introduction

For a compact flat surface S, the Veech group of S is the subgroup of
SL(2,R) formed by differentials of the orientation preserving affine home-
omorphisms of S (although passing to PSL(2,R) is considered more stan-
dard). Veech groups of compact flat surfaces are related to the dynamics
of the geodesic flow [10].
For a non-compact flat surface the Veech group formed by differen-

tials of the orientation preserving affine homeomorphisms is contained in
GL+(2,R) (we do not pass to PGL+(2,R)). Our goal is to describe all
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possible Veech groups one can obtain for tame non-compact flat surfaces
(see Definition 2.2), introduced in [9]. An example par excellence of a tame
non-compact flat surface is the surface associated to the billiard game on
an irrational angled polygonal table. This surface is of infinite genus and
has only one end [8]. A surface with those properties is called a Loch Ness
monster (see [1]). We distinguish the role of this “monster” in our main
result.
To state it, we need the following notation. We denote by U ⊂ GL+(2,R)

the set of matrices M satisfying ‖Mv‖ < ‖v‖ for all v ∈ R2, where ‖ · ‖ is
the Euclidean norm on R2. We denote

• by P ⊂ GL+(2,R) the group of matrices(
1 t

0 s

)
,where t ∈ R, s ∈ R+,

• by P ′ ⊂ GL+(2,R) the group of matrices generated by P and − Id.
Note that P has index 2 in P ′.
We prove the following.

Theorem 1.1. — Let G ⊂ GL+(2,R) be the Veech group of a tame
flat surface. Then one of the following holds.

(i) G is countable and disjoint from U .
(ii) G is conjugate to P .
(iii) G is conjugate to P ′.
(iv) G = GL+(2,R).

Conversely, we prove the following.

Theorem 1.2. — Any subgroup G of GL+(2,R) satisfying assertion
(i), (ii) or (iii) of Theorem 1.1 can be realized as a Veech group of a tame
flat surface X which is a Loch Ness monster.

Note that SL(2,R) is disjoint from U , since all elements in SL(2,R) have
a real eigenvector for an eigenvalue greater or equal to 1 or are rotations.
Thus Theorem 1.2 implies that every discrete subgroup of SL(2,R) (in
particular, every cyclic subgroup of SL(2,R) and the pre-image in SL(2,R)
of every Fuchsian group) can be realized as the Veech group of a tame
flat surface which is a Loch Ness monster. For compact flat surfaces, such
questions are still open (see [5, Problems 5, 6]). Furthermore, observe that
the pre-image in SL(2,R) of a cocompact Fuchsian group cannot be the
Veech group of a compact flat surface [10], but it occurs as the Veech group
of a tame flat surface, which is a Loch Ness monster.
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VEECH GROUPS OF LOCH NESS MONSTERS 675

Our construction also implies (Remark 4.14 (ii)) that there exists a tame
Loch Ness monster whose Veech group is a lattice in SL(2,R) but which
admits embedded Euclidean triangles, with vertices in singularities, of ar-
bitrarily small area. This is not possible for compact flat surfaces (see [7]).
We will see that the only tame flat surfaces with Veech group GL+(2,R),

as in (iv) of Theorem 1.1, are cyclic branched coverings of the flat plane
(see Lemmas 3.2 and 3.3). In particular GL+(2,R) cannot be realized as a
Veech group of a tame Loch Ness monster.
In our article we restrict in Definition 2.3 of the Veech group to affine

homeomorphisms which preserve the orientation. If we allow orientation
reversing ones, substituting GL(2,R) in place of GL+(2,R) in the state-
ments of our theorems, they remain valid, except that we need to add three
more “parabolic” subgroups to the pair P and P ′. No new ideas appear in
the proofs. Thus we restrict to the orientation preserving case to simplify
the formulation and the arguments.
The article is organized as follows. In Section 2 we recall the definition

of a tame non-compact flat surface and its Veech group.
We divide the proofs of Theorems 1.1 and 1.2 into two parts. In Sec-

