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SIMONS TYPE EQUATION IN S? x R AND H? x R AND
APPLICATIONS

by Marcio Henrique BATISTA DA SILVA

ABSTRACT. — Let £2 be an immersed surface in M?2(c) x R with constant
mean curvature. We consider the traceless Weingarten operator ¢ associated to
the second fundamental form of the surface, and we introduce a tensor S, related
to the Abresch-Rosenberg quadratic differential form. We establish equations of
Simons type for both ¢ and S. By using these equations, we characterize some
immersions for which |¢| or |S| is appropriately bounded.

RiESUME. — Soit £2 une surface immergée dans M2(c) X R avec une courbure
moyenne constante. Nous considérons 'opérateur de Weingarten & trace nulle ¢
associé & la seconde forme fondamentale de la surface et nous introduisons un
tenseur S, liés & la forme quadratique de Abresch-Rosenberg. Nous établissons les
équations de type Simons pour ¢ et S. En utilisant ces équations, nous caractérisons
les immersions pour lesquelles |¢| ou |S| sont bornés.

1. Introduction

In 1994, using the traceless Weingarten operator ¢ = A — HI associated
to an immersed hypersurface M™ - S**+!, H. Alencar and M. do Carmo,
see [2], proved that

THEOREM. — Let M™ 9 S"™! be an immersed hypersurface. If M™ is
compact and orientable with constant mean curvature H and

6> < Bu,
where By is the square of the positive root of
n(n —2)

= 1)Ha: —n(H”+1).

Py(z) = 2> +

Then:

Keywords: Surface with constant mean curvature, Simons type equation, Codazzi’s
equation.
Math. classification: 53A10, 53C42.
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(a) Either |¢|*> =0 (and M™ is totally umbilic) or |¢|*> = By.
(b) The H(r)-tori S*~(r) x S'(vI —#2) with 12 < —

hypersurfaces with constant mean curvature H and |¢|? = By.

are the only

Motivated by this result we study this problem for surfaces in M?(c) x R
with ¢ = £1, where M?(—1) = H? and M?(1) = S.

We begin by using the traceless Weingarten operator ¢ associated to an
immersed surface ¥? & M?(c) x R.

In [1], the authors defined the quadratic differential form

Q(X,Y)=2H(AX,Y) — (X, 0,)(Y, 0,),

and its (2,0)-part
QEO(X,Y) = LQIX,Y) ~ QUX,JY)) - JiQUX,Y) + Q(X, JY)),

where J is the standard counter-clockwise rotation operator.

Using this notation, Abresch and Rosenberg proved

THEOREM. — (Thm. 1 in [1]) Let ¥? & M?(c) x R be an immersed
surface with constant mean curvature. Then its quadratic differential Q(>%)
is holomorphic on the surface ¥2.

Inspired in the quadratic differential form @ introduced by Abresch and
Rosenberg, we study, in section 3, a special tensor S defined by

(1.1) SX = 2HAX — ¢(X,T)T + g(l ~ )X - 2H2X,

where X € T,%, A is the Weingarten operator associated to the second
fundamental form, H is the mean curvature, T is the tangential component
of the parallel field 9;, tangent to R in M?(c) x R, and v = (N, d;).

The tensor S is the traceless tensor associated with the quadratic differ-
ential Q. In fact,

(SX,Y) =2H(AX,Y) — (X, T)Y,T) + g(l —v)(X,Y) - 2H*(X,Y)

trQ
2

We will prove that this operator satisfies Codazzi’s equation, provided
H is constant, with vanishing trace. Moreover, we remark that any surface
with |S| = 0 and constant mean curvature is very interesting, because the
Q29 of these surfaces vanishes.

In [1], Theorem 3, p. 143, the authors described four distinct classes
of complete, possibly immersed, constant mean curvature surfaces %2 9
M?(c) x R with vanishing of their quadratic differential Q(:0).

=Q(X,Y) (X,Y).

ANNALES DE L’INSTITUT FOURIER
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More precisely, the four classes are

(i) ¥? is an embedded rotationally invariant constant mean curvature

sphere S%;

(ii) %2 is a convex rotationally invariant constant mean curvature graph
D% over the horizontal leaf M?(c) x {to};

(iii) X% is an embedded annulus, rotationally invariant constant mean
curvature surface C% with two asymptotically conical ends;

(iv) %% is the embedded constant mean curvature surface P%; it is an
orbit under some two dimensional solvable subgroup of ambient
isometries.

The surface in (i) was known to W.T. Hsiang and W.Y. Hsiang, in [6], and
to R. Pedrosa and M. Ritoré, in [7]. We shall refer to S% as the embedded
rotationally invariant constant mean curvature spheres. In this paper we
will call the surfaces described in [1] by Abresch-Rosenberg surfaces.

