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NUMBER OF SINGULAR POINTS OF AN ANNULUS
IN C2

by Maciej BORODZIK & Henryk ZOŁĄDEK (*)

Abstract. — Using BMY inequality and a Milnor number bound we prove
that any algebraic annulus C∗ in C2 with no self-intersections can have at most
three cuspidal singularities.
Résumé. — Utilisant l’ inégalité BMY et une évaluation pour le nombre de

Milnor nous prouvons que chaque anneau C∗ dans C2 sans auto-intersections ne
peut avoir qu’ au plus trois singularités cuspidalles

1. Introduction

The problem of classification of curves in C2 of fixed topological type
up to an algebraic automorphism of C2 is in general very difficult. One of
the most important results in this domain is the Abhyankar–Moh–Suzuki
theorem ([1, 9]) stating that any algebraic curve in C2 that is diffeomorphic
to a disk is in fact algebraically isomorphic to a line. Another one, due to
M. Zaidenberg and V. Lin [11], says that any curve homeomorphic to a disk
is algebraically equivalent to a curve of the type xp = yq for p, q coprime.
In [3, 5] we developed an efficient method in some other particular cases:

namely we studied rational curves with one place at infinity and one double
point (topological immersions of C in C2 with one finite self-intersection)
in [3] and annuli (topological embeddings of C∗ in C2) in [5]. A list of
44 possible cases was found and it was claimed that the list is complete.
The claim boils down to the validity of certain conjecture, strongly related

Keywords: Annulus, cuspidal singular point, codimension.
Math. classification: 14H50, 14R10, 14B05.
(*) The first author is supported by Foundation for Polish Science and both authors are
supported by Polish MNiSzW Grant No 2 P03A 015 29.
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to the unobstructedness problem of [7]. (We also refer the reader to the
paper [6] where a partial classification of annuli is given.)
It turns out that our method, even without assuming the above–mentio-

ned conjecture, can be applied to prove a conjecture by Lin and Zaiden-
berg [12] specified to annuli. The latter conjecture states that any algebraic
curve in C2 with the first Betti number equal to r can have at most 2r+ 1
singular points. In the present paper we prove the following theorem, which
confirms the Zaidenberg–Lin conjecture for annuli.

Theorem 1.1. — Any algebraic curve in C2 homeomorphic to C∗ has
at most three singular points.

The method of the proof is as follows. We use a notion of codimension of
a singular point (see [4]). This is the number of conditions for a parametric
curve required so that this curve has a given singularity (up to a topological
equivalence). A parameter count argument would give the bound for the
sum of codimensions over all singular points of the given curve by the di-
mension of the space of parametric curves. This dimension depends linearly
on the degree of the curve under consideration. In [5, Conjecture 3.7] we
conjectured such bounds. While we do not have the proof of these bounds,
we noted that a slightly weaker codimension bound can be obtained using
Bogomolov–Miyaoka–Yau (BMY) inequality (compare [4]). This bound be-
ing insufficient to prove that the list in [5] is complete, at least without an
additional work, yet is suitable to verify that an annulus cannot have more
than three finite singular points.

We believe that our methods can settle the conjecture for all rational
curves in C2. However the computations in the general case seem to be
highly complex. In the case of affine plane curves of arbitrary genus with
one place at infinity some estimates for the number of singular points have
been recently obtained in [2].

Acknowledgments. — This paper was motivated and partially written
during the workshop “Affine algebraic geometry” in Oberwolfach. We are
grateful to the organizers for inviting us to this conference. We would like
to thank M. Koras and V. Lin for stimulating discussions. The first author
thanks P. Russell for interesting discussions and an invitation to visit the
McGill University.

2. Invariants of singular points

Here we present some notions and estimates from [3, 5, 4].
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2.1. Local invariants of singularities of curves

Let (A, 0), A = {f(x, y) = 0} ⊂ C2, be a germ of a reduced plane curve
near its singular point.
The first invariants of this singularity are: the number of branches (ir-

reducible components), denoted by k, and the multiplicity, denoted by
mult0A = m. The latter is the order of the first nonzero term in the Taylor
expansion of the defining function f . In this work we consider only the
cases with k = 1 (cuspidal singularities) and k = 2 (for an annulus it may
occur at infinity).
Next invariant is the external codimension of a singularity, denoted extν

and defined as follows.
Let

(2.1) x = τm, y = c1τ + c2τ
2 + . . .

be the Puiseux expansion of A in the cuspidal case (k = 1). In the space of
germs as above (i.e. with fixed multiplicity m) strata of topological equiva-
lence (or so-called µ =const strata) are defined by vanishing of some number
of certain Puiseux quantities cj and by nonzero some other Puiseux quanti-
ties; in [5, Section 2.II] and [4, Section 2.1], the quantities cj which appear
in descriptions of these strata are called the essential Puiseux quantities.
The number of vanishing essential Puiseux quantities is the y−codimension
denoted by ν (see [4, Section 2.1]). This can be explained in terms of the
so-called topologically arranged Puiseux expansion

y =
(
d0x

n0
1 + . . .

