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DECOMPOSITIONS OF AN ABELIAN SURFACE AND
QUADRATIC FORMS

by Shouhei MA

Abstract. — When a complex Abelian surface can be decomposed into a prod-
uct of two elliptic curves, how many decompositions does the Abelian surface ad-
mit? We provide arithmetic formulae for the number of such decompositions.
Résumé. — Quand une surface abélienne complexe admet une décomposition

en produit de deux courbes elliptiques, combien y a-t-il de telles décompositions
possibles ? Nous donnons des formules arithmétiques pour le nombre de telles
décompositions.

1. Introduction and main results

Throughout this paper, an Abelian surface means a complex Abelian
surface.
Let A be an Abelian surface which can be decomposed into a product

of two elliptic curves. In general, the choice of a decomposition of A is not
unique even up to isomorphism. In the present paper we study the number
of decompositions of A. For this problem, there are pioneering works of
Hayashida [5] and Shioda-Mitani [13]: Let ρ(A) be the Picard number of
A and let TA be the transcendental lattice of A, which is the orthogonal
complement of the Néron-Severi lattice in H2(A,Z). When ρ(A) = 4 and
TA is primitive as an even lattice, Shioda and Mitani, with the cooperation
of Hirzebruch, expressed the number of decompositions of A in terms of the
class number of a certain imaginary quadratic order determined by A. On
the other hand, Hayashida calculated the number of decompositions when
ρ(A) = 3, in connection with the number of principal polarizations.

Keywords: Abelian surface, elliptic curve, binary quadratic form.
Math. classification: 14K02, 14H52, 11E16.



718 Shouhei MA

It is natural to expect counting formulae for the decompositions for all
decomposable Abelian surfaces, which complete the works of Hayashida
and Shioda-Mitani. The purpose of this paper is to give such counting
formulae uniformly by a lattice-theoretic method. Firstly we give precise
definitions.

Definition 1.1. — Let A be an Abelian surface.
(1) A decomposition of A is an ordered pair (E1, E2) of elliptic curves in

A such that the natural homomorphism E1 × E2 → A is an isomorphism.
The Abelian surface A is decomposable if there exists a decomposition of
A.

(2) Two decompositions (E1, E2) and (F1, F2) of A are strictly isomorphic
if E1 ' F1 and E2 ' F2, or equivalently, if there exists an automorphism f

of A such that f(Ei) = Fi. Two decompositions (E1, E2) and (F1, F2) of A
are isomorphic if (E1, E2) is strictly isomorphic to (F1, F2) or to (F2, F1).

There are known several criterions for an Abelian surface to be decom-
posable. For example, Abelian surfaces with Picard number 4 are always
decomposable [13]. Ruppert [11] gave a criterion in terms of the period
matrix.
Let Dec(A) (resp. D̃ec(A)) be the set of isomorphism (resp. strict iso-

morphism) classes of decompositions of A. We put

(1.1) δ(A) = |Dec(A) | and δ̃(A) = | D̃ec(A) |.

The number δ(A) is regarded as the number of decompositions of A, while
δ̃(A) is considered as the number of decompositions counted with multi-
plicity. If we define

(1.2) δ0(A) =
∣∣∣ {E : elliptic curve, E × E ' A}/ '

∣∣∣,
then an obvious relation

(1.3) δ̃(A) = 2δ(A)− δ0(A)

holds. Hence the knowledge of δ̃(A) in addition to that of δ(A) would enable
us to study the decompositions of A more closely.
We shall express the numbers δ(A) and δ̃(A) in terms of the arithmetic

of the transcendental lattice TA. Let G(TA) be the genus of the lattice TA.
For an even lattice T let DT be the discriminant form of T , which is a
finite quadratic form associated to T . We have a natural homomorphism
O(T )→ O(DT ) between the isometry groups. For a natural number n > 1,
let τ(n) be the number of the prime divisors of n. We put τ(1) = 1. Our
formula for δ(A) is stated as follows.
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DECOMPOSITIONS OF ABELIAN SURFACE 719

Theorem 1.2. — Let A be a decomposable Abelian surface. Then 2 6
ρ(A) 6 4 and the decomposition number δ(A) is given as follows.

(1) When ρ(A) = 2, one has δ(A) = 1.
(2) When ρ(A) = 3, one has δ(A) = 2τ(N)−1 where 2N = −det(TA).

(3) When ρ(A) = 4 and TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
, n > 1, one has

δ(A) =
∑

T∈G(TA)

|O(DT )/O(T ) |.

(4) When ρ(A) = 4 and TA '
(

2n 0
0 2n

)
or
(

2n n

n 2n

)
, n > 1, one has

δ(A) =



(2−4 + 2−τ(n)−3) · |O(DTA)| if TA '
(

2n 0
0 2n

)
,

3−2 · (2−2 + 2−τ(n)) · |O(DTA)| if TA '
(

2n n

n 2n

)
, n : odd,

3−2 · (2−2 + 2−τ(2−1n)) · |O(DTA)| if TA '
(

2n n

n 2n

)
, n : even.

On the other hand, the number δ̃(A) is expressed in slightly different way
(in the case of ρ(A) = 4). The set of proper equivalence classes of oriented
lattices belonging to the genus of TA is denoted by G̃(TA).

Theorem 1.3. — Let A be a decomposable Abelian surface. The strict
decomposition number δ̃(A) is given as follows.

(1) If ρ(A) = 2, then δ̃(A) = 2.
(2) If ρ(A) = 3, then

δ̃(A) =
{

1, N = 1,
2τ(N), N > 1,

where 2N = −det(TA).

(3) If ρ(A) = 4 and TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
, n > 1, then

δ̃(A) = 2−1 · |G̃(TA)| · |O(DTA)|.

(4) If ρ(A) = 4 and TA '
(

2n 0
0 2n

)
or
(

2n n

n 2n

)
, n > 1, then δ̃(A) =

2δ(A).

The number |O(DTA)| appearing in the case of ρ(A) = 4 will be calcu-
lated explicitly in Section 6. On the other hand, the numbers |G̃(TA)| and
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720 Shouhei MA

|G(TA)| are rather deep and classical quantities. The reader may consult to
[4] for the calculations of these quantities.

When ρ(A) = 4 and TA is primitive as an even lattice, we have two
types of formulae for δ(A) (or for δ̃(A)): Shioda and Mitani’s ideal-theoretic
formula ([13], see Theorem 5.10) and our lattice-theoretic formula. These
two formulae are unified by the classical relation between primitive binary
forms and quadratic fields. In particular, the comparison of two formulae
will lead to an expression of the number of genera in a class group in terms
of the discriminant form (Corollary 5.11).
The counting formula in the case of ρ(A) = 3 is known to Hayashida

[5], who calculated δ(A) as the number of reducible principal polarizations.
The number N is defined in a different way in [5]. Given a decomposition
(E1, E2) of A with ρ(A) = 3, we will determine explicitly all other members
of Dec(A) from (E1, E2).
The rest of the paper is organized as follows. In Sect.3, we prove general

formulae for δ(A) and δ̃(A). Here Shioda’s Torelli theorem for Abelian
surfaces [12] and the technique of discriminant form developed by Nikulin
[10] are applied. These weak formulae will be analyzed in more detail for
each Picard number. The case of Picard number 2 is well-known, and can
also be derived immediately from the weak formula. The case of Picard
number 3 is treated in Sect.4, and the case of Picard number 4 is studied
in Sect.5. In Sect.6 we will calculate the order of the isometry group O(DL)
for a rank 2 even lattice L. This part is purely algebraic and may be read
independently.

