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THE EVOLUTION OF THE WEYL TENSOR UNDER
THE RICCI FLOW

by Giovanni CATINO & Carlo MANTEGAZZA (*)

Abstract. — We compute the evolution equation of the Weyl tensor under
the Ricci flow of a Riemannian manifold and we discuss some consequences for the
classification of locally conformally flat Ricci solitons.
Résumé. — Nous calculons l’équation d’évolution du tenseur de Weyl d’une

variété riemannienne par le flot de Ricci et nous discutons des conséquences pour
la classification des solitons de Ricci localement conformément plats.

1. The Evolution Equation of the Weyl Tensor

The Riemann curvature operator of a Riemannian manifold (Mn, g) is
defined as in [15] by

Riem(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z .

In a local coordinate system the components of the (3, 1)–Riemann curva-
ture tensor are given by Rl

ijk
∂
∂xl = Riem

(
∂
∂xi ,

∂
∂xj

)
∂
∂xk and we denote by

Rijkl = glmRm
ijk its (4, 0)–version.

In all the paper the Einstein convention of summing over the repeated
indices will be adopted.

With this choice, for the sphere Sn we have

Riem(v, w, v, w) = Rijklv
iwjvkwl > 0.
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The Ricci tensor is obtained by the contraction Rik = gjlRijkl and R =
gikRik will denote the scalar curvature.
The so called Weyl tensor is then defined by the following decomposition

formula (see [15, Chapter 3, Section K]) in dimension n > 3,

Wijkl = Rijkl + R
(n− 1)(n− 2)(gikgjl − gilgjk)

− 1
n− 2(Rikgjl − Rilgjk + Rjlgik − Rjkgil)

= Rijkl + Aijkl + Bijkl ,

where we introduced the tensors

Aijkl = R
(n− 1)(n− 2)(gikgjl − gilgjk)

and
Bijkl = − 1

n− 2(Rikgjl − Rilgjk + Rjlgik − Rjkgil) .

The Weyl tensor satisfies all the symmetries of the curvature tensor and
all its traces with the metric are zero, as it can be easily seen by the above
formula.
In dimension three W is identically zero for every Riemannian manifold
(M3, g), it becomes relevant instead when n > 4 since its nullity is a con-
dition equivalent for (Mn, g) to be locally conformally flat, that is, around
every point p ∈ Mn there is a conformal deformation g̃ij = efgij of the
original metric g, such that the new metric is flat, namely, the Riemann
tensor associated to g̃ is zero in Up (here f : Up → R is a smooth function
defined in a open neighborhood Up of p).
We suppose now that (Mn, g(t)) is a Ricci flow in some time interval,

that is, the time–dependent metric g(t) satisfies
∂

∂t
gij = −2Rij .

We have then the following evolution equations for the curvature (see for
instance [16]),

∂

∂t
R = ∆R + 2|Ric|2

∂

∂t
Rij = ∆Rij + 2RklRkilj − 2gpqRipRjq ,

∂

∂t
Rijkl = ∆Rijkl + 2(Cijkl − Cijlk + Cikjl − Ciljk)(1.1)

− gpq(RipRqjkl + RjpRiqkl + RkpRijql + RlpRijkq) ,

ANNALES DE L’INSTITUT FOURIER
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where Cijkl = gpqgrsRpijrRslkq.

All the computations which follow will be done in a fixed local frame,
not in a moving frame.

The goal of this section is to work out the evolution equation under the
Ricci flow of the Weyl tensor Wijkl. In the next sections we will see the
geometric consequences of the assumption that a manifold evolving by the
Ricci flow is locally conformally flat at every time. In particular, we will be
able to classify the so called Ricci solitons under the hypothesis of locally
conformally flatness.

Since Wijkl = Rijkl + Aijkl + Bijkl and we already have the evolution
equation (1.1) for Rijkl, we start differentiating in time the tensors Aijkl

and Bijkl

∂

∂t
Aijkl = ∆R + 2|Ric|2

(n− 1)(n− 2)(gikgjl − gilgjk)

+ R
(n− 1)(n− 2)(−2Rikgjl − 2Rjlgik + 2Rilgjk + 2Rjkgil)

= ∆Aijkl + 2|Ric|2

(n− 1)(n− 2)(gikgjl − gilgjk) + 2R
n− 1Bijkl

and

∂

∂t
Bijkl = − 1

n− 2

(
(∆Rik + 2RpqRpiqk − 2gpqRipRkq)gjl

− (∆Ril + 2RpqRpiql − 2gpqRipRlq)gjk
+ (∆Rjl + 2RpqRpjql − 2gpqRjpRlq)gik
− (∆Rjk + 2RpqRpjqk − 2gpqRjpRkq)gil

+ 4RjkRil − 4RikRjl

)
= ∆Bijkl −

2
n− 2

(
(RpqRpiqk − gpqRipRkq)gjl

− (RpqRpiql − gpqRipRlq)gjk

+ (RpqRpjql − gpqRjpRlq)gik − (RpqRpjqk − gpqRjpRkq)gil
)

+ 4
n− 2(RikRjl − RjkRil) .

TOME 61 (2011), FASCICULE 4



1410 Giovanni CATINO & Carlo MANTEGAZZA

Now we deal with the terms like RpqRpiqk.
We have by definition RpqRpiqk = RpqWpiqk − RpqApiqk − RpqBpiqk and

RpqApiqk = R
(n− 1)(n− 2)(Rpqgpqgik − Rpqgpkgiq)

= R
(n− 1)(n− 2)(Rgik − Rik) ,

RpqBpiqk = − 1
n− 2(RpqRpqgik − RpqRpkgiq + RpqRikgpq − RpqRiqgpk)

= − 1
n− 2(|Ric|2gik + RRik − 2gpqRipRkq) ,

hence, we get

RpqRpiqk = RpqWpiqk −
R

(n− 1)(n− 2)(Rgik − Rik)

+ 1
n− 2(|Ric|2gik + RRik − 2gpqRipRkq)

= RpqWpiqk + 1
n− 2(|Ric|2gik − 2gpqRipRkq)

+ R
(n− 1)(n− 2)(nRik − Rgik) .