)
+
(
d1x

n1
m1 + . . .

)
+ . . .+

(
drx

nr
m1...mr + . . .

)
,

where nj and mj are positive integers (with 1 = m0 and mj > 1 for
j > 1) such that gcd (mj , nj) = 1, m1 . . .mr = m, the nonzero coefficients
d1, . . . , dr constitute a part of the essential Puiseux quantities and the dots
in the jth summand mean terms with x

i
m0...mj . Here the first (inessen-

tial) summand can be absent and the pairs (mj , nj) , j > 1, are known as
the Puiseux pairs. The other essential Puiseux quantities, i.e. other than
dj = cnjmj+1...mr

for j = 1, . . . , r, correspond to those terms cixi/m whose
potential presence would change the essential part of the above topologi-
cally arranged Puiseux expansion.
For example, in the case m = 2 the strata of topological equivalence are

defined by c1 = c3 = . . . = c2ν−1 = 0 6= c2ν+1 in (2.1). In the casem = 4 the
conditions c1 = c2 = c3 = 0 6= c5, c1 = c2 = c3 = c5 = c7 = c9 = 0 6= c6c11
and c1 = c2 = c3 = c5 = c6 = c7 = c9 = 0 6= c10c11 define three µ =const
strata with ν = 3, ν = 6 and ν = 7 respectively. We see that the name

TOME 61 (2011), FASCICULE 4



1542 Maciej BORODZIK & Henryk ZOŁĄDEK

“essential” for a Puiseux quantity sometimes depends on the stratum (like
for c10 above), but the quantities cm, c2m, . . . are always inessential.

In the cuspidal case we put

extν = ν +m− 2;

the additional contribution to extν arises from the conditions for the m−1
first derivatives of x (with respect to a parameter t on the curve) to vanish
at the singular point.
(Formally one obtains m− 1 independent conditions, i.e. in the space of

local parametric curves (C, 0) 7−→
(
C2, 0

)
. However, in the space of global

parametric curves, like in (2.3) below, the positions of their singular points
are not fixed. So the condition dx/dt = 0 is just the equation for values of
the parameter at the singular points and, as such, it does not enter into
the collection of “external conditions” for the singularity.)
In the two branches case, A = A1+A2 with the multiplicitiesm1 andm2,

besides the y−codimensions ν(A1) and ν(A2), we have also the tangency
codimension νtan between the two branches. It is the number of inessential
Puiseux quantities and nonzero essential Puiseux quantities in the common
part of the Puiseux expansions of the two branches (we choose the roots of
unity of orders m1 and m2 to make this common part as long as possible).
νtan is a topological invariant of the singularity, because it controls the
intersection index of the branches.
For example, if the Puiseux expansions of the two branches are y =

αx3/2 + x2 + . . . and y = βx3/2 − x2 + . . . (with m1 = m2 = 2) then
ν(A1) = ν(A2) = 1 and νtan = 1 when α2 6= β2 and νtan = 2 otherwise.

Here we put

extν = ν(A1) + ν(A2) + νtan +m1 +m2 − 2.

There exists another interpretation of the external codimension. Namely,
we take the minimal normal crossing resolution of the singular point π :
(V,D) → (U,A), where U is a neighborhood of the origin in C2. Letting
E = E1 + . . . + El be the exceptional divisor with components Ej , we
consider the vector space

Vect(E) = QE1 ⊕ . . .⊕QEl

equipped with the intersection form. Then the strict transform Ã of A, as
well as D, the reduced total transform of A, are interpreted as elements of
Vect(E).We have also the local canonical divisor K defined by the relations
Ej(K + Ej) = −2 (see [14]).

ANNALES DE L’INSTITUT FOURIER
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The following result was proved by S. Orevkov [8] in the cuspidal case
and in [4, Proposition 4.1] in general. Orevkov calls the quantity K(K+D)
the rough M–number.

Proposition 2.1. — We have

extν = K(K +D).