tion 3 we treat the case where the group G is uncountable. More precisely,
we prove that if in the hypothesis of Theorem 1.1 we assume that G is
uncountable, then it satisfies assertion (ii), (iii) or (iv) (Proposition 3.1).
Conversely, we prove that any group satisfying assertion (ii) or (iii) can
be realized as a Veech group of a tame flat surface which is a Loch Ness
monster (Lemmas 3.7 and 3.8).
In Section 4 we study the remaining case, where G is countable. In other

words, we prove that any group satisfying assertion (i) of Theorem 1.1 can
be realized as a Veech group of a tame flat surface which is a Loch Ness
monster (Proposition 4.1). This construction is the main point of the article.
Conversely, we prove that if we assume in the hypothesis of Theorem 1.1
that G is countable, then it satisfies assertion (i) (Lemma 4.15).

Acknowledgments. — We thank the faculty and staff of the Max-Planck
Institut in Bonn, where part of this work was carried out. We further-
more thank the Landesstiftung Baden-Württemberg and the Department
of Mathematics of the University of Karlsruhe that enabled the authors to
meet and work together.
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2. Preliminaries

In this section we briefly recall the definition and features of non-compact
flat surfaces. For more details, we refer the reader to [9].

Let (S, ω) be a pair formed by a connected Riemann surface S and a
non-zero holomorphic 1-form ω on S. Denote by Z(ω) ⊂ S the zero locus
of the form ω. Local integration of ω endows SrZ(ω) with an atlas whose
transition functions are translations of C. The pullback of the standard
translation invariant flat metric on the complex plane defines a flat metric
on S r Z(ω). Let Ŝ be the metric completion of S r Z(ω). Each point in
Z(ω) has a neighborhood isometric to the neighborhood of 0 ∈ C with the
metric coming from the 1-form zkdz for some k > 1 (which is the metric
induced via a cyclic branched covering of C). The points in Z(ω) are called
finite angle singularities.

Definition 2.1. — A point p ∈ Ŝ is called an infinite angle singularity
of S, if there exists a neighborhood of p isometric to the neighborhood of
the branching point of the infinite cyclic branched covering of C. We denote
the set of infinite angle singularities of Ŝ by Y∞(ω).

Definition 2.2. — The pair (S, ω) is called a tame flat surface, if ŜrS
equals Y∞(ω).

Let Aff+(S) be the group of affine orientation preserving homeomor-
phisms of a tame flat surface S (we assume that S comes with a preferred
1-form ω). Consider the differential

Aff+(S) D−→ GL+(2,R)

that associates to every ϕ ∈ Aff+(S) its (constant) Jacobian derivative Dϕ.

Definition 2.3. — Let S be a tame flat surface. We call D(Aff+(S))
the Veech group of S.

Observe that for a compact flat surface the image of D naturally lies in
SL(2,R), since affine homeomorphisms preserve the area. We define saddle
connections and holonomy vectors in the context of tame non-compact flat
surfaces exactly in the same way as for compact ones, see [9].
We refer the reader to [6, 10] for more details on Veech groups of compact

flat surfaces, and to [3, 4, 9, 2] for explicit examples of Veech groups of tame
flat surfaces which are Loch Ness monsters.

ANNALES DE L’INSTITUT FOURIER
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3. Uncountable Veech groups

In this section we prove Theorems 1.1 and 1.2 in the case where G is un-
countable. Under this assumption we restate Theorem 1.1 in the following
way.

Proposition 3.1. — If the Veech group of a tame flat surface is un-
countable, then it is conjugate to P , conjugate to P ′ or equals the whole
GL+(2,R).

We begin the proof with the following.

Lemma 3.2. — If a tame flat surface S has no saddle connections and
its Veech group G is uncountable, then G equals P ′ or GL+(2,R). In the
latter case S is a cyclic branched covering of the flat plane.