Remark. 1. — In S? x R only the spheres S% occur.
We obtain an equation of Simons type for S and apply it in some par-

ticular cases:

THEOREM 1.1. — Let ¥? & M?(c) x R be an immersed surface with
non zero constant mean curvature H and S as defined in (1.1). Then,
(V2S)z,y) = 2cv*(Sz,y) + 2H (Az, Sy) — (A%, Sy)+
+ (Ay, SAx) — (Az,y)tr(AS)

and
LIS = [VS12 = S| + |SP2 bevi ¢ o CsT,T) ) +
2 B 2 2 HY
1
2 2
+ ¢|ST| 1 (ST, T)=.
1 4H? -1
Let us consider the polynomial pg (t) = —t? — Et + <2> When

H is greater than one half there is a positive root for py. Let Ly be this
positive root. One has:

THEOREM 1.2. — Let ¥? & S? x R be an immersed surface with con-
stant mean curvature H greater than one half. If

¥? is complete and sup|S| < Ly,
s

or
»? is closed and |S| < Ly,

TOME 61 (2011), FASCICULE 4
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then ¥? = S%, i.e, ¥? is an embedded rotationally invariant constant mean
curvature sphere.

V2H (4H? — 1)
VI6H* —4H2 +1+1

Remark. 2. — The number Ly is

Let us consider the polynomial
L, 8H*—12H? —1
V2H 4H? '

3+v11

When H is greater than — there is a positive root for qg. Let

qu(t) = —t* —

My be this positive root.

THEOREM 1.3. — Let ¥2 & H2 x R be an immersed surface with con-

stant mean curvature H greater than ~ 1.25664. If

»? is complete and sup |S| < My,
5
or

¥? is closed and |S| < My,
then ¥? = S%, i.e, ¥? is an embedded rotationally invariant constant mean
curvature sphere.
8H* —12H? — 1
V2H(V16H* —24H2 —1+1)

Remark. 3. — The number My is

Remark. 4. — Besides Theorems 1.2 and 1.3, we obtain in section 4
further applications of Simons equation of Theorem 1.1.

Acknowledgements. I would like to thank Professors M. do Carmo
and H. Alencar for encouragement and for many helpful suggestions. I also
want to thank the referee and H. Rosenberg for useful suggestions.

2. Preliminaries

Let ¥2 9= M?3 be an immersed surface. Let V denote the Levi-Civita
connection on M? and let V denote the Levi-Civitd connection on ¥ for
the induced metric.

Generally speaking, objects defined on M? will be denoted by the same
symbols as the corresponding objects defined on ¥ plus a bar over the
symbol.

ANNALES DE L’INSTITUT FOURIER
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The Riemannian metric extends to natural inner products on spaces of
tensors and the above connections induce natural covariant derivatives of
tensor fields. For example, for {e;,es} a geodesic frame at p € ¥? and a
tensor 1 on Y2, we have

2

V2(p) =Y (Ve Ve th)(p).

i=1
For more details about covariant derivatives of tensor fields see [8], sections
1 and 2.
We adopt the following convention for the curvature tensor: if z,y, 2z €
T,%, we define R, ,z by

nyyz = R(X, Y)Z(p) = (VvaZ - VyVXZ - V[X,y]Z)(p),

for any local vector fields which extend the given vectors x,y, z.

The second fundamental form is defined by a(X,Y) = (VxY)* and the
associated Weingarten operator is given by Av = —(V,N)T, where N is
a unit normal field on ¥2. We use the Weingarten operator to define the
following operators

(2.1) (R(A)z,y) =Y (—(Az, Re, ye;) — (Ay, Re, i)+

i=1

+ <Ay7$><N7 Rei,N6i> - 2<A€i, Rez‘,iﬂy>)

and

<R/I,y> = Z{<(?xR)e7y,yei7N> + <(?€¢R)€q:7xy’ N>}v

where {e1, ez} is a orthonormal basis of T),X.

With this notation we have the following result:

THEOREM 2.1. — Let ¥2 & M3 be an immersed surface with constant
mean curvature H. For any x,y € T,X we have
(2.2) ((VPA)z,y) = —|AP(Az,y) + (R(A)z, y)+
+ (R'z,y) +2H(Ry y, N) + 2H Az, Ay).

Proof. — See Theorem 2 in [3] and observe that the codimension is one.
O

We will also use the result known as the Omori-Yau Maximum Principle
whose proof can be found in [10], Theorem 1.

TOME 61 (2011), FASCICULE 4
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THEOREM 2.2 (Omori-Yau Maximum Principle). — Let M be a com-
plete Riemannian manifold with Ricci curvature bounded from below. If
u € C*°(M) is bounded from above, then there exists a sequence of points
{p;} € M such that

1 1
lim u(p;) =supu, |Vul(p;) < 7 and Au(p;) < 7
M

Jj—o0
Let us recall Gauss’ equation for X2 in M?(c) x R:

(2.3) R(Y,X)Z = (AX,Z)AY — (AY, 2)AX + c((X,Z2)Y — (Y, Z)X +
— (Y, T)(X,Z)T — (X, T Z,T)Y +
+ (X, TNY, Z2)T + (Y, T)(Z,T)X),

where X,Y,Z in T,%, N is a unitary normal field on %2 and T is the
tangential component of the parallel field 9;. For more details see [5].