2. Conventions

Let A be an Abelian surface. The Néron-Severi (resp. transcendental)
lattice of A is denoted by NSA (resp. TA). The Picard number of A is
denoted by ρ(A). For a curve C ⊂ A its class in NSA is written as [C].
The positive cone C+

A of A is the connected component of the open set
{x ∈ NSA ⊗ R, (x, x) > 0} containing the ample classes. The group of
Hodge isometries of TA, i.e., isometries of TA which preserve H2,0(A) in
TA ⊗ C, is denoted by OHodge(TA).
Let L be an even lattice, i.e., a free Z-module of finite rank equipped with

a non-degenerate integral symmetric bilinear form (, ) satisfying (l, l) ∈ 2Z
for all l ∈ L. The isometry group of L is denoted by O(L). Let SO(L) =
{γ ∈ O(L), det(γ) = 1}, which is of index at most 2 in O(L). For an
integer n ∈ Z, L(n) denotes the lattice (L, n(, )). An even lattice L is

ANNALES DE L’INSTITUT FOURIER



DECOMPOSITIONS OF ABELIAN SURFACE 721

primitive if L 6' L′(n) for any even lattice L′ and n > 1. On the other
hand, a sublattice M (resp. a vector l) of L is said to be primitive if L/M
(resp. L/Zl) is free. In the rest of the paper, the distinction between these
two notions of primitivity will be clear from the context.

Let L∨ = Hom(L,Z) be the dual lattice of L, which is canonically em-
bedded in the quadratic space L⊗Q and contains L. On the finite Abelian
group DL = L∨/L a natural quadratic form qL : DL → Q/2Z is defined by
qL(x + L, x + L) = (x, x) + 2Z. This finite quadratic form (DL, qL), often
abbreviated as DL, is called the discriminant form of L. A homomorphism
rL : O(L)→ O(DL, qL) is defined naturally. For a primitive sublattice L of
an even unimodular lattice M with the orthogonal complement L⊥, there
exists a canonical isometry (cf. [10])

(2.1) (DL, qL) '−→ (DL⊥ ,−qL⊥).

The genus G(L) of an even lattice L is the set of isometry classes of
even lattices M satisfying L⊗Zp 'M ⊗Zp for every prime number p and
sign(L) = sign(M). By Nikulin’s theorem [10] L and M are in the same
genus if and only if (DL, qL) ' (DM , qM ) and sign(L) = sign(M). We also
consider the set G̃(L) of orientation-preserving isometry classes of oriented
even lattices which (as unoriented lattices) belong to G(L). The set G̃(L)
is called the proper genus of L. Writing

(2.2) G1(L) = {M ∈ G(L) |O(M) 6= SO(M)}

and G2(L) = G(L)− G1(L), we have

(2.3) |G̃(L)| = |G1(L)|+ 2|G2(L)|.

The hyperbolic plane is the rank 2 even unimodular lattice

(2.4) U = Ze+ Zf, (e, e) = (f, f) = 0, (e, f) = 1.

Throughout the paper we fix this basis {e, f} for U . The orientation-
reversing isometry

(2.5) ι0 : U −→ U, ι0(e) = f, ι0(f) = e

will be used several times.

TOME 61 (2011), FASCICULE 2



722 Shouhei MA

3. Weak formulae

3.1. A formula for δ(A)

Let A be an Abelian surface. For a decomposition (E1, E2) of A we define
an embedding ϕ : U ↪→ NSA by

(3.1) ϕ(e) = [E1], ϕ(f) = [E2],

where e, f ∈ U are as defined in (2.4). Since ([Ei], [Ei]) = 0 and ([E1], [E2]) =
1, ϕ is certainly an embedding of U .

Definition 3.1. — Let

(3.2) ΓA := r−1
NS

(
λ ◦ rT (OHodge(TA))

)
⊂ O(NSA),

where rNS : O(NSA) → O(DNSA) and rT : O(TA) → O(DTA) are the
natural homomorphisms, and λ : O(DTA) ' O(DNSA) is the isomorphism
induced by the isometry (DTA , qTA) ' (DNSA ,−qNSA) (see (2.1)).

We have an obvious inclusion Ker(rNS) · {±id} ⊂ ΓA. Let G be the
group of Hodge isometries of H2(A,Z), i.e., isometries of H2(A,Z) which
preserve H2,0(A) in H2(A,C). By Nikulin’s theorem ([10] Corollary 1.5.2),
the group ΓA can be written as

(3.3) ΓA = Image (G→ O(NSA) ).

Proposition 3.2. — Let (E1, E2) and (F1, F2) be decompositions of
an Abelian surface A and let ϕ, ψ be the corresponding embeddings of U .
Then (E1, E2) and (F1, F2) are isomorphic if and only if ϕ ∈ ΓA · ψ.

Proof. — If (E1, E2) and (F1, F2) are strictly isomorphic, there exists
an automorphism f of A satisfying f(Ei) = Fi. Then f∗([Fi]) = [Ei] and
f∗|NSA ∈ ΓA so that we have ϕ ∈ ΓA · ψ. Let ι0 be the isometry of U
defined in (2.5). The embedding associated to the decomposition (E2, E1)
is

ϕ ◦ ι0 =
(
(ϕ ◦ ι0 ◦ ϕ−1)|ϕ(U) ⊕ idϕ(U)⊥

)
◦ ϕ ∈ ΓA · ϕ.

Therefore ϕ and ψ are ΓA-equivalent if (E1, E2) and (F1, F2) are isomor-
phic.
Conversely, suppose that ϕ = γ ◦ ψ for some isometry γ ∈ ΓA. By (3.3)

γ can be extended to a Hodge isometry Φ : H2(A,Z) → H2(A,Z). When
det(Φ) = 1, Shioda’s Torelli theorem ([12] Theorem 1) assures the existence
of an automorphism f of A such that f∗ = Φ or −Φ. Since Φ preserves the

ANNALES DE L’INSTITUT FOURIER



DECOMPOSITIONS OF ABELIAN SURFACE 723

cone C+
A , we have f∗ = Φ. Then f∗([Fi]) = [Ei] so that f(Ei) = Fi. On the

other hand, when det(Φ) = −1, consider the Hodge isometry

Ψ :=
(

(ϕ ◦ ι0 ◦ ϕ−1)|ϕ(U) ⊕ idϕ(U)⊥
)
◦ Φ : H2(A,Z)→ H2(A,Z).

As above, there exists an automorphism g of A such that g∗ = Ψ. Hence
(E1, E2) is strictly isomorphic to (F2, F1). �

Let
Emb(U,NSA)

be the set of embeddings of U into NSA. By Proposition 3.2 an injective
map

(3.4) Dec(A) ↪→ ΓA\Emb(U,NSA)

is defined. To prove its surjectivity, we need the following well-known propo-
sition. A non-zero vector l ∈ NSA is isotropic if (l, l) = 0.

Lemma 3.3 (cf.[2]). — Every primitive isotropic vector of NSA con-
tained in the closure of the cone C+

A is the class of an elliptic curve in
A.

