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THE LOWER BOUND OF THE RICCI CURVATURE
THAT YIELDS AN INFINITE DISCRETE SPECTRUM

OF THE LAPLACIAN

by Hironori KUMURA

Abstract. — This paper discusses the question whether the discrete spectrum
of the Laplace-Beltrami operator is infinite or finite. The borderline-behavior of
the curvatures for this problem will be completely determined.
Résumé. — Ce document traite de la question si le spectre discret de l’opérateur

de Laplace-Beltrami est infini ou fini. La ligne de démarcation du comportement
des courbures de ce problème sera complètement déterminée.

1. Introduction

The Laplace-Beltrami operator ∆ on a noncompact complete Riemann-
ian manifold (M, g) is essentially self-adjoint on C∞0 (M) and its self-adjoint
extension to L2(M) has been studied by several authors from various points
of view. In many cases, the bottom of the essential spectrum of −∆ will
be positive (see Brooks [2]), and the discrete spectrum will appear be-
low this bottom number. The purpose of this paper is to determine the
borderline-behavior of the curvatures for the question whether the Laplace-
Beltrami operator −∆ has a finite or infinite number of the discrete spec-
trum. The Rellich’s lemma (see, for example, M. Taylor [12] ) suggests
that this problem depends on the geometry of manifolds at infinity. In the
case of Schrödinger operators −∆ + V on the Euclidean space Rn, the
borderline-behavior − (n−2)2

4r2 of the potential V is determined by the un-
certainty principle lemma −∆ > (n−2)2

4r2 (see Reed-Simon [11] p. 169 and
Kirsh-Simon [9] ), which is equivalent to the Hardy’s inequality −d

2u
dx2 > 1

4x2

Keywords: Laplace-Beltrami operator, discrete spectrum, Ricci curvature.
Math. classification: 58J50, 53C21.



1558 Hironori KUMURA

for u ∈ C∞0 (0,∞) (see, for example, [1]). Our proof will be concerned with
this borderline-behavior of the Hardy’s inequality (see Proposition 2.1 in
Section 2).
Main theorems of this paper is the following:

Theorem 1.1. — Let (M, g) be an n-dimensional noncompact com-
plete Riemannian manifold and W a relatively compact open subset of
M with C∞-boundary ∂W . We set r(∗) := dist(∗, ∂W ) on M rW . Let
exp∂W : N+(∂W )→M rW be the outward normal exponential map and
Cut(∂W ) the corresponding cut locus of ∂W in M rW , where

N+(∂W ) :=
{
v ∈ TM

∣∣
∂W
| v is outward normal to ∂W

}
.

Assume that

min σess(−∆) = (n− 1)2κ

4
for some constant κ > 0 and that there exist positive constants R0 and β,
satisfying β > 1

(n−1)2 , such that

Ricg (∇r,∇r) (y) > (n− 1)
(
−κ+ β

r(y)2

)
for y ∈M r (W ∪ Cut(∂W )) with r(y) > R0,

where Ricg and ∇r respectively stand for the Ricci curvature of (M, g) and
the gradient of the function r. Then, the set

σdisc(−∆) ∩
[
0, (n− 1)2κ

4

)
is infinite, where σdisc(−∆) stands for the discrete spectrum of −∆.

Note that we do not assume that M rW is connected in Theorem 1.1:
hence, ∂W may have several but finite number of components.
Similarly, we get the following:

Theorem 1.2. — Let (M, g) be an n-dimensional complete Riemannian
manifold and p0 be a point of M . We set r(∗) := dist(∗, p0) and denote by
Cut(p0) the cut locus of p0. Assume that

min σess(−∆) = (n− 1)2κ

4
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CURVATURE AND DISCRETE SPECTRUM 1559

for some constant κ > 0 and that there exist positive constants R0 and β,
satisfying β > 1

(n−1)2 , such that

Ricg(∇r,∇r)(y) > (n− 1)
(
−κ+ β

r(y)2

)
for y ∈M r Cut(p0) with r(y) > R0.

