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SHUFFLE BIALGEBRAS

by María RONCO (*)

Abstract. — The goal of our work is to study the spaces of primitive elements
of some combinatorial Hopf algebras, whose underlying vector spaces admit linear
basis labelled by subsets of the set of maps between finite sets. In order to deal
with these objects we introduce the notion of shuffle algebras, which are coloured
algebras where composition is not always defined. We define bialgebras in this
framework and compute the subpaces of primitive elements associated to them.
These spaces of primitive elements have natural structure of some type of coloured
algebras, which we describe in terms of generators and relations.
Résumé. — Le but de ce travail est l’étude des espaces d’éléments primitifs de

certaines algèbres de Hopf combinatoires, dont les espaces vectoriels sous-jacents
admettent des bases indexées par des sous ensembles de l’ensemble des applica-
tions entre ensembles finis. Pour donner une description précise de ces objets nous
introduisons la notion d’algèbre shuffle, qui correspond à un type d’algèbre colorée
pour laquelle les compositions ne sont pas toujours définies. Nous définissons des
bigèbres dans ce contexte et nous calculons leurs sous espaces d’éléments primitifs.
Ces espaces d’éléments primitifs peuvent être décrits en terme des générateurs et
relations comme des exemples d’autres types d’algèbres colorées.

Introduction

In this paper we study Hopf algebra structures defined on vector spaces
spanned by families of maps between finite sets, like the Malvenuto-
Reutenauer bialgebra of permutations (see [2]), the bialgebra of surjec-
tive maps (see [18]) or the bialgebra of parking functions (see [17]). Our
goal is to study these algebras in a similar framework than the one set for
algebras spanned by planar rooted trees in [3], [8], [9], [11], [13] and [21]. In
order to do that, we need to describe the Malvenuto-Reutenauer algebra,
spanned by permutations, as a free object on one generator, and the alge-
bra of surjective maps as a free graded object spanned by one generator in

Keywords: Bialgebra, planar rooted trees, shuffles.
Math. classification: 16A24, 16W30, 17A30, 18D50, 81R60.
(*) Research supported by FONDECYT 1085004.
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each degree, for some algebraic theory. The natural solution of this problem
is not properly a type of algebra but of coloured algebra, which we call a
shuffle algebra.
Shuffle algebras are a particular case of monoids in the category of S-

modules, as described in [19] and [10], where the operations do not preserve
the action of the symmetric group. Applying this notion we are able to
introduce the notion of shuffle bialgebra, in such a way that the Hopf al-
gebra structures defined on the space spanned by maps between finite sets
are induced by shuffle bialgebra structures on these spaces. Hopf algebras
associated to shuflle bialgebras are, in general, neither commutative nor
cocommutative, and this new point of view permit us to compute the sub-
spaces of their primitive elements. Although the primitive elements of the
Malvenuto-Reutenauer algebra and of the algebra of planar binary rooted
trees have been previously computed in [2], [3] and [8], our description has
the advantage of showing them as free objects for some coloured algebraic
theories described in terms of generators and relations.
In the general case, there does not exist a standard method to compute

the space of primitive elements of a non-cocommutative coalgebra. Shuffle
bialgebras present the advantage of being equipped with an associative
product ×, called the concatenation product, which verifies a nonunital
infinitesimal relation with the coproduct. Nonunital infinitesimal bialgebras
were introduced in [14], where we proved that any connected nonunital
infinitesimal bialgebra is isomorphic to the cofree coalgebra spanned by
the space of its primitive elements. This result is the main tool used in the
present work to compute the primitive elements.
Afterwards, we extend our results to other algebraic structures: preshuffle

algebras and pre-Lie systems, the last ones are given by the underlying
spaces of non-symmetric operads. The way we study them is largely inspired
by the treatment given by J.-L. Loday to the so-called triples of operads,
see [12]. Let us describe briefly the method employed:

(1) Given a linear algebraic theory T , we introduce the notion of T
bialgebra, in such a way that any free T algebra has a natural
structure of T bialgebra.

(2) In a second step, we identify the theory T with the space of all
the operations of the theory, and compute a basis for a subspace
PrimT of T , such that the space of primitive elements of any T
bialgebra is closed under the action of the elements of PrimT .

(3) Afterwards, we prove that any free T algebra T (X) is isomor-
phic, as a coalgebra, to the cofree coalgebra spanned by the space
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SHUFFLE BIALGEBRAS 801

PrimT (X), generated by the operations of PrimT on the elements
of X. Applying results proved in [14], we get that PrimT (X) is the
space of primitive elements of T (X).

(4) Finally, we describe the algebraic theory associated to PrimT in
terms of generators and relations; and prove that the category of
connected T bialgebras is equivalent to the category of PrimT al-
gebras.

It is quite easy to compute the theory Primsh when T is the theory of
shuffle algebras. The other examples follow from this case.

The paper is organised as follows:
We recall first elementary definitions of coalgebras as well as some well-

known constructions on permutations, maps between finite sets and planar
rooted trees, needed in the following sections.

In Section 2 we give the definition of a shuffle algebra, describe the free
objects for this theory in terms of spaces spanned by surjective maps, and
give the main examples. Shuffle bialgebras are introduced in Section 3,
where we show that most of the examples of shuffle algebras given in the
previous section have a natural structure of shuffle bialgebras.

In Section 4 we construct functors from the category of shuffle bialge-
bras to the categories of nonunital infinitesimal bialgebras, of dendriform
bialgebras and of 2-associative bialgebras.

In Section 5 we compute the primitive elements of a shuffle bialgebra and
we prove a Cartier-Milnor-Moore Theorem in this context.

In Section 6 we introduce the notion of preshuffle bialgebras. From the
definition of Primsh algebras, we compute the subspaces of primitive ele-
ments of preshuffle bialgebras and describe any conilpotent preshuffle bial-
gebra as an enveloping algebra over its primitive part. Pre-Lie systems are
obtained as a particular case of preshuffle algebras. We prove that any pre-
Lie system equipped with an admissible coproduct gives rise to a shuffle
bialgebra, which shows that if (A, ◦) is a pre-Lie algebra (see [6]) obtained
from a pre-Lie system with coproduct then ◦ may be extended to an asso-
ciative product on A. Finally we describe the space of primitive elements
of a pre-Lie system with a coproduct.
The last section of the paper contains some applications of the previous

results to some good triples of operads (see [12]).
Acknowledgement. The author wants to thank the support of Ecos-
Conicyt Project E06C01 during the correction of this paper, as well as
J.-L. Loday, T. Schedler and the referee of the work for helpful com-
ments.
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802 María RONCO

1. Preliminaries

We introduce here some definitions and notations that are used in the
paper.

Let K be a field, ⊗ denotes the tensor product of vector spaces over K.
In order to simplify redaction, we use sometimes the term space instead of
K-vector space. Given a graded K-vector space A, A+ is the space A⊕K
equipped with the canonical maps K ↪→ A+ −→ K. We denote the degree
of a homogeneous element x ∈ An by |x| = n.
For any set X, K[X] denotes the vector space spanned by X. For any

vector space V , the graded space T (V ) :=
⊕

n>0 V
⊗n is the tensor space

over V . The reduced tensor space T (V ) over V is the subspace
⊕

n>1 V
⊗n.

The space T (V ), with the concatenation product given by:

(v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗ wm) := v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm,

for v1, . . . , vn, w1, . . . , wm ∈ V , is the free associative algebra spanned by V .

Coalgebras. A coalgebra C over K is a vector space, equipped with a
coproduct ∆ : C −→ C ⊗ C, which is coassociative.

We use Sweedler’s notation, and denote ∆(x) =
∑
x(1)⊗x(2), for x ∈ C.

A coalgebra C is counital if there exists a linear map ε : C −→ K such
that (ε ⊗ IdC) ◦∆ = IdC = (IdC ⊗ ε) ◦∆, where we identify K ⊗ C and
C ⊗K with C, via the canonical isomorphism.
For a counital coalgebra (C,∆, ε), the reduced coproduct is defined on

Ker(ε) as the map ∆ := ∆− IdC ⊗ ε− ε⊗ IdC . Note that ∆ : Ker(ε) −→
Ker(ε)⊗Ker(ε) is coassociative too.
Let C =

⊕
n>0 Cn be a graded K-vector space. A graded coassocia-

tive coproduct on C is a coassociative coproduct ∆ such that ∆(Cn) ⊆⊕n
i=0 Ci ⊗ Cn−i. Given a coassociative coproduct ∆ on C and an integer

r > 1, ∆r denotes the homomorphism defined recursively as ∆1 := ∆ and
∆r+1 := (∆r ⊗ IdC) ◦∆, for r > 1.

The coalgebras C we deal with in the paper satisfy that C0 = 0. Given
such a coalgebra (C,∆) we define the coalgebra (C+,∆+), where C+ :=
K ⊕ C and ∆+ is the unique coproduct on C+ such that ∆+|C = ∆ and
(C+,∆+) is a unital coalgebra.
Let V be a vector space, the deconcatenation coproduct on T (V ) is given

by:

∆c(v1 ⊗ · · · ⊗ vn) :=
n−1∑
i=1

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn).

ANNALES DE L’INSTITUT FOURIER



SHUFFLE BIALGEBRAS 803

Definition 1.1. — Let C = (
⊕

n>1 Cn,∆) be a graded coalgebra. An
element x ∈ C is called primitive if ∆(x) = 0. The subspace of primitive
elements of C is denoted by Prim(C).

Definition 1.2. — Let (C,∆) be a coalgebra. Consider the filtration
FpC on C given by:

F1C := Prim(C)
FpC := {x ∈ C | ∆(x) ∈ Fp−1C ⊗ Fp−1C}.

We say that C is conilpotent if C =
⋃
p>1 FpC.

The definition of primitive element for the counital coalgebra C+ becomes
x ∈ Prim(C+) if ∆+(x) = x⊗1+1⊗x. In this case, Prim(C+) = Prim(C).

The main purpose of this work is to study bialgebra structures on spaces
spanned by (coloured) functions between finite sets, permutations and
trees. The rest of this section is devoted to introduce definitions and el-
ementary results on these objects.

Permutations and shuffles. Let Sn be the group of permutations on n
elements. A permutation σ is denoted by its image (σ(1), . . . , σ(n)). The
element 1n denotes the identity of Sn. The set S∞ :=

⋃
n>1 Sn is the graded

set of all permutations.

Definition 1.3. — Given 1 6 r 6 n, a composition n of n of length r is
an ordered family of positive integers (n1, . . . , nr) such that

∑r
i=1 ni = n.

The number r is called the length of the composition n.

For any composition n = (n1, . . . , nr) of n, there exists a homomorphism
Sn1 × · · · × Snr ↪→ Sn given by (σ1, . . . , σr) 7→ σ1 × · · · × σr, where

(σ1 × · · · × σr)(i) := σk(i− n1 − · · · − nk−1) + n1 + · · ·+ nk−1,

for n1 + · · · + nk−1 < i 6 n1 + · · · + nk. Let Sn or Sn1×···×nr
denote

indistinctly the subgroup of Sn which is the image of Sn1 × · · · × Snr
under

this embedding. The operation × : Sn × Sm −→ Sn+m defined previously
is an associative product on S∞, called the concatenation.

Definition 1.4. — A permutation σ ∈ Sn is irreducible if

σ /∈
n−1⋃
i=1

Si × Sn−i.

We denote by IrrSn the set of irreducible permutations of Sn.

TOME 61 (2011), FASCICULE 3



804 María RONCO

The graded vector space K[S∞] :=
⊕

n>1K[Sn], equipped with the con-
catenation product, is the free associative algebra generated by

⋃
n>1 IrrSn

.

Definition 1.5. — Given a composition n = (n1, . . . , nr) of n, a
(n1, . . . , nr)-shuffle, or n-shuffle, is an element σ of Sn such that:

σ−1(n1 + · · ·+ nk−1 + 1) < · · · < σ−1(n1 + · · ·+ nk), for 1 6 k 6 r − 1.

The set of all (n1, . . . , nr)-shuffles is denoted either Sh(n1, . . . , nr) or Sh(n).

Given positive integers n,m, the permutation εn,m := (n + 1, . . . , n +
m, 1, . . . , n) belongs to Sh(n,m).

The following result about Coxeter groups are well-known. For the first
assertion see for instance [22], the second one is proved, in a more general
context, in [4].

Proposition 1.6. — (1) Given a permutation σ ∈ Sn and an integer
0 6 i 6 n there exists unique elements σi(1) ∈ Si, σn−i(2) ∈ Sn−i and γ ∈
Sh(i, n− i) such that σ = (σi(1) × σ

n−i
(2) ) · γ.

(2) Given compositions n of n and m of m, we have that:

(Sh(n)× Sh(m)) · Sh(n,m) = Sh(n ∪m),

where n ∪m := (n1, . . . , nr,m1, . . . ,mp).

The proof of the following lemma is straightforward.

Lemma 1.7. — Let 0 6 r 6 n+m be an integer and let γ be a (n,m)-
shuffle. There exist a unique non negative integer 0 6 n1 6 r and permu-
tations γr(1) ∈ Sr and γn+m−r

(2) ∈ Sn+m−r such that γ = (1n1 × εn−n1,m1 ×
1m−m1) · (γr(1) × γ

n+m−r
(2) ), where n1 := |γ−1({1, . . . , n}) ∩ {1, . . . r}| and

m1 := r − n1. Moreover, γr(1) belongs to Sh(n1,m1) and γn+m−r
(2) belongs

to Sh(n− n1,m−m1).

Remark 1.8. — For any permutation γ ∈ Sh(n,m) there exists unique
integers n1, . . . , nr and m1, . . . ,mr such that:

γ = (1, . . . , n1, n+ 1, . . . n+m1, n1 + 1, . . . , n1

+ n2, . . . ,m1 + · · ·+mr−1 + 1, . . . ,m),

where
∑r
i=1 ni = n,

∑r
j=1mj = m, n1 > 0, ni > 1 for i > 2, mj > 1 for

j < r, and mr > 0.

Functions on finite sets. Given positive integers n and r, let Frn be the
set of all maps f : {1, . . . , n} −→ {1, . . . , r}. An element f ∈ Frn is denoted

ANNALES DE L’INSTITUT FOURIER



SHUFFLE BIALGEBRAS 805

by its image (f(1), . . . , f(n)). The constant function (1, . . . , 1) ∈ F1
n is

denoted by ξn. For n > 1, the set Fn is the disjoint union
⋃n
r=1 Frn.

For 1 6 r 6 n, we denote by ST rn the subset of all surjective maps in
Frn and by ST n the disjoint union ST n :=

⋃n
r=1 ST

r
n ⊆ Fn. Clearly, the

set Sn of permutations of n elements is equal to ST nn.

For any n,m, r and k, the concatenation product × : Sn×Sm −→ Sn+m
extends to an embedding Frn ×Fkm −→ Fr+kn+m, given by

f × g := (f(1), . . . , f(n), g(1) + r, . . . , g(m) + r), for f ∈ Frn and g ∈ Fkm.

If n = (n1, . . . , nr) is a composition of n, we denote ξn the map ξn =
(ξn1 × · · · × ξnr

).

Remark 1.9. — For any element f ∈ Frn there exists a unique non-
decreasing function f↑ ∈ Frn and a unique permutation σf ∈ Sh(n1, . . . , nr)
such that

f = f↑ · σf ,

where ni = |f−1(i)| for 1 6 i 6 r, and · denotes the composition of
functions.

Let Kn be the set of all maps f ∈ ST n verifying the following condition:

if f(i) = f(j), for some i < j, then f(k) 6 f(i) for all i 6 k 6 j.

It is immediate to check that f×g ∈ Kn+m, for any f ∈ Kn and g ∈ Km.

We extend the definition of irreducible permutation to
⋃
n>1 Fn as fol-

lows:

Definition 1.10. — An element f ∈ Fn is called irreducible if f /∈⋃n−1
i=1 Fi×Fn−i. The set of irreducible elements of Fn is denoted IrrFn

. In
a similar way, the set of irreducible elements of ST n (respectively, Kn) is
the set IrrST n

:= ST n ∩ IrrFn
(respectively, IrrKn

:= Kn ∩ IrrFn
).