Now we have

Proposition 3.4. — The map defined in (3.4) is bijective.

Proof. — It suffices to prove the surjectivity. Let ϕ : U ↪→ NSA be an
embedding of lattices. Composing with −id if necessary, we may assume
that the vector ϕ(e) is contained in the closure of C+

A . As (ϕ(e), ϕ(f)) = 1,
the vector ϕ(f) is also contained in the closure of C+

A . By the above Lemma
3.3, there exist elliptic curves E1, E2 in A such that [E1] = ϕ(e) and [E2] =
ϕ(f). As ([E1], [E2]) = 1, we have E1 ∩ E2 = {0} so that (E1, E2) is a
decomposition of A. The embedding associated with (E1, E2) is ϕ. �

Corollary 3.5. — An Abelian surface A is decomposable if and only
if NSA admits an embedding of the hyperbolic plane U .

Proposition 3.6. — Let L be an even lattice satisfying NSA ' U ⊕L.
Then ∣∣∣ ΓA\Emb(U,NSA)

∣∣∣ =
∑

M∈G(L)

∣∣∣OHodge(TA)\O(DM )/O(M)
∣∣∣.

Proof. — For each even latticeM ∈ G(L) there exists an embedding ϕM :
U ↪→ NSA with ϕM (U)⊥ ' M by Nikulin-Kneser’s uniqueness theorem

TOME 61 (2011), FASCICULE 2



724 Shouhei MA

(Corollary 1.13.3 of [10]). We have the decomposition

ΓA\Emb(U,NSA) =
⊔

M∈G(L)

ΓA\{ ϕ : U ↪→ NSA, ϕ(U)⊥ 'M }

=
⊔

M∈G(L)

ΓA\ (O(NSA) · ϕM )

'
⊔

M∈G(L)

ΓA\O(NSA)/O(M).

We apply the homomorphism r : O(NSA)→ O(DNSA), which is surjective
by Nikulin’s theorem ([10] Theorem 1.14.2). Since Ker(r) ⊂ ΓA, we obtain

ΓA\O(NSA)/O(M) ' r(ΓA)\O(DNSA)/r(O(M))
' r(OHodge(TA))\O(DM )/r(O(M)).

�

By Propositions 3.4 and 3.6 we obtain

Proposition 3.7. — Let A be a decomposable Abelian surface and let
L be an even lattice satisfying NSA ' U ⊕ L. Then the decomposition
number δ(A) is given by

(3.5) δ(A) =
∑

M∈G(L)

∣∣∣OHodge(TA)\O(DM )/O(M)
∣∣∣.

This formula will be analyzed in more detail in the subsequent sections.

Remark 3.8. — The decomposition number is related to the number
of principal polarizations. For example see Hayashida [5]. Herbert Lange
taught the author that Peter Schuster also studied in his thesis the number
of decompositions and principal polarizations by using class numbers of
Hermitian forms. See [7] and the references therein for more details.

3.2. A formula for δ̃(A)

Let A be an Abelian surface with ρ(A) = 4. In this case, the transcen-
dental lattice TA is a rank 2 positive-definite even lattice and the Hodge
structure of TA induces a natural orientation of TA. An isometry of TA
preserves the Hodge structure if and only if it preserves the orientation.
Thus we have

(3.6) OHodge(TA) = SO(TA).

ANNALES DE L’INSTITUT FOURIER
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Since (DTA , qTA) ' (DNSA ,−qNSA), the lattices NSA and U ⊕TA(−1) are
in the same genus. It follows from Nikulin-Kneser’s uniqueness theorem
that

(3.7) NSA ' U ⊕ TA(−1).

In particular, A is always decomposable ([13]). Let

(3.8) SΓA = ΓA ∩ SO(NSA).

For a Hodge isometry Φ of H2(A,Z) we have det(Φ) = 1 if and only if
Φ|NSA ∈ SΓA. With this fact in mind, we can prove the following proposi-
tion similarly as Propositions 3.2 and 3.4.

Proposition 3.9. — Suppose that ρ(A) = 4. For a decomposition
(E1, E2) of A we define the embedding ϕ : U ↪→ NSA by the equation
(3.1). Then this assignment induces the bijection

D̃ec(A) ' SΓA\Emb(U,NSA).

For each lattice T ∈ G(TA) we can find an embedding ϕT : U ↪→ NSA
with ϕT (U)⊥ ' T (−1). Then, as like the proof of Proposition 3.6, we have

SΓA\Emb(U,NSA) =
⊔

T∈G(TA)

SΓA\(O(NSA) · ϕT ).

The orbit O(NSA) · ϕT is decomposed as

(3.9) O(NSA) · ϕT = SO(NSA) · ϕT ∪ SO(NSA) · (ϕT ◦ ι0),

where ι0 is the isometry of U defined by the equation (2.5).

Lemma 3.10. — We have ϕT ◦ι0 ∈ SO(NSA)·ϕT if and only if SO(T ) 6=
O(T ).

Proof. — If ϕT ◦ ι0 = γ ◦ ϕT for some γ ∈ SO(NSA), this γ can be
written as

γ = (ϕT ◦ ι0 ◦ ϕ−1
T )|ϕT (U) ⊕ γ′

for some γ′ ∈ O(T (−1)) = O(T ). Then det(γ′) = det(γ) · det(ι0)−1 = −1
so that SO(T ) 6= O(T ). The converse is proved similarly. �

Therefore we have

| SΓA\(O(NSA) · ϕT ) | =
{
| SΓA\SO(NSA)/SO(T ) | , if T ∈ G1(TA),

2 · | SΓA\SO(NSA)/SO(T ) | , if T ∈ G2(TA),

where Gi(TA) are the subsets of G(TA) defined in (2.2). Now an imitation
of the proof of Proposition 3.6 yields the following formula involving the
proper genus G̃(TA).

TOME 61 (2011), FASCICULE 2



726 Shouhei MA

Proposition 3.11. — Let A be an Abelian surface with ρ(A) = 4.
Then

δ̃(A) =
∑

T∈G̃(TA)

∣∣∣ SO(TA)\O(DTA)/SO(T )
∣∣∣.

We will study this formula more closely in Section 5.

4. The case of Picard number 3

Let A be a decomposable Abelian surface with ρ(A) = 3. Then NSA '
U ⊕ 〈−2N〉 for some N ∈ Z>0. This natural number N may be calculated
by

(4.1) N = 1
2det(NSA) = −1

2det(TA).

We also have the following.

Proposition 4.1. — Let (E1, E2) be a decomposition of A. Then

(4.2) N = min
{

degφ
∣∣∣ φ : E1 → E2 isogeny

}
.

In particular, the right hand side of (4.2) is independent of the choice of
(E1, E2).

Proof. — Let l ∈ NSA be a generator of the rank 1 lattice

(Z[E1] + Z[E2])⊥ ∩NSA ' 〈−2N〉.

The class [E1] + l+N [E2] ∈ NSA is a primitive isotropic vector contained
in the closure of C+

A so that there exists an elliptic curve E in A with
[E] = [E1] + l + N [E2]. Since ([E], [E2]) = 1 (resp. ([E], [E1]) = N), the
degree of the projection E → E1 (resp. E → E2) is 1 (resp. N). Thus we
obtain an isogeny E1 → E → E2 of degree N .
Conversely, let φ : E1 → E2 be an arbitrary isogeny. Its graph Γ ⊂ A

is an elliptic curve satisfying ([Γ], [E2]) = 1 and ([Γ], [E1]) = degφ. We
can write [Γ] = [E1] + al + (degφ)[E2] for some a ∈ Z. Then we have
degφ = a2N > N . �

Note that for (E1, E2) as in Proposition 4.1, every isogeny E1 → E2 is
of degree a2N for some a ∈ Z.