A classical invariant of singularity is the number of double points, denoted
by δ (sometimes called the delta invariant). In the cuspidal case it equals
µ/2, where µ is the Milnor number of the singularity. Generally it is the
number of double points of a parametric deformation of the curve A : we
take a map from a disjoint union

∐
{|z| < ε} of complex discs to C2 which

is a small generic perturbation of the normalization map. In this sense we
can interpret δ as the number of double points which are hidden at the
singularity.
For example, for the Aµ singularity y2 = xµ+1 we have δ = µ/2 if µ is

even and δ = (µ+ 1)/2 if µ is odd.
The following inequality was proved in [3, Proposition 2.9 and Proposi-

tion 2.16].

Proposition 2.2. — If the number of branches is k = 1 or k = 2 and
m = mult0A then

2δ 6 m(extν −m+ k + 1).

In the above vector space Vect(E), related with the resolution of singu-
larity, we can use the local Zariski–Fujita decomposition [14]

K +D = P +N,

where P is the positive and N the negative part of K +D (with respect to
the intersection form). Then we define the excess of the singular point as

(2.2) η := −N2 > 0.

This is also a topological invariant, because it is defined via the intersection
form on the space Vect(E).
The following result follows from a rather subtle analysis of the inter-

section form via dual graph by Orevkov and Zaidenberg [14] (see also [4,
Proposition 4.2]). Below we use the notations bxc = max{n : n ∈ Z, n 6 x},
dxe = min{n : n ∈ Z, x 6 n}.

Proposition 2.3. — If (m,n) is the first characteristic pair of an uni-
branched singularity then its excess (2.2) satisfies

η > (dm/ne −m/n) + (dn/me − n/m) .

TOME 61 (2011), FASCICULE 4
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2.2. Invariants of the annuli

Consider an annulus C given in parametric form by

x = ϕ(t) = tp + a1t
p−1 + · · ·+ ap+rt

−r

y = ψ(t) = tq + b1t
q−1 + · · ·+ bq+st

−s,
(2.3)

where ap+rbq+s 6= 0. The numbers p, q, r and s are integers and we can
assume that p, s > 0 (since we have a topological embedding of C∗).

Such an annulus may have several finite singular points corresponding
to the values t1, . . . , tN of t. They are all cuspidal. The above invariants
associated with each point ti are denoted by mi, extνi, δi and ηi.
We denote by ν∞ the so-called subtle codimension of the branch of C

as t goes to infinity, which is the codimension of the topological equivalence
stratum in the space of germs of the form

x = τ−p, y = τ−q + c1τ
−q+1 + . . . , τ → 0

(compare [4, Definition 2.6]). Analogously we define the subtle codimension
ν0 of the branch of C as t→ 0.
The last invariant of the curve C is the tangency codimension νtan at

infinity. More precisely, if ps 6= rq then the two branches of C do not
intersect and we put νtan = 0. If ps = rq then νtan is defined as above for
a two branches singularity. We use the notion of νtan only in Section 3.2
(Case B2). Sometimes we will use the notation

(2.4) νinf = ν0 + ν∞ + νtan.

For the purpose of proving the Main Theorem, the above quantities are
not that important as the inequalities that relate them. The first iden-
tity, which is a direct consequence of the standard genus formula (or the
Poincaré–Hopf formula), can be found in [5, Proposition 2.9 and Eq. (2.11)].

Proposition 2.4. — A generic curve of the form (2.3) has

2δmax := (p+ r − 1)(q + s− 1) + |ps− rq| − p′ − r′ + 1

finite simple double points, where

(2.5) p′ = gcd(p, q), r′ = gcd(r, s).

Since we are interested in the annuli, which by definition do not have
self-intersections, the δmax double points must be hidden at singular points
and/or at infinity:

δmax =
∑

δi + δinf .

ANNALES DE L’INSTITUT FOURIER



NUMBER OF SINGULAR POINTS 1545

The numbers δi are estimated directly in Proposition 2.2,

2δi 6 mi(extνi −mi + 2).

From that proposition we find also a bound for the number of double points
hidden at infinity (see [5, Proposition 2.29]):

2δinf 6 p′ν∞ + r′ν0 if ps 6= qr.

2δinf 6 (p′ + r′)(νinf + 1) if ps = qr.

We introduce the following quantity:

(2.6) E =
∑N
i=1 mi(extνi −mi + 2) + p′ν∞ + r′ν0 if ps 6= qr,

E =
∑N
i=1 mi(extνi −mi + 2) + (p′ + r′)(νinf + 1) if ps = qr.