Substituting these terms in the formula for ∂
∂tBijkl we obtain

∂

∂t
Bijkl

= ∆Bijkl −
2

n− 2(RpqWpiqkgjl − RpqWpiqlgjk + RpqWpjqlgik − RpqWpjqkgil)

− 2|Ric|2

(n− 2)2 (gikgjl − gilgjk + gjlgik − gjkgil)

+ 4
(n− 2)2 (gpqRipRkqgjl − gpqRipRlqgjk + gpqRjpRlqgik − gpqRjpRkqgil)

− 2nR
(n− 1)(n− 2)2 (Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ 2R2

(n− 1)(n− 2)2 (gikgjl − gilgjk + gjlgik − gjkgil)

+ 2
n− 2(gpqRipRkqgjl − gpqRipRlqgjk + gpqRjpRlqgik − gpqRjpRkqgil)

+ 4
n− 2(RikRjl − RjkRil)

ANNALES DE L’INSTITUT FOURIER



THE WEYL TENSOR UNDER THE RICCI FLOW 1411

∂

∂t
Bijkl

= ∆Bijkl −
2

n− 2(RpqWpiqkgjl − RpqWpiqlgjk + RpqWpjqlgik − RpqWpjqkgil)

+ 2n
(n− 2)2 (gpqRipRkqgjl − gpqRipRlqgjk + gpqRjpRlqgik − gpqRjpRkqgil)

− 2nR
(n− 1)(n− 2)2 (Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ 2R2 − 2(n− 1)|Ric|2

(n− 1)(n− 2)2 (gikgjl − gilgjk + gjlgik − gjkgil)

+ 4
n− 2(RikRjl − RjkRil)

= ∆Bijkl −
2

n− 2(RpqWpiqkgjl − RpqWpiqlgjk + RpqWpjqlgik − RpqWpjqkgil)

+ 2n
(n− 2)2 (gpqRipRkqgjl − gpqRipRlqgjk + gpqRjpRlqgik − gpqRjpRkqgil)

+ 2nR
(n− 1)(n− 2)Bijkl + 4R

n− 2Aijkl −
4|Ric|2

(n− 2)2 (gikgjl − gilgjk)

+ 4
n− 2(RikRjl − RjkRil) .

Hence,
(1.2)( ∂
∂t
−∆

)
Wijkl =

( ∂
∂t
−∆

)
(Rijkl + Aijkl + Bijkl)

= 2(Cijkl − Cijlk + Cikjl − Ciljk)
− gpq(RipRqjkl + RjpRiqkl + RkpRijql + RlpRijkq)

+ 2|Ric|2

(n− 1)(n− 2)(gikgjl − gilgjk) + 2R
n− 1Bijkl

− 2
n− 2(RpqWpiqkgjl − RpqWpiqlgjk

+ RpqWpjqlgik − RpqWpjqkgil)

+ 2n
(n− 2)2 (gpqRipRkqgjl − gpqRipRlqgjk

+ gpqRjpRlqgik − gpqRjpRkqgil)

+ 2nR
(n− 1)(n− 2)Bijkl + 4R

n− 2Aijkl

− 4|Ric|2

(n− 2)2 (gikgjl − gilgjk) + 4
n− 2(RikRjl − RjkRil)

TOME 61 (2011), FASCICULE 4



1412 Giovanni CATINO & Carlo MANTEGAZZA

( ∂
∂t
−∆

)
Wijkl = 2(Cijkl − Cijlk + Cikjl − Ciljk)

− gpq(RipRqjkl + RjpRiqkl + RkpRijql + RlpRijkq)

− 2
n− 2(RpqWpiqkgjl − RpqWpiqlgjk

+ RpqWpjqlgik − RpqWpjqkgil)

+ 2n
(n− 2)2 (gpqRipRkqgjl − gpqRipRlqgjk

+ gpqRjpRlqgik − gpqRjpRkqgil)

− 4R
(n− 2)2 (Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ 4R2 − 2n|Ric|2

(n− 1)(n− 2)2 (gikgjl − gilgjk)

+ 4
n− 2(RikRjl − RjkRil) .

Now, in order to simplify the formulas, we assume to be in an orthonormal
basis, then Cijkl = RpijqRqlkp and we have

Cijkl = RpijqRqlkp

= WpijqWqlkp + ApijqAqlkp + BpijqBqlkp + ApijqBqlkp + BpijqAqlkp

−WpijqAqlkp −WpijqBqlkp −ApijqWqlkp − BpijqWqlkp .

Substituting the expressions for the tensors A and B in the above terms
and simplifying, we obtain the following identities.

ApijqAqlkp = R2

(n− 1)2(n− 2)2 (gikgjl + (n− 2)gijglk) ,

BpijqBqlkp = 1
(n− 2)2 (Rpjgiq + Riqgpj − Rpqgij − Rijgpq)

(Rqkglp + Rlpgqk − Rpqglk − Rlkgpq)

= 1
(n− 2)2

(
2RikRlj + (n− 4)RijRlk + RpjRplgik + RpkRpiglj

− 2RpjRpiglk−2RplRpkgij+RRijglk+RRlkgij+|Ric|2gijglk
)
,

ANNALES DE L’INSTITUT FOURIER
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ApijqBqlkp

= − R
(n− 1)(n− 2)2

(
Rikglj + Rljgik − Rijglk + (n− 3)Rlkgij + Rgijglk

)
,

BpijqAqlkp

= − R
(n− 1)(n− 2)2

(
Rljgik + Rikglj − Rlkgij + (n− 3)Rijglk + Rgijglk

)
,

WpijqAqlkp = R
(n− 1)(n− 2)Wlijk ,

ApijqWqlkp = R
(n− 1)(n− 2)Wilkj ,

WpijqBqlkp = − 1
n− 2(WlijpRpk + WpijkRlp −WpijqRpqglk) ,

BpijqWqlkp = − 1
n− 2(WilkpRpj + WplkjRpi −WqlkpRpqgij)

where in these last four computations we used the fact that every trace of
the Weyl tensor is null.
Interchanging the indexes and summing we get

ApijqAqlkp −ApijqAqklp + ApikqAqljp −ApilqAqkjp

= R2

(n− 1)2(n− 2)2

(
gikgjl + (n− 2)gijglk − gilgjk − (n− 2)gijglk

+ gijgkl + (n− 2)gikglj − gijgkl − (n− 2)gilgjk
)

= R2

(n− 1)(n− 2)2 (gikgjl − gilgjk) ,

BpijqBqlkp − BpijqBqklp + BpikqBqljp − BpilqBqkjp

= 1
(n− 2)2

(
2RikRlj + (n− 4)RijRlk + RpjRplgik + RpkRpiglj

− 2RpjRpiglk − 2RplRpkgij + RRijglk + RRlkgij + |Ric|2gijglk

− 2RilRkj − (n− 4)RijRlk − RpjRpkgil − RplRpigkj

+ 2RpjRpiglk + 2RpkRplgij − RRijglk − RRlkgij − |Ric|2gijglk

+ 2RijRlk + (n− 4)RikRlj + RpkRplgij + RpjRpiglk

− 2RpkRpiglj − 2RplRpjgik + RRikglj + RRljgik + |Ric|2gikglj

− 2RijRkl − (n− 4)RilRjk − RplRpkgij − RpjRpigkl

+ 2RplRpigjk + 2RpkRpjgil − RRilgjk − RRjkgil − |Ric|2gilgjk
)

TOME 61 (2011), FASCICULE 4



1414 Giovanni CATINO & Carlo MANTEGAZZA

BpijqBqlkp − BpijqBqklp + BpikqBqljp − BpilqBqkjp

= 1
(n− 2)2

(
(n− 2)(RikRlj − RilRjk)

