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A PROOF OF THE STRATIFIED MORSE
INEQUALITIES FOR SINGULAR COMPLEX

ALGEBRAIC CURVES USING
THE WITTEN DEFORMATION

by Ursula LUDWIG

Abstract. — The Witten deformation is an analytic method proposed by Wit-
ten which, given a Morse function f : M → R on a smooth compact manifold M ,
allows to prove the Morse inequalities. The aim of this article is to generalise the
Witten deformation to stratified Morse functions (in the sense of stratified Morse
theory as developed by Goresky and MacPherson) on a singular complex algebraic
curve. In a previous article the author developed the Witten deformation for the
model of an algebraic curve with cone-like singularities and a certain class of func-
tions called admissible Morse functions. The perturbation arguments needed to
understand the Witten deformation on the curve with its metric induced from the
Fubini-Study metric of the ambient projective space and for any stratified Morse
function are presented here.
Résumé. — Soit M une variété Riemannienne compacte et soit f : M → R

une fonction de Morse sur M . La méthode de Witten utilise une déformation du
complexe de de Rham pour démontrer les inegalités de Morse. Le but de cette
note est d’étendre cette méthode au cas des courbes algébriques singulières et aux
fonctions de Morse stratifiées au sens de la théorie de Goresky/MacPherson.

Dans une note précédente, l’auteur a donné une généralisation de la méthode
de Witten pour le cas modèle d’une courbe à singularités coniques et des fonctions
de Morse admissibles. Ici on présente les méthodes et arguments nécessaires pour
étendre la théorie au courbes équipées de la métrique induite par la métrique de
Fubini-Study de l’espace ambiant et à toutes les fonctions de Morse stratifiées.

1. Introduction

Let X ⊂ PN (C) be a singular complex algebraic curve and let f : X → R
be a stratified Morse function on X in the sense of the theory developed
by Goresky/MacPherson in [12]. The singular set of X will be denoted

Keywords: Morse theory, Witten deformation, Cone-like Singularities.
Math. classification: 58AXX,58E05.



1750 Ursula LUDWIG

by Σ. X \ Σ is equipped with the Riemannian metric induced from the
Fubini-Study metric on PN (C).
An important topological invariant of the curve is the so called L2-

cohomology of X, which is defined as follows: Let (Ω∗0(X \Σ), d) be the de
Rham complex of differential forms acting on smooth forms with compact
support in X \ Σ. In the case of a singular curve the differential complex
(Ω∗0(X \Σ), d) admits a unique extension into a Hilbert complex (C, d, 〈 , 〉)
in the Hilbert space of square integrable forms equipped with the L2-metric

〈α, β〉 :=
∫
X\Σ

α ∧ ∗β

(see Section 2 for details, note that throughout this paper we use the lan-
guage of Hilbert complexes introduced in [5].) Another way to state this is
to say that the maximal and the minimal closed extension of d coincide,
i.e., dmin = dmax. The L2-cohomology of X is defined as the cohomology of
the complex (C, d, 〈 , 〉),

Hi
(2)(X) := Hi

(
(C, d, 〈 , 〉)

)
= ker di,min/ im di−1,min = ker di,max/ im di−1,max.

(1.1)

The Witten method (see [21], [15]) generalised to our situation consists
in deforming the complex (Ω∗0(X \ Σ), d) into

(1.2) 0→ Ω0
0(X \ Σ) dt−→ Ω1

0(X \ Σ) dt−→ Ω2
0(X \ Σ)→ 0,

where the differential d has been deformed by means of the stratified Morse
function f into a differential dt = e−ftdeft; here t ∈ (0,∞) is the deforma-
tion parameter. We denote by δt = etfδe−tf the formal adjoint of dt with
respect to the L2-metric 〈 , 〉. The first important result is the following

Proposition 1.1.
(a) The complex (Ω∗0(X \ Σ), dt, 〈 , 〉) satisfies the L2-Stokes theorem,

i.e.,

(1.3) dom(dtmax) = dom(dtmin).

In other words the complex (Ω∗0(X \ Σ), dt, 〈 , 〉) admits a unique
extension into a Hilbert complex, which we denote by (Ct, dt, 〈 , 〉).

(b) The complex (Ct, dt, 〈 , 〉) is a Fredholm complex whose cohomology
is isomorphic to the L2-cohomology of X, i.e., H∗

(
(Ct, dt, 〈 , 〉)

)
'

H∗(2)(X). Moreover

(1.4) Hi
(
(Ct, dt, 〈 , 〉)

)
' ker dt,i ∩ ker δt,i−1 ' ker ∆t,i,
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A PROOF OF THE STRATIFIED MORSE INEQUALITIES 1751

where ∆t = (dt + δt)2 denotes the Laplacian associated to the
Hilbert complex (Ct, dt, 〈 , 〉), i.e., the closed selfadjoint (non-nega-
tive) extension of ∆t|Ω0 with domain:

(1.5) dom(∆t) =
{

Φ
∣∣ Φ, dtΦ, δtΦ, dtδtΦ, δtdtΦ ∈ L2(Λ∗(T ∗(X \ Σ))

)}
.

(c) The operator ∆t is a discrete operator. Moreover, for its restriction
on k-forms, k 6= 1, we get

∆t,k = ∆Ft,k
where ∆Ft denotes the Friedrichs extension of ∆t|Ω∗

0
.

We call the operator ∆t defined in Part b) of Proposition 1.1 the Witten
Laplacian. Part a) of the proposition can be deduced easily from the model
case of a curve with cone-like singularities in [16], since the validity of
the L2-Stokes theorem is a quasi-isometry invariant. However we choose a
different method of proof here, which is inspired by methods developed in
[6] since it also leads to the proof of Part c). Part c) of the proposition will
be useful in the sequel since, as a consequence of it, we get that the form
domain of the Witten Laplacian and the form domain of the Laplacian
associated to the Hilbert complex (C, d, 〈 , 〉) coincide except in the middle
degree k = 1. Note that unlike the proof of this fact in [16] the proof
proposed here can be generalised to the higher dimensional situation.

The advantage of the deformed complex compared to the initial complex
is that the spectrum of the Witten Laplacian has “nice” properties for large
parameter t. In particular one can show the spectral gap theorem below.
The restriction f|X\Σ of a stratified Morse function is Morse in the usual
(smooth) sense. We denote by ci(f|X\Σ) the number of critical points of
f|X\Σ of index i.

Theorem 1.2.
a) LetX be a singular curve and let f :X→R be a stratified Morse func-

tion in the sense of the theory developed by Goresky/MacPherson
in [12]. Then there exist constants C1, C2, C3 > 0 and t0 > 0 de-
pending on X and f such that for t > t0

spec(∆t) ∩ (C1e
−C2t, C3t) = ∅.

b) Let us denote by (Ft, dt, 〈 , 〉) the subcomplex of (Ct, dt, 〈 , 〉) gen-
erated by all eigenforms of the Witten Laplacian ∆t to eigenvalues
in [0, 1]. Then, for t > t0

(1.6) dimFit = ci(f|X\Σ) =: ci(f), if i = 0, 2,
dimF1

t = c1(f|X\Σ) +
∑
p∈Σ np =: c1(f),

TOME 61 (2011), FASCICULE 5



1752 Ursula LUDWIG

where

(1.7) np :=
∑

(mj
p − 1).

and mj
p are the multiplicities of the different analytic branches of X

at the singular point p. (The sum in (1.7) is taken over all analytic
branches at p.)

In the smooth situation one can show that the complex of eigenforms
to small eigenvalues converges to the geometric Thom-Smale complex (see
[21], [15]). This result has been generalised in [18] to the model case of a
curve with cone-like singularities and admissible Morse functions.

As usual the following Morse inequalities follow from the spectral gap
theorem by a simple algebraic argument

Corollary 1.3. — In the situation of Theorem 1.2
k∑
i=0

(−1)k−ici(f) >
k∑
i=0

(−1)k−ib(2)
i (X), for k = 0, 1,

2∑
i=0

(−1)ici(f) =
2∑
i=0

(−1)ib(2)
i (X),

(1.8)

where b(2)
i (X) := dimHi

(2)(X) denote the L2-Betti numbers of X.