By the above local estimates the inequality

(2.7) ∆ := 2δmax − E 6 0

holds for an annulus of the form (2.3). The quantity ∆ is called the reserve
in [5, Section 2.1].
Next we would like to bound the sum of codimensions. The bound de-

pends on values of the exponents p, q, r and s.

Definition 2.5. — A curve C given in (2.3) is of
• type

(+
+
)
if 0 < p < q and 0 < r < s, p+ r < q + s;

• type
(−+

+−
)
if 0 < q < p and 0 < r < s, p+ r 6 q + s;

• type
(−

+
)
if r < 0 and q > 0;

• type
(−
−
)
if r < 0 and q < 0, p+ r 6 q + s.

Recall that with the open surface V0 = C2 \C we can associate its loga-
rithmic Kodaira dimension κ̄(C2 \C). It is defined via the normal crossing
completion F of V0 such that V = V0 ∪ F is smooth projective surface.
Then

κ̄(V0) = lim sup log h0(V, n(KV + F ))/ logn.
If κ̄(V0) = 2 then we say that the surface V0 is of general type. I. Wak-
abayashi [Wa] calculated the logarithmic Kodaira dimension of C2 \ C in
some important cases. From [10] one can deduce, in particular, the following
fact.

Proposition 2.6. — If an annulus C has more than three finite singular
pints then the surface C2 \ C is of general type.

The codimension bounds we give below were proved in [4, Theorem 4.3];
they essentially rely upon the Bogomolov–Miyaoka–Yau inequality (which

TOME 61 (2011), FASCICULE 4
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was also used by Zaidenberg and Orevkov [8, 14]). Here we state only the
result.
Introduce the quantity

(2.8) S :=
N∑
i=1

(extνi + ηi) + νinf ,

which can be regarded roughly as the sum of local codimensions.

Proposition 2.7. — Let C be an annulus given by (2.3) homeomor-
phic to C∗ and such that its complement in C2 is of general type. Then
depending on the type of the annulus we have:

(a) for type
(+

+
)

(2.9) S 6 p+ r + q + s+ 1−min(bq/pc, bs/rc) 6 p+ r + q + s;

(b) for type
(−+

+−
)

(2.10) S 6 p+ r + q + s+ 1;

(c) for type
(−

+
)

(2.11) S 6 p− |r|+ q + s+ 2 + b(|r| − 1) /sc − bq/pc;

(d) for type
(−
−
)

(2.12) S 6 p− |r| − |q|+ s+ 3 + b(|r| − 1) /sc+ b(|q| − 1) /pc.

For the multiplicities mi and the excesses ηi (see (2.2)) of singular points
we have the following bounds.

Lemma 2.8. —
N∑
i=1

(mi − 1) 6 min(p+ r, q + s).

In particular, N 6 p+ r.

Proof. — Assume that p + r 6 q + s. Then ẋ = dϕ/dt = R(t)t−r−1,
where R(t) is a polynomial of degree p+ r (see (2.3)). If ni− 1 is the order
of dϕ/dt at the ith singular point, then clearly

∑
(ni − 1) 6 p + r and

mi 6 ni. The second statement is obvious. �

Lemma 2.9. — (a) ηi > 1/2, thus if N > 4 then
∑
ηi > 2.

(b) If the multiplicity of a singular point is mi = 2 then ηi > 5/6.
(c) If N > 4 and min(p+ r, q + s) 6 5 then

∑
ηi > 3.

ANNALES DE L’INSTITUT FOURIER



NUMBER OF SINGULAR POINTS 1547

Proof. — The first two assertions follow directly from Proposition 2.3. In
(c) we must have mi = 2 for at least three singular points if their number
N = 4 and all mi = 2 if N = 5. Therefore, by Proposition 2.3, either∑
ηi > 3 · 5

6 + 1
2 = 3 or

∑
ηi > 5 · 5

6 > 4. �

Two technical statements below turned out useful. The first one is often
used in [5, Lemma 5.3].

Lemma 2.10. — If ps− rq 6= 0 then the quantity

det ′ := |ps− rq| − p′ − r′ + 1

is a non-negative integer.

The second lemma gives a partial answer to the problem of finding the
best parametrization of an annulus given by (2.3). In fact if, say, x =
t2 + · · · + t−6 and y = t4 + · · · + t−9 we can ask whether it is reasonable
to apply a de Jonquière transform y → y − x2 to reduce the order of y at
t → ∞ at the cost of increasing its order as t → 0. We prove that there
exists (maybe not unique) way of choosing an automorphism of C2 that
suits best to our estimates.