− RpjRplgik − RpkRpiglj

+ RplRpigjk + RpkRpjgil

+ R(Rikglj + Rljgik − Rilgjk − Rjkgil)

+ |Ric|2(gikglj − gilgjk)
)
,

ApijqBqlkp + BpijqAqlkp−ApijqBqklp − BpijqAqklp

+ ApikqBqljp + BpikqAqljp −ApilqBqkjp − BpilqAqkjp

= − R
(n− 1)(n− 2)2

(
Rikglj + Rljgik − Rijglk + (n− 3)Rlkgij + Rgijglk

+ Rljgik + Rikglj − Rlkgij + (n− 3)Rijglk + Rglkgij
− Rilgkj − Rjkgil + Rijgkl − (n− 3)Rklgij − Rgijgkl
− Rkjgil − Rilgkj + Rklgij − (n− 3)Rijgkl − Rgklgij
+ Rijglk + Rlkgij − Rikglj + (n− 3)Rljgik + Rgikglj
+ Rlkgij + Rijglk − Rljgik + (n− 3)Rikglj + Rgljgik
− Rijgkl − Rlkgij + Rilgkj − (n− 3)Rkjgil − Rgilgkj

− Rklgij − Rijgkl + Rkjgil − (n− 3)Rilgkj − Rgkjgil
)

= − R
(n− 1)(n− 2)

(
Rikgjl + Rjlgik − Rjkgil − Rilgjk

)
− 2R2

(n− 1)(n− 2)2 (gikgjl − gilgjk)

and

WpijqAqlkp −WpijqAqklp + WpikqAqljp −WpilqAqkjp

= R
(n− 1)(n− 2)(Wlijk −Wkijl + Wlikj −Wkilj) = 0 ,

since the Weyl tensor, sharing the same symmetries of the Riemann tensor,
is skew–symmetric in the third–fourth indexes.
The same result holds for the other sum as

ApijqWqlkp = R
(n− 1)(n− 2)Wilkj = R

(n− 1)(n− 2)Wlijk = WpijqAqlkp

ANNALES DE L’INSTITUT FOURIER
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hence,

ApijqWqlkp −ApijqWqklp + ApikqWqljp −ApilqWqkjp = 0 .

Finally, for the remaining two terms we have
−WpijqBqlkp − BpijqWqlkp + WpijqBqklp + BpijqWqklp

−WpikqBqljp − BpikqWqljp + WpilqBqkjp + BpilqWqkjp

= 1
n− 2

(
WlijpRpk + WpijkRlp −WpijqRpqglk

+ WilkpRpj + WplkjRpi −WqlkpRpqgij

−WkijpRpl −WpijlRkp + WpijqRpqgkl

−WiklpRpj −WpkljRpi + WqklpRpqgij

+ WlikpRpj + WpikjRlp −WpikqRpqgjl

+ WiljpRpk + WpljkRpi −WqljpRpqgik

−WkilpRpj −WpiljRkp + WpilqRpqgkj

−WikjpRpl −WpkjlRpi + WqkjpRpqgil

)
= 1
n− 2

(
WpilqRpqgkj + WqkjpRpqgil −WpikqRpqgjl −WqljpRpqgik

)
where we used repeatedly the symmetries of the Weyl and the Ricci tensors.
Hence, summing all these terms we conclude

2(Cijkl−Cijlk + Cikjl − Ciljk) = 2(Dijkl −Dijlk + Dikjl −Diljk)

(1.3)

+ 2R2

(n− 1)(n− 2)2 (gikgjl − gilgjk)

+ 2
n− 2(RikRlj − RilRjk)

+ 2
(n− 2)2 (−RpjRplgik − RpkRpiglj + RplRpigjk + RpkRpjgil)

+ 2R
(n− 2)2 (Rikglj + Rljgik − Rilgjk − Rjkgil)

+ 2|Ric|2

(n− 2)2 (gikglj − gilgjk)

− 2R
(n− 1)(n− 2)(Rikgjl + Rjlgik − Rjkgil − Rilgjk)

− 4R2

(n− 1)(n− 2)2 (gikgjl − gilgjk)

+ 2
n− 2(WpilqRpqgkj+WqkjpRpqgil−WpikqRpqgjl−WqljpRpqgik)

TOME 61 (2011), FASCICULE 4
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2(Cijkl − Cijlk + Cikjl − Ciljk) = 2(Dijkl −Dijlk + Dikjl −Diljk)
= 2(Dijkl −Dijlk + Dikjl −Diljk)

+ 2(n− 1)|Ric|2 − 2R2

(n− 1)(n− 2)2 (gikgjl − gilgjk) + 2
n− 2(RikRlj − RilRjk)

− 2
(n− 2)2 (RpjRplgik + RpkRpiglj − RplRpigjk − RpkRpjgil)

+ 2R
(n− 1)(n− 2)2 (Rikgjl + Rjlgik − Rjkgil − Rilgjk)

+ 2
n− 2(WpilqRpqgkj+WqkjpRpqgil−WpikqRpqgjl−WqljpRpqgik),

where Dijkl = WpijqWqlkp.
Then we deal with the following term appearing in equation (1.2),

RipRpjkl+ RjpRipkl + RkpRijpl + RlpRijkp

= RipWpjkl + RjpWipkl + RkpWijpl + RlpWijkp

− R
(n− 1)(n− 2)

(
Rip(gpkgjl − gplgjk) + Rjp(gikgpl − gilgpk)

)
− R

(n− 1)(n− 2)

(
Rkp(gipgjl − gilgjp) + Rlp(gikgjp − gipgjk)

)
+ 1
n− 2(Rip(Rpkgjl − Rplgjk + Rjlgpk − Rjkgpl))

+ 1
n− 2(Rjp(Rikgpl − Rilgpk + Rplgik − Rpkgil))

+ 1
n− 2(Rkp(Ripgjl − Rilgjp + Rjlgip − Rjpgil))

+ 1
n− 2(Rlp(Rikgjp − Ripgjk + Rjpgik − Rjkgip))

= RipWpjkl + RjpWipkl + RkpWijpl + RlpWijkp

+ 1
n− 2(RipRpkgjl − RipRplgjk + RjlRik − RilRjk)

+ 1
n− 2(RjlRik − RjkRil + RjpRplgik − RjpRpkgil)

+ 1
n− 2(RkpRipgjl − RjkRil + RikRjl − RkpRjpgil)

+ 1
n− 2(RjlRik − RlpRipgjk + RlpRjpgik − RilRjk)

− 2R
(n− 1)(n− 2)(Rikgjl − Rilgjk + Rjlgik − Rjkgil)

ANNALES DE L’INSTITUT FOURIER



THE WEYL TENSOR UNDER THE RICCI FLOW 1417

RipRpjkl + RjpRipkl + RkpRijpl + RlpRijkp

= RipWpjkl + RjpWipkl + RkpWijpl + RlpWijkp

+ 2
n− 2(RipRkpgjl − RipRlpgjk + RjpRlpgik − RjpRkpgil)

+ 4
n− 2(RikRjl − RjkRil)

− 2R
(n− 1)(n− 2)(Rikgjl − Rilgjk + Rjlgik − Rjkgil) .