Proof. — First assume that S has no singularities. Then the universal
cover of S is the flat plane and S is either (i) the plane itself, or (ii) a
flat cylinder which is a quotient of the plane by a cyclic group, or (iii) it
is compact. Since G is uncountable, S is not compact. In case (i) we have
that G = GL+(2,R). In case (ii) we have that G is conjugate to P ′ by a
rotation.
Now assume that S has at least one singularity x0 (which might be of

finite or infinite angle). Since there are no saddle connections, x0 is the
unique singularity of S. Moreover, since there are no saddle connections
joining x0 to itself, Ŝ is simply connected. We conclude that Ŝ is isometric to
a (possibly infinite) cyclic branched covering of R2. Hence G = GL+(2,R).

�

To complete the proof of Proposition 3.1 it remains to prove the following.

Lemma 3.3. — If the Veech group G of a tame flat surface S carrying
saddle connections is uncountable, then G is conjugate to P or P ′.

Proof.
Step 1. All saddle connections of S are parallel.
Since there are only countably many homotopy classes of arcs joining

singularities of Ŝ, the set of saddle connections of S, and thus the set
V ⊂ R2 of holonomy vectors, is countable. If s1 and s2 are two non-parallel
saddle connections, then let v1, v2 be their holonomy vectors. For each
g ∈ G we define η(g) = (g(v1), g(v2)) ∈ V × V . Since {v1, v2} is a basis of
R2, we have that η is an embedding. But V ×V is countable. Contradiction.
This concludes Step 1.

TOME 61 (2011), FASCICULE 2
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Without loss of generality we may assume that all saddle connections
are horizontal. Let Spine(S) ⊂ Ŝ be the union of the set of singularities
together with all singular horizontal geodesics (this includes saddle con-
nections). We claim that Spine(S) is connected and complete w.r.t. its
intrinsic path metric. The latter follows from the completeness of Ŝ. The
former follows from the fact that any two singularities of Ŝ are connected
by a concatenation of saddle connections, which are horizontal by Step 1.

Step 2. We have P ⊂ G.
Let C be the closure of a component of ŜrSpine(S). It is a complete Rie-

mann surface with nonvanishing holomorphic 1-form and horizontal bound-
ary. The boundary of C is connected, since otherwise there would be a
non-horizontal saddle connection joining singularities in different bound-
ary components. Hence C is either a half-plane or a half-cylinder with
horizontal boundary. In particular, for any g ∈ P we have that C admits
an orientation preserving affine homeomorphism with differential g, which
fixes its boundary. Hence for any g ∈ P , there is an orientation preserving
affine homeomorphism g ∈ Aff+(S), with Dg = g, which fixes Spine(S) and
is prescribed independently on each component of the complement. This
means that we have P ⊂ G.

Step 3. We have G ⊂ P ′.
Let ~e denote the unit horizontal vector in R2. We prove that for every

g ∈ G we have g(~e) = ±~e. Otherwise, assume that there is an orientation
preserving affine homeomorphism g ∈ Aff+(S) with differential g for which
g(~e) = λ~e, with |λ| 6= 1. Then g or its inverse acts as a contraction on
Spine(S). By the Banach fixed point theorem, the iterates of any singularity
under g or its inverse accumulate on the fixed point of g. Since the set of
singularities is invariant under the action of g, this implies that it has an
accumulation point. Contradiction.
We summarize. By Steps 2 and 3 we have P ⊂ G ⊂ P ′. Since P is of

index 2 in P ′, we have G = P or G = P ′. �

We now provide examples of Loch Ness monsters with Veech groups P
and P ′. First we introduce the following vocabulary, which will become
particularly useful in Section 4.

Definition 3.4. — Let S be a tame flat surface. A mark on S is an
oriented finite length geodesic (with endpoints) on S which does not meet
singularities. If S is simply connected, a mark is determined by its end-
points. The vector of a mark is its holonomy vector, which lies in R2.