By Proposition 4.1 we have

δ̃(A) =
{

δ(A), if N = 1,
2δ(A), if N > 1.

ANNALES DE L’INSTITUT FOURIER
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Proposition 4.2 (cf. [5]). — Let A be a decomposable Abelian surface
with ρ(A) = 3 and det(TA) = −2N . Then δ(A) = 2τ(N)−1. We also have

δ̃(A) =
{

1, if N = 1,
2τ(N), if N > 1.

Proof. — The right hand side of the formula (3.5) can be written as∣∣∣OHodge(TA)\O(D〈−2N〉)/O(〈−2N〉)
∣∣∣.

As rk(TA) = 3 is odd, it follows from Appendix B of [6] that OHodge(TA) =
{±id}. The isometry group O(〈−2N〉) is clearly {±id}. Since D〈−2N〉 =
〈−1

2N 〉 ' Z/2NZ, we have (cf. [6])∣∣O(D〈−2N〉)
∣∣ =

{
1, N = 1,

2τ(N), N > 1.
�

Note that δ̃(A) can be represented simply as

δ̃(A) = |O(DNSA)| = |O(DTA)|.

Proposition 4.2 was first proved by Hayashida [5]. Hayashida defined the
number N as the minimal degree of isogeny E → F , where (E,F ) is a
given decomposition of A.
Let A = E×F be a decomposition of A. As an application of the counting

formula, we construct a set of representatives of Dec(A) from (E,F ). Let
e := [E], f := [F ], and l be a generator of the lattice 〈e, f〉⊥ ∩NSA. Let

(4.3) Σ =
{

(rσ, sσ)
∣∣∣ rσ, sσ ∈ Z>0, (rσ, sσ) = 1, rσsσ = N, rσ 6 sσ

}
.

We have |Σ| = 2τ(N)−1. For each σ ∈ Σ choose integers aσ, bσ ∈ Z satisfying
aσrσ + bσsσ = 1 and put

eσ = rσe+ sσf + l,(4.4)
fσ = b2σsσe+ a2

σrσf − aσbσl.(4.5)

The primitive isotropic vectors eσ and fσ define an embedding U ↪→ NSA.
Since we have (eσ, e) > 0 and (fσ, e) > 0, both eσ and fσ are contained in
the closure of C+

A . Thus by Lemma 3.3 the vectors eσ and fσ are the classes
of elliptic curves Eσ, Fσ ⊂ A respectively, and (Eσ, Fσ) is a decomposition
of A.

Proposition 4.3. — Let A = E×F be a decomposable Abelian surface
with ρ(A) = 3. Then the decompositions {(Eσ, Fσ)}σ∈Σ defined above
represent Dec(A) completely.
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Proof. — Since we have |Σ| = |Dec(A)| = 2τ(N)−1, it suffices to show
that (Eσ, Fσ) and (Eσ′ , Fσ′) are not isomorphic if σ and σ′ are distinct
elements of Σ. By interchanging σ and σ′ if necessary, we may assume that
rσ is not divisible by rσ′ . By (4.4) and (4.5), the degrees of the natural
projections Eσ → E and Fσ → E are respectively rσ and b2σsσ. Hence we
have an isogeny Eσ → Eσ′ of degree rσrσ′ and an isogeny Eσ → Fσ′ of
degree rσb2σ′sσ′ . Since rσrσ′ < N , we have Eσ 6' Fσ′ . On the other hand,
as b2σ′sσ′ is coprime to rσ′ , we see that rσb2σ′sσ′ is not divisible by N . Thus
we have Eσ 6' Eσ′ . �

By Proposition 4.3, we see that D̃ec(A) is represented completely by the
set {(Eσ, Fσ), (Fσ, Eσ)}σ∈Σ if N > 1.
Remark 4.4. — Let X0(N) = Γ0(N)\H be the congruence modular

curve of level N . When N > 1, the decompositions of A are related to each
other by the Atkin-Lehner involutions on X0(N) (see [8]) in the following
sense. To a decomposition (E,F ) ∈ D̃ec(A) we can associate a point of
X0(N) by considering the pair (E,Ker(φ)), where φ : E → F is an isogeny
of the minimal degree N . Then, from the definition of (Eσ, Fσ) above, one
can see that the point set in X0(N) corresponding to D̃ec(A) is acted on
freely and transitively by the 2-elementary Abelian group of Atkin-Lehner
involutions.
Remark 4.5. — Proposition 4.2 can be extended to a counting formula

for the set
El(A) := Aut(A)\ { E ⊂ A elliptic curve }

in the following way. If we denote by I(NSA) the set of rank 1 primitive
isotropic sublattices of NSA, then El(A) is naturally identified with the
quotient set Aut(A)\I(NSA). Let G = {f ∈ Aut(A), f∗|TA = idTA} be the
group of symplectic automorphisms of A, which is of index 2 in Aut(A).
We first study the set G\I(NSA). The image of G in O(NSA) is equal to
the group

SO(NSA)+
0 := { γ ∈ SO(NSA) | rNS(γ) = id ∈ O(DNSA), γ(C+

A ) = C+
A

}
.

By the theory of Baily-Borel compactification [1], the set SO(NSA)+
0 \I(NSA)

is canonically identified with the set of cusps of the orthogonal modular
varietyM associated to SO(NSA)+

0 . By the tube domain realization, one
sees that M is isomorphic to the modular curve X0(N). Hence the set
G\I(NSA) is identified with the set of Γ0(N)-cusps, which is well-known.
Now the number |El(A)| is calculated by looking the action of the group
Aut(A)/G ' Z/2Z on the set of Γ0(N)-cusps. This involution is calculated
to be r 7→ −r for r ∈ Q.
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5. The case of Picard number 4

5.1. Counting formulae

Let A be an Abelian surface with ρ(A) = 4. As is well-known, the iso-
morphism class of A is uniquely determined by the proper equivalence class
of the transcendental lattice TA [13]. Therefore it seems natural to express
δ(A) and δ̃(A) in terms of the arithmetic of TA. Since TA is positive-definite
of rank 2, the group SO(TA) is described completely as

SO(TA) '



Z/2Z, if TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
,

Z/4Z, if TA '
(

2n 0
0 2n

)
,

Z/6Z, if TA '
(

2n n

n 2n

)
.

First we consider the general case: TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
. The

group SO(TA) consists of {±id} and the genus G(TA) does not contain the

lattices
(

2n 0
0 2n

)
,
(

2n n

n 2n

)
because they are unique in their genera.

Proposition 5.1. — Suppose that ρ(A) = 4 and TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
.

Then

δ(A) =
∑

T∈G(TA)

|O(DT )/O(T ) | .

δ̃(A) = 1
2 · | G̃(TA) | · |O(DTA) |.

δ0(A) =

 1
2 · |O(DTA) |, if

(
2 1
1 2c

)
or
(

2 0
0 2c

)
∈ G(TA),

0, otherwise.