Inserting expression (1.3) and this last quantity in equation (1.2) we obtain

( ∂
∂t
−∆

)
Wijkl

= 2(Dijkl −Dijlk + Dikjl −Diljk)

+ 2(n− 1)|Ric|2 − 2R2

(n− 1)(n− 2)2 (gikgjl − gilgjk)

+ 2
n− 2(RikRlj − RilRjk)

− 2
(n− 2)2 (RpjRplgik + RpkRpiglj − RplRpigjk − RpkRpjgil)

+ 2R
(n− 1)(n− 2)2 (Rikgjl + Rjlgik − Rjkgil − Rilgjk)

+ 2
n− 2(WpilqRpqgkj + WqkjpRpqgil −WpikqRpqgjl −WqljpRpqgik)

− RipWpjkl − RjpWipkl − RkpWijpl − RlpWijkp

− 2
n− 2(RipRkpgjl − RipRlpgjk + RjpRlpgik − RjpRkpgil)

− 4
n− 2(RikRjl − RjkRil)

+ 2R
(n− 1)(n− 2)(Rikgjl − Rilgjk + Rjlgik − Rjkgil)

− 2
n− 2(RpqWpiqkgjl − RpqWpiqlgjk + RpqWpjqlgik − RpqWpjqkgil)

+ 2n
(n− 2)2 (RipRkpgjl − RipRlpgjk + RjpRlpgik − RjpRkpgil)

− 4R
(n− 2)2 (Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ 4R2 − 2n|Ric|2

(n− 1)(n− 2)2 (gikgjl − gilgjk) + 4
n− 2(RikRjl − RjkRil)

TOME 61 (2011), FASCICULE 4



1418 Giovanni CATINO & Carlo MANTEGAZZA

( ∂
∂t
−∆

)
Wijkl

= 2(Dijkl −Dijlk + Dikjl −Diljk)
− (RipWpjkl + RjpWipkl + RkpWijpl + RlpWijkp)

+ 2(R2 − |Ric|2)
(n− 1)(n− 2)2 (gikgjl − gilgjk)

+ 2
n− 2(RikRlj − RilRjk)

+ 2
(n− 2)2 (RpjRplgik + RpkRpiglj − RplRpigjk − RpkRpjgil)

− 2R
(n− 2)2 (Rikgjl + Rjlgik − Rjkgil − Rilgjk) .

Hence, we resume this long computation in the following proposition, get-
ting back to a standard coordinate basis.

Proposition 1.1. — During the Ricci flow of an n–dimensional Rie-
mannian manifold (Mn, g), the Weyl tensor satisfies the following evolution
equation( ∂

∂t
−∆

)
Wijkl

= 2 (Dijkl −Dijlk + Dikjl −Diljk)
− gpq(RipWqjkl + RjpWiqkl + RkpWijql + RlpWijkq)

+ 2
(n− 2)2 g

pq(RipRqkgjl − RipRqlgjk + RjpRqlgik − RjpRqkgil)

− 2R
(n− 2)2 (Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ 2
n− 2(RikRjl − RjkRil) + 2(R2 − |Ric|2)

(n− 1)(n− 2)2 (gikgjl − gilgjk) ,

where Dijkl = gpqgrsWpijrWslkq.

From this formula we immediately get the following rigidity result on the
eigenvalues of the Ricci tensor.

Corollary 1.2. — Suppose that under the Ricci flow of (Mn, g) of
dimension n > 4, the Weyl tensor remains identically zero. Then, at every
point, either the Ricci tensor is proportional to the metric or it has an
eigenvalue of multiplicity (n− 1) and another of multiplicity 1.
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Proof. — By the above proposition, as every term containing the Weyl
tensor is zero, the following relation holds at every point in space and time

0 = 2
(n− 2)2 g

pq(RipRqkgjl − RipRqlgjk + RjpRqlgik − RjpRqkgil)

+ 2R2

(n− 1)(n− 2)2 (gikgjl − gilgjk)− 2|Ric|2

(n− 1)(n− 2)2 (gikgjl − gilgjk)

− 2R
(n− 2)2 (Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+ 2
n− 2(RikRjl − RjkRil) .

In normal coordinates such that the Ricci tensor is diagonal we get, for
every couple of different eigenvectors vi with relative eigenvalues λi,

(1.4) (n−1)[λ2
i+λ2

j ]−(n−1)R(λi+λj)+(n−1)(n−2)λiλj+R2−|Ric|2 = 0 .

As n > 4, fixing i, then the equation above is a second order polynomial
in λj , hence it can only have at most 2 solutions, hence, we can conclude
that there are at most three possible values for the eigenvalues of the Ricci
tensor.
Since the dimension is at least four, at least one eigenvalues must have
multiplicity two, let us say λi, hence the equation (1.4) holds also for i = j,
and it remains at most only one possible value for the other eigenvalues
λl with l 6= i. In conclusion, either the eigenvalues are all equal or they
divide in only two possible values, λ with multiplicity larger than one, say
k and µ 6= λ. Suppose that µ also has multiplicity larger than one, that is,
k < n− 1, then we have

nλ2 − 2Rλ = |Ric|2 − R2

n− 1(1.5)

nµ2 − 2Rµ = |Ric|2 − R2

n− 1

taking the difference and dividing by (λ− µ) we get

n(λ+ µ) = 2R = 2[kλ+ (n− k)µ]

then,

(n− 2k)λ = (n− 2k)µ
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hence, n = 2k, but then getting back to equation (1.5), R = n(µ + λ)/2
and

nλ2 − n(µ+ λ)λ = n(λ2 + µ2)/2− n2(µ2 + λ2 + 2λµ)/4
n− 1

which implies

−4nλµ = −n(n− 2)
n− 1 (λ2 + µ2)− 2n2

n− 1µλ

that is, after some computation,
2n(n− 2)
n− 1 µλ = n(n− 2)

n− 1 (λ2 + µ2) ,

which implies λ = µ.
At the end we conclude that at every point of Mn, either Ric = λg or

there is an eigenvalue λ of multiplicity (n− 1) and another µ of multiplic-
ity 1. �

Remark 1.3. — Notice that in dimension three equation (1.4) becomes

2[λ2
i + λ2

j ]− 2R(λi + λj) + 2λiλj + R2 − |Ric|2

= 2(λi + λj)2 − 2R(λi + λj)− 2λiλj + R2 − |Ric|2

= − 2λl(λi + λj)− 2λiλj + R2 − |Ric|2

= 0 ,

where λi, λj and λl are the three eigenvalues of the Ricci tensor.
Hence, the condition is void and our argument does not work. This is
clearly not unexpected as the Weyl tensor is identically zero for every three–
dimensional Riemannian manifold.