Then, the set

σdisc(−∆) ∩
[
0, (n− 1)2κ

4

)
is infinite.

Although the topological property of manifolds is reflected in that of
the cut locus, the theorem above does not concern the property of the cut
locus at all but only the Ricci curvatures of the radial direction on the
complement of the cut locus.
The following proposition shows that the curvature assumption in The-

orem 1.1 and 1.2 are sharp:

Proposition 1.3. — Let
(
Rn, dr2 + h2(r)gSn−1(1)

)
be a rotationally

symmetric Riemannian manifold and assume that the radial curvature
K(r) = −h

′′(r)
h(r) satisfies

K(r) 6 0 for all r > 0

and there exists constants κ > 0, R0 > 0 and β 6= 1
(n−1)2 such that

K(r) = −κ+ β

r2 for r > R0.

Then, σess(−∆) =
[

(n−1)2κ
4 ,∞

)
, and furthermore, σdisc(−∆)∩

[
0, (n−1)2κ

4

)
is infinite if and only if β > 1

(n−1)2 .

Indeed, under the assumptions in Proposition 1.3, Ricg(∇r,∇r) = (n−
1)K(r) = (n− 1)

(
−κ+ β

r2

)
, and hence, the lower bound of the Ricci cur-

vature in Theorem 1.1 and 1.2 are sharp. That is, the borderline-behavior
of curvatures for our problem can be said to be −κ + 1

{(n−1)r}2 . See also
[1], Theorem 3.1, for the finiteness-result on not necessarily rotationally
symmetric manifolds.

2. Construction of a model space and eigenfunction

In this section, we shall construct a model space and study the property
of an eigenfunction, which will be transplanted onM to prove Theorem 1.1.

TOME 61 (2011), FASCICULE 4



1560 Hironori KUMURA

Let Rmin : [0,∞)→ (−∞, 0] be a nonpositive-valued continuous function
satisfying

Ricg (∇r,∇r)(x) > (n− 1)Rmin (r(x)) for x ∈M r
(
W ∪ Cut(∂W )

)
and

(1) Rmin(r) = −κ+ β

r2 for r > R1,

where κ > 0 and R1 > R0 are constants.
Using this function Rmin(t), consider the solution J(t) to the following

classical Jacobi equation:

J ′′(t) +Rmin(t)J(t) = 0; J(0) = 0; J ′(0) = 1

and set
S(t) = J ′(t)

J(t) .

Using this function J , let us consider a model space:

Mmodel :=
(
Rn, dr2 + J(r)2gSn−1(1)

)
,

where r is the Euclidean distance to the origin and gSn−1(1) stands for the
standard metric on the unit sphere Sn−1(1).
Since limt→+0 S(t) = ∞, the Laplacian comparison theorem (see Kasue

[8]) implies that

(2) ∆r = ∆(M,g) r 6 (n− 1)S(r) on M r
(
W ∪ Cut(∂W )

)
.

This inequality (2) is known to hold onMrW in the sense of distribution.
Note that J(t) > t > 0 due to the non-positivity of Rmin, and hence,
S(t) = J′(t)

J(t) exists for all t ∈ (0,∞).
Since S(t) = J′(t)

J(t) satisfies the Riccati equation

(3) S′(t) + S2(t) +Rmin(t) = 0

and Rmin(t) satisfies (1), it is not hard to see that the solution S(t) to this
equation (3) has the asymptotic behavior

(4) S(t) =
√
κ− β

2
√
κ t2

+O

(
1
t3

)
.

The following proposition, which also plays an important role in [1],
serves to construct an eigenfunction on our model space Mmodel:

Proposition 2.1. — For any R > 0 and δ > 0, consider the following
eigenvalue problem (∗):

(∗)
{
−ϕ′′(x)− (1 + δ) 1

4x2ϕ(x) = λϕ(x) on [R, 2kR];
ϕ(R) = ϕ(2kR) = 0.
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Then, the first eigenvalue −λ1 = −λ1(δ,R, k) of this problem (∗) is nega-
tive, if k > 2

{
exp

( 12
δ

)
∧ 1
}
. Here, we write exp

( 12
δ

)
∧1 = min

{
exp
( 12
δ

)
, 1
}
.