Proof. — The first two equalities are deduced immediately from Propo-
sitions 3.7 and 3.11. Note that id 6= −id in O(DTA) because |DTA | > 4. For
the third equality, we have

δ0(A) = 2δ(A)− δ̃(A)

=
∑

T∈G1(TA)

{
2 · |O(DT )/O(T )| − |O(DT )/{±id}|

}
= | G0(TA) | · |O(DTA)/{±id} |,
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where G0(TA) = {T ∈ G1(TA) | rT (O(T )) = {±id}}. Let T ∈ G0(TA). Since
SO(T ) 6= O(T ), it follows from the classification of ambiguous binary forms
([3], Chapter 14.4) that T is isometric to one of the following lattices:(

2a 0
0 2c

)
,

(
2a a

a 2c

)
, a, c ∈ Z>0.

If T =
(

2a 0
0 2c

)
, T has the orientation-reversing isometry γ =

(
1 0
0 −1

)
.

By the requirement that rT (γ) ∈ {±id}, either a or c must be equal to

1. When T =
(

2a a

a 2c

)
, T admits the orientation-reversing isometry σ =(

−1 −1
0 1

)
. Similarly, a or 4c − a must be equal to 1. In both cases T is

isometric to
(

2 1
1 2c

)
. In conclusion, G0(TA) is either empty or consists of

only one class of the type
(

2 0
0 2c

)
or
(

2 1
1 2c

)
, c > 0. �

Next we study the case TA '
(

2n 0
0 2n

)
. The group SO(TA) is the

cyclic group Z/4Z generated by the rotation γ1 =
(

0 −1
1 0

)
, and the

group O(TA) is the dihedral group of order 8 generated by γ1 and the

reflection γ2 =
(

1 0
0 −1

)
with the relations γ4

1 = γ2
2 = (γ1γ2)2 = 1. The

genus G(TA) = G̃(TA) consists only of TA. The discriminant form DTA is

the group (Z/2nZ)2 endowed with the quadratic form
(

(2n)−1 0
0 (2n)−1

)
.

For brevity, the image of γ1 in O(DTA) is again denoted by γ1. Straight
calculations yield

Lemma 5.2. — Let TA and γ1 be as above and assume that n > 1.
Then the homomorphism O(TA) → O(DTA) is injective. For an isometry
γ ∈ O(DTA) we have γ−1γ1γ = det(γ)γ1. As a result, we have

| 〈γ1〉 · γ · 〈γ1〉 | =
{

4, det(γ) = ±1,
8, det(γ) 6= ±1.

When n > 1, considering the determinant det(γ) ∈ Z/2nZ for γ ∈
O(DTA) induces a surjective homomorphism

(5.1) O(DTA)� (Z/2Z)τ(n).

Then we have
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Proposition 5.3. — Assume that ρ(A) = 4 and TA '
(

2n 0
0 2n

)
.

Then
δ(A) =

{
1, n = 1,

(2−4 + 2−τ(n)−3) · |O(DTA) |, n > 1,
and

δ̃(A) =
{

1, n = 1,
2δ(A), n > 1.

Proof. — We may assume that n > 1. It follows from Proposition 3.11
and Lemma 5.2 that

δ̃(A) = | SO(TA)\O(DTA)/SO(TA) | = |O(DTA)| · 2τ(n)−1 + 1
2τ(n)−1 · 1

8
The formula for δ(A) is derived similarly. �

Finally we consider the case TA '
(

2n n

n 2n

)
. The group SO(TA) is the

cyclic group Z/6Z generated by the rotation σ1 =
(

0 −1
1 1

)
, and the group

O(TA) is the dihedral group of order 12 generated by σ1 and the reflection

σ2 =
(
−1 −1
0 1

)
with the relations σ6

1 = σ2
2 = (σ1σ2)2 = 1. The image of

σ1 in O(DTA) is again denoted by σ1. The genus G(TA) = G̃(TA) consists
only of TA.

Lemma 5.4. — If a matrix γ ∈ GL2(Z/nZ) satisfies det(γ)2 = 1 and

tγ

(
2 1
1 2

)
γ ≡

(
2 1
1 2

)
mod

(
2nZ nZ
nZ 2nZ

)
,

then we have

(5.2) γ−1
(

0 −1
1 1

)
γ = det(γ) ·

(
det(γ)−1

2 −1
1 det(γ)+1

2

)
.

Proof. — This lemma is proved by direct calculation. �

The discriminant group DTA contains the subgroup n−1TA/TA of index
3. We consider the quadratic form on n−1TA/TA induced from the discrim-
inant form. The basis of TA induces that of n−1TA/TA, with respect to

which the quadratic form is written as
(

2n−1 n−1

n−1 2n−1

)
. As the subgroup

n−1TA/TA coincides with the subgroup {x ∈ DTA |nx = 0}, it is preserved
by the action of O(DTA) so that we have a natural homomorphism

ϕ : O(DTA)→ O(n−1TA/TA).
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With respect to the basis of n−1TA/TA, the isometry ϕ(σ1) is represented

as
(

0 −1
1 1

)
.

Lemma 5.5. — Let TA, σ1, and ϕ be as above and assume that n > 1.
Then the homomorphism O(TA) → O(DTA) is injective. For γ ∈ O(DTA)
we have

| 〈σ1〉 · γ · 〈σ1〉 | =
{

6, det(ϕ(γ)) = ±1,
18, det(ϕ(γ)) 6= ±1.

Proof. — The first assertion is proved immediately. We prove the second
assertion. First consider the case 3|n. The quadratic form on n−1TA/TA ⊂
DTA is degenerated. We can show that the natural homomorphism ϕ is
injective and that det(ϕ(γ))2 = 1 ∈ Z/nZ for γ ∈ O(DTA). By applying
Lemma 5.4 to ϕ(γ) and ϕ(σ1), we see that

| 〈ϕ(σ1)〉 · ϕ(γ) · 〈ϕ(σ1)〉 | =
{

6, det(ϕ(γ)) = ±1,
18, det(ϕ(γ)) 6= ±1.

Next consider the case 3 - n. By the orthogonal decomposition

DTA = (nT∨A/TA)⊕ (n−1TA/TA) ' Z/3Z⊕ (Z/nZ)2,

we have a canonical decomposition

(5.3) O(DTA) = O(nT∨A/TA)⊕O(n−1TA/TA),

so that ϕ is the natural projection with the kernel O(nT∨A/TA) ' Z/2Z.
When det(ϕ(γ)) = ±1, we see by Lemma 5.4 that 〈σ1〉 is normalized by γ
in O(DTA). When det(ϕ(γ)) 6= ±1, we have again by Lemma 5.4 that

|〈σ1〉 · γ · 〈σ1〉| = |〈ϕ(σ1)〉 · ϕ(γ) · 〈ϕ(σ1)〉| = 18.

�

When n > 2 is odd (resp. even), considering the determinant det(ϕ(γ)) ∈
Z/nZ for γ ∈ O(DTA) induces a surjective homomorphism

O(DTA)� (Z/2Z)τ(n) (resp. O(DTA)� (Z/2Z)τ(2−1n)).

Similarly as Proposition 5.3, we have

Proposition 5.6. — Assume that ρ(A) = 4 and TA '
(

2n n

n 2n

)
.