Definition 2.11. — A curve C is called ugly if one of the following
holds:

• it is of type
(+

+
)
, q/p ∈ Z and r < p;

• it is of type
(−+

+−
)
and either p/q ∈ Z and s < q or s/r ∈ Z and

p < r;
• it is of type

(−
+
)
, p/q ∈ Z and s < q.

Otherwise the curve C is called handsome.

Lemma 2.12. — Any curve as in (2.3) can be transformed to a hand-
some one by applying a Cremona automorphism of C2 and, possibly, the
change t→ 1/t.

A straightforward proof is presented in [5, Proposition 2.45].

2.3. Scheme of the proof of Main Theorem

We can order the singular points of C so that m1 > m2 · · · > mN .
Recall that we must rule out the possibility N > 4. But one quickly

realizes that considering the case N = 4 is sufficient. As in [5] the esti-
mates become easier when N grows. For example, the codimension bound
is stronger already for N = 5.
We split the proof into following five cases:

TOME 61 (2011), FASCICULE 4
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A Type
(+

+
)
with ps 6= rq,

B Type
(+

+
)
with ps = rq,

C Type
(−+

+−
)
,

D Type
(−

+
)
,

E Type
(−
−
)
.

Each case can be split in turn into two subcases.
(1) We assume that double points hide at finite singular points. This

means that the quantity E from (2.6), which we try to maximize,
is greatest when δinf = 0. Then it is easy to see that E is maximal
possible, when the multiplicity m1 and the external codimension
extν1 are maximal, and the other multiplicities and extν numbers,
including νinf = ν0+ν∞+νtan (see (2.4)) are minimal. Here we have
m1 > max(p′, r′) (see (2.5)) in cases A, C, D, E and m1 > p′ + r′

in case B.
(2) We assume that νinf is large, so double points hide at infinity (i.e.∑

δj is small relatively to δinf). Then E is maximal if all codimen-
sions of singularities at finite distance are minimal and the codi-
mension at infinity is maximal possible. Here either p′ or r′ exceeds
m1 in cases A, C, D, E or p′ + r′ > m1 in case B.

In all cases we shall strive to prove that the reserve ∆ > 0, which contra-
dicts inequality (2.7). To simplify arguments we will assume that the curve
has precisely N = 4 singular points.

3. Proof of Main Theorem

3.1. Cases A1 and B1.

These two cases are very similar. Here E is maximal if m2 = m3 =
m4 = 2, extν2 = extν3 = extν4 = 1 and ν∞ = ν0 = 0. Hencem1 6 p+r−2,
and extν1 6 p+ r + q + s− 6 (−3 coming from extν2 + extν3 + extν4 and
another −3 from

∑
ηi > 2, see (2.8)–(2.9) and Lemma 2.9 (a)). Therefore,

by (2.6),
E 6 (p+ r − 2)(q + s− 2) + 6.

Let ps 6= rq. We have 2δmax > (p+ r− 1)(q+ s− 1) (see Proposition 2.4
and Lemma 2.10). Thus

∆ = 2δmax − E = (p+ r + q + s)− 9.

ANNALES DE L’INSTITUT FOURIER
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But p+ r > 4 by Lemma 2.8. Moreover, q > p and s > r by Definition 2.5.
Hence q + s > 6 and ∆ > 0, so that there is no such curve C in this case
(compare (2.7)).
Let ps = rq, so 2δmax = (p + r − 1)(q + s − 1) − (p′ + r′) + 1 and E is

bounded as above. Therefore

∆ = (p+ r) + (q + s)− (p′ + r′)− 8

where p + r = p1(p′ + r′), q + s = q1(p′ + r′) and 2 6 p1 < q1. We find
that the only possibility for ∆ 6 0 is p + r = 4, q + s = 6. But then
Lemma 2.9 (c) gives

∑
ηi > 3. Repeating the above procedure, we get

E 6 12 and 2δmax = 14.

3.2. Case A2

Here we assume that the contribution from finite singular points is small
and the contribution from infinity is maximal possible, so that extν1 =
· · · = extν4 = 1 and ν∞ is maximal (the case with ν0 maximal is analogous).
By Proposition 2.7 (inequality (2.9)) and Lemma 2.9 (a) we get

ν∞ 6 p+ r + q + s− 7.

Hence, by formula (2.6) for ps 6= qr,

E 6 p′(p+ r + q + s− 7) + 8

where p′ = gcd(p, q) (see (2.5)). Therefore

∆ = 2δmax − E > (p+ r − 1− p′)(q + s− 1− p′)− (p′)2 + 5p′ − 8.