Proof. — We set

χ(x) :=


1
R (x−R) if x ∈ [R, 2R],
1 if x ∈ [2R, kR],
− 1
kR (x− 2kR) if x ∈ [kR, 2kR],

where k > 2 is a large positive constant defined later. Set ϕ(x) := χ(x)x 1
2 .

Then, the direct computation shows that

|ϕ′(x)|2 − (1 + δ) 1
4x2 |ϕ(x)|2 = |χ′(x)|2x− δ

4x2 |ϕ(x)|2 + 1
2
(
χ(x)2)′ .

Integrating the both sides over [R, 2kR], we have∫ 2kR

R

{
|ϕ′|2 − (1 + δ) 1

4x2 |ϕ|
2
}
dx

=
∫ 2kR

R

|χ′(x)|2x dx− δ

4

∫ 2kR

R

χ2(x)
x

dx

6
1
R2

∫ 2R

R

x dx+ 1
(kR)2

∫ 2kR

kR

x dx− δ

4

∫ kR

2R

χ2(x)
x

dx

= 3− δ

4 log
(
k

2

)
.

Hence,∫ 2kR

R

{
|ϕ′|2 − (1 + δ) 1

4x2 |ϕ|
2
}
dx < 0 if k > 2

{
exp

(
12
δ

)
∧ 1
}
.

Therefore, mini-max principle implies that the first eigenvalue of the prob-
lem (∗) is negative, if k > 2

{
exp

( 12
δ

)
∧ 1
}
. �

For t > 0, we denote by B(t)Mmodel the open ball of Mmodel centered
at the origin 0 with radius t, and by λD

(
B(t)Mmodel

)
the first Dirichlet

eigenvalue of −∆Mmodel on B(t)Mmodel . Then, we have the following:

Proposition 2.2. — Assume that β(n−1)2 > 1 and choose small con-
stant δ>0 so that β(n−1)2>1+δ. For a fixed constant k>2

{
exp

( 12
δ

)
∧ 1
}
,

let −λ1 = −λ1(k,R, δ) < 0 be the first Dirichlet eigenvalue of the problem
(∗). Then, there exists a positive constant R0(n, β, κ, δ, Rmin) such that

(5) λD
(
B(2kR)Mmodel

)
<

(n− 1)2κ

4 − λ1

holds for any R > R0(n, β, κ, δ, Rmin).

TOME 61 (2011), FASCICULE 4



1562 Hironori KUMURA

Proof. — Let ϕ1(x) be an eigenfunction of the problem (∗) with the first
Dirichlet eigenvalue −λ1(k,R, δ) < 0. Then, we have
(6)∫ 2kR

R

|ϕ′1(x)|2 dx = (1 + δ)
∫ 2kR

R

1
4x2 |ϕ1(x)|2 dx− λ1

∫ 2kR

R

|ϕ1(x)|2 dx.

We set
f(x) = ϕ1(x)J−

n−1
2 (x).

Then, direct computations show that

f ′(x) = J−
n−1

2 (x)
{
ϕ′1(x)− n− 1

2 S(x)ϕ1(x)
}

and

|f ′(x)|2J (n−1)(x)

= |ϕ′1(x)|2 + (n− 1)2

4 S2(x)|ϕ1(x)|2 − n− 1
2 S(x)

{
ϕ1(x)2}′ .