Then

δ(A) =


1, n = 1,

3−2 · (2−2 + 2−τ(2−1n)) · |O(DTA) |, n : even,
3−2 · (2−2 + 2−τ(n)) · |O(DTA) |, n : odd > 1
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and
δ̃(A) =

{
1, n = 1,

2δ(A), n > 1.

5.2. Some conclusions

From Propositions 5.1, 5.3, and 5.6, we have

Corollary 5.7. — Let A and B be Abelian surfaces with Picard num-
ber 4. If NSA is isometric to NSB , or equivalently, if TA and TB are in the
same genus, then δ(A) = δ(B) and δ̃(A) = δ̃(B).

Corollary 5.8. — Let A be an Abelian surface with ρ(A) = 4. Then
we have δ0(A) 6= 0 if and only if TA is primitive and belongs to a principal

genus, i.e., TA is in the genus of either
(

2 0
0 2c

)
or
(

2 1
1 2c

)
for some

c ∈ Z>0.

Note that Corollary 5.8 can also be proved by Shioda-Mitani’s ideal-
theoretic method ([13], Section 4). It must be well-known to experts. For
an odd prime number p and a ∈ (Z/pZ)×, let χp(a) =

(
a
p

)
be the Legendre

symbol. For an odd number n ≡ 1 mod 4, we define

χ2(n) =
{

1, n ≡ 1 mod 8,
−1, n ≡ 5 mod 8.

By Proposition 6.8 proved in Section 6 independently, we have the follow-
ing.

Corollary 5.9. — Let A be an Abelian surface with ρ(A) = 4 and

assume that TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
. For a natural number N > 1

let AN be the Abelian surface with TAN properly equivalent to the form
TA(N).

(1) The number δ̃(AN ) is divisible by δ̃(A).
(2) If N is coprime to det(TA), then

(5.4) δ̃(AN ) = δ̃(A) · 2τ(N) ·N ·
∏
p|N

(
1− χp(−det(TA))

p

)
.

(3) If TA is primitive and N |det(TA)a for some a ∈ Z>0, then

(5.5) δ̃(AN ) = δ̃(A) · 2τ(N) ·N.

We compare our formula with Shioda-Mitani’s formula.
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Theorem 5.10 (Shioda-Mitani [13], Theorem 4.7). — Suppose that
ρ(A) = 4 and that TA is primitive, i.e, TA is not isometric to L(n) for
any even lattice L and n > 1. Let O be the unique order in an imaginary
quadratic field with discriminant d(O) = −det(TA), and C(O) be the ideal
class group of O. Then

(5.6) δ̃(A) = |C(O)|.

Corollary 5.11. — Let A, O be as in Theorem 5.10. Then

(5.7) |C(O)| = 1
2 · | G̃(TA) | · |O(DTA) |.

In particular, the number of genera with discriminant −det(TA) is given
by 1

2 |O(DTA)|.

Proof. — The first equality (5.7) follows from the comparison of the
Shioda-Mitani formula (5.6) and Propositions 5.1, 5.3, 5.6. The group of
proper equivalence classes of primitive positive-definite rank 2 even ori-
ented lattices with determinant det(TA) is canonically isomorphic to the
group C(O) (see [4] Theorem 7.7). Hence the second assertion follows from
the fact that all proper genera in a given class group consist of the same
number of classes. �

Of course, Corollary 5.11 can be proved directly without going through
decompositions of Abelian surfaces. Shioda-Mitani’s formula is extended
as follows.

Corollary 5.12. — Let A be an Abelian surface as in Theorem 5.10
and suppose that det(TA) 6= 3, 4. For a natural numberN > 1 let AN be the
Abelian surface as in Corollary 5.9 and ON be the order with discriminant
d(ON ) = −det(TA(N)). Then

δ̃(AN ) = 2τ(N) · | C(ON ) |.

Proof. — By the assumption, we have δ̃(A) = |C(O)| for the order O
with d(O) = −det(TA). Then our assertion follows from the comparison of
the equations (5.4), (5.5) and [4] Corollary 7.28. �

An ideal-theoretic proof of this corollary is also available.
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5.3. Abelian surfaces with decomposition number 1

We shall study Abelian surfaces with ρ(A) = 4 and δ(A) = 1. Such
Abelian surfaces can be classified as follows:

(i) TA is primitive, δ̃(A) = 1.
(ii) TA is primitive, δ̃(A) = 2.
(iii) TA is not primitive, δ̃(A) = 2.

In the below we see that there are exactly thirteen, twenty-nine, and four
Abelian surfaces in the classes (i), (ii), and (iii) respectively.

Example 5.13. — Let A be an Abelian surface such that ρ(A) = 4 and
Dec(A) = {(E,E)} for an elliptic curve E. Then E is isomorphic to one of
the following thirteen elliptic curves:{

E(1 +
√

∆
2 )

∣∣∣ ∆ = −3,−7,−11,−19,−27,−43,−67,−163
}

t
{
E(
√

∆)
∣∣∣ ∆ = −1,−2,−3,−4,−7

}
,

where E(τ) = C/Z + Zτ .

Proof. — By Corollary 5.8 and Shioda-Mitani formula (5.6), we have
δ̃(A) = 1 if and only if TA is primitive and the class number |C(O)| of the
corresponding order O is equal to 1. As a result of Heegner-Baker-Stark’s
theorem, TA is one of the following lattices (see [4] Theorem 7.30 (ii)):(

2 1
1 2

)
,

(
2 0
0 2

)
,

(
2 1
1 4

)
,

(
2 0
0 4

)
,

(
2 1
1 6

)
,

(
2 0
0 6

)
,

(
2 0
0 8

)
,(

2 1
1 10

)
,

(
2 1
1 14

)
,

(
2 0
0 14

)
,

(
2 1
1 22

)
,

(
2 1
1 34

)
,

(
2 1
1 82

)
.(5.8)

By Shioda-Mitani theory we can determine the elliptic curve E explicitly
from the transcendental lattice TA: see [13], Section 3. �

On the other hand, for those A with primitive TA and δ(A) = 1, δ̃(A) = 2
we have the following.

Example 5.14. — There exist natural one-to-one correspondences be-
tween the following two sets:

(a) The set of isomorphism classes of Abelian surfaces A with ρ(A) = 4
such that TA is primitive and Dec(A) = {(E1, E2)}, E1 6' E2.

(b) The set of imaginary quadratic order with class number 2.
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Proof. — For an Abelian surface A in the set (a), we associate the order
O with discriminant d(O) = −det(TA). By Shioda-Mitani formula we have
|C(O)| = 2. Then TA corresponds to the non-trivial element of the class
group C(O). �

Imaginary quadratic fields with class number 2 are also classified by [9],
[14]. As a result, imaginary quadratic orders with class number 2 are given
by the following twenty-nine discriminants:

−d(O) = 15, 20, 24, 32, 35, 36, 40, 48, 51, 52, 60, 64, 75, 88, 91, 99,
100, 112, 115, 123, 147, 148, 187, 232, 235, 267, 403, 427, 748.

Enumeration of the non-principal forms is a rather straightforward task
and is left to the reader.

Example 5.15. — Let A be an Abelian surface with ρ(A) = 4 and as-
sume that TA is not primitive. If δ(A) = 1, then A is isomorphic to one of
the following four Abelian surfaces:

E(
√
−1)× E(2

√
−1), E(τ1)× E(2τ1),

E(τ1)× E(3τ1), E(τ2)× E(2τ2),

where τ1 = 1+
√
−3

2 , τ2 = 1+
√
−7

2 , and E(τ) = C/Z + Zτ .

