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RAMIFICATION AND MODULI SPACES OF FINITE
FLAT MODELS

by Naoki IMAI

ABSTRACT. — We determine the type of the zeta functions and the range of
the dimensions of the moduli spaces of finite flat models of two-dimensional local
Galois representations over finite fields. This gives a generalization of Raynaud’s
theorem on the uniqueness of finite flat models in low ramifications.

RESUME. — Nous déterminons le type des fonctions zéta et la gamme des di-
mensions des espaces des modules des modéles plats finis des représentations ga-
loisiennes locales & deux dimensions sur corps finis. Cela donne une généralisation
du théoréme de Raynaud sur 'unicité de modéles plats finis dans les petites rami-
fications.

Introduction

Let K be a finite extension of the field Q, of p-adic numbers. We assume
p > 2. Let e be the ramification index of K over @, and k be the residue
field of K. We consider a two-dimensional continuous representation Vi
of the absolute Galois group G over a finite field F of characteristic p.
By a finite flat model of Vg, we mean a finite flat group scheme G over
Ok, equipped with an action of F, and an isomorphism Vz — G(K) that
respects the action of Gg and F. We assume that Vg has at least one
finite flat model. If e < p — 1, the finite flat model of Vg is unique by
Raynaud’s result [3, Theorem 3.3.3]. In general, there are finitely many
finite flat models of Vi, and these appear as the F-rational points of the
moduli space of finite flat models of V&, which we denote by ¢Zy;, o. It is
natural to ask about the dimension of 4%y, . In this paper, we determine
the type of the zeta functions and the range of the dimensions of the moduli
spaces. The main theorem is the following.

Keywords: Group scheme, moduli space, p-adic field.
Math. classification: 11F80, 14D20.
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THEOREM. — Let dy, = dimY%v, 0, and Z(9Rv,0;T) be the zeta
function of Y&y, . We put n = [k : F,,]. Then followings are true.

(1) After extending the field F sufficiently, we have

dvi
20 T) = [[(1 - [FFT) ™
i=0
for some m; € 7 such that My, > 0.
(2) If n =1, we have

If n > 2, we have

n+1 e n—2{e+1 e+ 2
< < .
O\dVF\[ 2 HP+J+{ 2 Hpﬂ}j{pﬂ}

Here, [x] is the greatest integer less than or equal to x for x € R.
Furthermore, each equality in the above inequalities can happen
for any finite extension K of Q.

Raynaud’s result says that if e < p — 1 then Y%y, o is one point, that
is, zero-dimensional and connected. If ¢ < p — 1, the above theorem also
implies that ¥Z%v;, o is zero-dimensional. So it gives a dimensional gener-
alization of Raynaud’s result for two-dimensional Galois representations.
The connectedness of 9%y, o is completely false in general. For example,
we can check that if K = Q,(¢,) and Vg is trivial representations then
G R0 consists of P and two points (cf. [2, Proposition 2.5.15(2)]). Here
P} denotes the 1-dimensional projective space over F.

In the section 1, we recall the moduli space of finite flat models, and give
some Lemmas. We also give an example for any K where the moduli space
of finite flat models is one point.

A proof of the main theorem separates into two cases, that is, the case
where VF is not absolutely irreducible and the case where Vf is absolutely
irreducible. In section 2, we treat the case where Vf is not absolutely irre-
ducible. In this case, we decompose ¥ Zv, o into affine spaces in the level
of rational points. Then we express the dimensions of these affine spaces
explicitly and bound it by combinatorial arguments. In section 3, we treat
the case where Vf is absolutely irreducible. A proof is similar to the case
where Vg is not absolutely irreducible, but, in this case, we have to de-
compose YZy, o into A% and A%fl x G,, and A%fz x G2, in the level of
rational points. Here A% denotes the d-dimensional affine space over F, and
Gy is At — {0}.

ANNALES DE L’INSTITUT FOURIER
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In the section 4, we state the main theorem and prove it by collecting
the results of former sections.
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Notation

Throughout this paper, we use the following notation. Let p > 2 be a
prime number, and k be the finite field of cardinality ¢ = p™. The Witt ring
of k is denoted by W (k). Let Ky be the quotient field of W (k), and K be
a totally ramified extension of K of degree e. The ring of integers of K is
denoted by O, and the absolute Galois group of K is denoted by G . Let F
be a finite field of characteristic p. For a ring A, the formal power series ring
of u over A is denoted by A[[u]], and we put A((u)) = A[[u]](1/u). For a
field F, the algebraic closure of F is denoted by F and the separable closure
of F is denoted by F*°P. Let v, be the valuation of F((u)) normalized by
vy (u) = 1, and we put v, (0) = oo. For z € R, the greatest integer less than
or equal to z is denoted by [z]. For a positive integer d, the d-dimensional
affine space over F is denoted by AZ. Let G,, be AL — {0}.

1. Preliminaries

First of all, we recall the moduli spaces of finite flat models constructed
by Kisin in [2].

Let VF be a continuous two-dimensional representation of G over F. We
assume that Vg comes from the generic fiber of a finite flat group scheme
over Ok . The moduli space of finite flat models of V, which is denoted by
YRy, 0, is a projective scheme over F. An important property of ¢Z%v; o
is the following Proposition.

PROPOSITION 1.1. — For any finite extension F' of F, there is a natural
bijection between the set of isomorphism classes of finite flat models of
Ve = V5 Qp I/ and g%VF,O(FI)-

TOME 61 (2011), FASCICULE 5
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Proof. — This is [2, Corollary 2.1.13]. O

Let & = W(k)[[u]], and O¢ be the p-adic completion of &[1/u]. There
is an p-adically continuous action of ¢ on Og¢ determined by Frobenius on
W(k) and uw — uP. We fix a uniformizer m of Ok, and choose elements
mm € K such that mp = 7 and W%—H = 7y, for m > 0, and put K, =
U0 K (m)-

Let ®Mo, r be the category of finite (Og ®z, F)-modules M equipped
with ¢-semi-linear map M — M such that the induced (Og ®z, F)-linear
map ¢*(M) — M is an isomorphism. Let Repp(Gg_, ) be the category of
continuous representations of G, over F. Then the functor

T : ®Mo, ¢ — Repp(Gr.); M = (k((w))* @y M)”

=1

gives an equivalence of abelian categories as in [2, (1.1.12)]. Here ¢ acts on
k((u))®P by the p-th power map. We take the ¢-module My € ®Mp,  such
that T'(Mr) is isomorphic to Vi(—1)|c,_ . Here (—1) denotes the inverse
of the Tate twist.