2. Locally Conformally Flat Ricci Solitons

Let (Mn, g), for n > 4, be a connected, complete, Ricci soliton, that is,
there exists a smooth 1–form ω and a constant α ∈ R such that

Rij + 1
2(∇iωj +∇jωi) = α

n
gij .

If α > 0 we say that the soliton is shrinking, if α = 0 steady, if α < 0
expanding.
If there exists a smooth function f : Mn → R such that df = ω we say that
the soliton is a gradient Ricci soliton and f its potential function, then we
have

Rij +∇2
ijf = α

n
gij .
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If the metric dual field to the form ω is complete, then a Ricci soliton
generates a self–similar solution to the Ricci flow (if the soliton is a gradient
soliton this condition is automatically satisfied [34]).
In all this section we will assume to be in this case.
In this section we discuss the classification of Ricci solitons (Mn, g),

for n > 4, which are locally conformally flat (LCF). As a consequence of
Corollary 1.2 we have the following fact.

Proposition 2.1. — Let (Mn, g) be a complete, LCF Ricci soliton of
dimension n > 4. Then, at every point, either the Ricci tensor is propor-
tional to the metric or it has an eigenvalue of multiplicity (n − 1) and
another of multiplicity 1.

If a manifold (Mn, g) is LCF, it follows that

0 =∇lWijkl

=∇l
(

Rijkl + R
(n− 1)(n− 2)(gikgjl − gilgjk)

− 1
n− 2(Rikgjl − Rilgjk + Rjlgik − Rjkgil)

)
= −∇iRjk +∇jRik + ∇jR

(n− 1)(n− 2)gik −
∇iR

(n− 1)(n− 2)gjk

− 1
n− 2(∇jRik −∇lRilgjk +∇lRjlgik −∇iRjkgil)

= − n− 3
n− 2(∇iRjk −∇jRik) + ∇jR

(n− 1)(n− 2)gik −
∇iR

(n− 1)(n− 2)gjk

+ 1
2(n− 2)(∇iRgjk/2−∇jRgik/2)

= − n− 3
n− 2

[
∇iRjk +∇jRik −

(∇iRgjk −∇jRgik)
2(n− 1)

]
= n− 3
n− 2

[
∇j
(

Rik −
1

2(n− 1)Rgik
)
−∇i

(
Rjk −

1
2(n− 1)Rgjk

)]
,

where we used the second Bianchi identity and Schur’s Lemma ∇R =
2 div Ric.
Hence, since we assumed that the dimension n is at least four, the Schouten
tensor defined by S = Ric− 1

2(n−1) Rg satisfies the equation

(∇XS)Y = (∇Y S)X, X, Y ∈ TM .

Any symmetric two tensor satisfying this condition is called a Codazzi
tensor (see [2, Chapter 16] for a general overview of Codazzi tensors).
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Suppose that we have a local orthonormal frame {E1, . . . , En} in an open
subset Ω of Mn such that Ric(E1) = λE1 and Ric(Ei) = µEi for i =
2, . . . , n and λ 6= µ. For every point in Ω also the Schouten tensor S has
two distinct eigenvalues σ1 of multiplicity one and σ2 of multiplicity (n−1),
with the same eigenspaces of λ and µ respectively, and

σ1 = 2n− 3
2(n− 1)λ−

1
2µ and σ2 = 1

2µ−
1

2(n− 1)λ .

Splitting results for Riemannian manifolds admitting a Codazzi tensor with
only two distinct eigenvalues were obtained by Derdzinski [12] and Hiepko–
Reckziegel [21, 22] (see again [2, Chapter 16] for further discussion). In
particular, it can be proved that, if the two distinct eigenvalues σ1 and
σ2 are both “constant along the eigenspace span{E2, . . . , En}” then the
manifold is locally a warped product on an interval of R of a (n − 1)–
dimensional Riemannian manifold (see [2, Chapter 16] and [32]).
Since σ2 has multiplicity (n−1), larger than 2, we have for any two distinct
indexes i, j > 2,

∂iσ2 = ∂iS(Ej , Ej)
=∇iSjj + 2S(∇EiEj , Ej)
=∇jSij + 2σ2g(∇Ei

Ej , Ej)
= ∂jS(Ei, Ej)− S(∇Ej

Ei, Ej)− S(Ei,∇Ej
Ej)

= − σ2g(∇EjEi, Ej)− σ2g(Ei,∇EjEj)
= 0 ,

hence, σ2 is always constant along the eigenspace span{E2, . . . , En}. The
eigenvalue σ1 instead, for a general LCF manifold, can vary, for example
Rn endowed with the metric

g = dx2

[1 + (x2
1 + x2

2 + · · ·+ x2
n−1)]2

is LCF and

Rg
ij = −(n−2)(∇2

ij logA−∇i logA∇j logA)+(∆ logA−(n−2)|∇ logA|2)δij

where the derivatives are the standard ones of Rn and A(x) = 1+(x2
1 +x2

2 +
· · · + x2

n−1) (see [2, Theorem 1.159]). Hence, this Ricci tensor “factorizes”
on the eigenspaces 〈e1, . . . , en−1〉 and 〈en〉 but the eigenvalue σ1 of the
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Schouten tensor, which is given by

σ1 = gnnRg
nn = (∆ logA− (n− 2)|∇ logA|2)A2

=A∆A− (n− 1)|∇A|2

= 2(n− 1)A− 4(n− 1)(A− 1)
= − 2(n− 1)(A− 2) ,

is clearly not constant along the directions e1, . . . , en−1.
The best we can say in general is that the metric of (Mn, g) locally

around every point can be written as I ×N and

g(t, p) = dt2 + σK(p)
[α(t) + β(p)]2

where σK is a metric on N of constant curvature K, α : I → R and
β : N → R are smooth functions such that HessKβ = fσK , for some
function f : N → R and where HessK is the Hessian of (N, σK).

2.1. Compact LCF Ricci Solitons

A compact, Ricci soliton is actually a gradient soliton (by the work of
Perelman [28]).
In general (even if they are not LCF), steady and expanding compact Ricci
solitons are Einstein, hence, when also LCF, they are of constant curvature
(respectively zero and negative).
In [7, 13] it is proved that also shrinking, compact, LCF Ricci solitons are
of constant positive curvature, hence quotients of spheres.

Any compact, n–dimensional, LCF Ricci soliton is a quotient of Rn, Sn
and Hn with their canonical metrics, for every n ∈ N.

2.2. LCF Ricci Solitons with Constant Scalar Curvature

Getting back to the Schouten tensor, if the scalar curvature R of an LCF
Ricci soliton (Mn, g) is constant, we have that also the other eigenvalue σ1
of the Schouten tensor is constant along the eigenspace span{E2, . . . , En},
that is, ∂iσ1 = 0, by simply differentiating the equality R = 2(n−1)

n−2 (σ1 +
(n− 1)σ2).