The key step in the proof of the spectral gap theorem is the construction
of a local model operator ∆p

t for the Witten Laplacian for each analytic
branch near a singular point p of X. Using the model case of a curve
with cone-like singularities in [16] and perturbation techniques for regular
singular operators as in [7] we show a local version of the spectral gap
theorem, namely that spec(∆p

t ) = {0} ∪ [Ct2,∞) for some appropriate
constant C > 0. The forms in ker(∆p

t ) are 1-forms and dim ker(∆p
t ) =

m−1, where m is the multiplicity of the analytic branch. In the model case
of a curve with cone-like singularities (see [16]) the forms in the kernel of the
model Witten Laplacian can be computed explicitly and are related to the
modified Bessel functions. Therefore in the model case one can deduce from
the asymptotic of the modified Bessel functions that the eigenfunctions
decay exponentially. In the more general situation treated here however
this is not possible. Instead here Agmon type estimates are used to prove
the exponential decay of all forms in ker(∆p

t ). Note that the exponential
decay of the eigenfunctions is essential for the next step of the proof.
Once the local situation near the singular points of X understood, to

complete the proof of the spectral gap theorem one can now proceed by

ANNALES DE L’INSTITUT FOURIER



A PROOF OF THE STRATIFIED MORSE INEQUALITIES 1753

following the steps of the proof in the smooth case. (Here we follow the
proof in [2], Section 9).
Since the L2-cohomology is dual to the intersection homology of the curve

from Corollary 1.3 we get back the Morse inequalities of stratified Morse
theory (see [12], Section II.6.12 and [11], p. 169). Note that from the point
of view of the analytic proof the contribution of the singular points of X to
the Morse inequalities is caused by the fact that dom(∆1) 6= dom(∆t,1) and
thus is related to the small eigenvalues of the “transversal Laplacian” (i.e.,
the Laplacian on the link of the singularity). Recall that the small eigenval-
ues of the transversal Laplacian play an important role for L2-methods in
the presence of singularities, namely for the lack of essential selfadjointness
of ∆|Ω0 and in the study of index theorems for regular singular operators
(see [9] for the general case and [19], [8] for the case of a singular algebraic
curve).
Note that obviously Corollary 1.3 could be more quickly deduced di-

rectly from the model case treated in [16] by using the fact, that the L2-
cohomology is an invariant of the quasi-isometry class. However our further
goal is to extend the Witten method to more general singular situations.
The techniques developed here (in particular the proof of Proposition 1.1
and the Agmon type estimates) are useful for the generalisation of the Wit-
ten deformation to higher dimensional spaces with cone-like singularities
(see [17]).
These notes are organised as follows: In Section 2 we recall the basic

facts on the L2-cohomology of a singular curve and prove Proposition 1.1
for a class of functions which we call admissible functions here (see Def-
inition 2.1). We show that stratified Morse functions in the sense of the
theory developed by Goresky/MacPherson are admissible. In Section 3 we
develop the local model for the Witten Laplacian near singular points of
X and prove a local version of the spectral gap theorem. The Agmon type
estimates, used to prove exponential decay of the eigenforms of the model
operator, are proved in Section 3.6. Finally in Section 4 we complete the
proof of Theorem 1.2 and Corollary 1.3. Note that in Section 2 we consider
admissible functions, in particular Proposition 1.1 holds for this class of
functions. The results of the next sections hold for stratified Morse func-
tions only.

TOME 61 (2011), FASCICULE 5



1754 Ursula LUDWIG

2. The Witten deformation for singular curves and
admissible functions

Let X ⊂ Pn(C) be a singular complex algebraic curve. We denote by
Σ the singular set of X. Near the singular points of X the metric on X

induced by the Fubini-Study metric on Pn(C) is quasi-isometric to a cone-
like metric (see [19], [7]): Let p ∈ Σ be a singular point of X and denote
by Xj , j = 1, . . . , s, the analytic branches of X at p. Then for each branch
Xj there exist open neighbourhoods Vj ⊂ C of 0 resp. U(p) ⊂ Pn(C) of p,
as well as affine coordinates z1, . . . , zn on U(p) and a normalisation map
defined by
(2.1)
π : Vj ⊂ C → U(p) ∩Xj

t 7→ (z1(t), . . . , zn(t)) = (tmj , tqj2fj2(t), . . . , tqjnfjn(t)),
such that π|Vj−{0} is a biholomorphic map. Hereby mj < qj2 6 qj3 6 . . . 6
qjn. The multiplicity mj of Xj at p is an analytic invariant, i.e., it does not
depend on the choice of local coordinates z1, . . . , zn.
We denote by g̃ the Riemannian metric on Xj induced by the Fubini-

Study metric on Pn(C). Then we have an isometry

Π : (Vj \ {0}, π∗g̃) ' (coneε(S1
m), g(r, ϕ)), t 7→ (|t|m,m · arg(t)),

where S1
m denotes the 1-sphere of length 2πm, r ∈ (0, ε) and

(2.2) g(r, ϕ) = α̃2(r1/m, ϕ)dr ⊗ dr + β̃2(r1/m, ϕ)r2dϕ⊗ dϕ,

with α̃, β̃ ∈ C∞([0, ε)× S1
m), α̃(0, ·) = β̃(0, ·) = 1. Thus (Xj , g̃) is a confor-

mally conic Riemannian manifold (see [6] for a definition) and is therefore
in particular quasi-isometric to a cone-like singularity.
For the convenience of the reader we recall the basic facts on the L2-

cohomology of the curve. We rephrase them in the language of Hilbert
complexes, which has been introduced in [5]. Let (Ω∗0(X \ Σ), d) be the de
Rham complex of differential forms acting on smooth forms with compact
support. An ideal boundary condition for the elliptic complex (Ω∗0(X\Σ), d)
is a choice of closed extensions Dk of dk in the Hilbert space of square
integrable k-forms, such that Dk(dom(Dk)) ⊂ dom(Dk+1). We then get a
Hilbert complex

(2.3) 0→ dom(D0) D0−−→ dom(D1) D1−−→ dom(D2)→ 0.

The minimal and maximal extension of d
dmin := d = closure of d,
dmax := δ∗ = adjoint of the formal adjoint δ of d

(2.4)

ANNALES DE L’INSTITUT FOURIER



A PROOF OF THE STRATIFIED MORSE INEQUALITIES 1755

are examples of ideal boundary conditions. A priori there may be several
distinct ideal boundary conditions.
As show in [10] in the case of manifolds with cone-like singularities we

have uniqueness, i.e., the minimal and the maximal extension coincide. The
domains of dmin and dmax, and therefore the validity of the L2-Stokes theo-
rem, are quasi-isometry invariants. Therefore also in the case of conformally
conic manifolds (and thus of our curve) we have a unique ibc, i.e.,

(2.5) dk,min = dk,max for all k.

We denote by (C, d, 〈 , 〉) the unique extension of the differential complex
(Ω∗0(X \ Σ), d) to a Hilbert complex. The cohomology of this complex is
the so called L2-cohomology of X,

(2.6) Hi
(2)(X) := ker di,min/ im di−1,min = ker di,max/ im di−1,max.

Note that (2.5) is equivalent to

(dmaxα, β) = (α, δmaxβ) for all α ∈ dom(dmax), β ∈ dom(δmax)

and is called the L2-Stokes theorem. Note moreover that the validity of
the L2-Stokes theorem does not imply the essential selfadjointness of the
Laplace-Beltrami operator ∆|Ω0 = dδ + δd (defined on smooth compactly
supported forms). Instead it is equivalent to the selfadjointness of the par-
ticular extension ∆ = dminδmin + δmindmin (see [13], Proposition 2.3).

Since the L2-cohomology of X is a quasi-isometry invariant one could
compute it also by replacing the conformally conic metric with a cone-
like metric. Therefore it is clear that all L2-cohomology groups Hi

(2)(X)
are finite dimensional and the complex (C, d, 〈 , 〉) is Fredholm. Note that
the finite dimensionality of Hi

(2)(X) also implies that im di is closed and
therefore

(2.7) ker di,min/ im di−1,min ' ker di,min/im di−1,min.