The graded space K[F∞] :=
⊕

n>1K[Fn], equipped with the concatena-
tion product, is the free associative algebra spanned by the set

⋃
n>1 IrrFn

.
Analogous results hold for the spaces K[ST ∞] :=

⊕
n>1K[ST n] and

K[K∞] :=
⊕

n>1K[Kn]

TOME 61 (2011), FASCICULE 3



806 María RONCO

Planar rooted trees

Definition 1.11. — A planar rooted tree is a non-empty oriented con-
nected planar graph such that any vertex has at least two input edges and
one output edge, equipped with a final vertex called the root. For n > 2, a
planar n-ary tree is a planar rooted tree such that any vertex has exactly
n input edges.

Note that in a planar tree the set of input edges of any vertex is totally
ordered. All trees we deal with are reduced planar rooted ones. From now
on, we use the term planar tree instead of planar rooted tree.

Notation 1.12. — We denote by Tm the set of all planar trees withm+1
leaves and by Ym the subset of Tm of all planar binary trees with m + 1
leaves.

Let t be an element of Tm, the leaves of t are numbered from left to
right, beginning with 0 up to m. We denote by cm the unique element of
Tm, which has m+ 1 leaves and only one vertex (the m-corolla).
Let X =

⋃
n>1Xn be a positively graded set. The set Tm(X) is the set

of planar binary trees with the internal vertices coloured by the elements
of X in such a way that any vertex with k input edges is coloured by an
element of Xk−1.

Definition 1.13. — Given coloured trees t and w, for any 0 6 i 6 |w|,
define t ◦i w to be the coloured tree obtained by attaching the root of w to
the i-th leaf of t.

For instance

↘ ↙
y
↘ ↙

z
↓

◦2
↘ ↙

x
↓

=
↘ ↙ ↘ ↙

y x
↘ ↙

z
↓

.

Notation 1.14. — Given two coloured trees t and w and x ∈ X1, we
denote by t ∨x w the tree obtained by joining the roots of t and w to a
new root, coloured by x. More generally, we denote by

∨
x(t0, . . . , tr) the

tree obtained by joining the roots of the trees t0, . . . , tr, ordered from left
to right, to a new root coloured with an element x ∈ Xr.

Any coloured tree t may be written in a unique way as t =
∨
x(t0, . . . , tr),

with |t| =
∑r
i=0 |ti|+ r − 1 and x ∈ Xr.

ANNALES DE L’INSTITUT FOURIER
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2. Shuffle algebras

Our goal is to describe the spaces spanned by coloured permutations
and coloured elements of ST ∞ as free objects for some type of algebraic
structure.

Definition 2.1. — A shuffle algebra over K is a graded vector space
A =

⊕
n>1

An equipped with linear maps

•γ : An ⊗K Am → A, for γ ∈ Sh(n,m),

verifying that:
x •γ (y •δ z) = (x •σ y) •λ z,

whenever (1n × δ) · γ = (σ × 1r) · λ in Sh(n,m, r).

Shuffle algebras appear in a natural way as monoids in the category of
S-modules, denoted S-Mod. Let us describe briefly this category.

The objects in the category S-Mod are infinite sequences M =
{M(n)}n>0 of K-modules, such that each M(n) is a right K[Sn]-module,
for n > 1, where K[S0] := K. A homomorphism f from M to N in S-Mod
is a family of K[Sn]-modules homomorphisms f(n) : M(n) −→ N(n), for
n > 0.

The category S-Mod is endowed with a symmetric monoidal structure
⊗S given by:

(M ⊗S N)(n) =
n⊕
i=0

(M(i)⊗N(n− i))⊗K[Si×Sn−i] K[Sn],

where M(i) ⊗ N(n − i) has the natural structure of right K[Si × Sn−i]-
module.
By Proposition 1.6, the tensor product (M(i) ⊗ N(n − i)) ⊗K[Si×Sn−i]

K[Sn] is isomorphic to M(i) ⊗ N(n − i) ⊗ K[Sh(i, n− i)]. Moreover, the
associativity and symmetry of ⊗S are given by the isomorphisms:

(1) aMNR : (M ⊗S N)⊗S R −→M ⊗S (N ⊗S R), with

aMNR((x⊗ y ⊗ σ)⊗ z ⊗ δ) := x⊗ (y ⊗ z ⊗ γ)⊗ τ,

whenever (σ × 1r) · δ = (1n × γ) · τ in Sh(m,n, r), for x ∈ M(m),
y ∈ N(n) and z ∈ R(r).

(2) cMN : M ⊗S N −→ N ⊗S M, with

cMN (x⊗ y ⊗ σ) := y ⊗ x⊗ (εn,m · σ),

where εn,m = (n+ 1, . . . , n+m, 1, . . . , n) ∈ Sh(n,m), for x ∈M(m)
and y ∈ N(n).

TOME 61 (2011), FASCICULE 3



808 María RONCO

Lemma 2.2. — Let (M, ◦) be a monoid in (S-Mod,⊗S), the space M =⊕
n>0M(n) has a natural structure of shuffle algebra, given by:

x •γ y := ◦(x⊗ y ⊗ γ),

for x ∈M(n) and y ∈M(m).

Proof. — The associativity of ◦ implies that the products •γ fullfill the
conditions of Definition 2.1. �

In [19] and [10], an associative monoid in (S-Mod,⊗S) is called a twisted
associative algebra or an As-algebra in the category S-Mod, respectively.

For any associative graded algebra (A =
⊕

n>0An, •), consider A =
{An ⊗K[Sn]}n>0. The S-module A has a natural structure of monoid in
(S-Mod,⊗S), given by:

◦((x, σ)⊗ (y, τ)⊗ γ) := (x • y)⊗ ((σ × τ) · γ) ∈ An+m ⊗K[Sn+m],

for x ∈ An, y ∈ Am, σ ∈ Sn, τ ∈ Sm and γ ∈ Sh(n,m).

Examples 2.3. — a) The tensor space. For any vector space V , the
space T (V ) :=

⊕
n>1 V

⊗n has a natural structure of shuffle algebra, where
with the operations •γ are defined by the formula:

(v1 ⊗ · · · ⊗ vn) •γ (vn+1 ⊗ · · · ⊗ vn+m) := vγ(1) ⊗ · · · ⊗ vγ(n+m),

for v1, . . . , vn+m ∈ V .

b) Free shuffle algebras. Consider, on the graded vector space K[S∞] :=⊕
n>1

K[Sn], the operations •γ given by σ •γ τ := (σ × τ) · γ,

for σ ∈ Sn, τ ∈ Sm and γ ∈ Sh(n,m). It is immediate to check that the
space K[S∞] with the products •γ is a shuffle algebra.

Let V =
⊕

n>1Vn be a graded vector space. The graded spaceK[F∞](V )n
is the vector space spanned by the elements f⊗x1⊗· · ·⊗xk) ∈ Frn⊗Xn1⊗
· · ·⊗Xnr

such that the image of f is the subset {i1 < · · · < ik} of {1, . . . , r},
with nj = |f−1(ij)| for 1 6 j 6 k, and

∑k
j=1 ni = n. On the graded space

K[F∞](V ) :=
⊕

n>1K[F∞](V )n, we define a structure of shuffle algebra
as follows:

f⊗x1⊗· · ·⊗xr •γ g⊗y1⊗· · ·⊗yk := (f×g)·γ⊗x1⊗· · ·⊗xr⊗y1⊗· · ·⊗yk,

for f ⊗ x1 ⊗ · · · ⊗ xr) ∈ Fn,X , g⊗ y1 ⊗ · · · ⊗ yk) ∈ Fm,X and γ ∈ Sh(n,m).
Denote by Sh(V ) the subspace of K[F∞](V ) spanned by the elements

f ⊗ x1 ⊗ · · · ⊗ xr ∈ Fn,X with f ∈ ST n. The space Sh(V ) is closed under
the products •γ . So, Sh(V ) is a shuffle subalgebra of K[F∞](V ).

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.3.1. — For any positively graded vector space V , the
algebra Sh(V ) is the free shuffle algebra spanned by V .
Proof. — From the definition of shuffle algebra and Proposition 1.6, one

has that any element in the free shuffle algebra spanned by V is a sum of
elements x of type

x = x1 •γ1 (x2 •γ2 (. . . (xk−1 •γk−1 xk))),

for unique elements xi ∈ V and unique shuffles γi, 1 6 i 6 k. Let ψ be the
unique homomorphism from the free shuffle algebra spanned by V to the
space Sh(V ) verifying that:

ψ(x1 •γ1 (x2 •γ2 (. . . (xk−1 •γk−1 xk)))) := (ξn · γ;x1, . . . , xk),

where
(1) ni = |xi|, for 1 6 i 6 k,
(2) γ = (1n1+···+nk−2 × γk−1) · · · · · (1n1 × γ2) · γ1.

Conversely, let f : {1, . . . , n} → {1, . . . , r} be a surjective map and let
ni := |f−1(i)|, for 1 6 i 6 r. There exists a unique permutation γ ∈
Sh(n) such that f = ξn · γ. Moreover, there exist unique permutations
γi ∈ Sh(ni, ni+1 + · · ·+ nk) such that:

γ = (1n1+···+nk−2 × γk) · · · · ·(1n1 × γ2) · γ1.

The inverse of ψ is ψ−1(f ⊗x1⊗· · ·⊗xk) = x1 •γ1 (x2 •γ2 (. . . (xk−1 •γk−1

xk))). �

c) Nonunital infinitesimal bialgebras. Suppose that (A, ·) is a graded
K-algebra, equipped with a coassociative coproduct ∆ : A → A ⊗ A such
that:

∆(x · y) =
∑

x · y(1) ⊗ y(2) +
∑

x(1) ⊗ x(2) · y + x⊗ y, for x, y ∈ A,

where ∆(z) =
∑
z(1) ⊗ z(2), for z ∈ A. The triple (A, ·,∆) is called a

nonunital infinitesimal bialgebra (see [14]).

It is easy to see that the reduced tensor space T (V ), equipped with
the concatenation product and the deconcatenation coproduct, is a graded
unital infinitesimal bialgebra which is denoted T c(V ).
Let A =

⊕
n>1An be a positively graded nonunital infinitesimal bialge-

bra. The map ∆n1,...,nr
: An −→ An1⊗· · ·⊗Anr

is given by the composition
of ∆r−1 with the projection pn1...nr : A⊗n −→ An1 ⊗ · · · ⊗ Anr . For any
x ∈ An, let ∆n1,...,nr

(x) =
∑
xn1

(1) ⊗ · · · ⊗ x
nr

(r).

The proof of the following result is given, in a more general context, in
Theorem 6.7.
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Lemma 2.3.2. — Let (
⊕

n>1An, ·,∆) be a graded nonunital infinites-
imal bialgebra. The graded space A admits a natural structure of shuffle
algebra, given by the operations:

x•γy =
∑
|y(1)|=i

xn1
(1)·y

m1
(1) ·x

n2
(2)·· · ··y

mr

(r) , for x ∈ An, y ∈ An, and γ ∈ Sh(n,m),

where n1, . . . , nr and m1, . . . ,mr are the integers which determine γ, de-
scribed in Remark 1.8.
For instance, if we consider the unital infinitesimal bialgebra T c(V ), the

shuffle algebra structure described in point a) coincides with the one defined
in the previous Lemma.

d) The algebra of parking functions. (see [17] and [16]) Let PFn be
the subset of all functions f in Fnn which may be written as a composition
f = f↑ · σ, with f↑ ∈ Fnn such that f↑(i) 6 i for all 1 6 i 6 n and σ ∈ Sn.
Such a function is called a parking function.

Applying Remark 1.9, we get that for any parking function f ∈ PFn
there exist unique elements f↑ ∈ PFn and σ ∈ Sh(r1, . . . , rn) such that f↑
is a non-decreasing parking function and f = f↑ · σ, where ri = |f−1(i)|.

The concatenation map × : PFn × PFm −→ PFn+m is the restriction
of the concatenation product Fnn × Fmm −→ Fn+m

n+m to PFn × PFm. Note
that f × g is also a parking function. Moreover, for any functions f ∈ PFn,
g ∈ PFm and γ ∈ Sh(n,m), the product f •γ g = (f × g) · γ belongs
to PFn+m. For n > 1, let PQSymn denote the K-vector space spanned
by the set PFn. The space spanned by all parking functions PQSym :=⊕

n>1 PQSymn is a shuffle subalgebra of K[F∞].

Following 2.2.3 of [16], given a parking function f ∈ PFn, an integer
b ∈ {0, 1, . . . , n} is called a breakpoint of f if |{i | F (i) 6 b}| = b.
A Gessel primitive parking function is an element f ∈ PFn such that its

unique breakpoints are the trivial ones: 0 and n. Let PPFn be the subset
of prime parking functions of PFn. It is immediate to check that f ∈ PFn
if its associated non-decreasing parking function cannot be written a a
concatenation of parking functions of smaller degree.
Note that the definition of breakpoint implies that for any parking func-

tion f ∈ Pn and any permutation σ ∈ Sn the sets of breakpoints of f and of
f · σ are the same. So, the subset PPFn is invariant under the right action
of Sn.
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Remark 2.3.3. — (see 2.2.3 of [16]) A element in PPFn is a parking
function which cannot be described as f •γ g for some f ∈ PFk, g ∈ PFn−k
and γ ∈ Sh(k, n− k).
Remark 2.3.3 implies the following result.
Proposition 2.3.4. — The shuffle algebra PQSym is the free shuf-

fle algebra spanned by the set PPF :=
⋃
n>1 PPFn of all prime parking

functions.
The group Sn acts on the right on the set PPFn, for n > 1. So, PPF =

{K[PPFn]}n>1 is an object in the category S–Mod. Applying Lemma 2.3.4
it is immediate to check that PQSym = TS(PPF) =

⊕
n>1 PPF

⊗Sn in
the category S–Mod. The previous assertion means that PQSym is the
free monoid spanned by PPF in the monoidal category (S–Mod,⊗S).

e) Singular chains of a Lie group. Let

∆n = {(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1 and ti > 0, 0 6 i 6 n}

be the standard n-simplex. The degeneracy morphisms si : ∆n −→ ∆n−1

are given by the formula

si(t0, . . . , tn) = (t0, . . . , ti−2, ti−1 + ti, ti+1, . . . , tn),

for 0 6 i 6 n− 1. Given an (n,m)-shuffle σ, let sσ : ∆n+m → ∆n ×∆m be
the continuous map:

sσ := (sσ−1(n+1) ◦ · · · ◦ sσ−1(n+m))× (sσ−1(1) ◦ · · · ◦ sσ−1(n)).

For any permutation β ∈ Sh(n,m, r) such that β = (1n×δ) ·γ = (σ×1r) ·τ ,
with δ ∈ Sh(m, r), γ ∈ Sh(n,m+ r), σ ∈ Sh(n,m) and τ ∈ Sh(n+m, r), it
is easy to check that:

(Id∆n × sδ) ◦ sγ =(si1 ◦ · · · ◦ sim+r
)×(sj1 ◦ · · · ◦ sjn+r

)×(sk1 ◦ · · · ◦ skn+m
)

=(sσ × Id∆r ) ◦ sτ ,

where
• {β−1(n+ 1), . . . , β−1(n+m+ r)} = {i1 < · · · < im+r},
• {β−1(1), . . . , β−1(n), β−1(n+m+ 1), . . . , β−1(n+m+ r)} = {j1 <
· · · < jn+r},

• {β−1(1), . . . , β−1(n+m)} = {k1 < · · · < kn+m}.
Suppose that (X,µ : X × X → X) is a Lie group, and let C(X,K) be

the space of singular chains on X with coefficients in K. The operations sσ
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with the product µ define homomorphisms •σ : Cn(X,K) ⊗ Cm(X,K) →
Cn+m(X,K) as follows:

f •σ g := µ ◦ (f × g) ◦ sσ,

for f : ∆n → X and g : ∆m → X continuous maps.

f) Tensor product of shuffle algebras. Given graded spaces V =⊕
n>0 Vn and W =

⊕
m>0Wm there exist two different products of both

spaces:
(1) The Hadamard product of V and W , denoted by V ⊗

H
W , is the

graded vector space such that (V ⊗
H
W )n := Vn ⊗Wn, for n > 0.