3. Simons’ equation in M?(c) x R

In this section we will obtain an equation of Simons type for the traceless
Weingarten operator ¢ and for the tensor S defined in (1.1).

Let M?(c) x R, where M?(—1) = H? and M?(1) = S?. In this case we
have that R'=0, because M?(c) x R is locally symmetric.

In Lemmas 3.1 and 3.2 we will consider an immersed surface %2 ¢
M?(c) x R with constant mean curvature H where A is the Weingarten
operator associated to the second fundamental form on 2.

LEMMA 3.1. — Denoting the identity by I, we have that
R(A) = ¢(5v% —1)A — 4cHVI.

Proof. — Consider an orthonormal basis {e1, €2} in 7,32 such that Ae; =
kie;, i = 1,2. Consider z,y € T,X. We have
T =x1€e1 + X262 € Y = Y1€1 + Y2e2.

Computing the first sum in (2.1)

2
Z<Rei,yei714x> = koxaya(Re, e,1, €2) + k12191 (Res e, €2, €1)

=1
= — Ky (k2x2y2 + k17191) = — K5 (Az,9),

where I_(z = (Rel,62627€1>-

ANNALES DE L’INSTITUT FOURIER
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Hence,
2 — —
(3.1) Z(Rei,yei, Az) = —Kx(Az,y).
i=1
It’s simple see that
2
(32) Z<Rei,zeiv Ay> = _KZ<AI7 y>
i=1

In the third sum in (2.1) we have
(Re, nei, N) = —c{(1 — (e, 0,))(1 — v*) — v*{e;, 01)*}
= —c{1 — 12— (e;,0,)%}.
Therefore,
2

(3.3) Z(R%Nei, N) = —¢(1 —v?).

i=1

To finish, we computing the fourth sum.

2
Z<Rei7wy7 Aej) = Ky, (k1z2y2 + kax1y1)
i=1
= Ky ([2H — ka]zays + [2H — ki]z1y1)
= K (2H (z,y) — (Az,y)),
where we used that 2H = k1 + ks.
Thus,
2 — —
(3.4) > (Re, oy, Aei) = Kx (2H (x,y) — (Az,y)) .

i=1

Now, we need computing K. Using the tensor of curvature in M 2(e)xR
we have:

Ky = (Rey eye2,e1) = ¢ (1= (e1,T)* = (e2,T)?) = (1 — |T|?).
Therefore,
(3.5) Ky, = .
Substituting (3.1), (3.2),(3.3) and (3.4) into (2.1), obtain
(R(A)z,y) = 2Kx(Az,y) — c(1 - v*){Az,y) — 2Kx, (2H (2, y) — (Az,y)).
Using (3.5) we obtain

(R(A)x,y) = bev?(Ax,y) — c{Ax,y) — 4cv’ H (x, ).

TOME 61 (2011), FASCICULE 4
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Thus,

R(A) = c(5v* — 1)A — 4cHV?I.

LEMMA 3.2. — (Ry,y, N) = —c{{(x, T){y, T) — (z,y)(T,T)}.
Proof. — We observe that

<$*,y*> = <J),y> - <1"7T><y7T>7

(*,N*) = v{z,T)
and
(N*,N*) =1-1?,

where we have used v* = v — (v,0;)9; for any v € T,(M?(c) x R).
It follows that

(Rnay, N) = —c{(N*, 2" )(N",y") — (N*, N*){z", y")}
= —c{(z, T){y, T) — (z,y)(T,T)}.
This concludes the proof. O

PROPOSITION 3.3. — Let ¥? & M?(c) x R be an immersed surface
with constant mean curvature H and let A be the Weingarten operator
associated to the second fundamental form on ¥2. Then,

(V2A)z,y) = —|AP(Az,y) + c(5v° — 1)(Az,y) — dcHv*(a,y)+
—2cH{(2, T)(y, T) — (z,y(T.T)} + 2H (Az, Ay),
where v = (N, 0;).

Proof. — Consider equation (2.2)

(V2A)z,y) = —|AP(Az,y) + (R(A)z,y)

+(R'z,y) + 2H(Rn oy, N) + 2H Az, Ay).
Now, we use Lemmas 3.1 and 3.2 and the fact that R’ = 0 to obtain

(V2A)z,y) = —|AP*(Az, y) + c(50® — 1) (A, y) — deHV* (, y)+
—2Hc{(z, TY)y, T) — (z,y){T,T)} + 2H (Ax, Ay).

O

ANNALES DE L’INSTITUT FOURIER
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Consider two tensors V, W on 2. We define the inner product (V, W)
at p € X2 as
2
(VW) = (Ves, We,),
i=1

where {ei, e} is an orthonormal basis for T,X.

COROLLARY 3.4. — Let %2 & M?(c) x R be an immersed surface with
constant mean curvature and let A be the Weingarten operator associated
to the second fundamental form on ¥.2. Then,

(a) (V2A, 1) =0.
(b) (V2A,A) = —|A* + (502 — 1)|A]? — 8cH?*v? — 2cH (AT, T) +
+4cH?|T|? + 2Htr(A3).