In other words reduced and unreduced L2-cohomology coincide here.
The uniqueness of ibc in the case of conformally conic manifolds has also

been shown by Brüning and Lesch in [6] by a different argument, which
will be useful here.
In this section we perform the Witten deformation of the L2-complex for

a singular curve by means of certain functions f : X → R, called admissible
functions:

Definition 2.1. — A continuous function f : X → R is called ad-
missible if its restriction to X \ Σ is smooth and moreover locally near a

TOME 61 (2011), FASCICULE 5



1756 Ursula LUDWIG

singularity p ∈ Σ on each analytic branch of X the function f has the form
(in the local coordinates in (2.2))

(2.8) f(r, ϕ) = f(p) + f1(r, ϕ) + f2(r, ϕ), where f1 = rh, f2 = O(r1+δ)

and h : S1
m → R is a smooth function.

Let us first prove the following

Proposition 2.2. — Any stratified Morse function on a complex sin-
gular curve has the following form near a singular point of X (in the local
coordinates in (2.2) on each branch):

(2.9) f = r(a cosϕ+ b sinϕ) +O(r1+δ),

where (a, b) ∈ R2 \ {0}. In particular any stratified Morse function is ad-
missible.

Proof. — Locally near the singularity any stratified Morse function on
X in the sense of the theory developed by Goresky/MacPherson [12] can
be written as

(2.10) f =
(
Re(g) +O(|z|2)

)
|X ,

where g : U(p)→ C is a holomorphic function (see [12], Lemma 2.1.4). The
affine line lj := {z2 = . . . = zn = 0} is the tangent line to the irreducible
branch Xj , therefore the non-degeneracy condition for a stratified Morse
function implies that the function g has the form

(2.11) g =
∑

aizi +O(|z|2),

where a1 6= 0 and z1, . . . , zn are local coordinates as in (2.1). We get similar
conditions for each analytical branch of X at p. An explicit computation
using the unitary parameter t ∈ C∗ and (2.10) and (2.11) shows that

(2.12) f ◦ π ◦Π−1 = f1 + f2,

where f1 = rh, h = a cos(ϕ) + b sin(ϕ) for some (a, b) ∈ R2 \ {0} and
f2 = O(r1+δ), δ > 0. �

Let f : X → R be an admissible function on the curve X. Let us denote
by (Ω∗0(X \ Σ), dt, 〈 , 〉) the differential complex of smooth forms with
compact support on X \Σ, where dt = e−ftdeft and 〈 , 〉 is the L2-metric,
t ∈ (0,∞).

Denote by δt the formal adjoint of the operator dt with respect to the
metric 〈 , 〉, and by ∆t|Ω0 = (dt + δt)2 the corresponding Laplacian (acting
on smooth compactly supported forms).

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3. — The following identities hold for ω ∈ Ω∗0(X \ Σ)

dtω = dω + tdf ∧ ω ,

δtω = etfδe−tfω = δω + t∇f ω,

∆tω = ∆ω + t(L∇f + L∗∇f )ω + t2 | ∇f |2 ω,
(2.13)

where we denote by L∇f = d(∇f ) + ∇f d the Lie derivative in the
direction of the gradient vector field ∇f and by L∗∇f its adjoint.

Proof. — See e.g., Proposition 5.4 in [3]. �

Remark 2.4. — Note that the operator Mf := L∇f + L∗∇f is a zeroth
order operator.

In this situation we have two associated Hilbert complexes of interest:
the maximal extension (Ct,max, dt,max, 〈 , 〉), defined by

(2.14) dt,max = adjoint of the formal adjoint of dt w. r. t. 〈 , 〉,

and the minimal extension (Ct,min, dt,min, 〈 , 〉), defined by

(2.15) dt,min = closure of dt with respect to 〈 , 〉.

Let us denote by

(2.16) Dev
t := dt + δt : Ωev

0 (X)→ Ωodd
0 (X)

and by

(2.17) Dodd
t := dt + δt : Ωodd

0 (X)→ Ωev
0 (X).

The operator Dt := Dev
t +Dodd

t is a closable operator with

dom(Dt,min) =


ω ∈ L2 | there exists a sequence
Φn ∈ Ω∗0(X \ Σ) s.t. Φn → ω and dtΦn, δtΦn
are Cauchy sequences in L2(Λ∗T ∗X)

 .

(2.18)

Thus in particular

(2.19) dom(Dt,min) ⊂ dom(dt,min) ∩ dom(δt,min).

Lemma 2.5. — With the notations above we get
(a) For k 6= 1

(2.20) dom(dt,k,max) ∩ dom(δt,k−1,max) ⊂ dom(Dt,min).

TOME 61 (2011), FASCICULE 5
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(b) For k = 0, 1, 2
dt,k,max = dt,k,min,

δt,k,max = δt,k,min.
(2.21)

Moreover if we denote by ∆Ft the Friedrichs extension of ∆t|Ω∗
0
we

have

(2.22) ∆Ft,k = dt,k−1,minδt,k−1,min + δt,k,mindt,k,min for k 6= 1.

Proof. — (a) It is easy to see using the local form of an admissible func-
tion f near the singularities and the formulas (3.18) in Section 3 that
df∧ : L2 → L2 and ∇f : L2 → L2 are bounded operators. Denoting
by D = d + δ the Gauss-Bonnet operator for the complex (C, d, 〈 , 〉) we
therefore get for all k

dom(dt,k,max) = dom(dk,max),
dom(δt,k,max) = dom(δk,max),
dom(Dt,min) = dom(Dmin).

(2.23)

By Theorem 2.1 in [6] we have

(2.24) dom(dk,max) ∩ dom(δk−1,max) ⊂ dom(Dmin), k 6= 1.

The claim now follows from (2.23) and (2.24).
(b) From Part a) we get that the hypotheses of Lemma 3.3 in [6] are

satisfied for the complex (Ω∗0(X \Σ), dt, 〈 , 〉). By applying the cited result
we get the claim on the domains of dt,k and δt,k−1 for k 6= 1 as well as the
claim on dom ∆Ft . The rest of the claim then also follows since δt,max /min
is the adjoint of dt,min /max. �

Proof of Proposition 1.1. — Part a) has already been shown in Lemma
2.5. We give here a second proof of it, since the below arguments will be
used in Section 3 for the local model also. We denote by 〈 , 〉t the twisted
L2-metric:

(2.25) 〈α, β〉t =
∫
X\Σ

α ∧ ∗βe−2tf .

Since f is bounded on X the two metrics 〈 , 〉 and 〈 , 〉t are equivalent.
We introduce the following auxiliary differential complex

(2.26) (C̃t, d̃t, 〈 , 〉t) := (Ω∗0(X \ Σ), d, 〈 , 〉t),

where 〈 , 〉t is the twisted metric defined above and d̃t := d is the usual
differential. The L2-Stokes theorem holds for this complex: From the dis-
cussion at the beginning of the section we know that the L2-Stokes theorem
holds for the complex (Ω∗0(X \ Σ), d, 〈 , 〉). As mentioned before the two
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A PROOF OF THE STRATIFIED MORSE INEQUALITIES 1759

metrics 〈 , 〉 and 〈 , 〉t are equivalent and the domains of dmin and dmax
are invariant for equivalent metrics. Therefore the complex (2.26) admits
a unique extension to a Hilbert complex, which, by abuse of notation, we
denote again by

(C̃t, d̃t, 〈 , 〉t) = (C̃tmax, d̃tmax, 〈 , 〉t) = (C̃tmin, d̃tmin, 〈 , 〉t).

Since dt(e−ftω) = e−ft(dω) the map

(2.27) e−ft : (Ω∗0(X \ Σ), d, 〈 , 〉t)→ (Ω∗0(X \ Σ), dt, 〈 , 〉), ω 7→ e−ftω

is an isomorphism of complexes. It is not difficult to see that the map (2.27)
extends to isomorphisms of Hilbert complexes

e−tf : (C̃tmax /min, d̃tmax /min, 〈 , 〉t) ' (Ctmax /min, dtmax /min, 〈 , 〉).