Proof. — As TA is not primitive, we see from Corollary 5.8 that δ̃(A) = 2.

First consider the case TA '
(

2n 0
0 2n

)
with n > 1. Since the actions of

SO(TA) preserve the fibres of the determinant homomorphism (5.1), we
have τ(n) = 1 so that SO(TA) is a normal subgroup of O(DTA) by Lemma
5.2. Thus we have |O(DTA)| = 8, which implies by Theorem 6.7 that n = 2.

In the case of TA '
(

2n n

n 2n

)
with n > 1, we have n = 2, 3 by similar

argument.

Next consider the case TA 6'
(

2n 0
0 2n

)
,

(
2n n

n 2n

)
. LetB be the Abelian

surface such that TB is primitive and TB(n) is properly equivalent to TA,
n > 1. By Corollary 5.9 (1) the number δ̃(B) divides δ̃(A) = 2 so that
δ̃(B) = 1 or 2. However, the case that δ̃(B) = 2 is impossible by Corollary
5.9 (2), (3). Thus we have δ̃(B) = 1 so that TB is one of the lattices in the

list (5.8). It follows from Corollary 5.12 that n = 2 and TB =
(

2 1
1 4

)
is

the only case. �
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6. Order of isometry group of discriminant form

The aim of this section is to calculate the order of the group O(DL) for
a rank 2 even lattice L. This section may be read independently of the
previous sections. By the orthogonal decomposition DL = ⊕pDp where
Dp is the p-component for the prime number p, we have the canonical
decomposition

(6.1) O(DL) =
⊕
p

O(Dp).

Thus we first calculate |O(Dp)| for each prime number p, and then put them
together to |O(DL)|. Throughout this section, a finite quadratic form means
a finite Abelian group D endowed with a quadratic form q : D → Q/2Z
such that the associated bilinear form b : D×D → Q/Z is non-degenerate.
For a finite quadratic form (D, q) on a p-group D with p 6= 2, we identify
q with the bilinear form b.

6.1. Local calculations

By the classification of finite quadratic forms [16], a finite quadratic form
on an Abelian p-group of length 2 is isometric to one of the following forms:

Aθ,θ
′

p,k =
(
θp−k 0

0 θ′p−k

)
on (Z/pkZ)2, θ, θ′ ∈ Z×p /(Z×p )2,

Bθ,θ
′

p,l,k =
(
θp−l 0

0 θ′p−k

)
on Z/plZ⊕ Z/pkZ, l > k, θ, θ′ ∈ Z×p /(Z×p )2,

Vk =
(

21−k 2−k
2−k 21−k

)
on (Z/2kZ)2,

Uk =
(

0 2−k
2−k 0

)
on (Z/2kZ)2.

The following proposition is essentially a consequence of successive approx-
imation.

Proposition 6.1. — Let (D, q) be a finite quadratic form on a p-group
with no direct summand of order 2. For the finite quadratic form

(D, q̄) = (D/N, p · q), N = {x ∈ D, px = 0},

the natural homomorphism

κ : O(D, q) −→ O(D, q̄)

is surjective.
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Proof. — Note that (D, q̄) is well-defined as a finite quadratic form. A
comparison of the classification of Zp-lattices and that of finite quadratic
forms (cf. [10] Proposition 1.8.1) enables us to find an even Zp-lattice L
such that (DL(p), qL(p)) ' (D, q). Then the homomorphism κ is identified
with the homomorphism

κ′ : O(DL(p), qL(p)) = O(1
p
L∨/L, p·qL)→ O(1

p
L∨/

1
p
L, p2·qL) ' O(DL, qL).

Consider the natural homomorphisms O(L) → O(DL) and O(L(p)) →
O(DL(p)), which are surjective by Corollary 1.9.6 of [10]. Since the diagram

O(L(p)) = O(L)
↓ ↓

O(DL(p))
κ′→ O(DL),

commutes, we see that κ′ is surjective. �

Thus natural reduction homomorphisms

O(Aθ,θ
′

p,k )→ O(Aθ,θ
′

p,k−1), O(Bθ,θ
′

p,l,k)→ O(Bθ,θ
′

p,l−1,k−1), · · ·

are defined and are surjective if p 6= 2 or k > 2.

Lemma 6.2. — We have the following isomorphisms.
(1) Ker(O(Aθ,θ

′

p,k ) � O(Aθ,θ
′

p,k−1)) ' Z/pZ , where k > 2 if p 6= 2, and
k > 3 if p = 2.

(2) Ker(O(Bθ,θ
′

p,l,k)� O(Bθ,θ
′

p,l−1,k−1)) ' Z/pZ , where k > 2 if p 6= 2, and
k > 3 if p = 2.

(3) Ker(O(Vk)� O(Vk−1)) ' Z/2Z where k > 2.
(4) Ker(O(Uk)� O(Uk−1)) ' Z/2Z where k > 2.

Proof. — We prove only the assertion (2). Other assertions can be proved
analogously and are left to the reader. Let p 6= 2. An isometry γ ∈ O(Bθ,θ

′

p,l,k)
contained in the kernel of the reduction O(Bθ,θ

′

p,l,k)→ O(Bθ,θ
′

p,l−1,k−1) is rep-
resented as

γ =
(

1 + pl−1a pl−1b

pk−1c 1 + pk−1d

)
, a, b, c, d ∈ Z/pZ.

Since γ preserves the quadratic form, we have

(6.2) tγ

(
θ 0
0 pl−kθ′

)
γ ≡

(
θ 0
0 pl−kθ′

)
mod

(
plZ plZ
plZ plZ

)
.

Then trivial calculation shows that a = d = 0 and θb+ θ′c = 0 so that the
kernel is isomorphic to Z/pZ. For p = 2, we need to replace (6.2) by the
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equation

tγ

(
θ 0
0 2l−kθ′

)
γ ≡

(
θ 0
0 2l−kθ′

)
mod

(
2l+1Z 2lZ
2lZ 2l+1Z

)
.

�

Lemma 6.3. — We have the following isomorphisms.
(1) Ker(O(Aθ,θ

′

2,2 )� O(Aθ,θ
′

2,1 )) ' Z/2Z⊕ Z/2Z.
(2) Ker(O(Bθ,θ

′

2,l,2)� O(Bθ,θ
′

2,l−1,1)) ' Z/2Z⊕ Z/2Z.
(3) If p 6= 2, then Ker(O(Bθ,θ

′

p,l,1)� O(Bθ,θ
′

p,l−1,0)) is the dihedral group of
order 2p.

Proof. — We prove only the assertion (3). An isometry γ ∈ O(Bθ,θ
′

p,l,1)
contained in the kernel is represented as

γ =
(

1 + pl−1a pl−1b

c d

)
, a, b, c, d ∈ Z/pZ.

By the isometry condition we have

d2 = 1, b = −θ′′dc, a = −2−1θ′′c2,

where θ′′ = θ−1θ′. So there are ambiguities of d ∈ {±id} and c ∈ Z/pZ. It
follows that the kernel is generated by

η =
(

1− 2−1θ′′pl−1 −θ′′pl−1

1 1

)
and σ =

(
1 0
0 −1

)
with the relations ηp = σ2 = (ησ)2 = 1. �

Lemma 6.4. — Let χp(a) =
(
a
p

)
be the Legendre symbol for p 6= 2.