Proof. — Consider {e1, e} an orthonormal basis of T,,~. We use the def-
inition of the inner product between tensors and the expression in Propo-
sition 3.3 to obtain

2 2
(V2A,A) = (V2 A)e;, Aes) = —[A]P )Y (Ae;, Ae;)+
=1 =1
2 2 2
+e(5r® = 1) (Ae;, Ae;) —4cHV® > (Aej, ;) — 2cH{Y (AT e;)(e;, T)+

i=1 i=1 i=1
2
Z Ae;,e;) }—I—QHZ e, Aey).
=1 =1

Therefore,

(V2A, A) = —|A|* + c(50% — 1)|A|* — 8cH?*v? — 2cH (AT, T)
+4cH?|T|? + 2Htr(A%).

Using the definition of the inner product and Proposition 3.3 we obtain

2 2
(VZA D) = (V2 Aes, ) = —| AP D (Aei,ei)+
i=1 i=1
2 2
Z (Aej, e;) — 8cHV? — 20H{Z<T, e e, TY+
i=1 i=1

2
2T, T)} +2H Y (A%, e;).

i=1

TOME 61 (2011), FASCICULE 4
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Therefore,

(V2A,I) = —2H| AP + (50 — 1)2H — 8cHv? + 2c¢H(T,T) + 2H|A|? = 0,

where we have used that v2 + |T|? = 1. O
PROPOSITION 3.5. — Let X 9 M?(c) x R be an immersed surface with

constant mean curvature H and let ¢ be the traceless Weingarten operator,
then

(a) 6> = |A]* — 2H>.
(b) Vo =VA.
(c) trA® = 3H|p|> + 2H3.
Proof. — The proof of item (a) is:
6° = (¢,¢) = (A~ HI, A~ HI) = (A, A) — 2H(A,I) + H*(L,1)
= |A]? —4H? + 2H? = |A|* — 2H?,
where (A, I) =2H and (I, 1) = 2.
To prove item (b), we consider tangent fields X,Y. Then,
(Vx)Y = (VxA)Y — (Vx(HI))Y = (VxA)Y — VyHI(Y) + HVxY
=(VxA)Y — HVxY — X(H)Y + HVxY = (VxA)Y,
because H is constant.
Finally, the proof of item(c) is:
2

2
tr(A%) =) (A% ei) = ((6+ HI)e;e;)

i=1 i=1

2
= ((¢® + 3HS? +3H%¢ + H*I)ey,e;) = 3H|9|* + 2H?,
i=1
because tr¢ = tr¢3 = 0. O
Next we shall derive an equation of Simons type for the traceless Wein-
garten operator ¢:

THEOREM 3.6. — Let ¥ & M?(c) x R be an immersed surface with
constant mean curvature H and let ¢ be the traceless Weingarten operator.
Then

(V2¢,0) = —|o|* + (2H? + 5ev® — ¢)|¢|* — 2cH (4T, T)
and

SO = Vol = |61+ (2 + 507 — )|of? — 26H (6T, T).

ANNALES DE L’INSTITUT FOURIER
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Proof. — We use Proposition 3.5 to show that
(V2¢,¢) = (V2A, A — HI) = (V2A, A) — H(V?A, T).
Now, we use Corolarry 3.4 to obtain
(V2¢,¢) = —|A|* + (50 — 1)|A]> — 8cH?v? + 2cH (AT, T)+
+ 4cH?|T|* 4 2Htr(A%).
Therefore,
(V26,0) = —(|6]* + 2H*)? + c(5v” = 1)(|¢]” + 2H?) — 8cH v+
—2cH((¢p+ HI)T,T) + 4cH?|T|* + 2H (3H|¢|* + 2H?),
which brings us to
(V26,6) = —|g|* + 2H2|6[2 + c(502 — 1)|$[2 — 2cH(¢T, T).
To finish, we use that %A|¢|2 = |V9¢|? + (V?¢, ¢). 0
Now we evaluate the Laplacian of |S|? where S is defined by (1.1), i.e,

S=2HA— o(T,\T + g(l — ) - 2H1.
We observe the fact that S is a traceless operator, i.e,
tr(S) = 2Htr(A) — ¢|T)* + ¢(1 — v*) — 4H? = 0,
where we used that |T]? +v? =1 and tr(A) = 2H.

PROPOSITION 3.7 (Codazzi’s Equation). — Let ¥? & M?(c) x R be an
immersed surface with constant mean curvature and the S be the tensor
defined in (1.1). Then

(VxS)Y = (Vy9)X,
for all tangent fields X,Y on ¥2.

Proof. — We consider (u,v) isothermal parameters of the surface X2.
Now, we consider the complex parameter, z = u + iv. Let us set

Ts(X,Y) = (VxS)Y — (VyS)X = Vx(SY) — Vy(SX) — S[X,Y].

We will prove that T is null. For this, consider the derivatives

0, = %(au —1i0,) and Oz = %(@ +10y).