Hence, by the above discussion, we can conclude that around every point
ofMn in the open set Ω ⊂Mn where the two eigenvalues of the Ricci tensor
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are distinct the manifold (Mn, g) is locally a warped product I × N with
g(t, p) = dt2 + h2(t)σ(p) (this argument is due to Derdzinski [12]).
Then the LCF hypothesis implies that the warp factor (N, σ) is actually a
space of constant curvature K (see for instance [4]).
As the scalar curvature R is constant, by the evolution equation ∂tR =

∆R + 2|Ric|2 we see that also |Ric|2 is constant, that is, locally R =
λ+(n−1)µ = C1 and |Ric|2 = λ2 +(n−1)µ2 = C2. Putting together these
two equations it is easy to see that then both the eigenvalues µ and λ are
locally constant in Ω. Hence, by connectedness, either (Mn, g) is Einstein,
so a constant curvature space, or the Ricci tensor has two distinct constant
eigenvalues everywhere. Using now the local warped product representa-
tion, the Ricci tensor is expressed by (see [2, Proposition 9.106] or [11,
p. 65] or [5, p. 168])

(2.1) Ric = −(n− 1) h
′′

h
dt2 +

(
(n− 2)K − hh′′ − (n− 2)(h′)2)σK .

hence, h′′/h and ((n−2)K−hh′′− (n−2)(h′)2)/h2 are constant in t. This
implies that (K − (h′)2)/h2 is also constant and h′′ = Ch, then locally ei-
ther the manifold (Mn, g) is of constant curvature or it is the Riemannian
product of a constant curvature space with an interval of R.
By a maximality argument, passing to the universal covering of the mani-
fold, we get the same following conclusion.

If n > 4, any n–dimensional, LCF Ricci soliton with constant scalar
curvature is either a quotient of Rn, Sn and Hn with their canonical metrics
or a quotient of R× Sn−1 and R×Hn−1 (see also [29]).

2.3. Gradient LCF Ricci Solitons with Nonnegative Ricci Tensor

Getting back again to the Codazzi property of the Schouten tensor S,
for every index i > 1, we have locally

0 = ∇1Ri1 −∇iR11 −
∂1R

2(n− 1)gi1 + ∂iR
2(n− 1)g11

= ∇1Ri1 −∇iR11 + ∂iR
2(n− 1) .
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If the soliton is a gradient LCF Ricci soliton, that is, Ric = −∇2f + α
ng,

we have R = −∆f + α and taking the divergence of both sides

∂iR/2 = div Rici
= gjk∇kRij

= − gjk∇k∇i∇jf

= − gjk∇i∇k∇jf − gjkRkijl∇lf

= −∇i∆f − Ril∇lf

= ∂iR − Ril∇lf ,

where we used Schur’s Lemma ∂iR = 2 div Rici and the formula for the
interchange of covariant derivatives.
Hence, the relation ∂iR = 2Ril∇lf holds and

∇1∇2
i1f −∇i∇2

11f = Rij∇jf
n− 1 .

By means of the fact that W = 0, we compute now for i > 1 (this is a
special case of the computation in Lemma 3.1 of [6]),

µ

n− 1∇if = Rij∇jf
n− 1

=∇1∇2
i1f −∇i∇2

11f

= R1i1j∇jf

=
[

1
n− 2(R11gij − R1jgi1 + Rijg11 − Ri1g1j)

− R
(n− 1)(n− 2)(g11gij − g1jgi1)

]
∇jf

=
[

1
n− 2(λgij + µgij)−

R
(n− 1)(n− 2)gij

]
∇jf

=
[
λ+ µ

n− 2 −
R

(n− 1)(n− 2)

]
∇if

= (n− 1)λ+ (n− 1)µ− λ− (n− 1)µ
(n− 1)(n− 2) ∇if

= λ

n− 1∇if .

Then, in the open set Ω ⊂Mn where the two eigenvalues of the Ricci tensor
are distinct, the vector field ∇f is parallel to E1, hence it is an eigenvector
of the Ricci tensor and ∂iR = 2Ril∇lf = 0, for every index i > 1.
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As σ1 = n−2
2(n−1) R − (n − 1)σ2 we get that also ∂iσ1 = 0 for every index

i > 1.
The set Ω is dense, otherwise its complement where Ric − Rg/n = 0

has interior points and, by Schur’s Lemma, the scalar curvature would be
constant in some open set ofMn. Then, strong maximum principle applied
to the equation ∂tR = ∆R + 2|Ric|2 implies that R is constant everywhere
on Mn, and we are in the previous case.
So we can conclude also in this case by the previous argument that

the manifold, locally around every point in Ω, is a warped product on an
interval of R of a constant curvature space LK . Moreover, Ω is obviously
invariant by “translation” in the LK–direction.

We consider a point p ∈ Ω and the maximal geodesic curve γ(t) passing
from p orthogonal to LK , contained in Ω. It is easy to see that for every
compact, connected segment of such geodesic we have a neighborhood U

and a representation of the metric in g as

g = dt2 + h2(t)σK ,

covering the segment with the local charts and possibly shrinking them in
the orthogonal directions.
Assuming from now on that the Ricci tensor is nonnegative, by the local
warped representation formula (2.1) we see that h′′ 6 0 along such geodesic,
as Rtt > 0.
If such geodesic has no “endpoints”, being concave the function h must be
constant and we have either a flat quotient of Rn or the Riemannian product
of R with a quotient of Sn−1. The same holds if the function h is constant in
some interval, indeed, the manifold would be locally a Riemannian product
and the scalar curvature would be locally constant (hence we are in the case
above).
If there is at least one endpoint, one of the following two situations happens:

• the function h goes to zero at such endpoint,
• the geodesic hits the boundary of Ω.

If h goes to zero at an endpoint, by concavity (h′)2 must converge to some
positive limit and by the smoothness of the manifold, considering again
formula (2.1), the quantity K − (h′)2 must go to zero as h goes to zero,
hence K > 0 and the constant curvature space LK must be a quotient of
the sphere Sn−1 (if the same happens also at the other endpoint, the man-
ifold is compact). Then, by topological reasons we conclude that actually
the only possibility for LK is the sphere Sn−1 itself.
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Assuming instead that h does not go to zero at any endpoint, where the ge-
odesic hits the boundary of Ω the Ricci tensor is proportional to the metric,
hence, again by the representation formula (2.1), the quantity K − (h′)2 is
going to zero and either K = 0 or K > 0.
The case K = 0 is impossible, indeed h′ would tend to zero at such end-
point, then by the concavity of h the function h′ has a sign, otherwise h
is constant in an interval, implying that in some open set (Mn, g) is flat,
which cannot happens since we are in Ω. Thus, being h′ 6= 0, h concave and
we assumed that h does not go to zero, there must be another endpoint
where the geodesic hits the boundary of Ω, which is in contradiction with
K = 0 since also in this point K − (h′)2 must go to zero but instead h′

tends to some nonzero value. Hence, K must be positive and also in this
case we are dealing with a warped product of a quotient of Sn−1 on an
interval of R.
Resuming, in the non–product situation, every connected piece of Ω is

a warped product of a quotient of the sphere Sn−1 on some intervals of
R. Then, we can conclude that the universal cover (M̃, g̃) can be recovered
“gluing together”, along constant curvature spheres, warped product pieces
that can be topological “caps” (when h goes to zero at an endpoint) and
“cylinders”. Nontrivial quotients (M, g) of (M̃, g̃) are actually possible only
when there are no “caps” in this gluing procedure. In such case, by its
concavity, the function h must be constant along every piece of geodesic
and the manifold (M̃, g̃) is a Riemannian product. If there is at least one
“cap”, the whole manifold is a warped product of Sn−1 on an interval of R.