The claim now follows from the validity of the L2-Stokes theorem for the
complex (C̃t, d̃t, 〈 , 〉t).
(b) Since the Fredholm property of Hilbert complexes is invariant un-

der isomorphism and since (C, d, 〈 , 〉) is Fredholm we deduce that the
complex (C̃t, d̃t, 〈 , 〉t) and therefore by the isomorphism constructed in a)
also (Ct, dt, 〈 , 〉) is Fredholm. The rest of the claim follows again from a)
and the general statements for Hilbert complexes in [5] (Theorem 2.4 and
Corollary 2.5).
(c) It is well known that ∆ (the Laplacian associated to the complex

(C, d, 〈 , 〉)) is discrete. The claim on the discreteness of ∆t now follows
since the discreteness of the Laplacian associated to a Hilbert complex is
invariant under complex isomorphism (see Lemma 2.17 in [5]). The second
claim follows from Lemma 2.5. �

Let us denote by ∆F (resp. by ∆Ft ) the Friedrichs extension of ∆|Ω∗
0(X\Σ)

(resp. of ∆t|Ω∗
0(X\Σ)).

Corollary 2.6.

(a) The form domains of ∆F and ∆Ft coincide.
(b) For k 6= 1 the form domain of the Witten Laplacian ∆t,k and the

form domain of the Laplacian ∆k coincide.

Proof. — (a) The form domain of ∆F is the closure of Ω∗0(X \Σ) under
the norm

(2.28) ‖ω‖21 := ‖dω‖2 + ‖δω‖2 + ‖ω‖2.
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The form domain of ∆Ft is defined similarly. Note moreover that for
ω ∈ Ω∗0(X \ Σ)

〈∆ω, ω〉 = ‖dω‖2 + ‖δω‖2

6 2
(
‖dtω‖2 + ‖δtω‖2 + t2〈| ∇f |2 ω, ω〉

)
= 2
(
〈∆tω, ω〉+ t2〈| ∇f |2 ω, ω〉

)
.

(2.29)

And similarly

〈∆tω, ω〉 6 2
(
〈∆ω, ω〉+ t2〈| ∇f |2 ω, ω〉

)
.(2.30)

The claim in (a) now follows easily since | ∇f |2 is bounded on X. The
claim in (b) is a consequence of Part a), Proposition 1.1 (c) and the fact
that dom(∆k) = dom(∆Fk ), k 6= 1 (see [6]). �

Remark 2.7. — Note that similarly to Definition 2.1 one can define the
class of admissible functions on conformally conic manifolds. The proof of
Proposition 1.1 can then be extended to conformally conic manifolds of
even dimension and admissible functions on them (see [17]).

3. The local model for the Witten Laplacian

From now on we will always consider the case of a stratified Morse func-
tion.

3.1. Definition of the model operator. Main results

Let p ∈ Σ be a singular point of the complex curve. In this section we will
develop a local model for the Witten Laplacian for each analytic branch
of the curve at p. Recall from Section 2 that the local metric model of a
branch of multiplicity m is given by coneε(S1

m) equipped with the metric g
in (2.2).
Let us fix ε > 0. Let νε : cone(S1

m)→ [0, 1] be a smooth cutoff function,
with νε = 1 for r ∈ (0, ε/2] and νε = 0 for r ∈ [ε,∞). We denote by gcone :=
dr2 + r2dϕ2 the conic metric on cone(S1

m). We denote by (cone(S1
m), gconf)

the infinite cone over S1
m equipped with the metric

(3.1) gconf = νεg + (1− νε)gcone.

Note that by (3.1) and (2.2) gconf = α2(dr2 + r2gS1
m

(r)) with a conformal
factor α, α ≡ 1 for r > ε. Let 〈 , 〉 := 〈 , 〉conf be the metric on forms,
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induced by gconf and let (Ω∗0(cone(S1
m)), d, 〈 , 〉) be the de Rham complex of

smooth compactly supported forms on the infinite cone (cone(S1
m), gconf).

Let f : cone(S1
m)→ R be a function on the infinite cone such that:

(3.2) f = νε(f1 + f2) + (1− νε)f1,

where f1 = rh := r(a cos(ϕ)+b sin(ϕ)), (a, b) ∈ R2\{0} and f2 = O(r1+δ).
We denote by (Ω∗0(cone(S1

m)), dt, 〈 , 〉) the complex obtained by deform-
ing the de Rham complex by means of the function f , i.e., dt := e−tfdetf .

The goal of the sections 3.2 – 3.6 is to show the following two results:

Proposition 3.1. — Let t > 0.
(a) There is a unique Hilbert complex (Cloc

t , dt, 〈 , 〉) extending the
complex (Ω∗0(cone(S1

m)), dt, 〈 , 〉).
(b) Let us denote by ∆t the Laplacian associated to the complex

(Cloc
t , dt, 〈 , 〉). The complex (Cloc

t , dt, 〈 , 〉) is Fredholm and the
natural maps

(3.3) ker(∆t,i)→ Hi((Cloc
t , dt, 〈 , 〉)), i = 0, 1, 2,

are isomorphisms. Moreover

(3.4) dim ker(∆t) = dim ker(∆t,1) = m− 1.

Remark 3.2. — We call ∆t the model Witten Laplacian at p. Note that
by definition (of the Laplacian associated to a Hilbert complex) the domain
of ∆t is dom(∆t) = {ψ, dtψ, δtψ, dtδtψ, δtdtψ ∈ L2(cone(S1

m))}.

In the following we denote by Dev
t ,Dodd

t = (Dev
t )∗,Dt := Dev

t + Dodd
t

the Gauss-Bonnet operators associated to the complex (Cloc
t , dt, 〈 , 〉).

Theorem 3.3. — There exists C > 0, t0 > 0 such that for t > t0 we
have

(a) spec(∆t,i) ⊂ [Ct2,∞) in case i = 0, 2.
(b) spec(∆t,1) ⊂ {0} ∪ [Ct2,∞). Moreover all forms in ker(∆t,1) have

exponential decay outside a small neighbourhood of the singularity.

3.2. Proof of Proposition 3.1

To prove Proposition 3.1 we show the analogous statement for the model
case of a cone-like metric gcone and a function f1 = r(a cosϕ+ b sinϕ) (this
case has been studied in [16], but Proposition 3.4 is only implicit there).
The general case can then be deduced using the quasi-isometry invariance
of the L2-cohomology.
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Let (cone(S1
m), gcone) be the infinite cone equipped with the conic metric

gcone = dr2 + r2dϕ2. We denote by 〈 , 〉c the L2-metric on forms induced
by gcone. Let (Ω∗0(cone(S1

m)), df1
t , 〈 , 〉c) be the deformation of the de Rham

complex of smooth forms with compact support, where df1
t = e−tf1detf1 .

We denote by δf1
t its adjoint with respect to the metric 〈 , 〉c.

Proposition 3.4. — There is a unique Hilbert complex (Df1
t , d

f1
t , 〈 , 〉c)

extending the complex (Ω∗0(cone(S1
m)), df1

t , 〈 , 〉c). The Laplacian ∆f1
t as-

sociated to this complex has spectrum

(3.5) spec(∆f1
t ) = {0} ∪ [(a2 + b2)t2,∞)

and

(3.6) dim ker(∆f1
t ) = dim ker(∆f1

t,1) = m− 1.

Moreover the complex (Df1
t , d

f1
t , 〈 , 〉c) is Fredholm and the natural maps

(3.7) ker(∆f1
t,i)→ Hi((Df1

t , d
f1
t , 〈 , 〉c)), i = 0, 1, 2

are isomorphisms.

Proof. — To prove that there is a unique Hilbert complex extending the
complex (Ω0(cone(S1

m)), df1
t , 〈 , 〉c) it is enough to show that the minimal

extension df1
t,min and the maximal extension df1

t,max coincide. But this is
equivalent to the selfadjointness of the operator df1

t,minδ
f1
t,min + δf1

t,mind
f1
t,min.

The selfadjointness of the boundary condition at r → 0 follows from the
result in Section 2 (applied to the case of a cone-like singularity), moreover
the cone is complete at infinity.
The claims on the spectral properties of ∆f1

t are shown in [16]. Moreover,
since 0 6∈ specess(∆

f1
t ) by Theorem 2.4 in [5] we deduce that (Df1

t , d
f1
t , 〈 , 〉c)

is a Fredholm complex and therefore in particular has finite dimensional co-
homology groups. Applying Corollary 2.5 in [5] to the complex
(Df1

t , d
f1
t , 〈 , 〉c) one gets that the natural maps (3.7) are isomorphisms. �

Similarly we have a deformed differential complex (Ω∗0(cone(S1
m)), dft ,

〈 , 〉c), where dft = e−tfdetf .