TOME 61 (2011), FASCICULE 4
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We will compute Ts in the basis {9,,9z}. First note that,
<TS(627 %)7 az> = az<SaEy 8z> - <S&za v6262>+
— 02(50.,0.) + (S0.,Vo.0.)
=Y -9
because Q9 is holomorphic, Theorem 1 in [1], and using the fact that
Vo, 0z = 0, Vy.0, = %az, (S0.,0,) = QY and (S0.,05) = 0, where

A= <aza 6%>
Next,

(Ts(0-,0z),0z) = —05(0z, S0.) + (5S0., Vo 0z)+

+ 0.(505,0z) — (805, V. 0z)
_ QB
Az
where we have used that Vs 0z = 78; and Q2.0 = éz,o). It follows
that Tg = 0. O
LEMMA 3.8. — Let Z be a symmetric operator satisfying Codazzi’s
equation and tr(Z) = 0, then
2
(3.6) (V*2)a,y) =Y {~(Zy, Re, vei) = (Zei, Re,w)},
i=1
where {e1, e} is an orthonormal basis of T,%.
Proof. — See Lemma a. in [8], p. 81, adapted for codimension 1. O

Let us evaluate each summand in expression (3.6).

LEMMA 3.9. — Let Z be an operator as in Lemma 3.8. Then,
2
i) Y {2y, Re, ze;) = —cv*(Za,y) — 2H(Ax, Zy) + (A%, Zy).
i=1
and

2
Z Ze;, Re, 2Y) —cy2<Zx7y> — (Ay, ZAz) + (Az,y)tr(AZ).
i=1

ANNALES DE L’INSTITUT FOURIER
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Proof. — Consider {e1,e2} an orthonormal basis of T,X. Using Gauss’
equation (2.3) we find

(Zy, Re, wei) = —c{{z, Zy) — (x,€:)(Zy, ;) — (2, T)(Zy, T)+
— (e, T)* (&, Zy) + (e, T){x, e:)(Zy, T)+
+ (z, TY{e;, T){e;, Zy)} — (Ae;, e;)(Ax, Zy)+
+ (Ax, e;)(Ae;, Zy).

Therefore,
2 2
> 2y, Re, wei) = —c{2(w, Zy) = D _(w,e:)(Zy, ei) +
i=1 i=1
2
o, THZY, T) — (2, Z9) S e, T
i=1
2 2
+{(Zy, T Z e, T)(x,e;) + (x,T) Z ei, T)(ei, Zy) }+
i=1 i=1

— (Az, Zy) Z(Aei, ei) + Z(Aw, ei)(Ae;, Zy),

i=1

which implies that

Z<Zy7R€i,$ei> = —c{2<x,Zy> - <Z'T7y> - 2<$,T><Zy,T>+

— (2, Zy)|T* + (Zy,T)(x, T) + (x, T)(T, Zy) }+
— (Az, Zy)2H + (Az, AZy).

Hence,

2
Z(Zy, Re, ze;) = —c(1 — |T)*)(Zx,y) — 2H Az, Zy) + (A%z, Zy),
=1

which shows the validity of (7). Now, one may verify that
(Zei, Re, 2y) = —c{{ei, y)(Zei, x) — (z,y)(Zei, e5)+
—(z, T){Zei, T) ei, y) — (e, T){y, T'){w, Zei)+

+ (e, T)(, y)(Zei, T) + (x, T)(y, T)(ei, Zei) +
— (Ae;,y)(Azx, Ze;) + (Ax,y)(Ae;, Ze;).

TOME 61 (2011), FASCICULE 4
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Therefore

2

2
Z<Z6“ eial) —c{z e, y{Zej,x) — (x,y Z Zei, e)+
=1 , , =1
Z Zei, TY(ei,y) Z (e;, T
=1

+ <x,y>Z(ei,T><Zei,T> (z, T){y

-. %
ﬂMM N
5} S’
N
5‘3

2 2
— Z(Aei,yﬂAx,Zel + (Az,y Z Ae;, Ze;).
i=1

i=1
Therefore

Y (Zei, Reiay) = —c{{(Za,y) — (@, T)(Zy,T) = (y. T){(Zx, T)+

i=1
+{(ZT,T)(x,y)} — (Ay, ZAz) + (Az,y)tr(AZ),
noting that trZ = 0.
Considering that

—(@, T2y, T) = {y. T){Zz,T) + {ZT,T)(z,y) = —(1 = v*)(Zz,y),

we find

2
> (Zei, Re, 2y) = —cv*(Za,y) — (Ay, ZAz) + (A, y)tr(AZ),

i=1

which demonstrates (i4). O

THEOREM 3.10. — Let %2 & M?(c) x R be an immersed surface with
non zero constant mean curvature H and let Z be an operator on %2
satisfying Codazzi’s equation with tr(Z) = 0. Then,

(V22)w,y) = 2e0*(Za,y) + 2H (Aw, Zy) — (A%, Zy)+

+ (Ay, ZAzx) — (Ax,y)tr(AZ).