As for the last term −n−1
2 S(x)

{
ϕ1(x)2}′, we calculate

−n− 1
2

∫ 2kR

R

S(x)
{
ϕ1(x)2}′ dx = n− 1

2

∫ 2kR

R

S′(x)|ϕ1(x)|2 dx,

and hence,∫ 2kR

R

|f ′(x)|2Jn−1(x) dx

=
∫ 2kR

R

{
|ϕ′1(x)|2 + n−1

2

(
n−1

2 S2(x) + S′(x)
)
|ϕ1(x)|2

}
dx

=
∫ 2kR

R

{
|ϕ′1(x)|2 + n−1

2

(
n−3

2 S2(x)−Rmin(x)
)
|ϕ1(x)|2

}
dx

=
∫ 2kR

R

{
1 + δ

4x2 − λ1 + n−1
2

(
n−3

2 S2(x)−Rmin(x)
)}
|ϕ1(x)|2 dx,

where we have used equations (3) and (6). Here, by (1) and (4),

n− 1
2

(
n− 3

2 S2(x)−Rmin(x)
)

= n− 1
2

{
n− 3

2

(√
κ− β

2
√
κx2 +O

(
1
x3

))2
+ κ− β

x2

}

= (n− 1)2κ

4 − β(n− 1)2

4x2 +O

(
1
x3

)
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and, therefore,∫ 2kR

R

|f ′(x)|2Jn−1(x) dx

=
∫ 2kR

R

{
(n− 1)2κ

4 −λ1−
1

4x2

(
β(n− 1)2−1−δ

)
+O

(
1
x3

)}
|ϕ1(x)|2 dx.

Since β(n− 1)2 − 1− δ > 0 and |ϕ1(x)|2 = |f(x)|2Jn−1(x), we see that
(7)∫ 2kR

R

|f ′(x)|2Jn−1(x) dx <
(

(n− 1)2κ

4 − λ1

)∫ 2kR

R

|f(x)|2Jn−1(x) dx

for R > R0(n, β, κ, δ, Rmin).
Now, for y ∈Mmodel, we set

φ(y) :=
{
f(r(y)), if r(y) ∈ [R, 2kR],
0, otherwise.

Then, integrating (7) over Sn−1(1) with its standard measure, we have∫
Mmodel

|∇φ|2dvMmodel <

(
(n− 1)2κ

4 − λ1

)∫
Mmodel

|φ|2dvMmodel .

Hence, mini-max principle implies our desired inequality (5) for
R > R0(n, β, κ, δ, Rmin). �

Let ψ1 denote the first Dirichlet eigenfunction of ball B(2kR)Mmodel for
R > R0(n, β, κ, δ, Rmin). Then, since the metric is rotationally symmetric,
ψ1 is radial, that is,

(8) ψ1(y) = h1 (r(y))

for some function h1 : [0, 2kR]→ R and h1 satisfies the equation

(9) − h′′1(x)− (n− 1)S(x)h′1(x) = λD
(
B(2kR)Mmodel

)
h1(x)

on the interval (0, 2kR]. Since h1 takes the same sign on [0, 2kR) (by max-
imum principle, or see Prüfer [10]), we may assume that

(10) h1(x) > 0 on [0, 2kR).

Here, we claim the following crucial fact for our proof:

Lemma 2.3. — Under the assumption (10), h1 satisfies

(11) h′1(x) < 0 on (0, 2kR].

TOME 61 (2011), FASCICULE 4



1564 Hironori KUMURA

Proof. — The proof is by contradiction.
First, let us assume that h′1(2kR) = 0. Then, since h1 satisfies (9) and

h1(2kR) = 0, uniqueness of solution implies that h1(x) ≡ 0 which contra-
dicts our assumption (10). Therefore, we see that h′1(2kR) < 0 by (10) and
h1(2kR) = 0.
Next, let us assume that h′1(x0) > 0 for some x0 ∈ (0, 2kR). Then, h1

must takes a minimal value at a point, say x1, in [0, x0). If x1 ∈ (0, x0),

(12) − h′′1(x1) = λD
(
B(2kR)Mmodel

)
h1(x1) > 0

by our assumption (10). However, this contradicts our assumption that h1
takes a minimal value at x1. Therefore, x1 = 0. Since h′1(0) = 0, f(0) = 0,
f ′(0) = 1, and S(x) = f ′(x)

f(x) , we see that

lim
x→+0

S(x)h′1(x) = h′′1(0),

and hence, by (9),

(13) − nh′′1(0) = λD
(
B(2kR)Mmodel

)
h1(0) > 0.