Proposition 3.5. — There is an unique Hilbert complex (Dft , d
f
t , 〈 , 〉c)

extending the complex (Ω∗0(cone(S1
m)),dft ,〈 , 〉c). The complex (Dft, d

f
t ,〈 , 〉c)

is Fredholm and the natural maps

(3.8) ker(∆f
t,i)→ Hi((Dft , d

f
t , 〈 , 〉c)), i = 0, 1, 2

are isomorphisms. Moreover:

(3.9) dim ker(∆f
t ) = dim ker(∆f

t,1) = m− 1.
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Proof. — We have 4 differential complexes of interest: two of them, C1 :=
(Ω∗0, d

f1
t , 〈 , 〉c) resp. C2 := (Ω∗0, d

f
t , 〈 , 〉c) are obtained by deforming the de

Rham complex by means of the function f1 resp. f . We get two auxiliary
complexes C3 := (Ω∗0, d, 〈 , 〉

f1,c
t ) resp. C4 := (Ω∗0, d, 〈 , 〉

f,c
t ) by twisting

the metric 〈 , 〉c by means of f1 resp. f , more precisely

〈α, β〉f1,c
t =

∫
cone(S1

m)
α ∧ ∗cβe−2tf1 ,

〈α, β〉f,ct =
∫

cone(S1
m)
α ∧ ∗cβe−2tf .

(3.10)

Note that the two metrics 〈 , 〉f1,c
t and 〈 , 〉f,ct are equivalent.

We will show that all these complexes have unique ibc’s and are all
isomorphic. The proposition then follows directly from Proposition 3.4 since
the complex C2 “inherits” all properties of C1.

Let us shortly indicate the relations between the 4 complexes. C1 and C3
are isomorphic by an argument as in the alternative proof of Proposition 1.1
(a). This shows that C3 also satisfies the L2-Stokes theorem and inherits
all properties of the complex C1 studied in Proposition 3.4. Since the two
metrics 〈 , 〉f1,c

t and 〈 , 〉f,ct are equivalent and the domains of dmin and
dmax are invariant for equivalent metrics we deduce that also C4 satisfies
the L2-Stokes theorem and has all properties of C3. Finally C2 and C4 are
isomorphic again by the argument of the alternative proof of Proposition 1.1
(a) and therefore C2 inherits all properties of C4 and hence of C1. �

Proof of Proposition 3.1. — (a) The metrics gcone and gconf on the infi-
nite cone cone(S1

m) are quasi-isometric. Since the validity of the L2-Stokes
theorem is an quasi-isometry invariant and, as proved in Proposition 3.5,
the complex (Ω∗0, d

f
t , 〈 , 〉c) has unique ibc so does (Ω∗0, dt, 〈 , 〉). Note

moreover that

(3.11) H∗((Dft , d
f
t , 〈 , 〉c)) ' H∗((Cloc

t , dt, 〈 , 〉)).

(b) The Fredholm property of the complex (Cloc
t , dt, 〈 , 〉) follows immedi-

ately from the Fredholm property of (Dft , d
f
t , 〈 , 〉c). The isomorphism (3.3)

follows from standard arguments for Fredholm complexes (see Corollary 2.5
in [5]). In view of (3.11) and Proposition 3.5 we get

dim ker(∆t) = dim ker(∆t,1) = dimH1((C loc
t , dt, 〈 , 〉))

= dimH1((Dft , d
f
t , 〈 , 〉c)) = m− 1.

�
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Remark 3.6. — Note that the function f is unbounded on the infinite
cone and that therefore, unlike in Section 2, the Hilbert complex associated
to the de Rham complex (Ω∗0(cone(S1

m), d, 〈 , 〉) and the Hilbert complex
(Cloc
t , dt, 〈 , 〉), t > 0, associated to the deformed complex are not isomor-

phic.

3.3. A useful unitary transformation

As in [9], Section 5 (see also [6]) for k = 0, 1, 2 one can construct linear
maps

(3.12) Ψk : C∞0 (R+,Ωk−1(S1
m)⊕ Ωk(S1

m)) → Ωk0(cone(S1
m)).

More precisely with α as in (3.1) and β = β̃ near the cone point and
β ≡ 1 for r > ε we define

Ψ0 : C∞0 (R+,Ω0(S1
m)) −→ Ω0

0(cone(S1
m)),

f 7→
√
rαβ

−1
f,

Ψ1 : C∞0 (R+,Ω0(S1
m)⊕ Ω1(S1

m)) −→ Ω1
0(cone(S1

m)),
(f0, f1) 7→

√
α/βrf0dr +

√
βr/αf1,

Ψ2 : C∞0 (R+,Ω1(S1
m)) −→ Ω2

0(cone(S1
m)),

f 7→
√
rαβfdr.

The Ψk extend to unitary maps

Ψk : L2(R+,L2(Λk−1T ∗S1
m ⊕ ΛkT ∗S1

m, gS1
m

(0))
)
→ L2(ΛkT ∗(cone(S1

m))
)
,

which induce unitary maps

(3.13) Ψev / odd : C∞0 (R+,Ω0(S1
m)⊕ Ω1(S1

m))→ Ωev / odd
0 (cone(S1

m))

such that

(3.14) Ψ−1
oddDevΨev = α−1 (∂r + r−1(S0 + Sev

1 (r)
))

and

(3.15) Ψ−1
ev DoddΨodd = α−1 (−∂r + r−1(S0 + Sodd

1 (r)
))
,

where

(3.16) S0 =
(
c0 δ̃

d̃ c1

)
, c0 = c1 = −1

2
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and Sev / odd
1 (r) is a family of first order differential operators on Ω∗(S1

m),
smooth in R+ satisfying

(3.17) ‖S1‖H1→L2 = O(rδ) and S1 = 0 for r > ε.

Note that S0 is an elliptic operator. The ˜ refers to operators on the link,
moreover δ̃ is computed with respect to the fixed reference metric g(0) =
dϕ2 on S1

m. The operators in (3.14), (3.15) are regular singular operators
in the sense of [4], [9].

Let hl : S1
m → R be a function on the link, pl := rlhl. Then an explicit

computation shows that
(3.18)

Ψ−1
odd(dpl∧ . . .+∇pl . . .)Ψev = α−1

(
rl−1

((
lhl ∇̃hl
d̃hl −lhl

)
+O(rδ)

))
,

where again ∇̃hl denotes the gradient with respect to the fixed metric g(0)
on S1

m. A similar formula holds for Ψ−1
ev (dpl ∧ . . .+∇pl . . .)Ψodd.

Using (3.14), (3.15) and (3.18) we get for the deformed operators (with
f as in (3.2))

(3.19) Ψ−1
oddDev

t Ψev = α−1 (∂r + r−1(S0 + Sev
1 (r)) + t

(
T0 + T1

))
and

(3.20) Ψ−1
ev Dodd

t Ψodd = α−1 (−∂r + r−1(S0 + Sodd
1 (r)) + t

(
T0 + T1

))
where

(3.21) T0 :=
(

h ∇̃h
d̃h −h

)
, h := a cosϕ+ b sinϕ, (a, b) ∈ R2 \ {0}

and ‖T1‖ = O(rδ) as r → 0.

3.4. The model Witten Laplacian with conformal factor α = 1

In this section we focus on the operator (3.19) with conformal parameter
α = 1. Set

(3.22) P
ev / odd
t := ±∂r + r−1(S0 + S1(r)

)
+ tT0 + tT1.

Our aim in this subsection is to prove the proposition below, which will
be the main tool in the proof of Part a) of the local spectral gap theorem,
Theorem 3.3.
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Proposition 3.7. — There exists c > 0, t0 > 0 such that for u ∈
C∞0 (R+,Ω∗(S1

m)) and t > t0 we have

(3.23) 〈P odd
t P ev

t u, u〉 > ct2‖u‖2.

To proof Proposition 3.7 we will use a perturbation argument similar to
that in [7], Section 3.