(2) The tensor product of V and W , denoted by V ⊗W , is the graded
vector space such that (V ⊗W )n :=

⊕n
i=0 Vi ⊗Wn−i, for n > 0.

We define, for any pair A and B of shuffle algebras, shuffle algebra struc-
tures on A⊗

H
B and A⊗B. The proof of the following result is straightfor-

ward.
Lemma 2.3.5. — Let (A, •γ) and (B, ◦δ) be two shuffle algebras.
(1) The Hadamard product A ⊗

H
B has a natural structure of shuffle

algebra, given by the operations:

(x⊗ y) •γ (x′ ⊗ y′) := (x •γ x′)⊗ (y ◦γ y′),

for x ∈ An, y ∈ Bn, x′ ∈ Am, y′ ∈ Bm and γ ∈ Sh(n,m).
(2) The tensor product A⊗B has a natural structure of shuffle algebra,

given by the operations:

(x⊗ y) •γ (x′⊗ y′) :=

(x •
γn+n′

(1)
x′)⊗ (y ◦

γm+m′
(2)

y′), for n = (n+ n′)1,

0, otherwise,

where x ∈ An, x′ ∈ An′ , y ∈ Am, y′ ∈ Am′ , γn+n′
(1) ∈ Sh(n, n′) and

γm+m′
(2) ∈ Sh(m,m′) are the permutations defined in Lemma 1.7,

and (n+ n′)1 := |γ−1({1, . . . n+m} ∩ {1, . . . , n+ n′}|.

3. Shuffle bialgebras.

Given a shuffle algebra A, the product ∗ on A is given by:

x ∗ y :=
∑

γ∈Sh(n,m)

x •γ y,

for x ∈ An and y ∈ Am.
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It is easy to verify that ∗ is graded and associative applying Proposition
1.6 and the properties of the operations •γ . For instance, in 2.3 a), the
product ∗ on T (V ) is the usual shuffle product defined on the tensor space
over V .
Given a shuffle algebra (A, •γ), we want to describe coproducts on shuffle

algebras which turn the associative algebra (A, ∗) into a bialgebra. In par-
ticular, all the examples of shuffle algebras given in 2.3 may be equipped
in a natural way with a shuffle bialgebra structure.

Definition 3.1. — Let (A, •γ) be a positively graded shuffle algebra,
such that A is equipped with a graded coassociative coproduct ∆. We say
that (A, •γ ,∆) is a shuffle bialgebra if ∆ verifies the following relations:

∆(x •γ y) =
n+m−1∑
r=1

(∑
(x(1) •γr

(1)
y(1))⊗ (x(2) •γn+m−r

(2)
y(2))

)
,

where γr(1) and γn+m−r
(2) are the permutations defined in Lemma 1.7, the

second sum is taken over all |x(1)| = n1 and |y(1)| = m1, and

x(1) •γr
(1)
y(1) :=

{
x, for n1 = n

y, for n1 = 0,

x(2) •γn+m−r
(2)

y(2) :=
{
x, for n1 = 0
y, for n1 = n,

Proposition 3.2. — Let (A, •γ ,∆A) and (B, ◦δ,∆B) be shuffle bialge-
bras. The Hadamard product A⊗

H
B with the operations •γ given in Lemma

2.3.5 and the coproduct given by:

∆A⊗
H

B(x⊗ y) =
∑

|x(1)|=|y(1)|

(x(1) ⊗ y(1))⊗ (x(2) ⊗ y(2)),

is a shuffle bialgebra.

Proof. — Let x ∈ An, y ∈ Bn, z ∈ Am, w ∈ Bm and γ ∈ Sh(n,m). We
have that

∆((x⊗ y) •γ (z ⊗ w)) =∑
r,s

(
∑

(x(1)•γr
(1)
z(1)⊗y(1)•γs

(1)
w(1))⊗(x(2)•γn+m−r

(2)
z(2)⊗y(2)•γn+m−s

(2)
w(2))),

where the second sum is taken over all elements such that |x(1) •γr
(1)
z(1)| =

|y(1) •γs
(1)
w(1)|.

For 1 6 r, s 6 n + m, we have that |x(1) •γr
(1)
z(2)| = r and |y(1) •γs

(1)

w(2)| = s. So, |x(1) •γr
(1)
z(2)| = |y(1) •γs

(1)
w(2)| if, and only if r = s, where
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γr(1) ∈ Sh(n1, r − n1). In this case, we get that |x(1)| = n1 = |y(1)| and
|z(2)| = r − n1 = |w(2)|, which implies the result. �

Examples 3.3. — a) The free shuffle algebra. Let (C,Θ) be a posi-
tively graded coalgebra. Since Sh(C) is the free shuffle algebra spanned by
the graded vector space C and Sh(C) ⊗ Sh(C) is a shuffle algebra, there
exists a unique coproduct ∆θ on Sh(C) which extends Θ.
For f = ξn·σ, with n = (n1, . . . , nr), σ ∈ Sh(n) and elements x1, . . . , xr ∈

V , with xi ∈ Vni
, it is not difficult to check that ∆θ on Sh(C) is given by

the following formula:

∆θ(f ⊗ x1 ⊗ · · · ⊗ xr) :=
n∑
i=0

( ∑
|xj(1)|=mi

j

(ξmi ·σi(1)⊗x1(1)⊗· · ·⊗xr(1))⊗(ξn−mi ·σn−i(2) ⊗x1(2)⊗· · ·⊗xr(2))
)
,

where
(1) σ = δi · (σi(1) ⊗ σ

n−i
(2) ), with δi ∈ Sh(i, n− i),

(2) for each 1 6 i 6 n− 1,

mi
j := |δ−1

i {1, . . . , i} ∩ {n1 + · · ·+ nj−1 + 1, . . . , n1 + · · ·+ nj}|,

(3) mi := (mi
1, . . . ,m

i
r) and n−mi := (n1 −mi

1, . . . , nr −mi
r),

(4) Θ(xj) =
∑
xj(1) ⊗ xj(2), for 1 6 j 6 r.

For example, suppose that C =
⊕

n>1Kξn is the vector space spanned by
one element in each degree, equipped with the coproduct Θ(ξn) =

∑n
i=0 ξi⊗

ξn−i. For f = (2, 3, 3, 5, 4, 1, 4, 3), we have that:

∆θ(f) = (1)⊗ (2, 2, 5, 3, 1, 3, 2) + (1, 2)⊗ (2, 4, 3, 1, 3, 2)+
(1, 2, 2)⊗ (4, 3, 1, 3, 2) + (1, 2, 2, 3)⊗ (3, 1, 3, 2) + (1, 2, 2, 4, 3)⊗ (1, 3, 2)+

(2, 3, 3, 5, 4, 1)⊗ (2, 1) + (2, 3, 3, 5, 4, 1, 4)⊗ (1).

For instance, if C0 = Kx0, with |x0| = 1, the underlying vector space of
Sh(C0) is K[S∞], and ∆ is the unique coproduct such that:

∆(σ) :=
n−1∑
r=1

σr(1) ⊗ σ
n−r
(2) ,

for σ ∈ Sn, where σ = δr · (σr(1) × σn−r(2) ), with δ−1
r ∈ Sh(r, n− r), for

1 6 r 6 n− 1.

b) Nonunital infinitesimal bialgebras. Let (A, ·,∆) be a graded
nonunital infinitesimal bialgebra.
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Lemma 3.3.1. — The associated shuffle algebra (A, •γ), equipped with
the coproduct ∆, is a shuffle bialgebra.

Proof. — Let γ ∈ Sh(n,m) be the permutation given by the sequences
n1, . . . , ns and m1, . . . ,ms, as described in Remark 1.8. For any 1 6 r 6
n+m− 1, there exists 1 6 k 6 s such that

k−1∑
i=1

(ni +mi) + n′k +m′k = r,

where either 0 < n′k < nk and m′k = 0, or n′k = nk and 0 6 m′k 6 mk.
If γ = (1n1 × εn−n1,m1 × 1m−m1) · (γr(1) × γ

n+m−r
(2) ), then γr(1) is given by

the sequences n1, . . . , nk−1, n
′
k and m1, . . . ,mk−1,m

′
k, and γ

n+m−r
(2) is given

by the sequences nk − n′k, nk+1, . . . , ns and mk −m′k,mk+1, . . . ,ms.
Given elements x ∈ An, y ∈ Am, the coassociativity of ∆ and the relation

between · and ∆ state that:

∆(x •γ y) =∑
(
∑

16k6r
(
∑

16jk6nk

(xn1
(1) · y

m1
(1) · · · · · x

jk

(k))⊗ (xnk−jk

(k+1) · y
nk

(k) · · · · · y
mr

(r) ))+

(
∑

16lk6mk

(xn1
(1) · · · · · x

nk

(k) · y
lk
k )⊗ (ymk−lk

(k+1) · x
nk+1
(k+1) · · · · · y

mr

(r) ))) =

n+m∑
r=0

(x(1) •γr
(1)
y(1))⊗ (x(2) •γn+m−r

(2)
y(2)),

which implies the result. �

c) Monoids in (S–Mod,⊗S). For an S-module M , a coproduct on M is

a family of homomorphisms of K[Sn]-modules Ωn : M(n) −→
n⊕
i=0

M(i) ⊗

M(n− i)⊗K[Sh(i, n− i)], for each n > 0. For x ∈M(n), we have that

Ω(x) =
n∑
i=0

(
∑

σ∈Sh(i,n−i)

xσ(1) ⊗ x
σ
(2) ⊗ σ).

Given permutations σ ∈ Sh(n,m+ r), τ ∈ Sh(m, r), δ ∈ Sh(n+m, r) and
ω ∈ Sh(n,m), such that (1n × τ) · σ = (ω × 1r) · δ, the coassociativity of Ω
implies that:∑

xσ(1) ⊗ (xσ(2))τ(1) ⊗ (xσ(2))τ(2) =
∑

(xδ(1))ω(1) ⊗ (xδ(1))ω(2) ⊗ x
δ
(2).
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A monoid (M, ◦) in the category (S–Mod,⊗S) is a bialgebra if it is
equipped with a coassociative coproduct verifying the condition:

Ω(◦(x⊗ y ⊗ γ)) =
∑

(xδ(1) ⊗ y
τ
(1) ⊗ α1)⊗ (xδ(2) ⊗ y

τ
(2) ⊗ α2)⊗ ρ, (∗)

for x ∈M(n), y ∈M(m) and γ ∈ Sh(n,m), where

(1n1 × εm1,n2 × 1m2) · (δ × τ) · γ = (α1 × α2) · ρ in Sh(n1,m1, n2,m2),

with α1 ∈ Sh(n1,m1), α2 ∈ Sh(n2,m2) and ρ ∈ Sh(r, n+m− r), where
r = n1 +m1.

We have seen that an algebra M in (S–Mod,⊗S) is a shuffle algebra.
However, even if (M, ◦,Ω) is a bialgebra in (S −Mod,⊗S), it is not always
a shuffle bialgebra. But it is possible to obtain two shuffle bialgebras from
it, as we describe above.
Proposition 3.3.2. — Let (M, ◦,Ω) be a bialgebra in (S–Mod,⊗S).
(1) Let Ω0 be the coproduct on M defined as follows :

Ω0(x) :=
n∑
i=0

x1n

(1) ⊗ x
1n

(2),

where 1n is considered as a (i, n− i)-shuffle for 0 6 i 6 n. The shuf-
fle algebra (M =

⊕
n>0M(n), •γ), equipped with this coproduct ,

is a shuffle bialgebra.
(2) Let Ωtop be the coproduct on M given by:

Ωtop(x) :=
n∑
i=0

x
εi,n−i

(2) ⊗ xεi,n−i

(1) ,

where εi,n−i is considered as a (i, n− i)-shuffle, for 0 6 i 6 n. The
data (M =

⊕
n>0M(n), •γ ,Ωtop) is a shuffle bialgebra.

Proof. — For elements x ∈M(n) and y ∈M(m), a shuffle γ ∈ Sh(n,m)
and an integer 0 6 r 6 n+m, we have that:

γ = (1n1 × εn−n1,m1 × 1m−m1) · (γr(1) × γ
n+m−r
(2) ),

for n1 = |γ−1({1, . . . , r}) ∩ {1, . . . , n}| and m1 = r − n1.
If δ = 1n and τ = 1m, then:

(1n1 × εm1,n−n1 × 1m−m1) · γ =
(1n1 × εm1,n−n1 × 1m−m1) · (1n1 × εn−n1,m1 × 1m−m1) · (γr(1) × γ

n+m−r
(2) ) =

(γr(1) × γ
n+m−r
(2) ) · 1n+m,

which implies the first statement.
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To prove the second one, suppose that δ = εn1(n−n1) and τ = εm1(m−m1).
We have that εr(n+m−r) =

(1n1×εm1(n−n1)×1m−m1)·(εn1(n−n1)×εm1(m−m1))·(1n−n1×εn1(m−m1)×1m1).

Moreover, if γ = (1n−n1 × εn1,m−m1 × 1m1) · (γn+m−r
(1) × γr(2)), then

εr,n+m−r · (γn+m−r
(1) × γr(2)) = (γr(2) × γ

n+m−r
(1) ) · εn+m−r,r.

So, we get that (x •γ y)εr,n+m−r

(1) = x
εn1,n−n1
(1) •γr

(2)
y
εm1,m−m1
(1) and (x •γ

y)εr,n+m−r

(2) = x
εn1,n−n1
(2) •γn+m−r

(1)
y
εm1,m−m1
(2) .

We conclude that:

Ωtop(x •γ y) =
n+m∑
r=0

(x •γ y)εr,n+m−r

(2) ⊗ (x •γ y)εr,n+m−r

(1) =

n+m∑
r=0

x
εn1,n−n1
(2) •γn+m−r

(1)
y
εm1,m−m1
(2) ⊗ xεn1,n−n1

(1) •γr
(2)
y
εm1,m−m1
(1) ,

which ends the proof. �

d) The bialgebra of parking functions. (see [16]) Given a function f ∈
Fkn , recall that there exist a unique non-decreasing function f↑ ∈ Fkn , and a
unique permutation σ ∈ Sh(n) such that f = f↑ ·σ, where n = (n1, . . . , nk)
for ni = |(f↑)−1(i)| .
Following [16], there exists a graded map Park :

⋃
n>1 Fn −→

⋃
n>1 PFn

defined as follows.
Let f↑ ∈ Fn be a non-decreasing function, the parking function Park(f↑)

is given by:

Park(f↑)(j) :=
{

1, for j = 1,
Min{Park(f↑)(j − 1)) + f↑(j)− f↑(j − 1), j}, for j > 1.

If f = f↑ · σ, then Park(f) := Park(f↑) · σ.

Remark 3.3.3. — (1) If f ∈ Fkn be a function, then Park(f) is
the unique parking function such that f(i) < f(j) (respectively,
f(i) = f(j)) if, and only if, Park(f)(i) < Park(f)(j) (respectively,
Park(f)(i) = Park(f)(j)) for 1 6 i, j 6 n.

(2) For any pair of parking functions f, g, Park(f × g) = Park(f) ×
Park(g).
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(3) If f ∈ PFn is a parking function and γ ∈ Sn is a permutation, then

Park(f · γ) = Park(f) · γ.

Let PQSym =
⊕
n>1

PFn be the graded space of all parking functions.

The coproduct on PQSym is defined as follows (see [16]):
For f ∈ PFn and 0 6 r 6 n,

∆PQSym(f) :=
n−1∑
r=1

Park(fr1 )⊗ Park(fn−r2 ),

for fr1 := (f(1), . . . , f(r)) and fn−r2 := (f(r + 1), . . . , f(n)).
Proposition 3.3.4. — The shuffle algebra (PQSym, •γ), equipped with

the coproduct ∆PQSym, is a shuffle bialgebra.
Proof. — Let f ∈ PFn, g ∈ PFm be parking functions, and let γ be a

(n,m)-shuffle. For 1 6 r 6 n− 1, we want to check that:

Park((f •γ g)r1)⊗ Park((f •γ g)n+m−r
2 ) =

(Park(fn1
1 ) •γr

(1)
Park(gm1

1 ))⊗ (Park(fn−n1
2 ) •γn+m−r

(2)
Park(gm−m1

2 )),

where γ = (1n1 × εm1,n−n1 × 1m−m1) · (γr(1) × γ
n+m−r
(2) ).