Two equations h′1(0) = 0 and (13) imply that 0 is a maximal point of h1.
However, this contradicts our assertion, proved above, that x1 = 0 is a
minimal point of h1.
Thus, we have proved that

h′1(x) 6 0 on (0, 2kR).

However, if h′1(x2) = 0 for some x2 ∈ (0, 2kR), x2 must be a maximal point
of h1 by the same reason as is seen in (12). Therefore, h′1(x2 − ε) > 0 for
small ε > 0. This also leads to a contradiction as is seen above. Thus, we
have proved (11). �

3. Proof of Theorem 1.1 and 1.2

Let us start with notations involving the cut locus Cut(∂W ) of the bound-
ary ∂W in M rW . Assume that W be a relatively compact open subset
of M with C∞-boundary ∂W and let exp∂W : N+(∂W )→M rW be the
outward exponential map. Let −→n be the outward unit normal vector field
along ∂W and set

UN+(∂W ) =
{
v ∈ N+(∂W ) | |v| = 1

}
,

B(∂W, δ) =
{
v ∈ N+(∂W ) | |v| < δ

}
,

B(∂W, δ) =
{
y ∈M rW | dist (W, y) < δ

}
.

ANNALES DE L’INSTITUT FOURIER
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Moreover, for each v ∈ UN+(∂W ), define

ρ(v) = sup
{
t > 0 | dist (W, exp∂W (tv)) = t

}
and

D∂W =
{
tv ∈ N+(∂W ) | 0 6 t < ρ(v), v ∈ UN+(∂W )

}
.

Then, Cut(∂W ) =
{

exp∂W (ρ(v)v) | v ∈ UN+(∂W )
}
. Let dA denote the

induced measure on the boundary ∂W and write the Riemannian measure
dvg on the domain exp∂W (D∂W ) as follows:

(14) dvg = √g(r, ξ) dr dA (ξ ∈ ∂W ),

where r = dist (W, ∗).
We shall use the transplantation method as follows: first, for (t, v) ∈

[0,∞)×UN+(∂W ) satisfying tv ∈ B(∂W,R)∩D∂W , define a function HR

on B(∂W,R) by

HR

(
exp∂W (tv)

)
= h1(t),

where h1 is the function defined by (8). Next, using this function HR, define
a function FR on M by

FR(y) =


h1(0), if y ∈W
HR(y), if r(y) ∈ (0, R],
0, otherwise.

Then F = FR ∈W 1,2
c (W ∪B(∂W,R)), and we get∫

W∪B(∂W,R)
|∇F |2dvg =

∫
B(∂W,R)

|∇F |2dvg(15)

=
∫
∂W

dA(ξ)
∫ ρ(−→n (ξ))∧R

0
|h′1(r)|2√g(r, ξ) dr

and

(16)
∫
W∪B(∂W,R)

|F |2dvg = |h1(0)|2 ·Vol(W )

+
∫
∂W

dA(ξ)
∫ ρ(−→n (ξ))∧R

0
|h1(r)|2√g(r, ξ) dr,

where ρ (−→n (ξ)) ∧R = min
{
ρ (−→n (ξ)) , R

}
.

TOME 61 (2011), FASCICULE 4
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Now, for each ξ ∈ ∂W ,

∫ ρ(−→n (ξ))∧R

0
|h′1|2(r)√g(r, ξ) dr(17)

= [h1(r)h′1(r)√g(r, ξ)]r=ρ(−→n (ξ))∧R
r=0

−
∫ ρ(−→n (ξ))∧R

0
h1(r)

{
h′1(r)√g(r, ξ)

}′
dr

= (h1h
′
1)
(
ρ (−→n (ξ)) ∧R

)
· √g (ρ (−→n (ξ)) ∧R, ξ)

−
∫ ρ(−→n (ξ))∧R

0
h1
{
h′1
√
g(r, ξ)

}′
dr

6 −
∫ ρ(−→n (ξ))∧R

0
h1(r)

{
h′1(r)√g(r, ξ)

}′
dr

= −
∫ ρ(−→n (ξ))∧R

0
h1(r)