For simplicity we will denote by H := L2(Λ0T ∗S1
m ⊕ Λ1T ∗S1

m, gS1
m

(0))
and by H := L2(R+, H

)
. Let us denote by

(3.24) τ0 := −∂2
r + r−2(S2

0 + S0).

The differential operator τ0 is well-defined and symmetric inH with domain
C∞0

(
R+,Ω∗(S1

m)
)
. C∞0 (R+,Ω∗(S1

m)) is dense in H and τ0 maps
C∞0 (R+,Ω∗(S1

m)) into itself. Note that

(3.25) A0 := S2
0 + S0 = −∂2

ϕ −
1
4 > −

1
4

is a selfadjoint operator, (A0 + I) has compact resolvent. An explicit com-
putation using (3.16) - (3.22) gives

(3.26) P odd
t P ev

t = τ0 + r−2RA0 + tNf + t2(T 2
0 +RT 2

0
)

where

(3.27) T 2
0 = (a2 + b2) · I, (a, b) ∈ R2 \ {0} as in (3.2).

Nf , RT 2
0
are families of zero order operators and RA0 is a family of second

order operators supported in r ∈ (0, ε). Moreover
(3.28)
‖Nf‖H = O(r−1+δ), ‖RA0‖ = O(rδ) and ‖RT 2

0
‖H = O(rδ) as r → 0.

Note that a priori the term Nf in (3.26) would be of order r−1 but the
leading term

S0T0 + T0S0 =
(
−(h+ h′′) (1− 1)∇h
(1− 1)dh h+ h′′

)
, where h := a cosϕ+ b sinϕ

vanishes.
We rewrite the operator P odd

t P ev
t as a sum of two terms

(3.29) P odd
t P ev

t = L+Kt,

where

(3.30) L := 1
2τ0 + r−2RA0 , Kt := 1

2τ0 + tNf + t2(T 2
0 +RT 2

0
).
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Let us first consider L: We treat the perturbation r−2RA0 as in [7],
Section 3. As in [7] let us introduce the following operators

(3.31) U0 := I, U1(γ) := Ωγr−1(A0 + I)1/2, U2(γ) := Ωγ∂r,

where Ω denotes multiplication by r
r+1 and γ > 0. The operators Ui map

C∞0 (R+,Ω∗(S1
m)) into itself. Recall from [7] that the operators Ui intro-

duced in (3.31) are controlled by τ0:

Lemma 3.8. — For all i = 0, 1, 2 there exists ci > 0 such that

(3.32) ‖Uiu‖2 6 ci‖u‖2τ0
for all u ∈ C∞0 (R+,Ω∗(S1

m)),

where ‖u‖2τ0
:= 〈τ0u, u〉+ ‖u‖2.

Proof. — See proof of Theorem 3.2 in [7]. �

Lemma 3.9.
(a) The perturbation r−2RεA0

has the form

(3.33) r−2RA0 =
2∑

i,j=0
U∗i C

ε
ijUj ,

where the operator functions Cεij ∈ C(R+,L(H)) commute with
multiplication by functions on R+ and have support in the interval
[0, ε]. Moreover

(3.34) δ(L) :=
2∑

i,j=0
‖Cεij‖L(H)

can be made arbitrarily small by choosing ε small enough.
(b) For u ∈ C∞0

(
R+,Ω∗(S1

m)
)

(3.35) 〈Lu, u〉 > 1
4 〈τ0u, u〉 −

1
4‖u‖

2 > −1
4‖u‖

2.

Proof. — For the proof of a) see [7]. b) By Part a) we can make the
perturbation δ(L) as small as we like by choosing ε small enough. Thus we
have, for ε small enough and the ck’s as in Lemma 3.8,

(3.36) δ(L) max
k∈{0,1,2}

ck =
∑
i,j

‖Cεij‖ max
k∈{0,1,2}

ck 6
1
4 .

Therefore using Lemma 3.8, (3.33) and (3.36) for u ∈ C∞0 (R+,Ω∗(S1
m))

〈Lu, u〉 = 1
2 〈τ0u, u〉+ 〈r−2RA0u, u〉 >

1
2 〈τ0u, u〉 −

1
4‖u‖

2
τ0
> −1

4‖u‖
2.

(3.37)
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The last inequality follows since τ0 > 0 on C∞0 (R+,Ω∗(S1
m)). �

We now treat the termKt: Note first thatKt > K̂t on C∞0
(
R+,Ω∗(S1

m)
)
,

where

(3.38) K̂t := 1
2τ0 − Ctr

−1+δj(r) + a2 + b2

2 t2,

for some C > 0 and an appropriate cut-off function j : R+ → R, j ≡ 0 for
r > 2ε.
For t > 0 let us denote by Ut the unitary rescaling operator acting by

(3.39) Utω(r, ϕ) =
√
tω(tr, ϕ).

Rescaling K̂t we get

U−1
t K̂tUt = t2

(
1
2τ0 − Cr

−1 (t−1r
)δ
j
(
t−1r

)
+ a2 + b2

2

)
=: t2

(
1
2τ0 −R

ε,t
K + a2 + b2

2

)
.

(3.40)

Lemma 3.10.
(a) The operator Rε,tK can be written as

(3.41) Rε,tK = U1C
ε,tU0,

with an operator function Cε,t ∈ C(R+,L(H)) such that δ2 :=
‖Cε,t‖L(H) can be made arbitrarily small by choosing ε small
enough.

(b) There exists c > 0, t0 > 0 such that for t > t0 and u ∈ C∞0 (R+,Ω∗
(S1
m)) we get

(3.42) 〈Ktu, u〉 > ct2‖u‖2.

Proof. — (a) Set γ := δ/2. For u, v ∈ C∞0 (R+,Ω∗(S1
m)) we get〈

Rε,tK u, v
〉

= C
〈
r−1Ωγ(A0 + I)1/2u,Ω−γ(A0 + I)−1/2 (t−1r

)δ
j(t−1r)v

〉
= 〈U1u,C

ε,tv〉,

with Cε,t := Ω−γ(A0+I)−1/2 (t−1r
)δ
j
(
t−1r

)
. Since (A0+I)−1/2 is bounded

and using the support condition for j it is easy to show that ‖Cε,t‖ 6 2εδ
for t chosen big enough.
(b) Proceeding as in Lemma 3.9 we see that Part a) implies that for t

large enough

(3.43) t−2U−1
t K̂tUt >

a2 + b2

4
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and hence by (3.38)

(3.44) Kt > K̂t >
a2 + b2

4 t2.

�

The Proposition 3.7 follows combining (3.29), Lemma 3.9 (b) and Lemma
3.10 (b).

3.5. Proof of Theorem 3.3

(a) Let us assume first that α = 1. From Proposition 3.7 we deduce that
there exists C > 0 such that 〈∆Ft ω, ω〉 > Ct2‖ω‖2 where ∆Ft denotes the
Friedrichs extension of the model Witten Laplacian on the infinite cone.
Therefore

(3.45) spec(∆Ft ) ⊂ [Ct2,∞).

As in Proposition 1.1 (c) one can show that ∆t,i = ∆Ft,i for i = 0, 2. This
proves (a) in case α = 1. The general case follows from the case α = 1 and
the inequality
〈∆tω, ω〉 = 〈Dev

t ω,Dev
t ω〉 = 〈α−1P ev

t Ψ−1ω, α−1P ev
t Ψ−1ω〉

> c〈P ev
t Ψ−1ω, P ev

t Ψ−1ω〉 = c〈∆α=1
t ω, ω〉, for some c > 0.

(b) We know already from Proposition 3.1 that 0 ∈ spec(∆t,1) is an
eigenvalue of multiplicity m− 1. To show that spec(∆t,1) ⊂ {0}∪ [Ct2,∞)
for some C > 0 it is enough to show that (∆t,1ψ,ψ) > Ct2‖ψ‖2 for all
ψ ∈ ker(∆t,1)⊥. Using the Hodge decomposition for the Fredholm complex
(Cloc
t , dt, 〈 , 〉) we can write

(3.46) ψ = dtβ + δtη for some β ∈ dom(dt) ∩ Λ0, η ∈ dom(δt) ∩ Λ2.