The moduli space Y%y, is described via the Kisin modules as in the
following.

PROPOSITION 1.2. — For any F-algebra A, the elements of 9%y, o(A)
naturally correspond to finite projective (k[[u]] ®r, A)-submodules M4 C
My ®p A that satisfy the followings:

(1) 94 generates My @ A over k((u)) ®r, A.
(2) ucMNM 4 C (1 ® Qﬁ)((b*(QﬁA)) CMy.

Proof. — This follows from the construction of ¥Zy; ¢ in [2, Corol-
lary 2.1.13]. O

By Proposition 1.2, we often identify a point of Y%y, o(F’) with the
corresponding finite free k[[u]] ®p, F'-module.

From now on, we assume Fy2 C F and fix an embedding k& — F. This
assumption does not matter, because we may extend F to prove the main
theorem. We consider the isomorphism

O @, F2 k(W) @, FS [ Fl(w)
ocGal(k/Fp)

(Z aiui) ®b— (Z a(ai)bu’)

and let €, € k((u)) ®r, F be the primitive idempotent corresponding to o.
Take o1, ,0, € Gal(k/F,) such that 0,41 = 0; 0 ¢~ 1. Here we regard
¢ as the p-th power Frobenius, and use the convention that o,4; = ;. In
the following, we often use such conventions. Then we have ¢(es,) = €5,

ag
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and ¢ : My — My determines ¢ : e, My — €5, Mp. For (A;j)ici<n €
GLo (F((u)))n, we write

My ~ (A1, As, .. Ay) = (Ai)i

; i+l
if there is a basis {e!, €4} of €, My over F((u)) such that ¢ (Z’1>:Ai (Z}+1> .
2 2

We use the same notation for any sublattice 9 C My similarly. Here and
in the following, we consider only sublattices that are (& ®z, F)-modules.

Let A be an F-algebra, and 94 be a finite free (k[[u]] ®r, A)-submodules
of Mr ®r A that generate My ®r A over k((u)) ®r, A. We choose a basis
{el, eb}; of M4 over k[[u]]@r, A. For B = (B;)1<i<n € GL2 (F((u))@FPA)n,
the (6®z, A)-module generated by the entries of <Bi (le> > forl1<i<n

2
with the basis given by these entries is denoted by B-91 4. Note that B-91 4

depends on the choice of the basis of M 4. We can see that if My ~ (A;);
for (A;)1<ign € GLo (F((u)))n with respect to a given basis, then we have
B -9 ~ <¢(Bi)Ai(Bi+1)_1)i

with respect to the induced basis.

LEMMA 1.1. — Suppose I’ is a finite extension of F, and x € 4Ry, o(F')
usi Vji

0 utj.i>> ~ My for 1 < j <2,

Sji,tji € Z and vj; € F'((u)). Assume My p and My correspond to
x1, 22 € YRy, o(F') respectively. Then x1 = x5 if and only if

corresponds to Mp:. Put M; pr = (

814 =824, t1; = ta; and v1; — va; € u'VF'[[u]] for all i.

Proof. — The equality 1 = x5 is equivalent to the existence of B =
(Bi)igi<n € GLo(F'[[u]])™ such that

g (W v (S
L0 wti) 0wtz

for all 4. It is further equivalent to the condition that

) € GLy(F'[[u])

for all 7. The last condition is equivalent to the desired condition. g

8$2,i—S1,i b1 g,82,i—81,i—t1q .
u k3 K3 U27zu K3 u k3 K2 7/1}171
0 th,q‘,—tl,i

LEMMA 1.2. — Suppose Vf is absolutely irreducible. If F' is the qua-
dratic extension of F, then

0 aq Q2 0 Qn 0
M, F ~
" ((alum 0)’(0 ag)’ ’(0 an)>
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for some «; € (F')* and a positive integer m such that (¢ + 1)  m. Con-
versely, for each positive integer m such that (¢ + 1) { m, there exists an
absolutely irreducible representation Vg as above.

Proof. — The first statement is [1, Lemma 1.2], and the second statement
follows from the proof of [1, Lemma 1.2]. We have used the assumption
Fe,> C IF in this Lemma. g

e

PRrRoOPOSITION 1.3. — If Mp ~ ((0 1

“ u)) , then 9%y, o(F’) is one

point for any finite extension F' of TF.

Proof. — Let Mg r be the lattice of My generated by the basis giving

My ((f 1;))2,

and let Mo = Mo r @r F’ for finite extensions F of F. Then My g gives
a point of YZv, o(F’'). By the Iwasawa decomposition, any point Mg of

G R v, o(F') is written as ((u
F((u)). Then we have

m uPsi ¢(Ui) ué u uSi+t _Ui+1u3¢+1—ti+1
" 0o wt)\0 1 0 utie ,

<<ue_p3i+5i+1 ul=Psi—tit1 + ¢(Ui)u—ti+1 _ Ui+1u€_p5i+5i+1_ti+l>>
[

—8; v;

0 uti)> - Mo for s;,t; € Z and v; €
i

0 yPti—ti+1

with respect to the basis induced from the given basis of My . We put
ri = =0y (v;).

By u*Mp C (1@ ¢) (qﬁ*(i)ﬁp)) C My, we have e — ps; + s;41 < e and
pt; —t;41 = 0 for all 7, so we get s;,t; > 0 for all 4.