{
h′′1(r) +

∂r
√
g(r, ξ)

√
g(r, ξ) h′1(r)

}
√
g(r, ξ) dr

6 −
∫ ρ(−→n (ξ))∧R

0
h1(r) {h′′1(r) + (n− 1)S(r)h′1(r)}√g(r, ξ) dr

= λD
(
B(2kR)Mmodel

) ∫ ρ(−→n (ξ))∧R

0
|h1|2(r)√g(r, ξ) dr,

where we have used the fact h′1(0) = 0 at the first equality; we have
used (10) and (11) at the first inequality; we have used (10), (11), ∆r =
∂r
√
g√
g , and (2) at the second inequality; we have used (9) at the last equality.
Integrating both side of the inequality (17) over ∂W and combining (15)

and (16), we see that

∫
B(∂W,R)

|∇F |2dvg

=
∫
∂W

dA(ξ)
∫ ρ(−→n (ξ))∧R

0
|h′1(r)|2√g(r, ξ) dr

6 λD
(
B(R)

M̂model

){∫
W∪B(∂W,R)

|F |2dvg − |h1(0)|2 ·Vol(W )
}
.

Hence, we have

ANNALES DE L’INSTITUT FOURIER



CURVATURE AND DISCRETE SPECTRUM 1567

∫
M
|∇FR|2 dvg∫

M
|FR|2 dvg

6 λD
(
B(R)

M̂model

){
1− |h1(0)|2 ·Vol(W )∫

M
|FR|2 dvg

}
(18)

< λD

(
B(R)

M̂model

)
.

This inequality(18) holds for all R > R0(n, β, κ, δ), and hence, setting Ri =
R0(n, β, κ, δ)+ i and considering the corresponding functions FRi

as above,
we get the sequence {FRi

} of functions in W 1,2
c (M) satisfying∫

M
|∇FRi

|2dvg∫
M
|FRi
|2dvg

<
(n− 1)2κ

4 ;

suppFRi
= B(∂W,Ri).

Since {FRi
}∞i=1 spans the infinite dimensional subspace in W 1,2

c (M), we
obtain the conclusion of Theorem 1.1 by mini-max principle.
Taking W = {y ∈ M | dist (y, p0) < ε} for 0 < ε < min{inj(p0), R0} in

Theorem 1.1, we get Theorem 1.2, where inj(p0) stands for the injectivity
radius at p0.

4. Proof of Proposition 1.3

In order to prove Proposition 1.3, we first quote the following theorem
from [1]:

Theorem 4.1. — Let (M, g) be a complete noncompact Riemannian
n-manifold, where n > 2. Assume that one of ends of M , denoted by E,
has a compact connected C∞ boundary W := ∂E such that the outward
normal exponential map expW : N+(W )→ E is a diffeomorphism, where

N+(W ) :=
{
v ∈ TM

∣∣
W

∣∣ v is outward normal to W
}
.

Assume also that the mean curvature HW of W with respect to the inward
unit normal vector is positive. Take a positive constant R > 0 satisfying

HW >
1
R

on W,

and set

ρ(x) := distg(x,W ), r̂ (x) := ρ(x) +R for x ∈ E.
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Then, for all u ∈ C∞0 (M), we have

∫
E

|∇u|2 dvg >
∫
E

{
1

4 r̂2 + 1
4(∆ r̂)2−1

2 |∇d r̂ |
2−1

2 Ricg(∇ r̂,∇ r̂)
}
u2 dvg

(19)

+ 1
2

∫
W

(
∆ r̂ − 1

R

)
u2 dσg

>
∫
E

{
1

4 r̂2 + 1
4(∆ r̂)2−1

2 |∇d r̂|
2−1

2 Ricg(∇ r̂,∇ r̂)
}
|u|2dvg,

where dσg denote the (n−1)-dimensional Riemannian measure of (W, g
∣∣
W

).
In particular, if (M, g) has a pole p0 ∈M , then∫
M

|∇u|2 dvg >
∫
M

{ 1
4r2 + 1

4(∆r)2 − 1
2 |∇dr|

2 − 1
2 Ricg(∇r,∇r)

}
|u|2 dvg,

where r(x) := distg(x, p0) for x ∈M . Recall that a point p0 of a Riemann-
ian manifold (M, g) is called a pole if the exponential map expp0 : Tp0M →
M at p0 is a diffeomorphism.