Computing (f × g) · (1n1 × εm1,n−n1 × 1m−m1), we get that:

(f •γ g)r1 = (fn1
1 × g

m1
1 [n− n1]) · γr(1)

and
(f •γ g)n−r2 = (fn−n1

2 × gm−m1
2 [n1]) · γn+m−r

(2) ,

where fn1
1 × g

m1
1 [n− n1] = (f(1), . . . , f(n1), g(1) + n, . . . , g(m1) + n).

By Remark 3.3.3, we get that
Park((f •γ g)r1) = Park(fn1

1 ) •γr
(1)

Park(gm1
1 )),

Park((f •γ g)n+m−r
2 ) = Park(fn−n1

2 ) •γn+m−r
(2)

Park(gm−m1
2 )),

which ends the proof. �

4. Relations with dendriform and 2-associative algebras

We want to relate shuffle bialgebras to other algebraic structures. In [1],
M. Aguiar constructs functors relating infinitesimal bialgebras to dendri-
form algebras (see [11]) and brace algebras. We want to include shuffle
bialgebras in his framework.

The following results are immediate to verify applying the definition of
shuffle bialgebra.
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Lemma 4.1. — Given a shuffle algebra (A, •γ) there exist three associa-
tive algebra structures on A, defined as follows:

(1) the products x •0 y and x •top y defined by:

x •0 y := x •1n+m
y,

x •top y := y •εm,n x,

(2) the product x ∗ y :=
∑
γ∈Sh(n,m) x •γ y,

where x ∈ An and y ∈ Am.

Lemma 4.2. — Let (A, •i,∆) be a shuffle bialgebra.
(1) The relationship between ∆ and the associative products •0 and
•top is given by the following equalities:

∆(x •0 y) =
∑

(x •0 y(1))⊗ y(2) +
∑

x(1) ⊗ (x(2) •0 y) + x⊗ y,

∆(x •top y) =
∑

(x •top y(1))⊗ y(2) +
∑

x(1) ⊗ (x(2) •top y) + x⊗ y,

for x, y ∈ A. So, (A, •0,∆) and (A, •top,∆) are nonunital infinitesi-
mal bialgebras.

(2) The product ∗ may be extended to A+ = A ⊕ Kin a unique way
such that 1K ∗ x = x = x ∗ 1K for x ∈ A+. The triple (A+, ∗,∆+)
is a bialgebra, which means that:

∆+(x ∗ y) =
∑

(x(1) ∗ y(1))⊗ (x(2) ∗ y(2)), for x, y ∈ A+.

The previous result implies that there exists two functors, H0 and Htop,
from the category of shuffle bialgebras to the category of graded nonunital
infinitesimal bialgebras. Let G : Grε −→ Sh be the functor which assigns to
any graded nonunital infinitesimal bialgebra (A, ·,∆) the shuffle bialgebra
(A, •γ ,∆). It is easy to check that the compositions H0 ◦ G and Htop ◦ G
are equal to the identity functor.

Definition 4.3. — (see [14]) Let B be a K-vector space equipped with
two associative products ∗ and ·, and a coassociative coproduct ∆, such
that:

(1) (B, ∗,∆) is a bialgebra over K,
(2) (B, ·,∆) is an infinitesimal unital bialgebra.

Then (B, ∗, ·,∆) is called a 2-associative bialgebra.

Lemma 3.3.1 implies that if (A, •γ ,∆) is a shuffle bialgebra, then (A+ =
K ⊕A, ∗, •0,∆) is a 2-associative bialgebra.
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Definition 4.4. — A dendriform algebra (see [11]) over K is a vector
space D equipped with two bilinear maps �,≺: D⊗D −→ D which verify
the following relations:

(1) x � (y � z) = (x � y + x ≺ y) � z,
(2) x � (y ≺ z) = (x � y) ≺ z,
(3) x ≺ (y � z + y ≺ z) = (x ≺ y) ≺ z,

for x, y, z ∈ D.

Note that any dendriform algebraD has a natural structure of associative
algebra with the product ∗, defined by: x ∗ y = x � y + x ≺ y.

For nonnegative integers n,m, let Sh�(n,m) and Sh≺(n,m) be the fol-
lowing subsets of Sh(n,m):
a) Sh�(n,m) := {σ ∈ Sh(n,m) | σ(n+m) = n+m},
b) Sh≺(n,m) := {σ ∈ Sh(n,m) | σ(n+m) = n}.
It is immediate to check that Sh(n,m) is the disjoint union of Sh�(n,m)

and Sh≺(n,m).
Let (A, •γ) be a shuffle algebra. Define on A the operations � and ≺ as

follows:
(1) x � y :=

∑
γ∈Sh�(n,m)

x •γ y,

(2) x ≺ y :=
∑

γ∈Sh≺(n,m)

x •γ y,

for x ∈ An and y ∈ Am. Note that the associative product ∗ defined at the
beginning of Section 3 is the sum of � and ≺. The proof of the following
Lemma may be obtained by straightforward calculation.

Lemma 4.5. — Let (A, •γ) be a shuffle algebra, then (A,�,≺) is a den-
driform bialgebra. Moreover, if (A, •γ ,∆) is a shuffle bialgebra, then �, ≺
and ∆ verify the following equalities:

∆(x � y) =
∑

(x(1) ∗ y(1))⊗ (x(2) � y(2)) +
∑

x(1) ⊗ (x(2) � y)+∑
y(1) ⊗ (x � y(2)) +

∑
(x ∗ y(1))⊗ y(2) + x⊗ y,

∆(x ≺ y) =
∑

(x(1) ∗ y(1))⊗ (x(2) ≺ y(2)) +
∑

y(1) ⊗ (x ≺ y(2))+∑
(x ∗ y(1))⊗ y(2) +

∑
x(1) ⊗ (x(2) ≺ y) + y ⊗ x,

for all x, y ∈ A.

The Lemma above states that any shuffle bialgebra has a natural struc-
ture of dendriform bialgebra.
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5. Primitive elements of shuffle bialgebras

We recall some results proved in [14] that we need in order to study
primitive elements in shuffle algebras.

Following [14], let (H, ·,∆) be a triple such that (H,∆) is a conilpotent
coassociative coalgebra and (H, ·) is an associative algebra. Define the linear
map e ∈ EndK(H) as follows:

e(x) := x−
∑

x(1) · x(2) + · · ·+ (−1)r+1
∑

x(1) · x(2) · · · · · x(r) + · · · =∑
r>1

(−1)r+1 ·r ◦∆r(x),

where ∆r(x) =
∑
x(1) ⊗ x(2) ⊗ · · · ⊗ x(r).

Proposition 5.1. — (see Proposition 2.5 of [14]) Any conilpotent non-
unital infinitesimal bialgebra (H, ·,∆) verifies that:

(1) the image of e belongs to Prim(H),
(2) the restriction e |Prim(H)= IdPrim(H), and
(3) e(x · y) = 0 for all x, y ∈ Ker(ε).
(4) any element x of Ker(ε) verifies that

x = e(x) +
∑

e(x(1)) · e(x(2)) + · · ·+
∑

e(x(1)) · · · · · e(x(n)) + . . . ,

where ∆n(x) =
∑
x(1) ⊗ · · · ⊗ x(n).

Theorem 5.2. — (see Theorem 2.6 of [14] ) Any conilpotent infinitesi-
mal bialgebra H is isomorphic to

(T c(Prim(H)) := (
⊕
n>1

Prim(H)⊗n, ν,∆),

where ν is the concatenation product and ∆ is the deconcatenation coprod-
uct.

We want to prove a Cartier-Milnor-Moore theorem in the context of
shuffle bialgebras. In order to do it, we introduce the notion of Primsh

algebra.

Definition 5.3. — A Primsh algebra is a graded vector space V

equipped with operations Bγ : Vn ⊗ Vm −→ V , for γ ∈ Sh(n,m) \
{1n+m, εnm}, and a binary operation {−,−} which satisfy the following
relations:

(1) {x, {y, z}} = {{x, y}, z}+B1n×εrm({x, z}; y)−Bεmn×1r (y; {x, z});
(2) {x;Bγ(y; z)} = Bγ(y; {x, z}) + Bγ̃({x, y}; z), where γ := (εmn ×

1r) · (1n × γ) and γ̃ = 1n × γ;
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(3) {Bγ(x; y), z} = Bγ({x; z}; y) +Bγ×1r (x; {y, z}), where γ := (1m ×
εrn) · (γ × 1r);

(4) Bγ(Bδ(x; y); z) = Bτ (x;Bσ(y; z)), whenever (δ×1r)·γ = (1n×σ)·τ ,
with σ 6= 1m+r;

for x ∈ Vn, y ∈ Vm and z ∈ Vr.

Note that relation (4) of Definition 5.3 makes no sense when the permu-
tations δ and γ are such that (δ × 1r) · γ = τ ∈ Sh(n,m+ r). In this case,
the permutation τ verifies that τ(1) < τ(n+m) and τ(n+m) + 1 < τ(n).
Conversely, if a (n,m+r)-shuffle τ verifies these conditions, then there exist
unique permutations δ ∈ Sh(n,m) \ {1n+m, εnm} and γ ∈ Sh(n+m, r) \
{1n+m+r, ε(n+m)r} such that τ = (δ × 1r) · γ. The following Lemma gener-
alizes this situation, its proof is immediate applying Proposition 1.6.

Lemma 5.4. — Let (m1, . . . ,mq) be a composition of m. If a permu-
tation τ ∈ Sh(n,m) is such that τ(1) < τ(n + m1) and τ(n + m1 +
· · · + mq−1) + 1 < τ(n), then there exist unique families of permutations
σi ∈ Sh(n+m1 + · · ·+mi−1,mi), for 1 6 i 6 q, such that:

(1) σi 6= 1n+m1+...mi−1 and σi 6= ε(n+m1+···+mi−1)mi
,

(2) τ = (σ1 × 1m−m1) · (σ2 × 1m−m1−m2) · · · · · σq,
(3) for 2 6 i 6 q−1, let τi := (σ1×1m2+···+mi)·(σ2×1m3+···+mi)·· · ··σi.

The element τi ∈ Sh(n,m1 + · · ·+mi) verifies that τi(1) < τi(n +
m1) and τi(n+m1 + · · ·+mi−1) + 1 < τi(n).

Notation 5.5. — Let V be a Primsh algebra. Given elements x ∈ Vn
and yi ∈ Vmi

, for 1 6 i 6 q, and a permutation τ ∈ Sh(n,m1 + · · ·+mq)
such that τ(1) < τ(n + m1) and τ(n + m1 + · · · + mq−1) + 1 < τ(n), we
denote by Bτq (x; y1, . . . , yq) the following element of Vn+m1+···+mq

:

Bτq (x; y1, . . . , yq) := (Bσq (. . . ((Bσ2(Bσ1(x; y1); y2) . . . ); yq),

where σ1, . . . , σq are the permutations described in Lemma 5.4.

Let (A, •γ) be a shuffle algebra over K. In order to simplify notation,
given elements x ∈ An and y ∈ Am, we shall keep the notations x •0 y for
the element x •1n+m

y, and y •top x for the element x •εnm
y. Recall that

both operations are associative.
Define binary operations {−,−} and Bγ on A by the formulas:
(1) {x, y} := x •top y − x •0 y,
(2) Bγ(x; y) := x •γ y,

for x ∈ An, y ∈ Am and γ ∈ Sh(n,m) \ {1n+m, εnm}.
To see that there exists a functor from the category Sh-alg of shuffle

algebras to the category of Primsh algebras, we need the following result.
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Proposition 5.6. — Let (A, •γ) be a shuffle algebra. The space A with
the operations {−,−} and Bγ is a Primsh algebra.

Proof. — We need to check that the operations defined on A verify the
relations of Definition 5.3. For the first equality note that ε(m+r)n = (1m×
εrn) · (εnm × 1r), which implies that:

{x, {y, z}} = x •top y •top z + x •0 y •0 z − x •top (y •0 z)− x •0 (y •top z) =
{{{x, y}, z}+(x•0 y)•top z+(x•top y)•0 z−x•top (y •0 z)−x•0 (y •top z) =

{{{x, y}, z}+ {x, z} •1n×εrm
y − y •εmn×1r

{x, z}.

The second and the third equalities may be verified in an analogous way,
using the properties of the •γ ’s. The fourth one is immediate from the
definition of shuffle algebra. �

Remark 5.7. — For a shuffle algebra A, given elements x ∈ An, y1, . . . yq,
with yi ∈ Ami , and a permutation τ ∈ Sh(n,m) such that τ(n+m1) < τ(1)
and τ(n + m − mq) + 1 < τ(n), the element Bτq (x; y1, . . . , yq) defined in
Notation 5.5 verifies:

Bτq (x; y1, . . . , yq) = x •τ (y1 •0 · · · •0 yq),

where m = m1 + · · ·+mq.

The following Proposition states that the subspace of primitive elements
of a shuffle bialgebra is closed under the operations {−,−} and •γ .

Proposition 5.8. — Let (A, •γ ,∆) be a shuffle bialgebra, the subspace
of primitive elements Prim(A) is a Primsh subalgebra of A.

Proof. — It is immediate to check that ∆(x •top y) = x ⊗ y = ∆(x •0
y), for x, y ∈ Prim(A), which implies that ∆({x, y}) = 0 whenever x, y ∈
Prim(A).

For any permutation γ ∈ Sh(n,m) \ {1n+m, εnm}, the coproduct verifies
that:

∆(x •γ y) =
∑
r

(∑
(x(1) •γr

(1)
y(1))⊗ (x(2) •γn+m−r

(2)
y(2))

)
,

where γ = (γr(1) × γ
n+m−r
(2) ) · (1n1 × ε(n−n1)m1 × 1m−m1).

Since
∑
x(1) ⊗ x(2) = 0 and

∑
y(1) ⊗ y(2) = 0, we have that (x(1) •γr

(1)

y(1))⊗(x(2)•γn+m−r
(2)

y(2)) 6= 0 if, and only if, either r = n1 = n, and therefore
γ = 1n+m, or r = m1 = m, and γ = εnm. As γ /∈ {1n+m, εnm}, we get that
∆(x •γ y) = 0. �
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Given a positively graded vector conilpotent coalgebra on (C,Θ) we may
describe, applying Theorem 5.2, the free shuffle algebra Sh(C) in terms of
its primitive elements.
Let e : Sh(C) −→ Prim(Sh(C)) be the linear map defined in Proposition

5.1. The restriction of the map e to the elements ξn ⊗ x, with n > 1 and
x ∈ Cn gives a linear isomorphism betweenC and the subspace e(C) of
Prim(Sh(C)). In order to simplify notation, we denote by x the image
under e of the element ξn ⊗ x.
Let P(Sh(C)) be the subspace of Sh(C) spanned by the set e(C) with the

operations Bγ and {−,−}, and let P(Sh(C))•0n ⊆ Sh(C) be the subspace
spanned by all the elements of the form z1 •0 z2 •0 · · · •0 zn, with zj ∈
P(Sh(C)), for 1 6 j 6 n.

Proposition 5.9. — The space T •0(P(Sh(C))) :=
⊕

n>1 P(Sh(C))•0n

coincides with Sh(C).

Proof. — We prove first that C ⊆ T •0(P(Sh(C))). If x ∈ C1, then x =
ξ1 ⊗ x ∈ P(Sh(C)). Suppose that x ∈ Cn, for n > 2, the definition of e
implies that

ξn ⊗ x = x+
∑

(ξn1 ;x(1)) •0 x(2),

where Θ(x) =
∑
x(1) ⊗ x(2). The elements x and x(2) belong to e(C) ⊆

Primsh(C). Applying a recursive argument on the degree of x, we get that:

ξn1 ⊗ x(1) =
∑
k

yk1 •0 yk2 •0 · · · •0 ykrk
,

with ykl ∈ Cmk
l
, for 1 6 l 6 rk. So, ξn ⊗ x belongs to T •0(P(Sh(C))).