Proof. — We use the expressions of Lemma 3.9 in equation (3.6) obtained

in Lemma 3.8. U

Next we derive an equation of Simons type for the operator S as defined

n (1.1).
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THEOREM 3.11 (Thm 1.1 in Introduction). — Let ¥? & M?(c) x R be
an immersed surface with non zero constant mean curvature H and S as

defined in (1.1). Then,

(V2S)a,y) = 20 (S, y) + 2H (Az, Sy) — (A%z, Sy)+
+ (Ay, SAz) — (Ax,y)tr(AS),
and

5ev?

—A\S|2 |VS|? —[S|* +|S]? ( - g +2H? — £<ST, T>) +

+¢|ST)? - @wT T)%.

Proof. — First, since S satisfies Proposition 3.7, we can use the Theo-
rem 3.10 with Z = S,

1
Now, we know that 5A\S|2 = |VS|? + (V28S,S). Furthermore, we find
that

(V28S,8) = 2c?|S|? + 2Htr(AS?) — [tr(AS)]?.
Now, we need to compute tr(AS?) and tr(AS)7 as follows:

tr(AS?) = tr{S%(S + —— (T, )T — ——(1 — v®)I + HI)}

°H AH

3, ¢ 2 C o oy 2
— S +2Htr(<TS AT) — (4H(1 1) H)trS
—0+ —|ST|2 (é(l ) H) EE

and

tr(AS) =tr{S(S + ﬁ(f I — 1

= trS? + ﬁtr(m SNT) — (ﬁu —2) — H)trS

= |52+ ﬁ(ST, T) -0,

(171/ )T —HI)}

noting that trS = trS® = 0, also that

2

tr((T,S)T) =Y (T, Se;)(T,e;) = (ST, T)

i=1

and that
2

tr((T, S)T) = > (T, S2e)(T, e;) = (ST, T).

i=1

TOME 61 (2011), FASCICULE 4
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Therefore,

1 c c

SIS = TSP 2l (s (g0 ) 57
SAISP = [VSP + 202 4 2H (S ISTP = (5771 = ") = H) IS]°) +

(157 + 5577

in this way,
—A\SF VS| + 2e?|S|? + ¢|ST|? — (g (1-1?) —2H2) 152+
4 C 2
|81~ TS TSP — o (ST, 7).

Rearranging terms, we obtain finally

5cv?

1
ZAIS2 = 2 4 2
ISP = 982~ IS + 5P (25~ - 5

~ S hom? - i(ST, T>) +

+¢|ST)? — @@T T)%

4. Applications
In this section, we will apply the results found in section 3 together with
the Omori-Yau’s Theorem to classify some surfaces in M?(c) x R.

THEOREM 4.1. — Let ¥2 9 H? x R be an oriented complete immersed
minimal surface. Assume that

sup(|A]? +50%) < 1
b
Then X2 is a vertical plane v x R for some geodesic y in H?2.
Proof. — Using Theorem 3.6 with H = 0 and ¢ = —1, one finds

1
5A\A|2 = |VAP — A" + (1 =502 AP = |A]P? (—|AP + 1 - 57).
Let g := —sup(|A|? + 5v%) + 1 > 0. Therefore,
)

(4.1) AJAP? > d- AP

Using Gauss’ equation (2.3) in H? x R we have

A2 +502 312 1
AP +507

Ky = Koyt — V% = — .
» v 2 2 2

ANNALES DE L’INSTITUT FOURIER
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Now we can use Theorem 2.2 with u = |A|?, i.e, there exist {p,} in £? such
that

lim |A]*(p;) = sup|A|? and lim A|A]*(p;) < 0.

j—o0 » j—o0

Next, we use inequality (4.1) to conclude that supy, |A|> = 0, i.e, X2 is
totally geodesic with |v| < 1/0.2.

Since %2 is totally geodesic and |v| < 1/0.2 it cannot be a slice, it must
be a vertical plane v x R for some geodesic 7 in H?. 0

THEOREM 4.2. — Let ¥2 9 H? x R be a complete immersed surface
with constant mean curvature H. Assume that

sup(|p|? + 50%) < 2H?> +1 and (¢T,T) > 0.
>

Then X2 is a vertical plane v x R for some geodesic y in H?2.

Proof. — We consider the expression in Theorem 3.6 for the particular
case c = —1:

1
SAIBF = [VoI* —[el" + (2H" + 1 = 50%)[g]* + 2H (¢T. T).
As (¢T,T) > 0, we find

1
L6 > —lol! + RH? +1 - 5020l
d
Consider 5= 2H? +1 —sup(|¢|® + 5v%) > 0. Then
S

Alpl* > 2|¢]*(2H? +1 - 50° — [¢°) = dl¢[?,
which implies,
(4.2) Alp* = d|g|*.
Using Gauss’ equation (2.3) in H? x R we have
2 2 2 2
+b5v° —2H v 1
K:sz—2:—|¢‘ 2> .
) cat — V 5 + 5 5
Now we can use Theorem 2.2 with u = |¢|?, i.e, there exist {p;} in ¥? such
that

lim [¢|*(p;) = sup|¢[* and lim Alg|*(p;) <O0.