By Part (a) we know that

(3.47) 〈∆tβ, β〉 > Ct2‖β‖2.

Moreover

(3.48) 〈∆tdtβ, dtβ〉 = 〈dtδtdtβ, dtβ〉 = ‖δtdtβ‖2 = ‖∆tβ‖2.

Using the Cauchy-Schwarz inequality and (3.47) in (3.48) we get

(3.49) 〈∆tdtβ, dtβ〉 = ‖∆tβ‖2 >
〈∆tβ, β〉2

‖β‖2
> t2〈∆tβ, β〉 = Ct2‖dtβ‖2.

Similarly one gets

(3.50) 〈∆tδtη, δtη〉 > Ct2‖δtη‖2.
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Combining (3.49) and (3.50) we get
〈∆tψ,ψ〉 = 〈∆tdtβ, dtβ〉+ 〈∆tδtη, δtη〉

> Ct2‖dtβ‖2 + Ct2‖δtη‖2 = Ct2‖ψ‖2.
(3.51)

The claim about the decay behaviour of the eigenfunctions follows by
using Agmon type estimates, which are shown in the next section. �

3.6. Agmon type estimates on the decay of the eigenfunctions

In this section we use Agmon type estimates [1] to prove exponential
decay for the forms in ker ∆t. Note that in contrast to the smooth case
they hold only outside a small neighbourhood of the singularity, but this is
sufficient for what we need. There are two problems we have to take care of,
namely the fact that dom ∆1 6= dom ∆t,1 and the fact that the potential
Mf is not bounded near the singularity. Let us first recall the following
formula

Lemma 3.11. — Let φ : cone(S1
m) → R be a smooth function on

cone(S1
m). Then we have the following identity on forms in Ω∗0(cone(S1

m)):
(3.52)

etφ
(

1
t2

∆t

)
e−tφ = 1

t2
∆+ |∇f |2−| ∇φ |2 +1

t

(
L∇f + L∗∇f + L∇φ−L∗∇φ

)
.

Proof. — Like in the smooth case, compare [15], p. 256. �

For the rest of this section let ϕ ∈ ker(∆t), ‖ϕ‖ = 1. Let us choose δ > 0
fixed but arbitrarily small, δ << ε (ε as in (3.1)).

Lemma 3.12. — Let φ : cone(S1
m) → R be a smooth function on

cone(S1
m). Let χ, ρ : cone(S1

m) → [0, 1] be cutoff functions with the fol-
lowing properties

(3.53) suppχ ⊂ cone(S1
m) \ coneδ/2(S1

m), χ|cone(S1
m)\coneδ(S1

m) ≡ 1

and

(3.54) supp ρ ⊂ cone(S1
m) \ coneδ(S1

m), ρ|cone(S1
m)\cone2δ(S1

m) ≡ 1.

Denote by u := χϕ. Then the following formula holds:〈
e2tφ 1

t2
∆tu, ρ

2u

〉
= 1
t2
〈
∆etφu, ρ2etφu

〉
+
〈(
| ∇f |2 − | ∇φ |2 +1

t
Gf,Φ

)
etφu, ρ2etφu

〉(3.55)

where Mf := L∇f + L∗∇f and Gf := Mf + L∇φ − L∗∇φ.
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Proof. — The formula (3.55) is a direct consequence of (3.52). Note that
u has support outside the cone point. �

Lemma 3.13. — The notations are as in the previous lemma. Let a1 =
maxx∈cone2δ(S1

m)\coneδ(S1
m) φ(x). Then

(a) 1
t2

〈
D(ρetφu), D(ρetφu)

〉
+
〈(
| ∇f |2 − | ∇φ |2 + 1

t
Gf,Φ

)
etφu, ρ2etφu

〉
6

C(ρ) · e2ta1‖ϕ‖2,
(b) 1

t2

〈
D(ρetφu), D(ρetφu)

〉
+
〈(
| ∇f |2 − | ∇φ |2 + 1

t
Mf

)
etφu, ρ2etφu

〉
6

C(ρ, φ) · e2ta1‖ϕ‖2,

where C(ρ) is a constant depending only on ρ|cone2δ(S1
m)\coneδ(S1

m) and
C(ρ, φ) is a constant depending only on ρ|cone2δ(S1

m)\coneδ(S1
m) and

φ|cone2δ(S1
m)\coneδ(S1

m).

Proof. — (a) Let us denote by v := etφu. We deduce the formula in a)
from (3.55). Since ∆tϕ = 0 and using that supp ρ ⊂ {x | χ(x) = 1} we get
for the left hand side of (3.55)

(3.56)
〈
e2tφ 1

t2
∆tu, ρ

2u

〉
= 0,

and therefore

(3.57) 0 = 1
t2
〈
∆v, ρ2v

〉
+
〈(
| ∇f |2 − | ∇φ |2 +1

t
Gf,Φ

)
v, ρ2v

〉
.

We reformulate the term
〈
∆v, ρ2v

〉
as follows (see [20], Lemma 2.34):

(3.58)
〈
∆v, ρ2v

〉
= ‖D(ρv)‖2 − ‖[D, ρ]v‖2,

where [D, ρ] = Dρ− ρD is a zeroth order operator with support in cone2δ
(S1
m) \ coneδ(S1

m).
By plugging in (3.58) into (3.57) and using again the properties of the

cut-off functions ρ and χ we get:

1
t2
〈D(ρv), D(ρv)〉+

〈(
| ∇f |2 − | ∇φ |2 +1

t
Gf,Φ

)
v, ρ2v

〉
= 1
t2
‖[D, ρ]v‖2 = 1

t2
‖[D, ρ]etφϕ‖2 6 1

t2
C(ρ) · e2a1t‖ϕ‖2.

(3.59)

(b) Note first that

(3.60)
〈
v,L∇φ(ρ2v)

〉
=
〈
v, ρ2L∇φv

〉
+
〈
v, dρ2∧(∇φ v)

〉
+
〈
v,∇φ (dρ2∧v)

〉
.

Now, since dρ2 has support in cone2δ(S1
m) \ coneδ(S1

m), we get

(3.61) |〈v, dρ2 ∧ (∇φ v〉| 6 C(ρ, φ)e2ta1‖ϕ‖2
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and

(3.62) |〈v,∇φ (dρ2 ∧ v)〉| 6 C(ρ, φ)e2ta1‖ϕ‖2

for some appropriate constant C(ρ, φ) depending on ρ|cone2δ(S1
m)\coneδ(S1

m)
and φ|cone2δ(S1

m)\coneδ(S1
m).

Thus using (3.60), (3.61) and (3.62)

〈
Gf,φv, ρ2v

〉
= 〈Mfv, ρ

2v〉+ 〈L∇φv, ρ2v〉 − 〈v,L∇φ(ρ2v)〉

= 〈Mfv, ρ
2v〉 − 〈v, dρ2 ∧ (∇φ v)〉 − 〈v,∇φ (dρ2 ∧ v)〉

> 〈Mfv, ρ
2v〉 − 2C(ρ, φ)e2ta1‖ϕ‖2.

(3.63)

The claim in b) follows from Part a) and (3.63). �

The Lithner-Agmon metric on the infinite cone is the (degenerate) metric
| ∇f |2 gconf . We denote by d := d(0, ) : cone(S1

m)→ R the induced Agmon
distance (from the cone point). Note that | ∇d |=| ∇f | almost everywhere.
Recall that near the cone point

(3.64) | ∇f |2= (a2 + b2) + higher order terms in r

and therefore it is not difficult to see, that there exist constants 0 < c1 < c2
such that
(3.65)

max
x∈cone2δ(S1

m)\coneδ(S1
m)
d(x) 6 c1δ < c2δ 6 inf

x∈cone(S1
m)\cone3δ(S1

m)
d(x).

Proposition 3.14. — Let Ω := cone(S1
m) \ cone2δ(S1

m). For ε̃ > 0 let
us denote by dε̃ := (1 − ε̃)d. Then there exists C > 0, t0(ε̃) > 0 such that
for t > t0(ε̃) we get

(3.66) 1
t2
‖D(edε̃tϕ)‖2L2(Ω) + ε̃2

2 ‖e
dε̃tϕ‖2L2(Ω) 6 Ce

2c1(1−ε̃)tδ.