Since (Sh(C), •γ) is the free shuffle algebra spanned by the vector space
C, any homogeneous element y ∈ Sh(C)n may be written in a unique way
as y =

∑
l(ξnl

⊗ xl) •γl
y′l, with xl ∈ Cnl

, y′l ∈ Sh(C) such that |y′l| < n

and γl ∈ Sh(nl, n− nl).
We have proved yet that ξn ⊗ x =

∑
l x
l
1 •0 · · · •0 xlr−l. To end the proof

we are going to see that for any collection of elements y and {zi}16i6q
in P(Sh(C)), the element w = y •γ (z1 •0 z2 •0 · · · •0 zq), belongs to
⊕n>1P(Sh(C))•0n. Let |y| = m,|zi| = ri, for 1 6 i 6 q, and r =

∑q
i=1 ri.

The result is obvious for γ = 1m+r.
For γ 6= 1m+r, we proceed by induction on q. If q = 1, then
• w = Bγ(y; z1), for γ 6= εmr1 , and
• w = {z1, y}+ z1 •0 y, for γ = εmr1 .

If q > 1 and γ(m) < γ(m + r1 + · · · + rq−1) + 1, then there exists
γ̃ ∈ Sh(m, r) such that γ = γ̃ × 1rq

, where r = r1 + · · · + rq−1. We have
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that w = (y •γ̃ (z1 •0 · · · •0 zq−1))•0 zq. By recursive hypothesis, the element
y •γ̃ (z1 •0 · · · •0 zq−1) belongs to T •0(P(Sh(C))), which implies that w ∈
T •0(P(Sh(C))).
If q > 1 and γ(m) > γ(m+ r1 + · · ·+ rq−1) + 1, then we have to consider

three situations:
(1) If γ(1) < γ(m+ r1) then w = Bγq (y; z1, . . . , zq) ∈ P(Sh(C)),
(2) if γ(1) > γ(m + r1) then, then γ = (εmr1 × 1r−r1) · (1r1 × γ̃), for

some γ̃ ∈ Sh(m, r − r1). We get that:

w = {z1, y} •1r1×γ̃ (z2 •0 · · · •0 zq) + z1 •0 (y •γ̃ (z2 •0 · · · •0 zq)).

But, by a recursive argument, the elements {z1, y}•1r1×γ̃ (z2•0 · · ·•0
zq) and y •γ̃ (z2 •0 · · ·•0 zq) belong to T •0(P(Sh(C))), which implies
that w ∈ T •0(P(Sh(C))). �

For any graded coalgebra C, let Primsh(C) denotes the free Primsh

algebra spanned by the underlying space of C. Lemma 5.4 implies that any
homogeneous element of degree n in Primsh(C) is a sum of elements of type
Bγq (x; y1, . . . , yq), with x = {{{{x1, x2}, x3}, . . .}, xn}, for x1, . . . , xn ∈ C,
and y1, . . . , yq ∈ Primsh(C), with |x| +

∑q
i=1 |yi| = n. Let {C}0 be the

vector space spanned by the elements {{{{x1, x2}, x3}, . . .}, xn}, with xi ∈
C, we have that {C}0 is a subspace of Primsh(C).
Define recursively

{C}n := {C}n−1
⊕

(
⊕
m>1

Bm),

where Bm is the space spanned by the elements Bγm(x; y1, . . . , ym), with
x ∈ {C}0, yj ∈ {C}n−1 for 1 6 j 6 m Note that {C}n ⊆ {C}n+1. It is
clear that Primsh(C) =

∑
n>0{C}n as a vector space.

Proposition 5.10. — Let C be a positively graded coalgebra. The sub-
space P(Sh(C)) is the subspace of primitive elements of Sh(C). Moreover,
it is the free Primsh algebra Primsh(C).

Proof. — Note first that it suffices to prove the result for the case where
C =

⊕
n>1

Cn with Cn a space of finite dimension, for all n > 1. For the

general case, C is a limit of graded vector spaces which verify this condition
and the result follows.

Proposition 5.8 states that P(Sh(C)) ⊆ Prim(Sh(C)), while Proposition
5.9 implies that Sh(C) = T (P(Sh(C))) as a vector space. From Theorem
5.2, one has that Sh(C) = T (Prim(Sh(C)), so P(Sh(C)) = Prim(Sh(C)).
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For the second assertion note that, since Sh(C) is the free associative
algebra over the space [IrrST (C) =

⊕
n>1

IrrST n(C) spanned by the irre-

ducible surjective maps coloured with elements of C, the previous assertion
states that P(Sh(C)) is isomorphic as a a vector space to IrrST (C). From
Proposition 5.8 we know that P(Sh(C)) is a Primsh algebra which con-
tains e(C). To see that it is free, it suffices to define a linear isomorphism
β : IrrST (C) −→ Primsh(C). On C ⊂ IrrP(C), β coincides with the iden-
tity map. Let y = (ξn ⊗ x) •γ y1 ∈ IrrP(C), with x ∈ Cn and n > 1. We
define β(y) as follows:
If y1 ∈ IrrP(C) and γ 6= εnm1 , then β(y) := Bγ1 (x;β(y1)).
If y1 ∈ IrrP(C) and γ = εnm1 , then

β(y) :=
{
{β(y1), x}, for β(y1) ∈ {C}0,
Bτq ({w, x}; z1, . . . , zq), for β(y1) = Bτq (w; z1, . . . , zq),

where |y1| = m1, w ∈ {C}0, |w| = s, zj ∈ Primsh(C) for 1 6 j 6 q,∑
j |zj | = r and τ := (τ × 1n) · (1s × εnr).

Suppose that y1 = t1 •0 · · · •0 tp, with ti ∈ IrrP(C) and p > 1. The fact
that y is irreducible implies that γ(n + h1 + · · · + hp−1 + 1) < γ(n), for
|ti| = hi.
If γ(1) < γ(n+ h1), then β(y) := Bγp (x;β(t1), . . . , β(tp)).

If γ(n+ h1) < γ(1)− 1, then

β(y) :=
{
Bγp−1({β(t1), x};β(t2), . . . , β(tp)), for β(t1) ∈ {C}0
Bτq+p−1({w, x}; z1, . . . , zq, β(t2), . . . , β(tp)), for β(t1) = Bτq (w; z1, . . . , zq),

where γ = γ · (εh1n×1h2+···+hp
), τ := γ · (1n× τ ×1h2+···+hr

) · (εsr×1h−s),
and h :=

∑p
i=1 hi.

It is not difficult to check that β is bijective, which implies that P(Sh(X))
is isomorphic to Primsh(X). �

The following result is a straightforward consequence of Theorem 5.2 and
the previous results.

Proposition 5.11. — Let (C,Θ) be a positively graded coalgebra. The
nonunital infinitesimal bialgebra Sh(C) is isomorphic to T c(Primsh(C)),
where Primsh(C) is the free Primsh algebra spanned by the vector space C.

Example 5.12. — Primitive elements of the K[ST ∞]. As a shuffle
algebra K[ST ∞] is freely generated by the set {ξn}n>1, while it is the free
associative algebra spanned by the irreducible elements of ST ∞.
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Let Θ be the unique coproduct on
⊕

n>1K[ξn] such that Θ(ξn) =∑n−1
i=1 ξi ⊗ ξn−i, for n > 1. Given an irreducible element f ∈ IrrST n

, with
n1 = |f−1(1)|, we associate to it a primitive element Eθ(f) as follows:
If n1 = n, then f = ξn and

E(ξn) := e(ξn) =
n∑
r=1

(−1)r−1(
∑

n1+···+nr=n
ξn1 •0 · · · •0 ξnr

).

If n1 < n, then f = ξn1 •γ f1, with γ 6= 1n. There exists a unique
family g1, . . . , gr of irreducible elements, such that f1 = g1 •0 · · · •0 gr.
Let |gj | = mj , for 1 6 j 6 r. Since f ∈ IrrST n , we get that γ(n1) >
γ(n1 +m1 + · · ·+mr−1 + 1). The element E(f) is given by:

(1) E(f) := E(ξn1) •γ (E(g1) •0 · · · •0 E(gr)), for γ(1) < γ(n1 +m1),
(2) E(f) := {E(g1), E(ξn)} •γ̃ (E(g2) •0 · · · •0 E(gr), for γ(1) > γ(n1 +

m1),
where γ = (εn1,m1 × 1m2+···+mr

) · γ̃.
Note that E(f) = f +

∑
i fi, such that the fi are not irreducible, which

implies that the family {E(f)}f irreducible is linearly independent. Proposi-
tions 5.9 and 5.10 imply that the family {E(f)}f∈IrrST∞ is a basis of the
space of primitive elements of K[ST ∞].
For example, let f = (3, 2, 4, 1, 6, 4, 1, 5, 5) = ξ2 •(3,4,5,1,6,7,2,8,9) ((2, 1) •0

(1, 3, 1, 2, 2)). We get that

E(ξ2) = (1, 1)− (1, 2), E(2, 1) = (2, 1)− (1, 2),
E(2, 1, 1) = {E(ξ1), E(ξ2)} = (2, 1, 1)− (3, 1, 2)− (1, 2, 2) + (1, 2, 3),
E(1, 3, 1, 2, 2) = E(ξ2) •(1,3,2,4,5) E(2, 1, 1) = (1, 3, 1, 2, 2)− (1, 4, 1, 2, 3)−

(1, 2, 1, 3, 3) + (1, 2, 1, 3, 4)− (1, 4, 2, 3, 3) + (1, 5, 2, 3, 4)+
(1, 3, 2, 4, 4)− (1, 3, 2, 4, 5),

E(3, 2, 4, 1, 6, 4, 1, 5, 5) = {E(2, 1), E(ξ2)} •(1,2,5,3,6,7,4,8,9) E(1, 3, 1, 2, 2).

We want to prove the equivalence between the categories of conilpotent
shuffle bialgebras and Primsh algebras. More precisely, given a Primsh

algebra (V,Bγ , [−,−]), let USh(V ) be the shuffle bialgebra obtained by
taking the quotient of the free shuffle algebra Sh(V ) by the ideal (as a
shuffle algebra) spanned by the set:

{Bγ(x; y)−Bγ(x; y), {x, z} − [x, z]},

with x ∈ Vn, y ∈ Vm, z ∈ Vr and γ ∈ Sh(n,m) such that γ(1) < γ(n+m1)
and γ(n + m1 + · · · + mn−1 + 1) < γ(n). Here Bγ and {−,−} denote the
operations associated to the shuffle algebra Sh(V ).
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Theorem 5.13. — a) Let (H, ◦γ ,∆) be a conilpotent shuffle bialgebra.
As a shuffle bialgebra H is isomorphic to USh(Prim(H)), where Prim(H)
is the Primsh algebra of primitive elements of H.
b) Let (V,Bγn, {−,−}) be a Primsh algebra. As Primsh algebra V is iso-
morphic to Prim(USh(V )).

Proof. — a) .Define ϕ : Sh(Prim(H)) −→ H as follows:

ϕ(x1 •γ1 (x2 •γ2 (. . . (xn−1•γn−1xn)))) := x1 ◦γ1 (x2 ◦γ2 (. . . (xn−1◦γn−1xn))),

where xi ∈ Prim(H) for 1 6 i 6 n. Note that ϕ(Bγ(x; y)) = ϕ(x •γ y) =
x◦γ y = B

γ(x; y), and ϕ({x, y}) = ϕ(x•topy−x•0y) = [x; y], so ϕ factorizes
through USh(Prim(H)). Moreover, it is immediate to check that ϕ is a
bialgebra homomorphism. Applying Theorem 5.2, the inverse morphism is
given by

ϕ−1(x) = cl(e(x)) +
∑

cl(x(1) •0 x2)) + · · ·+
∑

cl(x1 •0 · · · •0 xn),

where cl denotes the class of the element in USh(Prim(H)).

b) It is clear that V ⊆ Prim(USh(V )). Proposition 5.11 implies that
Prim(Sh(V )) = Primsh(V ). So, the primitive elements of USh(V ) are gen-
erated by V under the operations Bγ and {, }, which are precisely the
elements of V in the quotient. �

6. Preshuffle bialgebras and pre-Lie systems

We want to apply our description of primitive elements of shuffle bial-
gebras to other structures. We introduce the notion of preshuffle algebras,
related to leveled trees, and study pre-Lie systems (see [6]) as a particular
type of preshuffle algebras.

Shuffle algebras are related to a weak version of monoids in the category
(S–Mod,⊗S), when we do no ask for a compatibility relation between the
operations •γ and the action of the symmetric group. In the present section,
we consider the family of block-shuffles, which is closed under compositions,
and define a preshuffle algebra as a graded space equipped with operations
•γ only when γ is a block-shuffle. For any non-symmetric operad P =
{Pn}n>0 the space A =

⊕
n>0 Pn+1 has a natural structure of preshuffle

algebra. More precisely, non-symmetric operads are, via this identification,
preshuffle algebras satisfying some extra conditions.
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Definition 6.1. — (1) A preshuffle algebra over K is a graded
vector space A =

⊕
n>1An equipped with linear maps

•i : A⊗Am → A, for 0 6 i 6 m,

satisfying:

(x •i y) •j z = x •i+j (y •j z), for 0 6 i 6 |y| and 0 6 j 6 |z|.

(2) A pre-Lie system is a preshuffle algebra (A, •i) such that the oper-
ations •i satisfy the following additional conditions:

x •i (y •j z) = y •j+|x| (x •i z), for 0 6 i < j,

for any elements x, y, z ∈ A.

The relations verified by a preshuffle algebra may be pictured as follows:
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For non-negative integers n and 0 6 i 6 m, let ωn,mi be the permutation
ωn,mi := εn,i × 1m−i ∈ Sh(n,m). The element ωn,mm is equal to εn,m.
It is immediate to verify that:

(1n × ωm,rj ) · ωn,m+r
i = (ωn,mi−j × 1r) · ωn+m,r

j ,

for 0 6 j 6 r and 0 6 i 6 m+ r, which implies that any shuffle algebra is
a preshuffle algebra with the product •i given by:

x •i y := x •ωn,m
i

y, for x ∈ An, y ∈ Am and 0 6 i 6 m.

Definition 6.2. — (see [6]) A pre-Lie algebra is a vector space V

equipped with a bilinear map ◦ : V ⊗ V −→ V satisfying that:

x ◦ (y ◦ z)− (x ◦ y) ◦ z = x ◦ (z ◦ y)− (x ◦ z) ◦ y,

for any elements x, y, z ∈ V .

Associative algebras are particular examples of pre-Lie algebras.
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Any pre-Lie system (A, •i) induces a pre-Lie algebra structure on the
space A with the product ◦ given by:

x ◦ y =
∑

06i6m
x •i y,

for x ∈ A and y ∈ Am.

Definition 6.3. — Let (A, •i) be a positively graded preshuffle algebra,
such that A is equipped with a graded coassociative coproduct ∆. We say
that (A, •i,∆) is a preshuffle bialgebra if it verifies:

(1) ∆(x •0 y) =
∑

x(1) ⊗ (x(2) •0 y) + x⊗ y +
∑

(x •0 y(1))⊗ y(2).

(2) ∆(x •i y) =
∑
|y(1)|6i

y(1) ⊗ (x •i−|y(1)| y(2))+

∑
|y(1)|=i

(x(1) •i y(1))⊗ (x(2) •0 y(2)) +
∑
|y(1)|>i

(x •i y(1))⊗ y(2),

for 1 6 i 6 |y|.

(3) ∆(x •|y| y) =
∑

y(1) ⊗ (x •|y(2)| y(2)) + y ⊗ x+
∑

(x(1) •|y| y)⊗ x(2).

We shall use indistinctly the terms pre-Lie system with coproduct or
coalgebra structure on a pre-Lie system to design a preshuffle bialgebra
(A, •i,∆) such that (A, •i) is a pre-Lie system.
Clearly any shuffle bialgebra is a preshuffle bialgebra.

Examples 6.4. — a) The free preshuffle algebra. Let V be a pos-
itively graded vector space. In b) of Examples 2.3 we introduce a shuffle
algebra structure on the space K[F∞](V ), so K[F∞](V ) is a preshuffle al-
gebra with the operations •i := •ωi

. Moreover, the subspaces K[K∞(V )] :=⊕
n>1K[Kn(V )] and K[ST ∞(V )] :=

⊕
n>1K[ST n(V )] are closed under

the operations •i, so they are sub-preshuffle algebras of K[F∞(V )].