We are going to show that 1 — ps; — t;41 > 0 for all . We assume
that 1 — ps;, — tiy+1 < 0 for some ig. Then vy, (v, 41ué Psio Tsio+1~tio+1)
1—ps;, —ti,+1, because gb(vio)zftio+1 has no term of degree 1 —ps;, —t;,+1.
So we get r;,+1—Siy+1 = €—1 > 0. Take an index ¢; such that r;, —s;, is the
maximum. We note that r;, — s;, = 0. Then we have v, (¢(vil)u*ti1+1) =
Vg (Vg 41 usPE TSt +1) Tbecause vy, (G(v;, )u"t+1) < —ps;, —ti, 1. So
we get 7,41 — Siy+1 = p(Ti, — 84, ) +ery, —s;, . This is a contradiction. Thus
we have proved that 1 — ps; — t;41 = 0 for all 4, and this is equivalent to
that s; =0 and 0 < t; < 1 for all 4.

ANNALES DE L’INSTITUT FOURIER
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We assume t; = 1 for some i. Then we have t; = 1 for all 7, because
pti_1 —t; = 0 for all i. We show that r; < —1 for all . We take an index
19 such that r;, is the maximum, and assume that r;, > 0. Then we have
Tis41 = DTy + € > 14y, because vy, (14 ¢(vi,)u™ — vi,41u"t) > 0. This is
a contradiction. So we have r; < —1 for all . Then we may assume v; = 0

for all ¢ by Lemma 1.1. Now we have Mg ~ ((% up1_1)> , but this

contradicts u*Mp C (1@ @) (¢ (M)).

Thus we have proved s; = t; = 0 for all i. Then we have r; < 0, because
Uy (u+@(v;) —vir1u€) > 0. So we may assume v; = 0 for all ¢ by Lemma 1.1,
and we have My = M . This shows that YZv, o(F') is one point. O

2. The case where Vx is not absolutely irreducible

In this section, we give the maximum of the dimensions of the moduli
spaces in the case where Vf is not absolutely irreducible. We put dy, =
dim 9%y, 0. In the proof of the following Proposition, three Lemmas ap-
pear.

ProrPOSITION 2.1. — We assume Vg is not absolutely irreducible, and
write e = (p+1)eg + e for ey € Z and 0 < e; < p. Then the followings are
true.

(1) There are m; € Z for 0 < i < dy, such that m; > 0, My, > 0 and

v,

%Ry o(F)| =Y milE[

i=0
for all sufficiently large extensions F' of FF.
(2) (a) In the case 0 < e; < p — 2, we have dy, < neg. In this case, if

u®° 0
M]FN <(0 ’U,peo)) )

then dy, = neg.
(b) In the case ey = p — 1, we have dy, < neg + 1. In this case, if

u®o 0
Mg ~ (( 0 upeo+p1)> )

then dy, = neg + 1.

TOME 61 (2011), FASCICULE 5
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(¢) In the case e; = p, we have dy, < neg+max{[n/2],1}. In this
case, if n = 1 and

uco 0
Mg ~ ( 0 uP@oerl) )

then dy, = ep+ 1, and if n > 2 and

ufoi 0
Mg ~ (( 0 UP(2€0+1—60.i)>> ’

then dy, = neg + [n/2]. Here, eg; = eg if i is odd, and eg; =
eo + 1 if i is even.

Proof. — Extending the field F, we may assume that Vg is reducible. Let
Mo be a lattice of My corresponding to a point of Y%y, o(F). Then we
take and fix a basis of Mo over kf[u]] ®F, F such that

au™t wo

for oy, B € F*, 0 < ag,i,bos < e and wp,; € F[[u]]. For any finite extension
F' of F, we put Mo = Mo @ F' and My = My Qp F'. By the Iwasawa

ust v
decomposition, any sublattice of Mp can be written as (( 0 uf))

Mo for s;,t; € Z and v} € F'((u)).
We put

I={(ab)eZ"x7L" ’ a = (a;)1<i<ns b= (bi)1<i<n, 0 < a;,b; < e},

and

GRV: 0,00(F') =

S; /
{<(u0 ;:tl>> Mo € GRvi o(F') | sisti € Z,vj € F'((u)),

(3

a; = Qo + PS; — Six1, by = bo; + pt; — ti+1}

for (a,b) = ((ai)1<i<n, (bi)1<z‘<n) € I. Then we have

%%VF»O(F/): U g%VMO,E&(F/)?

(a,b)erl

and this is a disjoint union by Lemma 1.1.

ANNALES DE L’INSTITUT FOURIER
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0 ub

S; /
Take My = ((u UZ)) - Mo € GAvi0,ap(F") with the basis

7

. . a;u® w;
induced from the basis of Mg g, then Ny ~ << 0 6»ubi>> for some

(wi)1<ign € F'[[u]]™. We note that a; + b; — v, (w;) < e for all ¢ by the
condition u*Mp C (1® ¢)(¢*(Mpr)).
Now, any M, € GAv, 0,0.(F') can be written as (((1) ?)) - M for

some (v;)1<icn € F'((u))™. With the basis induced from 9y, we have

’ 1 (b(’l)i) a;u W; 1 —vi .
EmlFW((o 1 >< 0 Biubi) (0 1 >)

au® w; — autivigg + Biubig(v;)
0 Biubi )

We are going to examine the condition for (v;)1<icn € F/((u))™ to give a
1 V;

point of ¥Zv, 0,a.p(F) as ((0 1

may assume that 4%y, 0..(F) = 0 if and only if ¥%v, 0,q.5(F') = 0 for
each (a,b) € I and any finite extension F’ of F.
For (v;)1<i<n € F'((u))", we have

1 v
My = <<0 11)) My € GRvz,0,a,0(F)