Furthermore, we use inequality (4.2) to conclude that sups; |¢|* = 0, i.e, %2
is totally umbilical.
Next, we use that if 2 is totally umbilical with constant mean curvature
in H? x R then %2 is totally geodesic, which follows from [9] section 4.
Since %2 is totally geodesic and |v| < 1/0.2 it must be a vertical plane
v x R for some geodesic v in H2. This concludes the proof. (|

TOME 61 (2011), FASCICULE 4



1316 Marcio Henrique BATISTA DA SILVA

We need the following result:

LEMMA 4.3. — Let ¥? & M?(c) x R be a complete immersed surface
with non zero constant mean curvature H. Then |S| = 0 if and only if ¥?
is an Abresch-Rosenberg surface.

Proof. — We consider (u,v) isothermal parameters on the surface 2.
Now, we consider the complex parameter, z = u + iv and the (2,0)-part of
the Abresch-Rosenberg differential

Q(~T,y) = 2H<Al‘,y> - C<QL‘,T><y,T>.

We can rewrite @ as
c
Q(‘T7y) = <Sl’,y> - 5(1 - V2)<‘Tay> +2H2<$7y>
Next we evaluate Q(9.,9,) noting that (9,,0,) =0

Q0.,0.) = (50.,0.) = (é_g) il

4 2
where é = (S0, 0,) = —(50,,0,) = —g and f= (SOu, 0y). Therefore
Q(2 ,0) =4 / _|_ ﬁ — + L
where E = |0, > 0. Thls Concludes the proof. O

1 4H? -1
Let us consider the polynomial t) = —t2 — ——t + ()
poly pr(t) NGl 5

When H is greater than one half there is a positive root for py. Let Ly be
the positive root. One has:

THEOREM 4.4 (Thm 1.2 in Introduction). — Let 2 & S? x R be an
immersed surface with constant mean curvature H greater than one half.
If

»? is complete and sup|S| < Lg
b

or
2 s closed and |S| < Ly,

then ¥ = S% | i.e, 2 is an embedded rotationally invariant constant mean

curvature sphere.

Proof. — Let consider two cases. First, ¥ is complete and second, X is
closed.

First Case. Consider the expression in Theorem 3.11 with ¢ = 1:
1

A|S|2 IVS|2—|SI* +|S|? ( -3+ 2H? — %(Sﬂ T>> +

ANNALES DE L’INSTITUT FOURIER
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1
2 2
+|ST| WIE (ST, T)2.
1
As (ST, T)| < |ST| € %|S|, we have
1A|5|2 > —|S[* 4|5 ot + A -1 L 1S|)+ A7 -1 (ST, T)?
2 - 2 2 V2H 4H? e
hence,
1 4H? -1 1 5
4. ZA|ISI2 > |52 _ Q2 9 21q2
43 GaIsP > 5P (T - sl - ISP + SIS
1
because H > —.
Observe that
4H? -1 1 ) d
_ _ > [
5 ﬂHISI S| pH(S‘;p|S|) 5 >0

and 2|S|? > 0. Therefore
(4.4) AlS)? = d|S|?.
Now we estimate |S].

|S| = 2H|A| — (T, )T| — (1 — v?) —4H? > 2H|A| — 2(1 — v*) — 4H?,
that is,

Ly >|S| > 2H|A| — 2 — 4H?.
Using Gauss’ equation (2.3) in §? x R we find
B

A
Ky =Koy + 12 = - 1+ 2H> 4+ 1° >

1 <LH+2+4H2>2
. cHT TR )

2 2H

Now we can use Theorem 2.2 with u = |S|?, i.e, there exists a {p,} in X2
such that

lim [S|?(p;) = sup|S|? and lim A[S|*(p;) < 0.
j—o0 b j—o0

By means of inequality (4.4) we conclude that supy, |S|? = 0, i.e, [S| =0 in
%2, Using Lemma 4.3 and Remark 1 of the Introduction we conclude the
proof.

Second case. Let us consider expression (4.3)

4H2—1_ 1 S| -
2 V2H

1 5
FAISP > |SP? ( |S|2> + VIS

TOME 61 (2011), FASCICULE 4
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4H? — 1 1 5|
2 V2H
1 5
ZA|S]? > Z12S)2.
SAISI* > 202iS|

As |S| < Ly, we have |S|? > 0. Hence,

Integrating and using Stokes’ Theorem we find
0> §/ V?S|%dE > 0.
2Js

It follows that
(4.5) |S|-v=0.

Let © = {p € ¥? : v(p) = 0} = v~1(0) be the nodal lines of v. We know
that
Av + (JA]* + Ric(N,N)v = 0.

Hence, we can apply Theorem 2.5 in [4], p. 49, to conclude that © has
empty interior. Thus, using (4.5), |S| vanishes in an open and dense set.
By continuity, |S| =0 in X.

Using Lemma 4.3 and Remark.1 of the Introduction we conclude the
proof. O

THEOREM 4.5. — There exists no ¥? & S? x R complete immersed
surface with constant mean curvature greater than one half such that |S| =
Ly.