Theorem 6.4.1. — For any positively graded vector space V , the space
K[K∞(V )], with the operations •i, is the free preshuffle algebra spanned by
V . We denote it by Psh(V ).
Proof. — Any element of x ∈ Vn is identified with the pair ξn ⊗ x. The

result follows easily using that any element z in the free preshuffle algebra
spanned by V is of the form x •i y, with x ∈ Vr for some 1 6 r and y an
element of the free preshuffle algebra such that |y| < |z|. �

Given a coalgebra (C,Θ), the coproduct ∆θ : Sh(C) −→ Sh(C)⊗Sh(C),
defined in Example c) of 3.3, restricts to Psh(C). So, any free preshuffle
algebra is a preshuffle bialgebra.
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The free preshuffle algebra spanned by the one dimensional space Kx0
of degree one is just the space K[S∞] :=

⊕
n>1

K[Sn], with the operations

•ωi
.

b) Infinitesimal bialgebras Given a graded nonunital infinitesimal bial-
gebra (A, ·,∆), example b) of 3.3 shows that there exists a natural way
to define a shuffle bialgebra structure on A, where the coproduct is ∆ and
the operations •γ are constructed using · and ∆. It is easy to see that the
preshuffle algebra structure on A, given by •i = •ωn,m

i
is in fact a pre-

Lie system. So, any graded nonunital infinitesimal bialgebra gives rise to a
coalgebra structure on a pre-Lie system.

c) The free pre-Lie system. The graded vector space K[T∞] spanned by
the set of planar trees T∞ :=

⋃
n>1 Tn, with the products ◦i described in

Definition 1.13 is a pre-Lie system. Moreover, the subspaceK[Y∞], spanned
by the set of planar binary trees, is a sub-pre-Lie system of K[T∞].

For a graded vector space V =
⊕

n>1 Vn, let V [−1] be the graded space
such that V [−1]0 = 0, V [−1]1 = Kid and V [−1]n = Vn−1. The free non-
symmetric operad spanned by V [−1] (see for instance [15]) is the vector
space

⊕
n>1K[Tn−1(V )] spanned by the set of planar rooted trees with

the internal vertices coloured by the elements of V , in such a way that a
vertex with r+1 inputs is coloured by an element x of Vr, with the maps ◦i
induced by the pre-Lie system structure of the space K[T∞] in an obvious
way. So, the free pre-Lie system PLie(V ) on V is just the space of coloured
trees K[T∞(V )] =

⊕
n>1K[Tn(V )] with the compositions ◦i.

d) The space of Hochschild cochains. (see [6] ) Let A be a unital K-
algebra, and let C∗(A) :=

⊕
n>0 HomK(A⊗n, A) be the space of Hochschild

cochains on A.
The space C∗(A)[1] :=

⊕
n>0 HomK(A⊗(n+1), A) is a pre-Lie system

with the operations •i defined as follows:

g •i f := f ◦ (id⊗(i−1)
A × g × id⊗(n−i)

A ),

for g ∈ Cm(A,A) and f ∈ Cn(A,A).

Consider on C∗(A)[1] the following coproduct:

∆(f) :=
n−1∑
i=1

f i(1) ⊗ f
n−i+1
(2) , for f ∈ Cn(A,A),

where
(1) f i(1)(x1, . . . , xi) := f(x1, . . . , xi, 1A, . . . , 1A) ∈ Ci(A,A)
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(2) fn−i+1
(2) (x1, . . . , xn+1−i) := f(1A, . . . , 1A, x1, . . . , xn+1−i)

∈ Cn+1−i(A,A).
It is easy to see that ∆ defines a coproduct on the pre-Lie system. This

example motivated M. Gerstenhaber’s definition of pre-Lie systems.

e) The underlying space of an algebraic operad. Let K be a field of
characteristic 0, and let P be aK-linear operad as described in [7]. Consider
the graded K-vector space P[1] :=

⊕
n>0

P(n+ 1) equipped with the maps:

λ •i ν := γ1,...,1,n,1,...,1(ν ⊗ 1⊗ · · · ⊗ 1⊗ λ⊗ 1⊗ · · · ⊗ 1),

where 1 ∈ P(1) = P[1]0 is the identity operation, and λ ∈ P(m) is at the
i+ 1-th place. It is easy to check that P[1] with these products is a pre-Lie
system over K.

As an example of coproduct on a pre-Lie system given by a non-
symmetric operad consider the operad As.

The pre-Lie system structure of As[1] =
⊕

n>0K[Sn+1] is given by the
operations:

(σ •i τ) = (τ i(1) × σ × τ
m−i−1
(2) ) · δni ,

where τ = (τ̃ i(1) × 11 × τ̃m−i−1
(2) ) · δ with δ ∈ Sh(i, 1.m− i− 1), τ̃ i(1) ∈ Si,

τ̃m−i−1
(2) ∈ Sm−i−1, and

δni (k) :=



δ(k), for δ(k) 6 i and k < δ−1(i+ 1),
δ(k) + n− 1, for δ(k) > i and k < δ−1(i+ 1),
i+ r + 1, for k = δ−1(i+ 1) + r and 0 6 r < n,

δ(k − n+ 1), for δ(k) 6 i and k > δ−1(i+ 1) + n− 1,
δ(k − n+ 1) + n− 1, for δ(k) > i and k > δ−1(i+ 1) + n− 1.

In fact, σ •i τ is obtained by replacing i + 1 in the image of τ by (σ(1) +
i, . . . , σ(n) + i). For instance,

(2, 4, 1, 3) •1 (1, 3, 2, 5, 4) = (1, 6, 3, 5, 2, 4, 8, 7).

To define a coproduct on As[1], let γ ∈ Sm+1 be a permutation, for an
integer 0 6 i 6 m, there exists unique decompositions:

γ = (γ̃i+1
(1) × γ̃

m−i
(2) ) · δ = (γ̃i(1) × γ̃

m+1−i
(2) ) · ε,

where γ̃j(i) ∈ Sj , for i = 1, 2, δ−1 ∈ Sh(i+ 1,m− i)and ε ∈ Sh(i,m− i+ 1).
Define

∆As(γ) :=
m∑
i=0

γ̃i+1
(1) ⊗ γ̃

m+i−i
(2) .
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Proposition 6.4.2. — The space As[1] =
⊕

n>1K[Sn+1], equipped
with the operations •i and the coproduct ∆As is a coalgebra structure on a
pre-Lie system.
Proof. — We know that (As[1], •i) is a pre-Lie system. To check that ∆

is coassociative, it suffices to note that, for γ ∈ Sm+1, we have that:

(∆As ⊗ idAs[1]) ◦∆As(γ) =
∑

i+j+k=m
γ̃i+1

(1) ⊗ γ̃
j+1
(2) ⊗ γ̃

k+1
(3)

= (idAs[1] ⊗∆As) ◦∆As(γ),

where, for each compositions (i, j, k) of m, the following equalities hold:

γ = (γ̃i+1
(1) × γ̃

j
(2)× γ̃

k
(3))·δ1 = (γ̃i(1)× γ̃

j+1
(2) × γ̃

k
(3))·δ2 = (γ̃i(1)× γ̃

j
(2)× γ̃

k+1
(3) )·δ3,

with γ̃p(l) ∈ Sp, for l = 1, 2, 3, δ1 ∈ Sh(i+ 1, j, k), δ2 ∈ Sh(i, j + 1, k) and
δ3 ∈ Sh(i, j, k + 1).

To prove the relationship between ∆As and the operations •i, note that
for any γ ∈ Sn and any 0 6 i 6 n, there exist unique order preserving
bijections ϕi(1) : {1, . . . , i} −→ γ−1({1, . . . , i}) and ϕn−i(2) : {1, . . . , n− i} −→
γ−1({i+ 1, . . . , n}). The permutations γ̃i(1) and γ̃n−i(2) are given by the for-
mulas:

γ̃i(1) = (γ(ϕi(1)(1)), . . . , γ(ϕi(1)(i)))

γ̃n−i(2) = (γ(ϕn−i(2) (1)), . . . , γ(ϕn−i(2) (n− i))).

Using the formulas above, it is easily seen that, for σ ∈ Sn+1, τ ∈ Sm+1
and 0 6 j 6 n+m, we have that:

( ˜σ •i τ)j+1
(1) =


τ̃ j+1
(1) , for 0 6 j < i

σ̃j−i+1
(1) •i τ̃ i+1

(1) , for i 6 j 6 i+ n

σ •i τ̃ j−n+1
(1) , for i+ n < j 6 n+m.

( ˜σ •i τ)n+m−j+1
(2) =


σ •i−j τ̃m−j+1

(2) , for 0 6 j < i

σ̃n+i−j+1
(2) •0 τ̃m−i+1

(2) , for i 6 j 6 i+ n

τ̃m+n−j+1
(2) , for i+ n < j 6 n+m,

which ends the proof. �

For any graded vector space V there exists homomorphisms of preshuffle
bialgebras

Sh(V )←↩ Psh(V )� PLie(V ).
The following results extend Lemma 2.3.5 and Proposition 3.2 to preshuf-

fle algebras, their proof is straightforward.
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Lemma 6.5. — Let (A, •i) and (B, ◦j) be preshuffle algebras (respec-
tively pre-Lie systems).

(1) The Hadamard product A⊗
H
B has a natural structure of preshuffle

algebra (respectively pre-Lie system), given by the operations:

(x⊗ y) •i (x′ ⊗ y′) := (x •i x′)⊗ (y ◦i y′),

for x ∈ An, y ∈ Bn, x′ ∈ Am, y′ ∈ Bm and 0 6 i 6 m.
(2) The tensor product A ⊗ B has a natural structure of preshuffle

algebra (respectively pre-Lie system), given by the operations:

(x⊗ y) •i (x′ ⊗ y′) :=
{

(x •i x′)⊗ (y ◦i−|x′| y′), for i = |x′|,
0, otherwise.

Proposition 6.6. — Let (A, •i,∆A) and (B, ◦j ,∆B) be two preshuffle
bialgebras. The Hadamard product A⊗

H
B with the operations •i given in

Definition 6.5 and the coproduct given by:

∆A⊗
H

B(x⊗ y) =
∑

|x(1)|=|y(1)|

(x(1) ⊗ y(1))⊗ (x(2) ⊗ y(2)),

where ∆A(x) =
∑
x(1) ⊗ x(2) and ∆B(y) =

∑
y(1) ⊗ y(2), is a preshuffle

bialgebra.

Let (A, •i,∆) be a coalgebra structure on a pre-Lie system, we want to
show that there exist a natural way of defining operations •γ on A is such
a way that (A, •γ ,∆) is a shuffle bialgebra.

(1) Given a composition (n1, . . . , np) of n, we denote by ∆n1,...,np
the

composition πn1,...,np
◦ ∆p, where πn1,...,np

is the projection from
A⊗p to
An1 ⊗ · · · ⊗Anp .

(2) Let γ be an (n,m)-shuffle. There exist unique compositions
(n1, . . . , nr) of n and (m1, . . . ,mr+1) of m such that m1 > 0,
mr+1 > 0, mi > 1 for 2 6 i 6 r, and nj > 1 for 1 6 j 6 r,
such that

γ = (n+ 1, . . . n+m1, 1, . . . , n1, n+m1 + 1, . . . , n+m1 +m2,

n1 + 1, . . . , n1 + n2, . . . , n+m),
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that is

γ(j)=


j + n−

k∑
i=1

ni, for 0 < j −
k∑
i=1

ni +mi 6 mk+1, with 0 6 k 6 r

j −
∑k
i=1mi, for mk+1 < j −

k∑
i=1

ni +mi 6 mk+1 + nk+1, with 1 6 k 6 r.

For instance, if γ = (1, 3, 4, 2, 5, 6) ∈ Sh(2, 4), then (m1,m2,m3)=
(0, 2, 2), and (n1, n2) = (1, 1).
Given elements x ∈ An and y ∈ Am, define the element x •γ y ∈

An+m as follows:

x •γ y :=
∑

xn1
(1) •m1 (. . . (xnr−1

(r−1) •m1+···+mr−1 (xnr

(r) •m1+···+mr y)))),

where ∆n1,...,np
(x) =

∑
xn1

(1) ⊗ · · · ⊗ x
np

(p).

Theorem 6.7. — Let (A, •i,∆) be a coalgebra structure on a pre-Lie
system. The graded space A equipped with the operations •γ defined above
for any shuffle γ, is a shuffle bialgebra.

Proof. — Let x ∈ An, y ∈ Am and z ∈ Ar be homogeneous elements
of A, and let γ ∈ Sh(n,m+ r), δ ∈ Sh(m, r), λ ∈ Sh(n+m, r) and σ ∈
Sh(n,m) be such that

(1n × δ) · γ = (σ × 1r) · λ.

We want to verify that x •γ (y •δ z) = (x •σ y) •λ z.
Let γ be the permutation given by the integers (n1, . . . , np) ` n and

(h1, . . . , hp+1) ` m+ r. We proceed by a recursive argument on p.
If p = 1, then γ = ωn,m+r

h .
Suppose that δ ∈ Sh(m, r) is given by integers (m1, . . . ,mq) ` m and

(r1, . . . , rq+1) ` r, we have to consider two different cases.

a) If there exists 0 6 k 6 q such that 0 < h−
k∑
i=1

ri +mi < rk+1, then

(1n×δ)·γ = (σ×1r)·λ, where σ = ωn,mm1+···+mk
and λ is the (n+m, r) shuffle

associated to the compositions (m1, . . . ,mk, n,mk+1, . . . ,mq) of n+m and

(r1, . . . , rk, h, rk+1 − h, rk+2, . . . , rq+1) of r, with h := h−
k∑
i=1

ri +mi.

Applying the properties of a pre-Lie system, we get that:

x •γ (y •δ z) =

x •h (ym1
(1) •r1 (. . . (ymq

(q) •r1+···+rq z))) =

ym1
(1) •r1 (. . . ymk

(k) •r1+···+rk
(x •h−∑

16i6k
mi

(ymk+1
(k+1) •r1+···+rk+1 (. . . (ymq

(q) •r1+···+rq
z))))).
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Since (x •m1+···+mk
y)mj

(j) =


y
mj

(j) , for 1 6 j 6 k,
x, for j = k + 1
y
mj−1
(j−1), for j < k + 1,

, we get the result.

b) If there exists 0 6 k 6 q such that 0 < h−
k−1∑
i=1

(ri+mi) + rk < mk, then

σ = ωn,mm1+···+mk−1+h, with h := h−
k−1∑
i=1

(ri+mi)−rk, and λ is the (n+m, r)-

shuffle associated to the compositions (m1, . . . ,mk−1,mk + n, . . . ,mp) of
n+m and (r1, . . . , rp+1) of r.

We have that
(1) (x •m1+···+mk−1+h y)mj

(j) = y
mj

(j) , for j 6= k,
(2) (x •m1+···+mk−1+h y)n+mk

(k) = x •h ymk

(k) .
In this case, using the properties of pre-Lie systems, it is immediate to

check that:
x •γ (y •δ z) = (x •m1+···+mk−1+h y) •λ z.

For p > 1, note that if γ is the (n,m + r)-shuffle associated to the
compositions (n1, . . . , np) ` n and (h1, . . . , hp+1) of m+ r, then

x •γ (y •δ z) = xn1
(1) •h1 (xn−n1

(2) •γ̃ (y •δ z),

where γ̃ is the (n − n1,m + r)-shuffle associated to the compositions
(n2, . . . , np) of n− n1 and (h1 + h2, . . . , hp+1) of m+ r.

We get that:

x •γ (y •δ z) = xn1
(1) •h1 ((xn−n1

(2) •σ̃ y) •λ̃ z) = (xn1
(1) •k1 (xn−n1

(2) •σ̃ y)) •λ z,

where (1n−n1 × δ) · γ̃ = (σ̃ × 1r) · λ̃, and
(1n+m−n1 × λ̃) · ωn1,n+m+r−n1

h1
= (ωn1,n+m−n1

k1
× 1r) · λ.