)> - Mp. Extending the field F, we

if and only if
Vu (wl —autviy + ﬂiubi(b(vi))? 0
and
vu(eiu™) + vy (Biu?) = vy (wi — au® i + Biub é(v;)) < e for all 4,

by the condition u*Mf, C (1 ® ¢)(¢*(Mfy)) C Mp,. This is further equiv-
alent to

Uy (aiu‘“viﬂ — &ub’iqﬁ(vi))Z max{0,a; + b; — e},
because v, (w;) = max{0, a; + b; — e}. We put r; = —v,(v;), and note that

Uy (i—1u®'v;) 2 max{0,a;—1 + b;—1 — e} < r; < min{a;—1,e — bi_1},

b
Uy, (Biubiqﬁ(vi))} max{0,a; +b; —e} & r; < min{ ¢ paz , p’}

TOME 61 (2011), FASCICULE 5
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We define an F'-vector space Ny p 5 by

N@QJF’ ={(v1,...,vn) €F((w)" |
Uy (aiuai’l)i+1 — Biu® ¢(vz))> max{0,a; + b; — e} for all Z}

We note that ng@p O F[[u]]™, and put Ngpr = ]\NJQ&VF//F’[[u]]". Then
we have a bijection Ny p 5 — Y% vi,0,a,6(F') by Lemma 1.1. We put dg, =
dimps Ng p e, and note that dimgs Ny p p is independent of finite extensions
F" of .

We take a basis (v;)1<j<d,., of Napr over F, where v; = (vj1,...,vjn) €
F((u))". Then, by Proposition 1.2, an (F[[u]] ® F[X1,..., Xq, ,])-module

- ((1 > Uj,in>> - (M @r F[X1, ..., X4, ,))

!
M, ... x4

a,b

0 1

gives a morphism f,p : A;ﬁé — YA, o such that f,,(F') is injective and
the image of fo (') is 9% 0,0,6(F'). Then we have (1) and
{dap}-

dy, = max
(a,D)ET, GRvi,0,a.b(F)FD

Before going into a proof of (2), we will examine d, ; to evaluate dy,. We
put

vi=u" ",

Sg@,i = {(0’ tee 7Oavi707~ .. ,O) (S F((’U,))n

. e—a; b;
1<n<mln{ai1,e—bi17 Z,Z}}

p p

for 1 <i<n,

v =u ",

Sg,b, = {(Oa . 'aoavivvi+1a s 7Ui+j30a e 30) € F((u))n
1 <

%,
<y

min{a;_1,e —bi_1}, aiu® v = BiulFo(viy)

and —vy (vigr41) > min{a;4g,e — by for 0 <l < j—1,

. [e—air; biyy
—vu(viﬂ)gmm{w,l”}}

p p
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forl<i<nand1<j<n-—1,and

Sab = {(Uh o) € F((u)" | aguivig = Biubip(v;), vy = u ()
and —uvy(v;y1) > min{a;, e — b;} for all z}

In the above definitions, v; is on the i-th component. Clearly, all elements
of U, Sapi U U” Sab,ij USap are in Nopp.

LEMMA 2.1. — The image of |J; Sa.p,:UU; j Sab,i,jUSap in Nap forms
an F-basis of Ng p .

Proof. — It is clear that the image of |J; Sa,bi U U, j Sab,ij U Sap in
Ny are linearly independent over F. So it suffices to show that | J; Sg ;U
Uij Sap.ij U Sap and Flu]]" generates Ng,g,w We take (vi,...,v,) €
]\Nfg,Q’F. We want to write (v1,...,v,) as a linear combination of elements
of U; Sa,p,i U U” Sabyi,j U Sap and Fl[u]]™.

First, we consider the case where there exsits an index iy such that
—0y (Vi) > min{a;,—1,e—b;,—1, (e—as,)/p, biy /P}. Then there are following
two cases:

(i) There are 1 < i3 < nand 1 < j; < n—1 such that i € [i1,41 + j1],
1 < —vyu(v;;) <minfa;,—1,e — b, —1}, @iy+1 + 00 (Vi i41) = biy 41+
Py (Vi; +1) and —vy, (v4, +141) > minf{a;,e—bip for 0 <1< 51 —1
and _Uu(vi1+j1) < min{(e - a’ilJrjl)/p? (bi1+j1)/p}'
(i) a; + vu(vit1) = bi + puy(v;) and —vy(viy1) > min{a;,e — b;} for
all 7.
In the case (i), we can subtract a linear multiple of an element of Sy, 5,
from (v1,...,v,) so that the u-valuations of the i-th component increase
for all i € [i1,i1 + j1]. In the case (ii), we can subtract a linear multiple
of an element of S, from (vi,...,v,) so that the u-valuations of the i-th
component increase for all 1.
Repeating such subtractions, we may assume that

—vy(v;) < min{a;—1,e — bi—1, (e — a;)/p, b; /p}
for all ¢. Then we can write (v1,...,v,) as a linear combination of elements
of |, Sa,p,i and Fl[u]]™. 0O

By Lemma 2.1, we have dap = >, [Sapil + 22 [Sap.ijl + [Sapl- We
note that 0 < [Sup| < 1 by the definition, and put dj, , = >, [Sap.il +

Zi,j ‘Sﬁyé7i,j|~

TOME 61 (2011), FASCICULE 5
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We put

TQ,QJ' =

{mEZ

and consider the map

p p

e—a; b;
min{a;—1,e —b;—1} < pm+a;—1 —bi_1 < min{ : Z}}a

U Sabii = Tapn; (Vin)igirgn = —vu(Vh-1).
itj=h
We can easily check that this map is injective. So we have 3, i, [Sap,ij| <
|Ta,b,n| and d/g,g < 21@@1(‘5&2# g’b,iD'
We take (a/,b') € I such that Y7y, (ISarp.il + [Tor v i) is the maxi-
muil.