Proof. — Suppose that there exist %2 9» S? x R satisfying the condition
of the theorem. Using expression (4.3)
4H? —1 1 5]
2 V2H

1 5
38l > 1P 7 + 51sP

with |S| = Ly one find that
)
0>0+§u2L%H > 0.

Hence v = 0, i.e, ¥2 & S? x R is a cylinder v x R for some v € S? with
constant curvature 2H.

On the other hand, for a cylinder v x R, where v € S? with constant
curvature 2H, we may write

1
2H? + - 0
—2H? — =
0 2
As 1S = Y2 (am2 .
s S| = (4H* + 1) > Ly we have a contradiction. O

2
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In next theorem we need the following result:

LEMMA 4.6. — Any Abresch-Rosenberg surface 2 & H? x R with H >

1
3 is an embedded rotationally invariant constant mean curvature sphere.

Proof. — See Proposition 4.3 in [1], p. 159. O
Let us consider the polynomial
1 8H* —12H? — 1
t+ .
V2H 4H?

When H is greater than a positive root of the polynomial r(z) = 8x* —

. . /3 + V11 . -
122% — 1, i.e, H is greater than 2 there is a positive root for q.

Let My be the positive root.

qH(t) = —t2 —

THEOREM 4.7 (Thm 1.3 in Introduction). — Let %2 & H? xR be an im-

3+ v11
mersed surface with constant mean curvature H greater than +T A
1.25664. If
»? is complete and sup |S| < My
by
or

¥? is closed and |S| < My,

then Y2 = S’?{, i.e, ¥? is an embedded rotationally invariant constant mean
curvature sphere.

Proof. — Let us consider two cases. First, > is complete and second, X
is closed.

First case. Consider the expression in Theorem 3.11 with ¢ = —1
2 2 4 2 52 1 2,
fA\S| VS| —|S|" + 5] —7+2+2H (ST,T) +
— 2 R —
|ST| 4H2 (ST, T)?.
1
As |(ST,T)| < |ST| < ﬁ'SL we may write
1 4H? +1 — 512 1 4H? +1
N 2 _ N 2
IS > —sit+ 17 (5 Sl = (M) 18
i.e,
1 9 o (4H? —445— 502 4H? +1 )
Z > _
AISP > [P (5= IS = T 18

TOME 61 (2011), FASCICULE 4
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This may be rewritten as,
(4.6)

1 8H* —12H? — 1
38l = 157

1
1H? B \/iH‘Sl B

1) + 501 - s

Observe that

8H* —12H? —1 1 9 d
_ _ > —
and (1 —v?)|S|? > 0. Therefore,
(4.7) AlS]? > d|S)?.

Next we estimate |5/
|S| = 2H|A| — (T, )T| — (1 — v?) —4H? > 2H|A| — 2(1 — v*) — 4H?,
i.e,
My >|S| > 2H|A| — 2 — 4H?.
Using Gauss’ equation (2.3) in H? x R we find
1 ( My +2+4H%\?
2 2H '

Now we can use Theorem 2.2 with u = |S|2, i.e, there exists a {p,} in ¥?
such that

A2
KZZKe,;t—VQZ——; +2H? - 12 >

lim [S|?(p;) = sup|S|? and lim A[S|*(p;) < 0.
j—o0 b j—o0

Inequality (4.7) allows us conclude that supy, |S|> = 0, i.e, |S| = 0 in 2.
Then, by using Lemmas 4.3 and 4.6, we conclude the proof.

Second case. Let us consider expression (4.6)

1 SH* —12H? — 1 1 5
—A[IS]2 > |S)? — S| —15]2 ~(1—-v%)|8)>.
IS > 187 (S - s~ 18P + S - )i
H*—12H? -1 1
As S| < My, we have that 8 12 - \/§H‘5| —|S]? > 0. Hence,
1 2 9 21 Q2
- > 2(1 — .
SAISE > S (11218
Integrating and using Stokes’ Theorem we write
0> 5/(1 —v?)|S|2dE > 0.
2Js
Moreover
(4.8) (1-v*-|S*=0.
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Consider © = {p € ¥?%;12(p) = 1} C H? x {tg}, for any tg. Since H is
positive we have that © has empty interior. Thus, using (4.8), we conclude
that |S| vanishes in an open and dense set. By continuity, |S| = 0 in X.
Using Lemma 4.3 and the fact that the only Abresch-Rosenberg closed
surface is S% we conclude the proof. g

THEOREM 4.8. — There exists no £? ¢ H? x R a complete immersed

[3+ V11
surface with constant mean curvature greater than +T ~ 1.25664
such that |S| = My.

Proof. — Suppose that there exists 32 9 H? x R satisfying the condition
of the theorem. Using expression (4.6)
SH* —12H? — 1 _ 1 15| -
4H? V2H
with |S| = My we obtain:

1 5
JalsP = 1 51) + 31— )5

5
0>0+§(1—u2)M§,>0.

Hence v? = 1, i.e, ¥? & H? x R is a slice H? x {to}. But H? x {to} has zero
mean curvature, and this is impossible because H is positive. O
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