In view of Theorem 1.1, it suffices to prove the following: if β < 1/(n−1)2,
σdisc(−∆) ∩

[
0, (n−1)2κ

4

)
is finite.

Let us set A(r) = h′(r)
h(r) . Then, A(r) satisfies the following Ricatti equa-

tion

A′(r) +A2(r) +K(r) = 0 on (0,∞).

Assume that K(r) satisfies

(20) K(r) 6 0 on (0,∞)

and

(21) K(r) = −κ+ β

r2 for r > R0,

where κ > 0, β < 1/(n − 1)2, and R0 > 0 are constants. In view of (16),
the comparison theorem implies that

(22) A(r) > 1
r
> 0 on (0,∞).

Using the comparison theorem again together with (17) and(18) makes

(23) A(r) =
√
κ− β

2
√
κ r2 +O

(
1
r3

)
as r →∞.
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Therefore, we have
1
4(∆r)2 − 1

2 |∇dr|
2 = 1

4(n− 1)2A2(r)− 1
2(n− 1)A2(r)

= (n− 1)(n− 3)
4 A2(r)

= (n− 1)(n− 3)
4

(
κ− β

r2

)
+O

(
1
r3

)
,

and hence,
1

4r2 + 1
4(∆r)2 − 1

2 |∇dr|
2 − 1

2 Ricg(∇r,∇r)

= 1
4r2 + (n− 1)(n− 3)

4

(
κ− β

r2

)
− (n− 1)

2

(
−κ+ β

r2

)
+O

(
1
r3

)
= (n− 1)2κ

4 + 1
4r2

{
1− (n− 1)2β

}
+O

(
1
r3

)
.

Hence, substituting

E = Rn −B0(R), ρ(x) = distg(x, ∂B0(R)), r̂ (x) = ρ(x) +R = r(x)

into the equation (15) in Theorem 4.1, we see that the following inequality
holds for all u ∈ C∞0 (Rn) and R > 0, where we set B0(R) = {x ∈ Rn |
dist (x, 0) = R} and 0 represents the origin of Rn:∫

Rn−B0(R)
|∇u|2 dvg

>
∫

Rn−B0(R)

{
1

4r2 + 1
4(∆r)2 − 1

2 |∇dr|
2 − 1

2 Ricg(∇r,∇r, )
}
|u|2 dvg

+ 1
2

∫
∂B0(R)

(
∆r − 1

R

)
|u|2 dσg

=
∫

Rn−B0(R)

{
(n− 1)2κ

4 + 1
4r2

{
1− (n− 1)2β

}
+O

(
1
r3

)}
|u|2 dvg

+ 1
2

∫
∂B0(R)

{
(n− 1)

√
κ− 1

R
−O

(
1
R2

)}
|u|2 dσg,

where we have used ∆r = (n − 1)A(r) = (n − 1)
√
κ − O(r−2) (see (19)).

Therefore, since 1 > (n− 1)2β, there exits a constant R1 > R0 such that

(24)
∫

Rn−B0(R)
|∇u|2 dvg >

∫
Rn−B0(R)

(n− 1)2κ

4 |u|2 dvg

for all u ∈ C∞0 (Rn) and R > R1.
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Now, let ∆B0(R1) be the Laplacian on (B0(R1), dr2 + h2(r)gSn−1(1)) with
vanishing Neumann boundary condition and

(25) 0 = µ0 < µ1 6 · · · 6 µi 6 µi+1 6 · · · ↗ ∞

be its eigenvalues with each eigenvalues repeated according to its multi-
plicity. Also, let ∆Rn−B0(R1) be the Laplacian on

(
Rn − B0(R1), dr2 +

h2(r)gSn−1(1)
)
with vanishing Neumann boundary condition. Then, from

(20), we see that

(26) σ
(
−∆Rn−B0(R1)

)
⊂
[

(n− 1)2κ

4 ,∞
)
.