ANNALES DE L’INSTITUT FOURIER



VEECH GROUPS OF LOCH NESS MONSTERS 679

If m, m′ are two disjoint marks on S with equal vectors, we can perform
the following operation. We cut S along m and m′, which turns S into a
surface with boundary consisting of four straight segments. Then we reglue
these segments to obtain a tame flat surface S′ different from the one
we started from. We say that S′ is obtained from S by regluing along m
and m′.
Let S0 = S r (m ∪m′). Then S′ admits a natural embedding i of S0. If

A ⊂ S0, then we say that i(A) is inherited by S′ from A.

Remark 3.5. — If S′ is obtained from S by regluing, then the number of
singularities of S′ of a fixed angle equals the one of S, except for 4π-angle
singularities, whose number is greater by 2 in S′ (we put∞+ 2 =∞). The
Euler characteristic of S is greater by 2 than the Euler characteristic of S′.

We can extend the notion of regluing to families of marks.

Definition 3.6. — Let S be a tame flat surface. Assume that M =
(mn)∞n=1 andM′ = (m′n)∞n=1 are ordered families of disjoint marks, which
do not accumulate in Ŝ, and such that the vector of mn equals the vector
of m′n, for each n. Let S0 = S and let Sn be obtained from Sn−1 by
regluing along mn and m′n. Let S′ be the Riemann surface equipped with
a holomorphic 1-form which is the limit of Sn. The limit exists since the
marks do not accumulate, but might not be a tame flat surface. We say that
S′ is obtained from S by regluing alongM andM′. If A ⊂ Sr (M∪M′),
then we define the subset of S′ inherited from A as before.

Convention. — An oriented flat plane is a Euclidean plane together
with a choice of a fixed direction, the vertical direction under an identifi-
cation with R2.

We are ready to perform the following constructions.

Lemma 3.7. — There is a tame Loch Ness monster with Veech group P .

Proof. — Let A and A′ be two oriented flat planes, equipped with origins
that allow us to identify them with R2. Let C, C′ be families of marks with
endpoints (4n + 1)~e, (4n + 3)~e, for n > 1, on A, A′, respectively, where ~e
denotes, as before, the horizontal unit vector in R2. Let Â be the tame flat
surface obtained from A ∪A′ by regluing along C and C′.

The group P acts on A and A′ under identification with R2. This action
carries over to Â. Hence the Veech group G of Â contains P . By Lemma 3.3,
we have G = P or G = P ′. But in the latter case, the affine homeomor-
phism with differential − Id must act on Spine(Â) (defined in the proof of

TOME 61 (2011), FASCICULE 2



680 Piotr PRZYTYCKI, Gabriela SCHMITHÜSEN & Ferrán VALDEZ

Lemma 3.3) by an orientation reversing isometry. Since there is no such
isometry, we conclude that G equals P .

By Remark 3.5, we have that Â has infinite genus. It has one end (this
follows in particular from Lemma 4.3). Hence Â is a Loch Ness monster
with Veech group P . �

Lemma 3.8. — There is a tame Loch Ness monster with Veech group P ′.

Proof. — Similarly as in the proof of Lemma 3.7, let A and A′ be two
oriented flat planes, equipped with origins that allow us to identify them
with R2. Let C, C′ be families of marks with endpoints (4n+ 1)~e, (4n+ 3)~e,
on A,A′, respectively, where this time we take n ∈ Z, and we order the
marks into sequences. Let Â be the tame flat surface obtained from A∪A′
by regluing along C and C′.
This time the action of the whole group P ′ carries over to Â. Hence the

Veech group G of Â contains P ′. By Lemma 3.3 we have G = P ′. The
surface Â is a Loch Ness monster by the same argument as in the proof of
Lemma 3.7. �

Lemmas 3.7 and 3.8 prove Theorem 1.2 in the case where G is uncount-
able.

4. Countable Veech groups

The main part of this section is devoted to the proof of Theorem 1.2 in
the case where the group G ⊂ GL+(2,R) is countable. In other words, we
prove the following.