So, we have that

x •γ (y •δ z) = (x •σ y) •λ z,

with σ := (1n1 × σ̃) ·ωn1,n+m−n1
k1

and (1n× δ) · γ = (σ× 1r) ·λ, which ends
the proof. �

Note that Theorem 6.7 implies that for any pre-Lie algebra (A, ◦) defined
from a pre-Lie system with coproduct, it is possible to define an associative
structure on A just by constructing the shuffle algebra structure (A, •γ) and
taking the associated product ∗ =

∑
•γ .
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Primitive elements of preshuffle bialgebras.

Since any shuffle bialgebra is a preshuffle algebra, we look for the oper-
ations obtained by compositions and linear combinations of the primitive
operations {−,−} and Bγ , introduced in Section 4, which can be defined
in terms of the multiplications •i of a preshuffle algebra.
Let (A, •i) be a preshuffle algebra, and let x ∈ An, y ∈ Am and z ∈ Ar be

elements of A. Note that {x, y} = x •top y−x •0 y and Bω
n,m
i (x; y) = x •i y

are defined for all 1 6 i 6 m− 1. But also the element

B1n×ωm,r
i ({x, z}; y) = z •i+n (x •0 y)− x •0 (z •i y)

may be defined in A for 1 6 i 6 m. In a similar way, the element

Bωq ({x1, z};x2, . . . , xq; y) =
z •n+i (x1 •0 x2 •0 . . . xq •0 y)− x1 •0 (z •n>2+i (x2 •0 · · · •0 xq •0 y)),

where ω = 1n1 × ω
m,n2+···+nq+r
n2+···+nq+i , for |xi| = ni, may be defined on A.

Definition 6.8. — Let (A, •i) be a preshuffle algebra over K. For q > 0
and 1 6 p 6 nr, let Lpq the q + 2-ary operation defined by:

Lp0(y; z) := z •p y, 0 < p < |y|,

L
|y|
0 (y; z) := {y, z} = y •top z − y •0 z,

Lpq(x1, . . . , xq; y; z) := z •p+n (x1 •0 · · · •0 xq •0 y)
−x1 •0 (z •p+n>2 (x2 •0 · · · •0 xq •0 y)), q > 1,

where (x1, . . . , xq; y; z) denotes the element x1⊗· · ·⊗xq⊗y⊗z ∈ A⊗(q+2),
nk := |xk|, n>k :=

∑q
i=k ni and n = n>1, for 1 6 k 6 q.

In the set of planar leveled rooted trees, the element Lpq(x1, . . . , xq; y; z)
may be represented by the element

y

xq

x2

x1

z

p
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@
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@
@
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�

�
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�

@�

–
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@
@@

�
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�
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Since the relations between the products •i and the coproduct ∆ are
the same that the ones between the operations •ωi and the coproduct in a
shuffle bialgebra, we get the following result. Its proof is a consequence of
Proposition 5.8.
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Proposition 6.9. — Let (A =
⊕
k>1

Ak, •i,∆) be a preshuffle bialgebra.

If the elements x1, . . . xq, y, z belong to Prim(A), then Lpq(x1, . . . , xq; y; z)
belongs to Prim(A), for any 1 6 p 6 |xq|.

Note that, ∆(Li0(x; y)) = 0 for all y ∈ A and x ∈ Prim(A) and 0 < i <

|x|.

We want to prove analogous results for preshuffle algebras that the
ones proved in Propositions 5.9 and 5.10 for shuffle algebras. Note that,
since Psh(V ) ↪→ Sh(V ) is a homomorphism of preshuffle bialgebras, then
Prim(Psh(V )) = Psh(V )

⋂
Prim(Sh(V ). So, the first two relations and

the last one of Definition 5.3 are satisfied by the operations •0 and Lj0.

Lemma 6.10. — Let x1, . . . , xq, y, z be elements of a preshuffle algebra
A. With the same notations that in Definition 6.8, the product •0 and the
operations Ljq defined above verify the following equalities:
1) For j < |y|,

Ljq(x1, . . . , xq; y; z•0w)=
q∑

k=0
L
j+n>k

k (x1, . . . , xk;Ljq−k(xk+1, . . . , xq; y;w); z),

and

L|y|q (x1, . . . , xq; y; z •0 w) =
q∑

k=0
L
|y|+n>k+1
k (x1, . . . , xk, L

|y|
q−k(xk+1, . . . , xq; y;w); z)

+ L|y|q (x1, . . . , xq; y; z) •0 w,

2) For 1 6 j 6 |z|, Ljq(x1, . . . , xq, z •0 y;w) = Ljq(x1, . . . , xq; z;w) •0 y, and

Lj+|z|q (x1, . . . , xq; z •0 y;w) =
{
Lj1(z, y;w) + z •0 Lj0(y; z), for q = 0
Ljq+1(x1, . . . , xq, z; y;w), for q > 1,

3)

Ljq(x1, . . . , xq−1, z •0 xq; y;w)=
{
Ljq+1(x1, . . . , xq−1, z, xq; y;w), for q > 2,
Lj2(z, x1; y;w) + z •0 Lj1(x1; y;w), for q = 1.

Proof. — The formulas are straightforward to check. We prove for in-
stance the last one, the other ones may be obtained similarly.

For q > 2, the result is obvious.
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For q = 1, we have that:

Lj1(z •0 x; y;w) = w •j+n+r (z •0 x •0 y)− (z •0 x) •0 (w •j y) =
(w •j+n+r (z •0 x •0 y)− z •0 (w •j+n (x •0 y)))

+(z •0 (w •j+n (x •0 y))− (z •0 x) •0 (w •j y)) =
Lj2(z, x; y;w) + z •0 Lj1(x; y;w).

�

We introduce some notation, in order to prove the relations satisfied by
the operations Lpq .

Notation 6.11. — Let (A, •i) be a preshuffle algebra and let x1, . . . , xn
be elements of A. Given a partition p = {p1, . . . , pm} of n, with pi > 0 for
1 6 i 6 m, and 1 6 j 6 n− 1, we denote by x the element x1 ⊗ · · · ⊗ xn ∈
A⊗n, by xp1 the element xp1+1 ⊗ · · · ⊗ xn ∈ A⊗n−p1 and by x6j the
element (x1, . . . , xj) ∈ A⊗j . The degree of x is |x| :=

∑n
i=1 |xi|. For any

1 6 j 6 m−1, let p
j

:= (pj+1, . . . , pm) be the partition of n−p1−· · ·−pj .

Let x = (x1, . . . , xn), y, z = (z1, . . . , zm), t and w be a collection of
elements in A. Given nonnegative integers 0 6 j 6 |y|, 0 6 k 6 |w| and
1 6 l 6 m we define:

(1) for a partition p = {p1, . . . , pm} of n,

Ljp(x, y, z) := Ljn(x1, . . . , xn; y; z), for m = 1,

Ljp(x, y, z) := L
j+n>p1
p1 (x1, . . . , xp1 ;Ljp

1
(xp1 ; y; (z2, . . . , zm); z1),

where n>j :=
q∑

i=j+1
|xi|.

(2) for a partition p = (p1, . . . , pm+1) of n,

Ljkp (x, y, z, t) := L
j+k+n>p1 +|z|
p1 (x1, . . . , xp1 ;Ljp

1
(xp1 , y, z); t).

(3) for a partition p = (p1, . . . , pl+1) of n,

Lklp(x, y, z, w, t)

:= Lkp1+m−l+1(x1, . . . , xr1 , L
|y|
r1

(xp1 , y, z6l), zl+1, . . . , zm;w; t).

Theorem 6.12. — Let (A, •i) be a preshuffle algebra over K. Given
elements x = (x1, . . . , xn), y, z = (z1, . . . , zm), w and t , the operations Ljn
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verify the following relations:

a) Ljn(x; y;Lk0(w; t)) =
n∑
r=0

Lj+k+n>r
r (x6r;Ljn−r(xr+1, . . . , xn; y;w); t)+

δj|y|L
k
n+1(x, y;w; t)−

δk|w|

n∑
r=0

Lj+n>r
r (Lj+k+n>r

r (x6r;Ljn−r(xr+1, . . . , xn; y; t);w),

where δpq :=
{

1, for p = q,

0, otherwise.

b) For m > 1 ,

Ljn(x; y;Lkm(z;w; t)) =∑
p

(
Ljkp (x, y, z′, t)− Lj+n>p1

p1 (x1, . . . , xp1 ;Ljkp
1
(xp1 , y, z′1, t); z1)

)
+

δj|y|
( m∑
l=1

∑
q

Lklq(x, y, z, w, t)−
m∑
l=2

(
∑
r

L
|y|+n>r1
r1 (x1, . . . , xr1 ;Lk(l−1)r1

(xr1 , y, z1, w, t); z1)+

Lkn+m+1(x, y, z;w; t)−
n∑
s=0

L|y|+n>s
s (x6s;Lkn+m−s(xs+1, . . . , xn, y, z2, . . . , zm;w; t); z1)

)
,

where the first sum is taken over all partitions p = (p1, . . . , pm+1), the
second one is taken over all partitions q = (q1, . . . , ql+1), and the third one
over all r = (r1, . . . , rl+1) of n and z′ := (z1, . . . , zm, w).

Proof. — For n,m = 0, 1 the formulas may be checked by a straightfor-
ward calculation. The other cases are obtained by recursive arguments on
n and m, applying Lemma 6.10 and the formula:

Lin+1(x1, . . . , xn+1; y;w) = Li+|xn+1|
n (x1, . . . , xn;xn+1 •0 y;w),

for q > 1. �

Definition 6.13. — A Primpsh algebra is a graded vector space V
equipped with operations Ljn : V ⊗n ⊗ Vm ⊗ V −→ V , for n > 0 and
1 6 j 6 m, which satisfies the relations of the Theorem 6.12.

Note that the Theorem 6.12 implies that the free Primpsh algebra over
a vector space V is linearly spanned by elements x = Lpn(x1, . . . , xn; y; z),
where x1, . . . , xn, y are elements in the free algebra, and z ∈ V .

Theorem 6.12 states that there exists a functor from the category Presh of
preshuffle algebras to the category of Primpsh algebras. Given a preshuffle
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bialgebra H, the subspace of primitive elements Prim(H) is a Primpsh

subalgebra of H.

We prove for preshuffle algebras analogous results that those obtained
for shuffle algebras in Section 4.

Let (C,Θ) be a positively graded coalgebra, since the triple
(Psh(C), •0,∆Θ) is a conilpotent nonunital infinitesimal bialgebra, the
map

e(ξn, x) 7→ (ξn;x)−
∑

(ξn1,n2 ;x(1), x(2)) + . . .

+ (−1)r+1
∑

(ξn1,...,nr
;x(1), . . . , x(r)) + . . .

gives a linear isomorphism between C and the subset e(C) of
Prim(Psh(C)).

We denote by P(Psh(C)) the subspace of Psh(C) spanned by the space
e(C) with the operations Lin, and by P(Psh(C))•0n the space spanned by
all the elements of the form z1•0z2•0· · ·•0zn, with each zj ∈ P(Psh(C)), for
1 6 j 6 n. Note that Theorem 6.12 states that any element w in P(Psh(C))
is a sum of elements of type Lni (x1, . . . , xn; y; t), with x1, . . . , xn, y ∈
P(Psh(C)) and t ∈ e(C).

Proposition 6.14. — Let (C,Θ) be a positively graded coalgebra. Any
element z in Psh(C) belongs to

⊕
n>1
P(Psh(C))•0n.

Proof. — We only need to check that an element

z = e(ξn ⊗ x) •j (z1 •0 z2 •0 · · · •0 zr),

with x ∈ Cn and zi ∈ P(Psh(C)), belongs to
⊕
n>1
P(Psh(C))•0n.

We show it applying a recursive argument on r.
If r = 0, then z = e(ξn ⊗ x) belongs to e(C), and the result is obvious.
If r = 1 and 0 < j < |z1|, then z = Lj0(z1; e(ξn ⊗ x)) belongs to

P(Psh(C)).
If r = 1 and j = |z1|, then z = L

|z1|
0 (z1; e(ξn⊗x))+z1•0e(ξn⊗x) belongs

to P(Psh(C))
⊕
P(Psh(C))•02.

Suppose that r > 2. If 0 < j 6 |z1|+· · ·+|zr|, then there exists 1 6 k 6 r
such that |z1|+ · · ·+ |zk−1| < j 6 |z1|+ · · ·+ |zk|, and

z = (e(ξn ⊗ x) •j (z1 •0 · · · •0 zk)) •0 zk+1 •0 · · · •0 zr.

Clearly, if k < r the result follows immediately by recursive hypothesis.
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If k = r, then

z = Lj−mr−1 (z1, . . . , zr−1; zr; e(ξn⊗x))+z1•0 (e(ξn⊗x)•i−|z1| (z2•0 · · ·•0 zr)),

where m = |z1| + · · · + |zr−1|. But Lj−mr−1 (z1, . . . , zr−1; zr; e(ξn ⊗ x)) ∈
P(Psh(C)) and, by recursive hypothesis, e(ξn⊗x) •j−|z1| (z2 •0 · · · •0 zr) ∈⊕
n>1
P(Psh(C))•0n. So, z ∈

⊕
n>1
P(Psh(C))•0n. �

For a vector space V , let Primpsh(V ) denotes the free Primpsh algebra
spanned by V .

Proposition 6.15. — Let (C,Θ) be a positively graded coalgebra. The
subspace P(Psh(C)) is the subspace of primitive elements of Psh(C).
Moreover, it is the free Primpsh algebra spanned by C.

Proof. — As for shuffle algebras, it suffices to prove the result for the
case where Cn is finite dimensional, for all n > 1.

Proposition 6.9 states that P(Psh(C)) ⊆ Prim(Psh(C)), while Propo-
sition 6.14 implies that Psh(C) = T (P(Psh(C))) as a vector space. From
Theorem 5.2 one has that Psh(C) = T (Prim(Psh(C))), so P(Psh(C)) =
Prim(Psh(C)).

For the second point, we know that the dimension of the subspace
P(Psh(C))n of homogeneous elements of degree n of P(Psh(C)) is
|IrrKn(C)|.

We need to check that the dimension of the homogeneous subspace of
degree n of Primpsh(C) is precisely |IrrKn(C)|.

Let Primpsh(C)n denotes the subspace of degree n of Primpsh(C). Let
X =

⋃
n>1Xn be an homogeneous basis of C, a basis of Primpsh(C)n is

given by the set Bn, where:

Bn := Xn

⋃
{Ljq(x; y; z) |1 6 j 6 |y|, x1, . . . , xq, y ∈

n−1⋃
k=1

Bk , z ∈ X , q > 0 and
q∑
i=1
|xi|+ |y|+ |z| = n}.

On the other hand, note that if f ⊗ x1 ⊗ · · · ⊗ xn ∈ IrrKn
(C), then

f = ξ|f−1(1)| •j f ′, for 1 6 j 6 |f ′|. Moreover, if f ′ = f1 •0 · · · •0 fr, with
fi ∈ IrrKni

for 1 6 i 6 r, then f = ξ|f−1(1)| •j f ′ with n1 + · · · + nr−1 <

j 6 |f ′|.
Define a map α :

⋃
n>1

Bn −→
⋃
n>1

IrrKn
(C) as follows:

(1) α(x) := (ξn ⊗ x), for x ∈ Xn,
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(2) α(Lj0(y; z)) := (ξ|z| ⊗ z) •j α(y), for 1 6 j 6 |y|,
(3) α(Ljq(x; y; z)) :=

(ξ|z| ⊗ z) •j+|x| (α(x1) •0 · · · •0 α(xq) •0 α(y)),
for 1 6 j 6 |y|.

The previous argument states that α is well-defined.

Conversely, let f ⊗ x1 ⊗ · · · ⊗ xn ∈ IrrKn
(C), with x1, . . . , xn ∈ X, be

such that f = ξ|f−1(1)| •j f ′, where f ′ = f1 •0 · · · •0 fr, with fi ∈ IrrKni
for

1 6 i 6 r, and n1 + · · · + nr−1 < j 6 |f ′|. If r = 0, then (f ;x1, . . . , xn) =
(ξn ⊗ x1) and β(ξn ⊗ x1) = x1 ∈ X.
If r = 1, then β(f ⊗ x1 ⊗ · · · ⊗ xn)) = Lj0(β(f ′ ⊗ x2 ⊗ · · · ⊗ xn);x1).
If r > 1, then there exists a composition (j1, . . . , jr) of n− 1 such that
j1+···+ji+1∑

l=j1+···+ji−1+2
|xl| = ni, for 1 6 i 6 r. In this case, we have that:

β(f ⊗ x1 ⊗ · · · ⊗ xn) =

Ljr−1(β(f1 ⊗ x2 ⊗ · · · ⊗ xj1+1), . . . , β(fr−1 ⊗ · · · ⊗ xj1+···+jr−1+1);β(fr ⊗ · · · ⊗ xn);x1).