LEMMA 2.2. — |T ;| < 1 for all i.
Proof. — We assume there is an index ig such that [T, ;.| > 2. We
note that
) (e—a, U
(%) min{a;, _;,e—0b;j, 1} +p+1 <m1n{ . Zo’;)o}
by |Tar v ,i| = 2. We are going to show that we can replace a; _,b; _; so

that 301 <, (1Sar il +|Tw p.i]) increases. This contradicts the maximality
of 31 icn (ISar b il + [Tarpril). We divide the problem into three cases.

Firstly, if aj,_; +2 <e—b} _,, we replace a} _, by aj _, + p, and note
that aj,_; +p < e by (). Then there is no change except for Su' v/ i1,
Sar v ios Tar v io—1 and Ty p ;0. We can see that |Sy ;| increases by at
least 2. The condition that there exists m € Z such that

/ . / /
mln{azo—la 10 1 <pm+ az(,— = b,y <min{a;,_; +p,e—b 1},

0
is equivalent to the condition that there exists m € Z such that
e—a, bl e—aj bl
min{“’l, 01} <m< min{“’l ol 1}
p p p p
and further equivalent to the condition that there does not exists m € Z
such that
li / !
min{ T 1, big—1 } <m < min{e — Yo L Vg1 }
p p p p
If the above condition is satisfied, then [Su 4 io—1|, |Tar b/ ig—1] do not
change and [Ty ;,| decreases by 1. Otherwise, [Sa v io—1| + [Tar v/ io—1]
decreases by at most 1 and |1,/ ;,| does not change. In both cases, we
have that >3, ;. (|Swr b w.v.i|) increases by at least 1.
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Secondly, if aj | > e—b; _; +2, we replace b _, by b} _; —p. Then, by
the same arguments, we have that Zl<i<n<|5g’,b’7i| + [Ty r,i]) increases
by at least 1.

In the remaining case, that is the case where a; ; —1 < e—bj | <
a;,_y + 1, we replace aj _, b; | by aj,_; + p, b _; — p respectively,
and note that aj,_; +p < e and b _; —p > 0 by (). Then there is no
change except for Sus p io—1, Sar b’ ie> Lar b io—1 and Tor pr ;.. We can see
that |Se/ v ig—1| + |Tar b ,io—1| decreases by at most 1, [Syr 4 i, | increases by
pand |Ty y ;,| decreases by 1. Hence Yy <o, (ISar pil + T 1 i]) increases
by at least p — 2 > 0.

Thus we have proved that |T,/ ;| < 1 for all i. O

LEMMA 2.3. — For all i, we have the followings:
(Ay) If|Ser v il + | Ta pr il = eo+1 forl > 1, then
|Sg’,Q',i+1| —+ |Tg/,g/,i+1‘ < €o —+ €1 — pl + ].

(Bi) If |Sar il + | Twr il = €0 + 1 and [Sarpiv1] + [T v iv1] = €0 +
e; —p+1, then

|Sg’,g’,i+2| —+ |Tg’,é’,i+2| <ey— (p — 1)61 + 1.
Proof. — By the definition of Ty 3 ;, we have

e —a; bi

|Tg,h,i| < max{min{ 5 } — min{ai,l,e — bi1}70}.

p p

Combining this with the definition of S, ., we get

— a1 b
+ |Ta,b,’i| g min |:6 al:|7 |:1:| )
- p p

and equality happens if and only if in the following two cases:

° min{ [%], [%] } —min{a;—1,e — b;—1} <0.
. min{ [%], h]} —min{a;_1,e —b;_1} =1

and p | (min{e —ai—1,bi1} + 1).
We assume [Sq/ 4, | 4 [Tarpr,i | = €0 + 1 for some 4y and [ > 1. Then we

have p(eg 4+ 1) < min{e — a; ,b; } by (). By this inequality, we have

217 711

(%) ..

1S b in+1| <min{aj e — by, } < max{aj ,e—b; }

=e—min{e —a, ,b; } <e—pleg+1)=eg+ e —pl.

2117 711
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Combining this with [T,/ p i, 11| < 1, we get
1Sar b i1l + | Tap 1| Seo+en —pl+ 1.

This shows (A4;) for all i.

Further, we examine the case where equality holds in the above inequal—
ity, assumlngl = 1. In this case, we have that min{a; ,e—bj } = ep+e1—
min{e —aj ,b; } = p(eo +1) and [Ty p 5, 41| = 1. Let m be the unique ele—
ment of T,y ;,+1. Then, by the definition of Ty p ;, 41, we have

! /
e—a; b;
min{““,“ﬂ} min{a; ,e —b; } > pm —min{e —a; ,b; } > p,
p p

because min{e — a; ,b; } = p(eo + 1) and pm — min{e — aj ,b; } > 0.
Combining this with min{aj ,e — b } = eo +e1 — p, we get p(eg + 1) <
min{e — aj ,;,0; .1} By the previous argument, we have

[Sar v iv 42l + [ Tar v iy 12l S eo— (p—1)er + 1.

Thus we have proved (B;) for all i. O

We are going to show (2). Firstly, we treat (a). We note that eg + e; —
pl+1 < e —p(l —1) — 2 in the case where 0 < e; < p — 3, and that
eot+er —pl+1 < e — (l—l)—landeo—(p—1)61+1 < e —1
in the case where e; = p — 2. Then (4;) and (B;) for all ¢ implies that
Y orcicn (1S bl + |Ta 1 i) < neg. It further implies that

d:l,Q< Z (|Sabz|+|Tabz|) negp
1<ign

for all (a,b) € I, and that d, , = neo only if [Sap:| + |Tabi| = eo for all
i. To prove dgp < neg, it suffice to show that d’ b = Neg implies Sap = 0,
because |Sq5| < 1 for all (a,b) € 1.