Proposition 4.1. — For any countable subgroup G of GL+(2,R) dis-
joint from U = {g ∈ GL+(2,R) : ‖g‖ < 1} there exists a tame flat surface
S = S(G), which is a Loch Ness monster, with Veech group G.

In fact the group Aff+(S) will map isomorphically onto G under the
differential map. This means that the group G will act on S via affine
homeomorphisms with appropriate differentials. Here we adopt the con-
vention that an action of a group G on a set X is a mapping (g, x)→ g · x
satisfying (gh) · x = g · (h · x) and Id · x = x.
We begin with an outline of the proof of Proposition 4.1. We make use of

the fact that any group G acts on its Cayley graph Γ. We turn Γ equivari-
antly into a flat surface. With each vertex g of Γ we associate a flat surface
Vg which can be cut into a flat plane Ag and a decorated surface L̃′g, whose
role is explained later.

ANNALES DE L’INSTITUT FOURIER
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To guarantee tameness, we do not want the singularities of different Vg to
accumulate. Let (g, g′) be an edge of Γ such that g−1g′ is the i’th generator
of G. We associate to this edge a buffer surface Êig which connects Vg to
Vg′ , but separates them by a definite distance.
We keep track of the end in the following way. First we provide that each

Vg and Êig is one-ended. Then we provide that after gluing all Vg and Êig,
their ends actually merge into one end.
In this way we construct a one-ended flat surface with a faithful affine

action of G. The role of the decorated surface L̃′g is to prevent the group
of orientation preserving affine homeomorphisms of the surface from being
richer than G. To achieve this, L̃′g is decorated with special singularities.
This guarantees that every orientation preserving affine homeomorphism
of the surface permutes this set of singularities and with some more care
we establish that it actually acts as one of the elements of G.

We begin by explaining how to obtain a nice action of GL+(2,R) on a
disjoint union of affine copies of any flat surface.

Definition 4.2. — Let SId be a tame flat surface. For each
g ∈ GL+(2,R), we denote by Sg the affine copy of SId, whose atlas differs
from the one of SId by post-composing each chart with g. In other words,
Sg comes with a canonical affine homeomorphism g : SId → Sg with differ-
ential g. Moreover, GL+(2,R) acts on the union of all Sg′ so that g maps
each Sg′ onto Sgg′ , with differential g.

We provide the following criterion for 1-endedness. Let Γ be a connected
graph. Let A be the union, over v ∈ Γ(0), of 1-ended tame flat surfaces Av
without infinite angle singularities. Assume that each Av is equipped with
infinite families of marks Cev , for each edge e issuing from v, and additional,
possibly finite, two families of marks Cv, C′v, of the same cardinality. Assume
that all these marks are disjoint and do not accumulate. In particular this
implies that Γ(0) is countable. Moreover, assume that for each edge e =
(v, v′) the vectors of the marks in Cev and Cev′ agree. Additionally, assume
that the vectors of the marks in Cv and C′v agree.

Lemma 4.3. — Let S be the surface obtained from A by regluing along
Cev and Cev′ , for all edges e = (v, v′) in Γ(1), and along Cv and C′v, for all
vertices v in Γ(0). Then S is 1-ended. If Γ has an edge or if it has only
one vertex v but with infinite Cv (or if Av has infinite genus), then S has
infinite genus.

TOME 61 (2011), FASCICULE 2
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Proof. — For each vertex v in Γ(0), choose a basepoint Ov in Av. Let
Bv(r) be the closure in S of the subset inherited from the ball of radius r
around Ov with appropriate marks removed.
We order all vertices of Γ into a sequence (vj)∞j=1. For l > 1, let

Kl =
l⋃

j=1
Bvj

(l).