We have p′ > 2, since otherwise (p′ = 1) the singularity at infinity is quasi–
homogeneous and ν∞ = 0 by definition. Therefore it is enough to prove
that (p + r − 1 − p′)(q + s − 1 − p′) > (p′)2 − 1. This is obviously true if
p > 2p′, since q > p′ + p. Otherwise, the handsomeness property ensures
that r > p′, so p+ r− 1− p′ > p′− 1 and q+ s− 1− p′ > 2p′− 1. Hence we
ask whether (p′− 1)(2p′− 1) > (p′)2− 1. But this is always true for p′ > 2.

3.3. Case B2

Let us denote p + r = e, q + s = f , gcd(e, f) = p′ + r′ = e′. From
inequality (2.9) in Proposition 2.7 we get (as in case A2)

νinf = ν0 + ν∞ + νtan 6 e+ f − 7.

TOME 61 (2011), FASCICULE 4
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Hence E 6 e′(e+f−6)+8 (see (2.6)), whereas 2δmax = (e−1)(f−1)+1−e′
(see Proposition 2.4). Therefore ∆ > (e−e′−1)(f−e′−1)−7− (e′)2 +3e′.
Since e > 2e′ and f > 3e′, we get ∆ > 0 if (e′)2 > 7. So we assume that
e′ = 2 and then ∆ > (e − 3)(f − 3) − 5. If e > 6 then f > 8 and we get
∆ > 0. Hence e = 4 (it must be even). But then Lemma 2.9 (c) implies
that νinf 6 e+ f − 8, so ∆ > (e− e′ − 1)(f − e′ − 1)− 7− (e′)2 + 4e′. We
observe that ∆ > 0, unless e = 4 and f = 6 in which case we obtain ∆ = 0.
We have to exclude the latter possibility. This can be done by computing

the sum of δ–invariants of singularities (numbers of double points) of the
curve C explicitly. If e = 4 and f = 6 then p = r = 2, q = s = 3. As
t → ∞ (respectively t → 0) we have x ∼ t2, y ∼ t3 (respectively x ∼ t−2,
y ∼ t−3). In the local coordinates u = x/y, w = 1/y, s = t−1 and s → 0
we have u = s+ . . . , w = s3 + . . . . Thus the both branches are smooth at
infinity. Then ν0 = ν∞ = 0 and νinf = νtan. The requirement ∆ = 0 implies
νtan = 2. Therefore, if we consider Puiseux expansions

y = c0x
3/2 + c1x+ c2x

1/2 + . . . as t→∞,

y = d0x
3/2 + d1x+ d2x

1/2 + . . . as t→ 0,

then we must have c0 = d0 and c1 = d1 and the codimension bound pro-
hibits that c2 = d2 if earlier terms agree. It follows that the intersection
index of the two branches at infinity is 5. So the δ–invariant of the singular-
ity at infinity is 5. Adding 4 from the cusps at finite distance we obtain 9.
But C is rational of degree 6, so the sum of its δ–invariants is 1

2 5 ·4. Hence
it must have an additional double point at finite distance.

3.4. Case C1

Similarly as in case A1 (using the bound (2.10) and Lemma 2.9 (a)) we
get

extν1 6 p+ q + r + s− 5.
We get then E 6 (p+r−2)(q+s−1)+6 and hence ∆ > (q+s−1)+det ′−6,
where det ′ is defined in Lemma 2.10.

Lemma 3.1. — We have det ′ > p′r′ + 1 > 2.

Proof. — As p > q + p′ and s > r + r′, we infer that

det ′ > p′r′ + (q − 1)r′ + (r − 1)p′ + 1 > p′r′ + 1.

�
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By Lemma 3.1 we get ∆ > q + s− 5. So, if q + s > 6, then we are done.
Suppose q + s 6 5. Then p + r 6 5 and we apply Lemma 2.9 (c), so that
extν1 6 p+ r + q + s− 6 and ∆ > p+ r + q + s+ det ′ − 9 > 1.

3.5. Case C2

As in case B2 we assume that ν∞ is maximal. We get ν∞ 6 p+r+q+s−6
so E 6 p′(p+ r + q + s− 6) + 8 and

∆ > (p+ r − 1− p′)(q + s− 1− p′)− (p′)2 + 4p′ − 8 + det ′.

As p′ > 2, using Lemma 3.1, it suffices to show that

(p+ r − p′ − 1)(q + s− p′ − 1) > (p′)2 − p′.