Remark 2.2. — We do not know if the condition on (Mn, g) to be a
gradient LCF Ricci soliton is actually necessary to have locally a warped
product. We conjecture that such conclusion should hold also for nongra-
dient LCF Ricci solitons.

If n > 4, any n–dimensional, LCF gradient Ricci soliton with nonnegative
Ricci tensor is either a quotient of Rn and Sn with their canonical metrics,
or a quotient of R × Sn−1 or it is a warped product of Sn−1 on a proper
interval of R.

2.4. The Classification of Steady and Shrinking Gradient LCF
Ricci Solitons

The class of solitons with nonnegative Ricci tensor is particularly inter-
esting as it includes all the shrinking and steady Ricci solitons by the results
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in [8] and [33], where it is proved that a complete ancient solution g(t) to
the Ricci flow with zero Weyl tensor has a nonnegative curvature operator
for every time t. In particular, this holds for any steady or shrinking Ricci
soliton (even if not gradient) being them special ancient solutions.
By the previous discussion and the analysis of Bryant in the steady

case [5] (see also [9, Chapter 1, Section 4] and [10]) showing that there
exists a unique (up to dilation of the metric) nonflat, steady, gradient Ricci
soliton which is a warped product of Sn−1 on a halfline of R, called Bryant
soliton, we get the following classification.

Proposition 2.3. — The steady, gradient, LCF Ricci solitons of di-
mension n > 4 are given by the quotients of Rn and the Bryant soliton.

This classification result, including also the three–dimensional LCF case,
was first obtained recently by H.-D. Cao and Q. Chen [6].

In the shrinking case, the analysis of Kotschwar [23] of rotationally in-
variant shrinking, gradient Ricci solitons gives the following classification
where the Gaussian soliton is defined as the flat Rn with a potential func-
tion f = α|x|2/2n, for a constant α ∈ R.

Proposition 2.4. — The shrinking, gradient, LCF Ricci solitons of
dimension n > 4 are given by the quotients of Sn, the Gaussian solitons
with α > 0 and the quotients of R× Sn−1.

This classification of shrinking, gradient, LCF Ricci solitons was obtained
in the paper of P. Petersen and W. Wylie [29] (using also results of Z.-
H. Zhang [33]).
Many other authors contributed to the subject, including X. Cao, B. Wang
and Z. Zhang [7], B.-L. Chen [8], M. Fernández–López and E. García–
Río [14], L. Ni and N. Wallach [27], O. Munteanu and N. Sesum [25] and
again P. Petersen and W. Wilye [30].

We show now that every complete, warped, LCF Ricci soliton with non-
negative Ricci tensor is actually a gradient soliton.
Proving our conjecture in Remark 2.2 that every Ricci soliton is locally
a warped product would then lead to have a general classification of also
nongradient Ricci solitons, in the steady and shrinking cases.

Remark 2.5. — In the compact case, the fact that every Ricci soliton is
actually a gradient is a consequence of the work of Perelman [28]. Naber [26]
showed that it is true also for shrinking Ricci solitons with bounded cur-
vature.
For examples of nongradient Ricci solitons see Baird and Danielo [1].
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Proposition 2.6. — Let (Mn, g) be a complete, warped, LCF Ricci
soliton with nonnegative Ricci tensor, then it is a gradient Ricci soliton
with a potential function f : Mn → R depending only on the t variable of
the warping interval.

Proof. — We assume that (Mn, g) is globally described byMn = I×LK
and

g = dt2 + h2(t)σK ,
where I is an interval of R or S1 and (LK , σK) is a complete space of
constant curvature K.
In the case h is constant, which clearly follows if I = S1, as h′′ 6 0 the
conclusion is trivial.
We deal then with the case where h : I → R is zero at some point, let us say
h(0) = 0 and I = [0,+∞), (if the interval I is bounded the manifold Mn is
compact and we are done). Then, LK = Sn−1 with its constant curvature
metric σK . As a consequence, we have Mn = Rn, simply connected. We
consider the form ω satisfying the structural equation

Rγβ + 1
2(∇γωβ +∇βωγ) = α

n
gγβ ,

If ϕ : Sn−1 → Sn−1 is an isometry of the standard sphere, the associated
map φ : Mn → Mn given by φ(t, p) = (t, ϕ(p)) is also an isometry, more-
over, by the warped structure of Mn we have that the 1–form φ∗ω also
satisfies

Rγβ + 1
2
[
(∇φ∗ω)γβ + (∇φ∗ω)βγ

]
= α

n
gγβ ,

Calling I the Lie group of isometries of Sn−1 and ξ the Haar unit measure
associated to it, we define the following 1–form

θ =
∫
I
φ∗ω dξ(ϕ) .

By the linearity of the structural equation, we have

Rγβ + 1
2(∇γθβ +∇βθγ) = α

n
gγβ ,

moreover, by construction, we have LXθ = 0 for every vector field X on
Mn which is a generator of an isometry φ of Mn as above (in other words,
θ depends only on t). Computing in normal coordinates on Sn−1, we get

∇iθj = − θ(∇j∂i) = −Γtijθt = hh′σKij θt ,

∇iθt = − θ(∇t∂i) = −Γjtiθj = −h
′

h
θi .
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Hence,

α

n
= Rtt +∇tθt = −(n− 1)h

′′

h
+ ∂tθt ,

0 =∇iθt +∇tθi = ∂tθi − 2h
′

h
θi ,

α

n
gKij = Rij + 1

2(∇iθj +∇jθi) =
(
(n− 2)(K − (h′)2)− hh′′ + hh′θt

)
gKij .

It is possible to see that, by construction, actually θi = 0 for every i at
every point, but it is easier to consider directly the 1–form σ = θtdt on
Mn and checking that it also satisfies these three equations as θ, hence the
structural equation

Rγβ + 1
2(∇γσβ +∇βσγ) = α

n
gγβ .