(1) For p 6= 2, O(Aθ,θ
′

p,1 ) is the dihedral group of order 2(p− χp(−θθ′)).
(2) We have

O(Aθ,θ
′

2,1 ) '
{

Z/2Z, if θθ′ ≡ 1 mod 4,
{1}, if θθ′ ≡ −1 mod 4.

(3) We have

O(Bθ,θ
′

2,l,1) '
{

Z/2Z, if l = 2, 3,
Z/2Z⊕ Z/2Z, if l > 4.

(4) O(V1) is the symmetric group S3.
(5) O(U1) ' Z/2Z.
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Proof. — See Theorem 11.4 of [15] for the assertion (1). The verifications
of the assertions (2), (4), (5) are straightforward. We prove (3). Let γ =(
a 2l−1b

c d

)
∈ O(Bθ,θ

′

2,l,1), where a ∈ Z/2lZ and b, c, d ∈ Z/2Z. If we denote

θ′′ := θ−1θ′, the isometry condition for γ is the following equations:

a2 + c2θ′′2l−1 ≡ 1 mod 2l+1,(6.3)
b22l−1 + d2θ′′ ≡ θ′′ mod 4,(6.4)

ab+ cdθ′′ ≡ 0 mod 2.(6.5)

When l = 2, we see that a = ±1, b = c = 0, and d = 1. When l > 3, we
have d = 1 by (6.4) and b = c by (6.5). There are two possibilities for c :
0 or 1. If c = 0, then a = ±1 satisfy the equation (6.3). If c = 1, then the
equation (6.3) is written as

(6.6) a2 = 1− 2l−1θ′′ mod 2l+1.

When l = 3, (6.6) does not have solution. When l = 4, (6.6) has solutions
a = ±(1 + 4θ′′). When l > 5, (6.6) has solutions a = ±(1− 2l−2θ′′). �

From Lemmas 6.2, 6.3, and 6.4 we obtain the following results.

Proposition 6.5. — Let p 6= 2 and k > 1.
(1) We have |O(Aθ,θ

′

p,k )| = 2 · pk−1 · (p− χp(−θθ′)).
(2) We have |O(Bθ,θ

′

p,l,k)| = 4 · pk.

Proposition 6.6. — We have the following equalities.
(1)

|O(Aθ,θ
′

2,k )| =


2k, −θθ′ ≡ 1 mod 4, k > 2

2k+1, −θθ′ ≡ −1 mod 4, k > 2
1, −θθ′ ≡ 1 mod 4, k = 1
2, −θθ′ ≡ −1 mod 4, k = 1

(2)

|O(Bθ,θ
′

2,l,k)| =


2k+1, l − k 6 2, k > 2
2k+2, l − k > 3, k > 2

2, l − k 6 2, k = 1
4, l − k > 3, k = 1

(3) |O(Vk)| = 2k · 3.
(4) |O(Uk)| = 2k.
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6.2. Global results

Let L be an even lattice of rank 2. Denote by (n,m) the invariant factor
of L ⊂ L∨. That is, we have n|m and there is a basis {v1, v2} of L∨ such
that L = 〈nv1,mv2〉. Let

n = pe1
1 · · · peαα · q

f1
1 · · · q

fβ
β ,

m = pe1
1 · · · peαα · q

f ′1
1 · · · q

f ′β
β · r

g1
1 · · · rgγγ , f ′i > fi,

be the prime decompositions of n and m. As groups, the p-components Dp

of the discriminant group DL are as follows:

Dpi ' (Z/peii Z)2, Dqi ' Z/qfii Z⊕ Z/qf
′
i
i Z, Dri ' Z/rgii Z.

For a prime number p dividing n, we put

εp :=
{
−p−2ei · det(L), p = pi,

0, p = qi.

When Dp ' Aθ,θ
′

p,e as a quadratic form, we have −θθ′ ≡ εp ∈ Z×p /(Z×p )2.
When D2 ' Ue (resp. Ve), we have ε2 ≡ 1 (resp. 5) mod 8.
For a natural number n ≡ 1 mod 4, we define

χ2(n) =
{

1, n ≡ 1 mod 8,
−1, n ≡ 5 mod 8.

We put χp(0) := 0 for an odd prime number p. For a natural number N
let τ̃(N) := τ(N) if N > 1 and τ̃(1) := 0. Then we have

τ̃(n) + τ̃(n−1m) = α+ 2β + γ.

We are now in a position to express the formula for |O(DL)|.

Theorem 6.7. — Let L, (n,m), χp, and τ̃ be as above.
(1) If D2 is either trivial or Uk or Vk, or equivalently, if L ' M(2e) for

an even lattice M with det(M) odd, then

|O(DL)| = 2τ̃(n)+τ̃(n−1m) · n ·
∏
p|n

(
1− χp(εp)

p

)
.

(2) If D2 ' Aθ,θ
′

2,k , or equivalently, if L ' M(2e) for an odd lattice M
with det(M) odd, then

|O(DL)| = C · 2τ̃(2−1n)+τ̃(n−1m) · n ·
∏
p|n
p 6=2

(
1− χp(εp)

p

)
,

where C = 1 if ε2 ≡ −1 mod 4, C = 1
2 if ε2 ≡ 1 mod 4.
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(3) If D2 ' Bθ,θ
′

2,l,k, or equivalently, if L ' M(2e) for an odd lattice M
with det(M) even, then

|O(DL)| = C · 2τ̃(2−1n)+τ̃(n−1m) · n ·
∏
p|n
p 6=2

(
1− χp(εp)

p

)
,

where C = 1 if l − k > 3, C = 1
2 if l − k 6 2.

Proof. — This follows immediately from the results of the previous sec-
tion 6.1. Note that D2 is never cyclic. �

From Section 6.1 we also deduce the following.

Proposition 6.8. — Let L be a rank 2 even lattice and n > 1 be a
natural number.

(1) The number |O(DL(n))| is divisible by the number |O(DL)|.
(2) If n is coprime to det(L), we have

|O(DL(n))| = |O(DL)| · 2τ(n) · n ·
∏
p|n

(
1− χp(−det(L))

p

)
.

(3) If L is primitive and n|det(L)a for some a ∈ Z>0, we have

|O(DL(n))| = |O(DL)| · 2τ(n) · n.

Proof. — The assertion (1) follows from Proposition 6.1.
(2) We identify the Z-modules underlying L and L(n) in a natural way.

Since n is coprime to |DL|, we have the orthogonal decomposition

DL(n) = (L∨/L)⊕ (n−1L/L).

Hence we have

O(DL(n)) = O(DL)⊕
⊕
p|n

O(p−eL/L),

where n =
∏
pe is the prime decomposition of n. If p is odd, then p−eL/L '

A
1,det(L)
p,e . If p = 2, we have 2−eL/L ' Ue or Ve according to −det(L) ≡

1 or 5 mod 8.
(3) Let DL = ⊕pDp be the decomposition into p-components. For p 6= 2,

Dp is cyclic. On the other hand, D2 is either trivial or Aθ,θ
′

2,1 or Bθ,θ
′

2,l,1. Thus
our claim follows from Lemmas 6.2 and 6.3. �
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