We assume that da » = neg and Sap # 0. By the maximality of

> (1Sapil + [ Tapil),
1<i<n

we have |T, 3| < 1 for all i. Let (vo;)1<i<n be the unique element of S p,
and we put ro; = —vy(vo,;). Then we have

a; —T0i+1 = bz —DProi < maX{O, a; + bz — 6}

for all 7, by the definition of S, 3. By () and eg — 1 < |Sg | for all i, we
have

eo— 1< a; <eg+er, peg < by <peg+eg +1
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for all . Take an index 45 such that rq;, is the maximum. Then we have

(p—D)7ro,iy < Prois — T0,is+1 = biy — @iy < (Peg +e1+1) — (eg — 1)
=((p-1)eg+e1+2<(p—1)ey +p.

So we get 79 < ep + 1 for all i.

If a; +b; — e <0, we have rg; > eg + 1 by b; — pro; < 0 and peg < b;.
If a; +b; —e > 0, we have ro; > eg +1 by b; — pro; < a; +b; — e and
a; < eg+e1. So we have g ; = eg + 1 for all 4.

By a; — 70,i4+1 = b; — proi, we have (p —1)(eg + 1) = b; — q; for all i. By
the range of a; and b;, we have the following two possibilities for each i:

(ai,bi) = (eo — 1,peg +p — 2) or (eg,peg +p —1).

In both cases, we have |Sqp 1| = €0 — 1.
Now we must have equality in (x). So we must have

p| (min{e —a;—1,b;—1} + 1),

noting that |T, ;| = 1. This contradicts the possibilities of a;_1, b;—1. Thus
we have proved dy, < neg.

For a = (e0)1<i<n and b = (peo)1<i<n, we have dgp > Zlgign |Sab,il =
neg. This shows that dy, = ney, if

u®0 0
M]FN <<0 upg())) .

Secondly, we treat (b). In this case, we note that eg + e —pl +1 =
eo—p(l—1)and eg — (p— 1)es +1 < eg — 3. Then (4;) and (B;) for all ¢
implies dfl’b < nep, and further implies d,p < nep + 1, because S, 5| < 1.
Thus we have proved dy, < nep + 1.

For a = (e0)1<i<n and b= (peg + p — 1)1<i<n, We have

dap > Y |Sapil +Sapl = neo +1,

1<ign

because (u~(®0*Y);;c,, € S, 5. This shows that dy, = neg + 1, if

u®o 0
My ~ (( 0 upeo+p—1>> ‘.

At last, we treat (c). In this case, we note that eg + e; —pl + 1 =
eo—p(l—1)4+1and eg — (p — 1)ey +1 < eg — 5. Then (A;) and (B;)
for all i implies d, , < neo + [n/2], and that d;, , = neg + [n/2] only if

<
ey < |Sg,b,i| + |Ta,g,i| < eg+1 for all 3.
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If n = 1, then dj, , < eo implies d,p < €9 + 1, and the given example
for dy, = eg+1 is the same as in (b). So we may assume n > 2 in the
following.

To prove dy, < neg + [n/2], it suffices to show that d, , = neg + [n/2]
implies S, = 0, because |Sq | < 1 for all (a,b) € 1. o

We assume that d, , = neg + [n/2] and S, # (). By the maximality of
Zl<z<n(|SabZ a,b ), we have |Tg,b,i| < 1 for all 4. Let (’Ul,i)lgign be
the unique element of a,by and we put 71 ; = —v,(v1,;). Then we have

a; — 71441 = 0; — pr1; < max{0,a; + b; — e}

for all ¢ by the definition of S, . By (%) and eg — 1 < |Sgp,i|, we have
eo—1<a; <ep+p, peg < b <peg+p+1

for all i. Take an index i3 such that r; ;, is the maximum. Then we have

(P — 1)7r1,is S Prijis — Tlis+1 = biy — a4y
<(peo+p+1)—(eo—1)=(p—1)eo+p+2.

So we get 715 < ep + 2 for all 4.

Ifa; +b; —e <0, we have r1; > eg + 1 by b; — pri1; < 0 and peg < b;.
If a; +b; —e >0, we have r1; > eg +1 by b; —pri; < a; +b; — e and
a; < ep+ p. So we have eg +1 < r1; < eg + 2 for all 4.

By n > 2, there is an index 44 such that ‘Sgyb7i4| +|Tap,is| = €0+ 1. Then
we have eg + 1 < min{ —a,)/p, bu/p} by (x). We are going to prove
that if eg +1 < mln{ (e —a;)/p,b; /p} then |S,, b1+1| +|Typ,i+1] = eo and
e+ 1< mm{ (e — a;1+1)/p, z+1/p} If we have proved this claim, we have
a contradiction by considering 4.

We assume that eg + 1 < min{(e — a;)/p,b;/p}. Then we have eg — 1 <
a; < ep, peo+p < by < peg+p+1and eg —1 < [Sapit1] < eo. If
|Sab,i+1] = €0, we have a; = ey and b; = peg + p. However, this contradicts
pri—rit1 = b —a;, because pr; —ri1 # (p—1)eg+p by eg+1 < 7,141 <
eo+2. So we have [Sqpit1| = eo—1and [Ty p 41| = 1. Let m be the unique
element of T}, p ;41. By the definition of T}, 3 411, we have

it b
min{ealﬂ7 m} —min{a;,e—b;} = pm—min{e—a;,b;} 2 p—12= 2,
p p

because peg+p < min{e—a;, b;} < peg+p+1 and pm—min{e—a;, b;} > 0.
This shows eg + 1 < mln{ (e —a;t1)/p, zJrl/p}. Thus we have proved that
dv,. < neg+ [n/2].
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For a = (e0,i)1<i<n and b= (p(2eo +1 — eo7i))1<i<n, we have
dap > Y |Sapil =neo+ [n/2),
1<ign

where eq; is defined in the statement of Proposition 2.1(2)(c). This shows
that dv, = neg + [n/2], if

uc0-i 0
My ~ (( 0 UP(260+1eo,i)>> ’

3. The case where Vf is absolutely irreducible

In this section, we give the maximum of the dimensions of the moduli
spaces in the case where Vy is absolutely irreducible. In the proof of the
following Proposition, three Lemmas appear.