Clearly, β is the inverse map of α, which implies that the dimension of
Primpsh(C)n is |IrrKn

(C)|, for n > 1. So, Primpsh(C) = Prim(Psh(C)).
�

The following result is a straightforward consequence of Theorem 5.2 and
Proposition 6.15.

Proposition 6.16. — Let (C,Θ) be a positively graded coalgebra.
There exists a coalgebra isomorphism between Psh(C) and
T
c(Primpsh(C)).

Example 6.17. — Basis of primitive elements for the Malvenuto-
Reutenauer bialgebra. In [5] and [2] the authors describe different basis
for the subspace of primitive elements of the Malvenuto-Reutenauer bialge-
bra. We construct another one using our description of primitive elements
of a preshuffle bialgebra.
The bialgebra associated to the free preshuffle algebra Psh(Kx0),

spanned by one element in degree one, is the Malvenuto-Reutenauer bial-
gebra K[S∞]. The dimension of the subspace of its primitive elements of
degree n is the number of irreducible permutations of Sn. Using Proposi-
tion 5.10, we associate to any σ ∈ IrrSn

a primitive element E(σ) in the
following way:

(1) E(1) := (1), for (1) ∈ S1.
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(2) For σ ∈ IrrSn
with n > 1, there exists a unique family of irreducible

permutations σ1, . . . , σr and δ ∈ Sh(1, n− 1) such that σ = ((1) ×
σ1 × · · · × σr) · δ. Since σ is irreducible, we get that σ−1(1) >

n1 + · · ·+ nr−1 + 1 for |σi| = ni. We define

E(σ) := L
σ−1(1)−1−n1−···−nr−1
r−1 (E(σ1), . . . , E(σr−1);E(σr); (1)),

where the operations Lji are the operations introduced of Defini-
tion 6.8.

Propositions 6.14 and 6.15 imply that the set {E(σ)}σ∈⋃ IrrSn
is a basis

of the subspace of primitive elements of the Malvenuto-Reutenauer bialge-
bra. Forexample, we have that:

E(2,1) = (2, 1)− (1, 2), E(3,1,2) = L1
0(E(2,1); (1)) = (3, 1, 2)− (2, 1, 3),

E(3,4,2,5,7,1,6) = L1
2(E(2,3,1), E(1);E(2,1); (1)) =

(3, 4, 2, 5, 7, 1, 6)− (2, 3, 1, 5, 7, 4, 6)− (3, 4, 2, 5, 6, 1, 7) + (2, 3, 1, 5, 6, 4, 7)−
(2, 4, 3, 5, 7, 1, 6) + (1, 3, 2, 5, 7, 4, 6) + (2, 4, 3, 5, 6, 1, 7)− (1, 3, 2, 5, 6, 4, 7).

Given a Primpsh algebra (V,Lin), let UPsh(V ) be the preshuffle bialgebra
obtained by making the quotient of the free preshuffle algebra Psh(V ) by
the ideal (as a preshuffle algebra) spanned all the elements:

Liq(x1, . . . , xq; y; z)− Liq(x1, . . . , xq; y; z),

with x1, . . . , xq, y, z ∈ V , q > 0 and 1 6 i 6| y |, where Liq denotes the
operations associated to the preshuffle algebra K[K(V )].

The proof of the following result is obtained applying the same steps and
arguments that those used in the proof of Theorem 5.13.

Theorem 6.18. — a) Let (H, ◦i,∆) be a conilpotent preshuffle bial-
gebra, then H is isomorphic to UPsh(Prim(H)), where Prim(H) is the
Primpsh algebra of primitive elements of H.
b) Let (V,Liq) be a Primpsh algebra, then V is isomorphic to
Prim(UPsh(V )).

Primitive elements of pre-Lie systems.

Let (A, •i,∆) be a coalgebra structure on a pre-Lie system, we want to
compute its primitive elements.
By Proposition 6.9, the elements Lpn(x1, . . . , xn; y; z) are primitive in A,
for 1 6 p < |y|, whenever the elements x1, . . . , xn, y, z belong to Prim(A).
However, an easy calculation shows that Lpn(x1, . . . , xn; y; z) = 0 for any
x1, . . . , xn, y, z ∈ A and n > 1, which motivates the following definition.
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Definition 6.19. — A PrimPLie algebra over K is a graded vector
space V equipped with a family of binary operations {−,−} : V ⊗V −→ V

and •p : V ⊗ Vn −→ V , for 1 6 p 6 n− 1, such that:
(1) {{x, y}, z} = {x, {y, z}}+ y •|x| {x, z}, for x, y, z ∈ V .
(2) {x •p y, z} = x •p {y, z},
(3) {x, y •p z} = y •|x|+p {x, z},
(4) {x, y} •p z = y •|x|+p (x •p z)− x •p (y •p z), for 1 6 p < |z|,
(5) (x •p y) •q z = x •p+q (y •q z),
(6) x •p (y •q z) = y •|x|+q (x •p z), if 1 6 p < q < |z|,

for x, y, z ∈ V .
Clearly, any grafting bialgebra (A, •i,∆) has a natural structure of

PrimPLie algebra, such that Prim(A) is a PrimPLie subalgebra of A.
For any positively graded coalgebra (C,Θ), there exists a natural exten-

sion of the coproduct to a coassociative coproduct ∆Θ such that
(PLie(C), •i,∆Θ) is a pre-Lie system with coproduct. Moreover, the vec-
tor space PLie(C) equipped with the associative product ◦0 and ∆Θ is a
nonunital infinitesimal conilpotent bialgebra, so it is isomorphic to
T
c(Prim(PLie(C))).

Let P(PLie(C)) the subspace of PLie(C) spanned by e(C) with the
operations {−,−} and ◦p.
Proposition 6.20. — Let (C,Θ) be a positively graded coalgebra. Any

element z in PLie(C) may be written as a sum z =
∑
k z

k
1 ◦0 zk2 ◦0 · · ·◦0 zkrk

,
with zki ∈ P(PLie(C)).

Proof. — The space PLie(C) is a quotient of Psh(C), the projection
is denoted by Π. Let ePsh (respectively, eGr) denotes the projection from
Psh(C) (respectively, PLie(C)) into its primitive part.

The set Π−1(ePLie(x)) has a unique element, for any x ∈ C; which implies
that the restriction of Π to ePsh(C) is a monomorphism, whose image is
ePLie(C).
Moreover, since Π sends the product •p to ◦p, for p > 0, we have that

Π(P(Psh(C))) ⊆ P(PLie(C))).
Let z ∈ PLie(C), there exist at least one element z̃ ∈ Psh(C) such that

Π(z̃) = z.

We know that z̃ =
∑
k z̃

k
1 •0 z̃k2 •0 · · · •0 z̃krk

, with z̃ji ∈ P(Psh(C)).
So, z =

∑
k Π(z̃k1 )◦0Π(z̃k2 )◦0 · · ·◦0Π(z̃krk

), with Π(z̃k1 ) ∈ P(PLie(C)). �
Proposition 6.21. — Let (C,Θ) be a positively graded coalgebra. The

subspace P(PLie(C)) is the subspace of primitive elements of PLie(C).
Moreover, it is the free PrimPLie algebra PrimPLie(C), spanned by C.
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Proof. — The proof of the first assertion is identical to the ones given
for preshuffle and shuffle algebras. To prove that P(PLie(C)) is the free
PrimPLie algebra PrimPLie(C), we may suppose that the space Cn is
finite dimensional, for all n > 1.

Let X be an homogeneous basis of C. Since the associative algebra
((K[T∞(C)]), •0) is free on the set {t =

∨
x(|, t1, . . . , tr)}, the dimension

of the subspace of homogeneous elements of degree n of Prim(PLie(C))
is the number of trees of the form t =

∨
x(|, t1, . . . , tr), where x ∈ Xr and

|t| =
∑

16j6r |tj |+ r − 1.
Let {X} be the set of all elements of the form z = {x1, {. . . , {xk−1, xk}}},

with k > 1 and xi ∈ X. From Definition 6.19 we have that the elements of
X and the elements of type:

z = x1 •i1 (· · · •ir−2 (xr−1 •ir−1 (xr •ir w))),

with i1 > · · · > ir, 1 6 ij < |xj+1|+ · · ·+ |xr|+ |w|, xj ∈ X, and w ∈ {X},
are a basis of PrimPLie(C) as a vector space.
The map γ from the basis described above to the set {t=

∨
x(|, t1, . . . , tr) |

with x ∈ Xr and |t| =
∑

16j6r |tj |+ r − 1}, is defined as follows:

γ(x) := (cn, x), for x ∈ X

γ({x1, {. . . , {xk−1, xk}}}) :=
∨
x1

(|, γ({x2, {. . . , {xk−1, xk}}})),

for x1, . . . , xk ∈ X

γ(x1•i1(· · ·•ir−2(xr−1•ir−1(xr•irw)))) :=(cn1 , x1)◦i1(. . . ((cnr , xr)◦irγ(w))),

for |xi| = ni.

Clearly, γ is a graded bijection, which sends elements of degree n of the
basis to trees of the same degree. So, P(PLie(C)) is a quotient of the free
PrimPLie algebra over C such that both spaces have the same dimension
on each degree, which implies they are isomorphic. �

There exists a natural equivalence between the categories of conilpo-
tent coalgebra structures on a pre-Lie system and PrimPLie algebras. As
in previous cases we define, for any PrimPLie algebra (V, [−,−], ◦p), the
universal envelopping pre-Lie system UPLie(V ) as the quotient of the free
pre-Lie system PLie(V ) by the ideal spanned by the elements:
{x, y}−[x, y] and x•py−x◦py, for x, y ∈ V and 1 6 p < |y|, where {−,−}

and •p denote the operations associated to the pre-Lie system PLie(V ).
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The proof of the following result is similar to the proof given for shuffle
and preshuffle bialgebras.

Theorem 6.22. — a) Let (H, ◦i,∆) be a conilpotent coalgebra struc-
ture on a pre-Lie system, then H is isomorphic to UPLie(Prim(H)), where
Prim(H) is the PrimPLie algebra of primitive elements of H.
b) Let (V, {−,−}, •p) be a PrimPLie algebra, then V is isomorphic to
Prim(UPLie(V )).

7. Some triples of operads

Note that preshuffle algebras, shuffle algebras and pre-Lie systems alge-
bras are not described by classical linear operads, but by coloured operads.
In this section we give an easy way to compute primitive elements of in-
finitesimal bialgebras having two associative products applying the results
obtained in Section 6. The examples that we study describe two good triples
of K-linear operads, in the sense of [12], where the co-operad is always the
associative co-operad.

Recall that a 2-associative algebra is simply a vector space equipped with
two associative products · and ◦. In [14] we give a description of the free
2-associative algebra on a vector space V which we denote by 2-ass(V ).

Definition 7.1. — A 2-infinitesimal nonunital bialgebra is a 2-associa-
tive algebra (A, ·, ◦) equipped with a coassociative coproduct ∆, such that
the triples (A, ·,∆) and (A, ◦,∆) are infinitesimal nonunital bialgebras.

For any preshuffle bialgebra (A, •i,∆) the triple (A, •0, •top,∆) is a 2-
infinitesimal nonunital bialgebra. If we look at the structure of Primpsh

algebra of A described in Definition 6.8, then the unique operations which
are defined using the products •0 and •top are the n + 2-ary products
L
|y|
n (x1, . . . , xn; y; z), for n > 1. Note that they do not verify any relation-

ship.

Definition 7.2. — A Mag(∞) algebra over K is a vector space M ,
equipped with n-linear maps µn : M⊗n −→M , for n > 2.

Let (A, ·, ◦) be a 2-associative algebra, define µn : A⊗n −→ A be the
n-ary operation:

µ2(x1, x2) := x1 · x2 − x1 ◦ x2,

µn(x1, . . . , xn)
:= (x1 · (· · · · (xn−2 · xn−1))) ◦ xn − x1 · ((x2 · (· · · · (xn−2 · xn−1))) ◦ xn),
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for x1, . . . , xn ∈ A and n > 2. Clearly, (A,µn) is a Mag(∞) algebra.

Proposition 7.3. — Let (A, ·, ◦,∆) be a 2-infinitesimal nonunital bial-
gebra, the subspace Prim(A) of primitive elements of A is closed under the
products µn, for n > 2.

Proof. — The result is a straigthforward consequence of Proposition 6.9,
applying that µn(x1, . . . , xn) coincides with L|xn−1|

n−2 (x1, . . . , xn−2;xn−1;xn),
for x •0 y := x · y and x •|y| y = y ◦ x. �

Applying similar arguments that the ones we use in Section 6, we get
that

Proposition 7.4. — (1) For any vector space V there exists a
unique coassociative coproduct ∆ on 2-ass(V ) such that all the el-
ements of V are primitive and (2-ass(V ).·, ◦,∆) is a 2-infinitesimal
nonunital bialgebra. Moreover, the space of primitive elements
Prim(2-ass(V )) is the free Mag(∞) algebra on V .

(2) If we denote by Mag∞(V ) the free Mag(∞) algebra on V , then
2-ass(V ) is isomorphic, as a coalgebra, to T c(Mag∞(V )).

(3) The functor which sends any 2-infinitesimal nonunital bialgebra H
to the Mag(∞) algebra Prim(H) gives an equivalence between the
category of conilpotent 2-infinitesimal nonunital bialgebras and the
category of Mag(∞) algebras.

The following example is studied in [12].

Definition 7.5. — A duplicial algebra (A, /, \) is a 2-associative alge-
bra over K such that the associative products / and \ satisfy the following
relation:

x/(y\z) = (x/y)\z,
for x, y, z ∈ A.

Note that for any pre-Lie system (A, •i), the space A with the products:

x/y := x •0 y and x\y := x •top y

is a duplicial algebra.
It is not difficult to verify (see [20] or [12]) that the free duplicial algebra

spanned by a vector space V is the space of planar binary rooted trees
K[Y∞(V )], with the vertices coloured by the elements of V . We denote it
by Dup(V ).
Let (A, /, \) be a duplicial algebra, a duplicial bialgebra structure on A is

given by a coassociative coproduct ∆ such that (A, /, \,∆) is a 2-associative
bialgebra. In particular, for any vector space V , the free duplicial algebra
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DupV ) is a duplicial bialgebra. The unique operation of PrimPLie which
may be defined in any duplicial algebra is the product {−,−}, which does
not verify any relation.

Definition 7.6. — A magmatic algebra over K is a vector space M
equipped with a bilinear map M ⊗M −→M .

Consider the functor from the category of duplicial algebras to the cate-
gory of magmatic algebras, which maps (A, /, \) 7→(A, {−,−}). If (A, /, \,∆)
is a duplicial bialgebra, then (Prim(A), {−,−}) is a magmatic subalgebra
of (A, {−,−}).

In this case again, we get a structure theorem relating conilpotent dupli-
cial bialgebras and magmatic algebras. For any vector space V , let {V, V }
denote the subspace of the free duplicial algebra Dup(V ) spanned by the
elements of V under the operation {−,−}. The proof of the following results
may be obtained following the same arguments that in Proposition 6.21.

Proposition 7.7. — The coalgebra T c{V, V } is isomorphic toDup(V ).
Moreover, {V, V } is the free magmatic algebra spanned by V .

Consider the functor from the category of duplicial algebras to the cat-
egory of magmatic algebras, given by (A, /, \) 7→ (A, {−,−}), and let Udup
be its left adjoint. A Cartier-Milnor-Moore type theorem for conilpotent
duplicial bialgebras follows applying the general results obtained in [12] for
triples of operads, we just state it.

Theorem 7.8. — a) Any conilpotent duplicial bialgebra A is isomor-
phic to Udup(Prim(A)), where Prim(A) is the magmatic algebra of primitive
elements of A.
b) Any magmatic algebra M is isomorphic to Prim(Udup(M)).
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