Then Kl is a family of compact sets which has the property that each
compact set in S is contained in Kl, for some l > 1.
Now we prove that the complement of each Kl is connected. Since the Av

are complete non-positively curved and 1-ended, since balls and the marks
we consider are convex, and since those marks are disjoint, we have that
all

A′vj
= Avj r (Bvj (l) ∪e Cevj

∪ Cvj ∪ C′vj
)

are connected. Since Γ is connected, all Cev are infinite, and Kl intersects
only a finite number of marks, we have that all A′vj

are in the same con-
nected component of S r Kl. Since the union of A′vj

is dense in S r Kl,
this implies that S rKl is connected.

Thus S is 1-ended. If Γ has at least one edge or Cv is infinite, then S has
infinite genus by Remark 3.5. �

We describe the construction of the buffer surfaces, which will correspond
to the edges of the Cayley graph Γ of G. We denote the base vectors (1, 0),
(0, 1) of R2 by ~e and ~f , respectively.

Construction 4.4. — Let EId, E′Id be two oriented flat planes,
equipped with origins that allow us to identify them with R2. We define
the following families of vector ~e marks on EId∪E′Id. Let S be the family of
marks on EId with endpoints 4n~e, (4n+ 1)~e, for n > 1, and let Sglue be the
family of marks on EId with endpoints (4n+2)~e, (4n+3)~e, for n > 1. Let S ′
be the family of marks on E′Id with endpoints 2n~f , 2n~f +~e, for n > 1, and let
S ′glue be the family of marks on E′Id with endpoints (2n+1)~f , (2n+1)~f +~e,
for n > 1. Let ÊId be the tame flat surface obtained from EId and E′Id by
regluing along Sglue and S ′glue. We call ÊId the buffer surface. We record
that ÊId comes with distinguished families of marks inherited from S,S ′,
for which we retain the same notation.

Lemma 4.5. — Let ÊId be the buffer surface and let g ∈ GL+(2,R)rU .
Then the distance in Êg (see Definition 4.2) between gS and gS ′ is at
least 1√

2 .
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VEECH GROUPS OF LOCH NESS MONSTERS 683

Proof. — Denote by d̂ the distance in Êg between gS and gS ′. Let d be
the distance in Eg between gS and gSglue and let d′ be the distance in E′g
between gS ′glue and gS ′. Then we have d̂ > d+d′. Moreover, d = |g(~e)| and

d′ = min
|s|61

|g(~f + s~e)|.

Let s ∈ [−1, 1] be such that the minimum is attained, that is d′ = |g(~f+s~e)|.
If d+ d′ < 1√

2 , then

|g(~f)| 6 |g(~f + s~e)|+ |s‖g(~e)| < 1√
2
.

Hence for any v = x~e + y~f ∈ R2 we have

|g(v)| 6 |x‖g(~e)|+ |y‖g(~f)| < 1√
2

(|x|+ |y|) 6
√
x2 + y2 = |v|.

Thus ‖g‖ < 1. Contradiction. �

Now we construct the decorated surface which will force rigidity of the
affine homeomorphism group.

Construction 4.6. — Let LId be an oriented flat plane, equipped with
an origin. Let L̃Id be the threefold cyclic branched covering of LId, which
is branched over the origin. Denote the projection map from L̃Id onto LId
by π. Denote by R the closure in L̃Id of one connected component of the
pre-image under π of the open right half-plane in LId. On R consider co-
ordinates induced from LId via π. Denote by C′ the family of marks in R
with endpoints (2n − 1)~e, 2n~e, for n > 1, and denote by t and b the two
marks in L̃Id with endpoints in R with coordinates ~f , 2~f and −2~f ,−~f , re-
spectively. Let L̃′Id be the tame flat surface obtained from L̃Id by regluing
along t and b. We call L̃′Id the decorated surface.

Remark 4.7. — We keep the notation C′ for the family of marks inher-
ited by L̃′Id. We denote the point inherited from the origin by O. Then O
is a 6π-angle singularity outside C′.