ProprosITION 3.1. — We assume VF is absolutely irreducible, and write
e=(p+1)eg+ey foreg € Z and 0 < ey < p. Then the followings are true.
(1) There are m; € Z for 0 < i < dva such that mq,_ >0 and

d Vie

% v 0(F) =Y milE[

for all sufficiently large extensions F’ of F.
(2) (a) In the case e; = 0, we have dy, < neg — 1. In this case, if

M 0 1 U0 0 uco 0
Fr~ wPtDeo—1 )2\ g ypeo )0\ g yPeo ’

then dy, = ney — 1.
< _ : i
(b) In the case 1 < ey < p— 1, we have dy, < neq. In this case, if

M 0 1 uco 0 u®o 0
F~ wPtDeotl )2\ g ypeo )\ g yPeo )

we have dy, = neg.
(c) In the case e; = p, we have dy, < neg + [n/2]. In this case, if

0 1\ (ucoti=coi
Mg ~ <<u(p+1)eo+1 ()) ’ ( 0 up60,i>2<i<n>’

then dy, = neg + [n/2]. Here, eg; = eg if i is odd, and eg,; =
eo + 1 if 7 is even.
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Proof. — Extending the field F, we may assume that

0 aq Q2 0 Qp 0
Mg ~
F ((alum 0)’(0 042)’ ’(0 an)>

for some «; € F* and a positive integer m such that (¢ + 1) 1 m, by
Lemma 1.2. Let M r be the lattice of My generated by the basis giving
the above matrix expression.

For any finite extension F of F, we put Mo p = Mor Qp F’ and My =
My ®p F'. By the Iwasawa decomposition, any sublattice of My can be

S; /
written as ((uO ZZ)) <M g for s;,t; € Z and v € F'((w)).
We put '
GR Ve 0,0,5(F) =

si t; € L, v € F'((u)),

En /
(65 ), s

ps1 —tz = ai, m+pty — s2 = by,
pPs; — Sj41 = ay, ptj —tj+1 = bj for 2 <]< n}

for (Q, b) = ((ai)1<i<n, (bi)lgign) € Z™ x Z". Then we have

GRvoF) = | 9Pvio0as(F)

(a,b)ezm xZ™

and this is a disjoint union by Lemma 1.1. Later, in Lemma 3.1, we will
show that there are only finitely many (g, b) such that 9%y, 0,4.5(F') # 0.

We take
ust o vl
(( 0 UZI"”)) . E)"nO,]F’ S g%W~7O,g,Q(F/)7
i

and put

Then we have

0 u™ u*? 0 ur 0
Dﬁg)g]}w ~ (&3] ’u,bl 0 , (g 0 ub2 N 0 7% 0 Ub”

with respect to the basis induced from 9% 5.
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0 1
for some (v;)1<i<n € F'((w))™, and we put r; = —v,(v;). We may assume
r; 2 0, replacing v; so that v; ¢ ulF’[[u]] without changing the (k[[u]|®F, F')-

1 v
Now, any Mp € YR, 0,0,5(F') can be written as (( Y )) Mg b5

n

module ((é ?)) - Mgy p7 by Lemma 1.1. Then we have

M ~ <Oél <q§(v1b)1ub1 w ¢(vlb)1v2Ub1) )

U —VoU

u® (v ubi — v u®
i 0 ubi
2<i<n

with respect to the induced basis, and

p(vr)ubt  um — (v)veub\  [Blor)ut un\ (1 —uvy
< u —vgubt ) N ( ubt 0 > (0 1 )

(v tum un — p(vr)vautt 1 0
B 0 —vgul —vyt 1)

Then the condition u*Mp C (1 ® ¢)(¢*(Mpr)) C My is equivalent to
0<ar+r2<e 0<b —m2 <e,

(C1) a b

Uy, (u = ¢(’01)1)2u 1) = max{(),a1 + bl - 6},

0<a;<e, 0<b; <e,
(C2) b, o .
vu(¢(vi)u P — ViU ) > max{0,a; + b; — e} for 2 < i < n.
We show the following fact:
(O) If R, .0,a(F) # 0, there does not exist (7)1<i<n € Z™ such that
a; =by —pry —r5 and a; —rj; = b; — prj for 2 <i < n.
We assume that there exists (r])i<i<n € Z" satisfying this condition.

0 1

M ub1=Pri 0 u® 0
Fr ~ | (1 b by —1 , O b, .
1 _ 1— 7o i
u U 0 u a<i<n

This contradicts that Vg is absolutely irreducible.

Changing the basis of M, by <(1 b 1)) , we get

LEMMA 3.1. — If 9 %v, 0,0b(F') # 0, then
e

e
1<a1<670§61§ pland()gai,bigefor2§i<n.
p— p—
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0 1
My pw for some (v;)icicn € F/((uw))™. We put 7, = —vy(v;). We may
assume r; > 0 by Lemma 1.1.

If ro > e/(p—1), we have that a; —r;41 = b; —pr; <0 for 2 < i < nand
r; > e/(p—1) for all ¢ by the condition (C3), and that a; = by —pri—ry <0
by the condition (C7). This contradicts (), and we have 5, < e/(p — 1).

Then (Cy) and (C3) shows the claim. O

Proof. — We take Mp € GRv;, 0,0,0(F') and write it as (1 v2>> :

To examine |9 %v; 0,qa,6(F')|, we consider the case where 0 < a; < e and
0 < b; < e, and the case where max{—a;,b; — e} > 0.