It is now immediate to see that, dσit = ∇iσt − ∇tσi = 0 and dσij =
∇iσj −∇jσi = 0, so the form σ is closed and being Mn simply connected,
there exists a smooth function f : M → R such that df = σ, thus

Rγβ +∇2
γβf = α

n
gγβ ,

that is, the soliton is a gradient soliton.
It is also immediate to see that the function f depends only on t ∈ I. �

In the expanding, noncompact case (in the compact case the soliton
can be only a quotient of the hyperbolic space Hn), if the Ricci tensor is
nonnegative and (Mn, g) is a gradient soliton, then either it is a warped
product of Sn−1 (and Mn = Rn) or it is the product of R with a constant
curvature space, but this last case is possible only if the soliton is the
Gaussian expanding Ricci soliton, α < 0, on the flat Rn.

For a discussion of the expanding Ricci solitons which are warped prod-
ucts of Sn−1 see [9, Chapter 1, Section 5], where the authors compute, for
instance, an example with positive Ricci tensor (analogous to the Bryant
soliton).
To our knowledge, the complete classification of complete, expanding, gra-
dient, LCF Ricci solitons is an open problem, even if they are rotationally
symmetric.
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3. Singularities of Ricci Flow with Bounded Weyl Tensor

Let (Mn, g(t)) be a Ricci flow withMn compact on the maximal interval
[0, T ), with T < +∞. Hamilton proved that

max
M
|Rm|(·, t)→∞

as t→ T .
We say that the solution has a Type I singularity if

max
M×[0,T )

(T − t)|Rm|(p, t) < +∞ ,

otherwise we say that the solution develops a Type IIa singularity.

By Hamilton’s procedure in [20], one can choose a sequence of points
pi ∈ Mn and times ti ↑ T such that, dilating the flow around these points
in space and time, such sequence of rescaled Ricci flows (using Hamilton–
Cheeger–Gromov compactness theorem in [19] and Perelman’s injectiv-
ity radius estimate in [28]) converges to a complete maximal Ricci flow
(M∞, g∞(t)) in an interval t ∈ (−∞, b) where 0 < b 6 +∞.
Moreover, in the case of a Type I singularity, we have 0 < b < +∞,
|Rm∞|(p∞, 0) = 1 for some point p∞ ∈M∞ and |Rm∞|(p, t) 6 1 for every
t 6 0 and p ∈M∞.
In the case of a Type IIa singularity, b = +∞, |Rm∞|(p∞, 0) = 1 for some
point p∞ ∈M∞ and |Rm∞|(p, t) 6 1 for every t ∈ R and p ∈M∞.
These ancient limit flows were called by Hamilton singularity models. We

want now to discuss them in the special case of a Ricci flow with uniformly
bounded Weyl tensor (or with a blow up rate of the Weyl tensor which is
of lower order than the one of the Ricci tensor). The Ricci flow under this
condition is investigated also in [24].
Clearly, any limit flow consists of LCF manifolds, hence, by Corollary 1.2
and the cited results of Chen [8] and Zhang [33] at every time and every
point the manifold has nonnegative curvature operator and either the Ricci
tensor is proportional to the metric or it has an eigenvalue of multiplicity
(n− 1) and another of multiplicity 1.
We follow now the argument in the proof of Theorem 1.1 in [6].

We recall the following splitting result (see [11, Chapter 7, Section 3])
which is a consequence of Hamilton’s strong maximum principle for systems
in [17].
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Theorem 3.1. — Let (Mn, g(t)), t ∈ (0, T ) be a simply connected
complete Ricci flow with nonnegative curvature operator. Then, for ev-
ery t ∈ (0, T ) we have that (Mn, g(t)) is isometric to the product of the
following factors,

(1) the Euclidean space,
(2) an irreducible nonflat compact Einstein symmetric space with non-

negative curvature operator and positive scalar curvature,
(3) a complete Riemannian manifold with positive curvature operator,
(4) a complete Kähler manifold with positive curvature operator on

real (1, 1)–forms.

Since we are in the LCF case, every Einstein factor above must be a
sphere (the scalar curvature is positive). The Kähler factors can be excluded
as the following relation holds for Kähler manifolds of complex dimension
m > 1 at every point (see [2, Proposition 2.68])

|W|2 > 3(m− 1)
m(m+ 1)(2m− 1)R2 .

Thus, any Kähler factor would have zero scalar curvature, hence would be
flat. Finally, by the structure of the Ricci tensor and the fact that these
limit flows are nonflat, it is easy to see that only a single Euclidean factor
of dimension one is admissible, moreover, in this case there is only another
factor Sn−1.
In conclusion, passing to the universal cover, the possible limit flows are
quotients of R× Sn−1 or have a positive curvature operator.

Proposition 3.2 (LCF Type I singularity models). — Let (Mn, g(t)),
for t ∈ [0, T ), be a compact smooth solution to the Ricci flow with uniformly
bounded Weyl tensor.
If g(t) develops a Type I singularity, then there are two possibilities:

(1) Mn is diffeomorphic to a quotient of Sn and the solution to the
normalized Ricci flow converges to a constant positive curvature
metric.
In this case the singularity model must be a shrinking compact
Ricci soliton by a result of Sesum [31], hence by the analysis in the
previous section, a quotient of Sn (this also follows by the work of
Böhm and Wilking [3]).

(2) There exists a sequence of rescalings which converges to the flow of
a quotient of R× Sn−1.

Proof. — By the previous discussion, either the curvature operator is
positive at every time or the limit flow is a quotient of R× Sn−1.
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Hence, we assume that the every manifold in the limit flow has positive
curvature operator. The family of metrics g∞(t) is a complete, nonflat,
LCF, ancient solution with uniformly bounded positive curvature operator
which is k–non collapsed at all scales (hence a k–solution in the sense
of [28]). By a result of Perelman in [28], we can find a sequence of times
ti ↘ −∞ such that a sequence of suitable dilations of g∞(ti) converges
to a nonflat, gradient, shrinking, LCF Ricci soliton. Hence, we can find
an analogous sequence for the original flow. By the classification in the
previous section, the thesis of the proposition follows. �

Remark 3.3. — Notice that in the second situation we do not claim that
every Type I singularity model is a gradient shrinking Ricci soliton.
This problem is open also in the LCF situation.

Proposition 3.4 (LCF Type IIa singularity models). — Let (Mn, g(t)),
for t ∈ [0, T ), be a compact smooth solution to the Ricci flow with uniformly
bounded Weyl tensor. If the flow develops a Type IIa singularity, then there
exists a sequence of dilations which converges to the Bryant soliton.

Proof. — As we said, if the curvature operator gets some zero eigenvalue,
the limit flow is a quotient of R × Sn−1 which cannot be a steady soliton
as it is not eternal. Hence, the curvature operator is positive.
By Hamilton’s work [18], any Type IIa singularity model with nonnegative
curvature operator and positive Ricci tensor is a steady, nonflat, gradient
Ricci soliton. Since in our case such soliton is also LCF, by the analysis of
the previous section, it must be the Bryant soliton. �
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