Hence, the domain monotonicity principle (vanishing Neumann boundary
data) due to Courant-Hilbert [5] (see also [3] p. 13), together with (21) and
(22), implies that

]

{
λ ∈ σdisc(−∆) | λ < (n− 1)2κ

4

}
6 ]

{
µi | µi <

(n− 1)2κ

4

}
<∞.

Here, “]” represents the counting function of eigenvalues with each eigen-
values repeated according to its multiplicity. Thus, we have proved Propo-
sition 1.3.

5. Applications and remarks

Reflecting our proof, we see that the following holds:

Proposition 5.1. — Let W be a relatively compact open subset of a
Riemannian manifold (M, g) of dimension n. Assume that ∂W is C∞, and
that the outward normal exponential map exp∂W : N+(∂W )→M rW is
a diffeomorphism. Moreover, assume that

∆r = (n− 1)
{√

κ− β

2
√
κ r2 +O

(
1
r3

)}
(r →∞)

onMrW , where r = dist(W, ∗) onMrW ; κ and β are positive constants.
If β > 1/(n− 1)2, then σess(−∆) =

[
(n−1)2κ

4 ,∞
)
and σdisc(−∆) is infinite.

In Proposition 5.1, ∂W may have a finite number of components. Using
Proposition 5.1, we can construct examples with infinite number of the
discrete spectrum of the Laplacian.
In Theorem 1.1 and 1.2, we assumed that

(27) min σess(−∆) = (n− 1)2κ

4 .
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The condition (27) is satisfied if the inequality

(28) sup
{
h(M rK) | K ⊂M is compact

}
> (n− 1)

√
κ

holds under our curvature assumption, where

h(M rK) := inf
{

Voln−1(∂Ω)
Voln(Ω) | Ω ⊂M rK

}
is the Cheeger constant of M rK; next, the condition (28) holds if there
exists a C∞-function f defined near infinity satisfying

lim inf
M3y→∞

∆f(y) > (n− 1)
√
κ and |∇f | 6 1.

Modifying our arguments, we also get the following:

Theorem 5.2. — Let (M, g) be an n-dimensional noncompact com-
plete Riemannian manifold and W a relatively compact open subset of
M with C∞-boundary ∂W . We set r(∗) := dist(∗, ∂W ) on M rW . Let
exp∂W : N+(∂W )→M rW be the outward normal exponential map and
Cut(∂W ) the corresponding cut locus of ∂W in M rW .

Assume that there exist positive constants κ and R0 and positive-valued
continuous function ϕ of t ∈ [R0,∞) such that

Ricg (∇r,∇r) (y) > −(n− 1)κ− ϕ(r(y))
for y ∈M r (W ∪ Cut(∂W )) with r(y) > R0

and
lim
t→∞

ϕ(t) = 0.

Then, σess(−∆) ∩
[
0, (n− 1)2κ/4

]
6= ∅, where σess(−∆) stands for the es-

sential spectrum of −∆.

Theorem 5.2 immediately implies the following

Corollary 5.3. — Let (M, g) be an n-dimensional noncompact com-
plete Riemannian manifold and p0 a fixed point of M . We set r(∗) :=
dist(∗, p0) and denote by Cut(p0) the cut locus of p0. Assume that there
exist positive constants κ and R0 and positive-valued continuous function
ϕ of t ∈ [R0,∞) such that

Ricg (∇r,∇r) (y) > −(n− 1)κ− ϕ(r(y))
for y ∈M r Cut(p0) with r(y) > R0

and
lim
t→∞

ϕ(t) = 0.

Then, σess(−∆) ∩
[
0, (n− 1)2κ/4

]
6= ∅.
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Corollary 5.3 is a generalization of one of Donnelly’s theorems [6] which
asserts that σess(−∆)∩

[
0, (n− 1)2κ/4

]
6= ∅ under assumption that Ricg >

−(n− 1)κ on all of (M, g).
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