If q > 2p′ then p > 3p′. Thus p+ r− p′− 1 > 2p′ and q+ s− p′− 1 > p′+ 1
(s > r > 0) and we are done. So assume that q = p′. By the handsomeness
s > p′ (see Definition 2.11 and Lemma 2.12). This implies that p+r−p′−1 >
p′ and q + s− p′ − 1 > p′ − 1. Hence ∆ > 0.

3.6. Case D1

We use the bound
∑
extνi+ν∞ 6 p−|r|+q+s+2+b(|r| − 1) /sc−

∑
ηi

from (2.11). We will treat only the case p + r 6 q + s; the computations
are almost identical in the opposite case.
Assume firstly that m1 > m2 > 3. Then m1 6 p + r − 3 and p + r > 6.

Moreover, extν2 > 3 (because the coefficients before (t − t2) and (t − t2)2

in both ϕ(t) and ψ(t) in (2.3) must vanish). Therefore extν1 6 p − |r| +
q + s− 6 + b(|r| − 1) /sc. Hence

E = (p− |r| − 3)
(
q + s− 1 +

⌊
|r| − 1
s

⌋)
+ 3 · (3− 1) + 2 + 2.

Thus

∆ = 2(q + s)− p′ − r′ − 11 + ps+ |r|q − (p− |r| − 3) ·
⌊
|r| − 1
s

⌋
.

Now, since p− |r| 6 q + s, we get

(3.1) |r|q − (p− |r|) ·
⌊
|r| − 1
s

⌋
> 1− |r|+ |r|q

(
1− 1

s

)
+ q

s
.

Substituting this into ∆ we obtain

∆ > 2(q + s)− p′ − r′ − 10 + ps− |r|+ |r|q
(

1− 1
s

)
+ q

s
.
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But |r|q(1− 1
s ) + q

s > 0. It follows that

∆ > (q + s) + (p− |r|)− 10 + p(s− 1) + (q + s− p′ − r′) > 2,

since q+ s > 6, p− |r| > 6 and the last two terms in the above formula are
non-negative.
We are left with the case m2 = 2. Then m3 = m4 = 2, so

∑
ηi > 3 by

Lemma 2.9 (b). We obtain extν1 6 p−|r|+ q+s−5+ b(|r| − 1) /sc. Hence

E = (p− |r| − 2)
(
q + s− 1 +

⌊
|r| − 1
s

⌋)
+ 6.

Therefore

∆ = q + s− p′ − r′ − 6 + ps+ |r|q − (p− |r| − 2) ·
⌊
|r| − 1
s

⌋
.

If s = 1 then ∆ = q−p′−8+ |r|(q−p+ |r|+3)+2p > q+2p−p′+2 |r|−8,
because p − |r| 6 q + s = q + 1. But p′ 6 p/2 and p > 5, as p − |r| > 4.
So ∆ > 0.
Finally, let us assume that s > 2. By (3.1) we have

∆ > q + s− p′ − r′ − 5 + ps− |r|.

Then q + s− p′ − r′ > 0 and ps− |r| > p+ p− |r| > 9, so ∆ > 4.

3.7. Case D2

Here ν∞ (or ν0) is bounded from above by p−|r|+q+s+b(|r| − 1) /sc+
2− 7. Assume that p′ > r′. It follows that

E 6 8 + p′(p− |r|+ q + s+ b(|r| − 1) /sc − 5).

So
∆ =(p− |r| − 1)(q + s− 1) + ps+ |r|q − p′ − r′ − 7

− p′
(
p− |r|+ q + s+

⌊
|r| − 1
s

⌋
− 5
)

This can be transformed into

∆ =(p− p′ − 1)(q + s− p′ − 1) + (p− |r|)s

+
(
|r| − p′ −

⌊
|r| − 1
s

⌋
+ 2
)
p′ + (|r| − r′)− 7.

(3.2)

Assume that q > 2p′. Obviously, also p > 2p′ and p 6= q; thus either p or
q is at least 3p′. Then (p− p′ − 1)(q + s− p′ − 1) > 2p′(p′ − 1). Moreover,
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(p− |r|)s > 4 and |r| − p′ − b(|r| − 1) /sc+ 2 > 3− p′. Hence ∆ > (p′)2 +
p′ − 3 > 0, as p′ > 2.
Therefore q = p′. By the handsomeness s > p′ (see Definition 2.11 and

Lemma 2.12). It follows that (p− p′ − 1)(q + s− p′ − 1) > (p′ − 1)2. Thus

∆ > (p′ − 1)2 + (p− |r|)s+ (3− p′)p′ − 7.