Proof. — We apply Lemma 3.13 (b) with Φ := dε̃ = (1− ε̃)d. We denote
by

(3.67) Vt :=| ∇f |2 − | ∇Φ |2 +1
t
Mf .

Since | ∇f |2=| ∇d |2 we get

(3.68) Vt =| ∇f |2 (1− (1− ε̃)2) + t−1Mf =| ∇f |2 (2ε̃− ε̃2) + t−1Mf .

Since Mf is a bounded operator outside a neighbourhood of the cone point
(indeed Mf = 0 for r > ε) we get:

(3.69) Vt > c
ε̃2

2
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for t large enough outside a small neighbourhood of the cone point. Apply-
ing Lemma 3.13 (b) we now get:

1
t2
‖D(ρetdε̃u)‖2 + ε̃2

2
〈
etdε̃u, ρ2etdε̃u

〉
6 C · e2c1tδ(1−ε̃)‖ϕ‖2,(3.70)

and therefore
1
t2
‖D(etdε̃ϕ)‖2L2(Ω) + ε̃2

2 ‖e
tdε̃ϕ‖2L2(Ω) 6 C · e

2c1(1−ε̃)tδ‖ϕ‖2.(3.71)

�

The next corollary shows that the L2-norm of ϕ is concentrated near the
cone point.

Corollary 3.15. — Let Ω ⊂ cone(L) \ cone3δ(L). Then there exists
c > 0 such that

(3.72) ‖ϕ‖2L2(Ω) = O(e−ctδ).

Proof. — From Proposition 3.14 we get

(3.73) ‖etdε̃ϕ‖2L2(Ω) 6
C

ε̃2
e2c1tδ(1−ε̃).

Since d > c2δ on Ω we get

(3.74) ‖ϕ‖2L2(Ω) 6
C

ε̃2
e−2(c2−c1)t

and the claim follows. �

As in [14] (p. 24) using a priori estimates for the elliptic operator ∆ and
Proposition 3.14 we get pointwise estimates for ϕ ∈ ker(∆t).

Corollary 3.16. — There exists C > 0 such that for x ∈ coneε/2(L) \
cone2δ(L) we have

(3.75) | ϕ(x) |6 Ce2ctδe−td(x)(1−ε̃).

Similar estimates can be shown for the derivatives of ϕ.

4. Proof of the spectral gap theorem
and the Morse inequalities

Proof of Theorem 1.2 (a). — The proof of the spectral gap theorem
consists in two steps. The first step, namely the developing of a model
operator for ∆t in the neighbourhood of a singular point p ∈ Σ of X has
already been done in Section 3. In the second step of the proof it is now
enough to follow the strategy of proof in the smooth case. We follow here
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the proof in [2], Section 9 and just give a rough outline. (Compare also
[16] where the proof is detailed for the model case of a complex curve
with cone-like singularities). Recall from the smooth theory that the model
Witten Laplacian ∆p

t in the neighbourhood of a critical point p ∈ X \ Σ
has discrete spectrum spec(∆p

t ) = 2tN and dim ker(∆p
t ) = 1. We denote

by ωp(t) the generator of ker(∆p
t ). For a singular point p ∈ Σ we denote

by {ωpj (t) | j = 1, . . . , np} the union of the bases of the kernels of all model
operators at p. (Recall that we have a model for each branch separately).
Let µε : R+ → R be a cut-off function with µε = 1 in [0, ε/4], supp(µε) ⊂
[0, ε/2]. The forms Φpj (t) := µε(| x |)ωpj (t) can be identified with L2-forms
on X. We denote by

E(t) := span
{
{Φp1(t) := µεω

p(t) | p ∈ Crit(f) \ Σ}
∪ {Φpj (t) | p ∈ Σ, j ∈ Ip := {1, . . . , np}}

}
.

We get an orthogonal splitting L2(Λ∗(T ∗(X \ Σ))) = E(t) ⊕ E(t)⊥. The
closed operator At := dt + δt with dom(At) = dom(dt) ∩ dom(δt) ⊂
L2(Λ∗(T ∗(X \ Σ))) can be written in matrix form

At =
(
At,1 At,2
At,3 At,4

)
according to the splitting E(t)⊕ E(t)⊥.

Note that dom(At) equipped with the norm ‖u‖1 :=
√
‖(d+ δ)u‖2 + ‖u‖2

is complete. One can show the following estimates on At as t→∞: �

Proposition 4.1. — There exist constants c, C > 0 and t0 > 0 such
that for all t > t0 we have

(a) For all u ∈ E(t) we have ‖Atu‖ = O(e−ct)‖u‖. In particular ‖At,1u‖
= O(e−ct)‖u‖, ‖At,3u‖ = O(e−ct)‖u‖.

(b) For all u ∈ E(t)⊥∩dom(At) we get: ‖At,2u‖ 6 O(e−ct)‖u‖, ‖At,4u‖
> C(‖u‖1 +

√
t‖u‖).

Remark 4.2. — Note that the second estimate in (b) implies that
〈∆tu, u〉 > t‖u‖2 for all u ∈ dom(∆t) ∩ E(t)⊥.

The proof of Proposition 4.1 is similar to the corresponding statements
in the smooth case (see [2], Section 9) and we omit the details here.
Note that to prove the estimates for forms s with support in a neigh-
bourhood of a singular point of X Theorem 3.3 on the spectrum of the
model Witten Laplacian as well as the decay of the eigenforms in the local
model (Corollary 3.15 and Corollary 3.16) are crucial. As in [2], Section 9
(c) and (e), Proposition 4.1 allows to give estimates for the resolvent of
At−λ : dom(At)→ L2(Λ∗(T ∗(X \Σ))

)
, where λ ∈ C, | λ |∈

[
e−ct/2, C

√
t

2

]
,
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with constants c, C as in Proposition 4.1. We deduce the invertibility of
the operator At − λ, and since ∆t − λ2 = (At − λ)(At + λ) we thus get
Theorem 1.2(a).
Proof of Theorem 1.2(b) and Corollary 1.3. — For i = 0, 1, 2 we define

the R-vector space Ci by

(4.1) Ci :=
⊕

p∈Criti(f)\Σ

R · ep1 ⊕
⊕

p∈Criti(f)∩Σ,j∈Ip

R · epj .

We define a linear map

(4.2) Ji(t) : Ci −→ Ct,i, Ji(t)(epj ) = Φpj (t).

We denote by (Ft, dt, 〈 , 〉) the subcomplex of (Ct, dt, 〈 , 〉) generated by
the eigenforms of ∆t to eigenvalues lying in [0, 1]. We denote moreover by
P (t, [0, 1]) the orthogonal projection operator from Ct on Ft with respect
to 〈 , 〉.

Note first that for all forms in E(t) we have 〈∆tϕ,ϕ〉 6 O(e−ct)‖ϕ‖2.
Therefore by the Rayleigh-Ritz principle it is clear that dimFit > dimEi(t)
= dimCi = ci(f). We show now that the linear map Pi(t, [0, 1]) ◦ Ji(t) :
Ci −→ Ft,i is a surjective map from Ci onto Ft,i, i.e., that Imi(t) :=
Pi(t, [0, 1]) ◦ Ji(t)(Ci) = Ft. Let 0 6= u ∈ Ft ∩ Im(t)⊥. Using the self-
adjointness of the projection P (t, [0, 1]) we get:

(4.3) 0 = 〈u, P (t, [0, 1])J(t)epj 〉 = 〈P (t, [0, 1])u, J(t)epj 〉 = 〈u, J(t)epj 〉.

Equation (4.3) implies that u ∈ E(t)⊥ and therefore by Proposition 4.1/Re-
mark 4.1

(4.4) 〈∆tu, u〉 > t‖u‖2,

which is a contradiction to u ∈ Ft.
Therefore the complex (Ft, dt, 〈 , 〉) is a finite dimensional subcomplex of

(Ct, dt, 〈 , 〉) with dimFt,i = ci(f). By Proposition 1.1 moreover H∗(2)(X) '
ker(∆t) ' H∗((Ft, dt, 〈 , 〉)). The Morse inequalities in Corollary 1.3 now
follow by a standard algebraic argument. �
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