Remark 4.8. — Let S be a tame flat surface with a non-accumulating
(in Ŝ) family C of marks with vectors ~e. Assume that S′ is obtained from
L̃′Id ∪ S by regluing along C′ and C. Then there are only three saddle con-
nections issuing from the point inherited from O by S′. Their interiors are
all contained in the subset inherited from R r (t ∪ b ∪ C′) and their holo-
nomy vectors equal −~f ,~e, and ~f . Hence the angles between these saddle
connections are π

2 ,
π
2 and 5π.
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We are now ready for our main construction. Recall that U denotes the
set of linear mappings of norm less than one.

Construction 4.9. — Let G be a countable subgroup of GL+(2,R)r
U . Denote the generators of G by ai, where i > 1. If G is trivial, we consider
a single generator a1 = Id. (Note that in general we can take ai to be all of
the elements of G, but we prefer to think of them as only the generators.)
Let AId be an oriented flat plane, equipped with an origin. Let A be the
union of Ag over g ∈ G (see Definition 4.2).

For i > 0 let Ci be the family of marks on AId with endpoints i~f +
(2n− 1)~e, i~f + 2n~e, for n > 1. All these marks are pairwise disjoint. Now,
given x1, y1 ∈ R, consider the family C−1 of marks on AId with endpoints
(nx1, y1), (nx1, y1) + a−1

1 (~e), for n > 1. Choose x1 > 0 sufficiently large
and y1 < 0 sufficiently small (i.e. −y1 > 0 sufficiently large) so that all
these marks are pairwise disjoint and disjoint from the ones in Ci for i > 0.

Observe that a translate of the lower half-plane in AId is avoided by all
already constructed marks. In this way we can inductively, for all i > 2,
choose xi,−yi ∈ R sufficiently large so that the marks with endpoints
(nxi, yi), (nxi, yi) + a−1

i (~e), for n > 1, are pairwise disjoint and disjoint
with the previously constructed marks. We denote these families by C−i.
None of the described marks accumulate.
Let L̃′Id be the decorated surface from Construction 4.6 and let L̃′ be the

union of L̃′g over g ∈ G (see Definition 4.2). For each g ∈ G let Vg be the
flat surface obtained from Ag ∪ L̃′g by regluing along the families of marks
gC0 and gC′. The regluing is allowed, since all vectors of these marks equal
g(~e). The surface Vg is complete, in particular it is tame. Let V be the
union of the Vg over g ∈ G. The action of G on A and on L̃′ carries over to
an action on V , and we retain the same notation for this action. It still has
the property that the differential of g equals g, for each g ∈ G. We keep
the notation Ci, for i 6= 0, for the families of marks that are inherited from
the families of marks on AId by VId.

For each i > 1 we consider a copy ÊiId of the buffer surface ÊId defined
in Construction 4.4. We denote the copies of S,S ′ in ÊiId by Si,S ′i. Let
E be the union of all Êig, over g ∈ G and all i > 1. Let S = S(G) be
the Riemann surface equipped with the holomorphic 1-form obtained from
V ∪ E by regluing along the following pairs of families of marks. For each
i > 1 and g ∈ G, we reglue the family gCi with gSi and the family gS ′i
with gaiC−i. Note that this is allowed since all vectors of these marks equal
g(~e). Moreover, the action of G carries over to S, and we retain the same
notation for this action.
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Remark 4.10. — By Remarks 3.5 and 4.7 the set of singularities of S of
angle 6π is the set of the G-translates of the point inherited by S from O

(for which we retain the same notation). By Remark 4.7 the translates gO
of O in S are pairwise different, for different g ∈ G.

Lemma 4.11. — S is a Loch Ness Monster.

Proof. — This follows from Lemma 4.3 applied to the graph Γ′ obtained
from the Cayley graph Γ of G = 〈ai〉i>1. We get Γ′ from Γ by subdividing
each edge of Γ into three parts and by adding for each original vertex v of
Γ an additional vertex v′ and an edge joining v′ to v. �

Lemma 4.12. — S is a tame flat surface.

Proof. — Let V̄g, respectively Ēig, denote the closures in S of the subsets
inherited from Vg r g(

⋃
i6=0 Ci), respectively Êig r g(Si ∪ S ′i).