But (p− |r|)s > 8, so ∆ > 0.
Now let us turn to the case r′ > p′. Equation (3.2) then becomes

∆ > (p− r′ − 1)(q + s− r′ − 1) + (p− |r|)s

+
(
|r| − r′ −

⌊
|r| − 1
s

⌋
+ 2
)
r′ + |r| − p′ − 7.

Here s > r′ > 2. If |r| > 2r′ then |r| − r′ − b(|r| − 1) /sc > 0. Since
p − r′ > p − |r| we have (p − r′ − 1)(q + s − r′ − 1) > 0. We infer that
∆ > (p− |r|)s+ 2r′+ |r| − p′− 7 > 1 for |r| > r′ > p′. So let |r| = r′. Then
|r| 6 s, so b(|r| − 1) /sc = 0. Hence ∆ > (p− |r|)s− 7 > 0.

3.8. Case E1

We have here∑
extνi+ν∞ 6 p−|r|+s−|q|+ b(|q| − 1) /pc+ b(|s| − 1) /rc+ 3−

∑
ηi,

i.e. the bound (2.12) holds. It is easy to observe that at most one of the
b(|q| − 1) /pc and b(|s| − 1) /rc can be non–zero. Following [5] we introduce
the quantities K = p− |r| and L = s− |q| with K 6 L.
Subcase (i): b(|q| − 1) /pc> 0. Putting extνi = 1 for i > 2, we get extν1 <

K + L + b(|q| − 1) /pc + 3 − 3 − 2. Since all terms in this inequality are
integers, we have extν1 6 K + L+ b(|q| − 1) /pc − 3 and m1 6 K − 2. So

E 6 (K − 2)
(
L+

⌊
|q| − 1
p

⌋
+ 1
)

+ 6.

Since 2δmax = (K − 1)(L− 1) + |r|L+ |q|K +KL− p′ − r′ + 1 we get

(3.3) ∆ > KL+K(|q| − 2) +L(|r|+ 1)− (K − 2) ·
⌊
|q| − 1
p

⌋
− p′− r′− 2.

Now p > K − 2. Therefore (K − 2) · b(|q| − 1) /pc 6 |q| − 1. Thus

∆ > KL− 3 + (K − 1)(|q| − 2) + L(|r|+ 1)− p′ − r′.
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The above inequality can be rewritten as

∆ > KL− 4 + (K − 2)(|q| − 2) + (L− 1)(|r|+ 1) + (|q| − p′) + (|r| − r′).

We have K,L > 4 and |q| > 3. Therefore

∆ > KL− 4− (K − 2) + 3 · 2 > 0.

Subcase (ii): b(|q| − 1) /pc= 0. Then we get an equation similar to (3.3)

∆ > KL+K(|q| − 2) + L(|r|+ 1)− (K − 2) ·
⌊
|r| − 1
s

⌋
− p′ − r′ − 2.

We have K − 2 6 L − 2 < s and hence (K − 2) · b(|r| − 1) /sc 6 |r| − 1.
Using this we transform the above inequality into

∆ > KL− 1 + (K − 1)(|q| − 2) + (L− 2)(|r|+ 1) + (|q| − p′) + (|r| − r′).

As |q| > 1 we get ∆ > 0.

3.9. Case E2

Assume that p′ > r′. We will not impose, however, the inequality K 6 L.
Then E 6 p′(K + L− 4 + b(|q| − 1) /pc+ b(|r| − 1) /sc) + 8. On the other
hand, 2δmax = KL−K − L+ 2 +K|q|+ pL− p′ − r′. Henceforth

∆ > KL−K−L−6+(p−p′)L+(|q|−p′)K−p′
(⌊
|q| − 1
p

⌋
+
⌊
|r| − 1
s

⌋
− 2
)
.

If |r| − 1 < s then p′ · b(|q| − 1) /pc 6 |q| − 1. Hence we are left with
∆ > KL−K − L− 5 + p′ + (|q| − p′)(K − 1), where the latter expression
is positive.
Therefore |r| − 1 > s = |q| + L. Since p′ 6 |q| < s we infer that p′ ·

b(|r| − 1) /sc 6 |r| − 1. Reminding that (p− p′)L > (p− p′) we obtain

∆ > KL− L− 5 + (|q| − p′)K + p′ + (p−K − |r|).

AsK+|r| = p we get ∆ > (K−1)L−5+(|q|−p′)K+p′. Since (K−1)L > 12
we get ∆ > 0.

Now the proof of Main Theorem is complete. �
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