It is enough to prove that S is complete. Let (xk) be a Cauchy sequence
on S. By Lemma 4.5 we may assume that there is some g ∈ G such that
all xk lie in the union of V̄g and the adjacent affine buffer surfaces Ēig and
Ēi
ga−1

i

. Since the components of V̄g ∩
(⋃

i(Ēig ∪ Ēiga−1
i

)
)

form a discrete
subset in V̄g, we may assume that all xk lie in V̄g and in a single adjacent
buffer surface. Since both V̄g and the buffer surface are complete, (xk)
converges, as required. �

Lemma 4.13. — Any orientation preserving affine homeomorphism of
S is equal to g for some g ∈ G.

Proof. — Let ψ be an orientation preserving affine homeomorphism of S.
By Remark 4.10, the set of singularities of S of angle 6π is the set {gO : g ∈
G} of the G-translates of O. The image by any affine homeomorphism of
S of a singularity of angle kπ is a singularity of angle kπ. Hence ψ must
permute the set of the G-translates of O. In particular, there is g ∈ G

satisfying ψ(O) = gO. We are going to prove ψ = g, which means that
ϕ = g−1◦ψ equals the identity. For the time being we only know ϕ(O) = O.

By Remark 4.8, there are only three saddle connections issuing from O.
Exactly one angle formed by them at O exceeds π. Hence ϕ, which is an
orientation preserving affine homeomorphism fixing O, must fix all these
saddle connections. Therefore ϕ is equal to the identity in the neighborhood
of O, which implies that ϕ is the identity. �

We summarize with the following.
Proof of Proposition 4.1. — If G ⊂ GL+(2,R) r U is countable, then

Construction 4.9 provides a Riemann surface S = S(G) with a holomorphic
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1-form. Moreover, G acts on S by affine homeomorphisms with appropriate
differentials. By Lemma 4.12 the flat surface S is tame. By Lemma 4.11
it is a Loch Ness monster. By Lemma 4.13 the Veech group of S does not
exceed G. �

This establishes Theorem 1.2 in the case where the group G is countable.

Remark 4.14.
(i) If we do not require in Proposition 4.1 that our flat surface is a

Loch Ness monster, then it suffices to take only one mark from
each infinite family of marks, instead of the whole family, in Con-
struction 4.9.

(ii) If in Construction 4.9 we take, for positive odd i, the marks in Ci
to have endpoints i~f + (2n− 1− 1

2i )~e, i~f + (2n− 1
2i )~e, then there

are Euclidean triangles of arbitrarily small area, with vertices in
singularities, embedded in S. This is unlike in the case of compact
flat surfaces, where small triangles appear only if the Veech group
is not a lattice [7].

Conversely, we have the following.

Lemma 4.15. — If the Veech group G of a flat surface S is countable,
then G is disjoint from U .

Proof. — First consider the case, where S has a singularity x. Recall
that Ŝ denotes the metric completion of S and that the action of the group
of orientation preserving affine homeomorphisms of S extends to an action
on Ŝ. Suppose that there is an orientation preserving affine homeomorphism
ϕ of S with Dϕ ∈ U . Then ϕ extends to a contraction on Ŝ. By the Banach
fixed point theorem, the sequence ϕk(x) converges in Ŝ. If x is not the fixed
point of ϕ, then this contradicts tameness.
Assume now that x is the fixed point of ϕ and the only singularity of S.

Then S is simply connected. Otherwise by iterating under ϕ a homotopi-
cally nontrivial loop going through x we obtain arbitrarily short homotopi-
cally nontrivial loops through x, which contradicts tameness. Hence S is
a cyclic branched covering of R2 and thus G = GL+(2,R) which is not
countable, contradiction.
If S does not have singularities, its universal cover is the flat plane. Since

G is countable, S must be a flat torus and we have G ⊂ SL(2,R) which is
disjoint from U . �

This proves Theorem 1.1 in the case where G is countable.
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