First, we treat the case where 0 < a1 < eand 0 < by < e. In this case, the
condition u*Mp C (1 ® ¢)(¢*(Mpr)) C My is equivalent to the condition
that max{pry + ro,pr1,r2} < min{e — a1,b1} and (Cs). We put

Iy = {(Ri,Rs) € Z x Z | pRy + Ry < min{e — a1,bi}, Ry, Ry >0}

and

GRVe 0,007, 7, (F) =

1 v
{ <<0 Ul)> My pr € IRV 0,0.6(F)

for (R1, R2) € I,. Then we have a disjoint union

V; € ]F’((u)),ﬁ = Rl, To = RQ}

GRv0as)= |  I%viosbr r(F)

(R1,R2)€lp

by Lemma 1.1.
We fix (R, R2) € I,p. Then the condition that 7 = R; and 72 = Ry

1 v
implies max{pry + ra,pr1,r2} < min{e — aq,b1}. So ((O 11)) My
i

gives a point of YZv, 0.a.b, k1, R, (F") if and only if
max{ry,0} = Ry, max{ry,0} = Ry and (Cs).

We assume Y Zv, 0,a.0,k1,1, (F') # 0. Considering —uv,(v;) for (v;)i<i<n
that gives a point of YZv. 0.a.6,r: k. (F'), we have the following two cases:

(i) There are 2 < ny <n; < n+1and R; € Z for 3 < i < ny and
n1 < ¢ < n such that

a; — Riy1 =b; —pR; < max{O, a; +b; — 6}
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for2<i<ng—1andn; <i<n,and

R,, <min{an, 1,6 —bp,—1}, Rn, < min{e_;"z, b;f}
(ii) There are R; € Z for 3 < i < n such that
a; — Ri11 = b; — pR; < max{0,a; + b; — e}
for 2 <i< n.
We note that (i) includes the case n = 1.
We define an F'-vector space Ng b r, R, Dy

Nab, iy, o = { (0i)1<icn € F/((u)™ | 11 < Ry, r2 < Ry and (Ca)}.
We note that NQ&,RI,RLF D F'[[u]]™. We put

Nab. Ry, o = Nap Ry 1o 50 [T [[u]”

and dg,Q,Rl,RQ = dimp N&Q)Rth,FI. We note that dimg NQ,Q7R17R27F’ is in-
dependent of finite extensions F’ of F. We put

_ .
Ny b,y Ro 7 = {(“ih@‘@ € Npri Ry | 11 = Ri, r2 = Rz}-

Let N, g, g, be theimage of Noy p g in Nap Ry, R, 5. Then we have
a bijection

o /

N, ri ot = GV 0,00, R R (F)
by Lemma 1.1. By choosing a basis of Ngp r, r, F over F, we have a mor-
phism
da,b, Ry, Ry
fapRi Ry Bp =GRz 0

in the case R = Ry =0,
da,b, Ry, Ry —
fap i ms s AL G2 G
in the case where R; > 0, Ry > 0 and (i) holds true, and

(da,b,Ry,Ry—1)
fapri Ry 1A T T X Gip = YR v 0

in the other case, such that fop R, g, (F') is injective and the image of
fap,ri,ro (F') I8 G R vz 0,06, Ry Ry (F).
LEMMA 3.2. — If0 < a; < e and 0 < by < e, the followings hold:
(a) In the case ey = 0, we have dop r, R, < neo — 1. In this case, if
ar =0,b1 =(p+1)eg — 1, a; = eg and b; = peg for 2 < i < n, then
there exists (Ri, Ra) € I, such that dgp g, g, = Neo — 1.
(b) In the case 1 < e; < p—1, we have do p r,,r, < Neo. In this case, if
a1 =0,b1 =(p+1)eg+1, a; = ey and b; = peg for 2 < i < n, then
there exists (Ry, Ry) € I, such that dap R, R, = N€o.
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(c) In the case ey = p, we have dap r, R, < neg + [n/2]. In this case,
ifar =0,b1 = (p+1)eg+ 1, a; =2e9+ 1 —ep,; and b; = peq; for
2 < i < n, then there exists (Ri1, R2) € I, such that dgp r, r, =
neg + [n/2]. Here, e ; = eg if i is odd, and eg; = eg + 1 if i is even.

Proof. — First, we treat the case n = 1. In this case, we have

min{e — al,bl}} <
AT <o
p+1

So we get dap Rr, R, < €0 for (a,b) € Z" x Z" and (Ry,Rs) € I, such
that Y%Zv, 0,a.b,r:,r,(F') # 0 and 0 < a1,b1 < e. We have to eliminate
the possibility of equality in the case e; = 0. In this case, if we have
da.b, Ry, Rs = €0, then a1 = 0 and b; = (p + 1)eg. This contradicts ().

We can check that if e1 =0, a1 =0,b; =e—1and Ry = Ry = ¢y — 1,
then dg . g, R, = €0 — 1, and that if e; # 0, a1 =0, by = (p+ 1)ep + 1 and
R1 = R2 = €p, then dg,b,Rth = €9.

So we may assume n > 2. We put

R1=R2<[

Sab. R ket = {(u7,0,...,0) € F((u))" | 1 <71 < min{Ry,an,e—by}},

Sa,b,R1,R,2 =

{(O,u‘”,O, .., 0) e F((u)"

— b
1<T2<min{R27e a272} )
p p

Sab,Ri,Rayi =

{(O,...,O,vi,(),...,()) e F((u))™

) { e—a; bi}
ming a;—1,e — b;_1, —
p p

vp=u" ",

for 3 <i < n, and
Sab,R1,Raij =

v;=u ',

{(Oa'“aoavivvi+1a~'~vvj+170a~~~70) € F((u)"

T < min{ai_l,e - bi—l} if ¢ 7é 2, T2 < R2 if i = 2,

uMvp, = u¢(v;) and —vy(vi41) > min{a;, e — b} for i <1< 7,

i1 b
— 0y (Vj41) < min{eajﬂ, JH} if j#n, —v,(v1) <Ry ifj= n}
p p
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for 2 < i < j < n. In the above definitions, v; is on the i-th component.
Then, as in the proof of Lemma 2.1, we can check that |J; Sap R, Rs,i U
Uiu’ Sab,Ri Ry 18 an F-basis of Ny g, r,r. So we have dyp g, R,
Zi |Sg,§,R1,Rz,i + Zi,j ‘Sﬁyg7R17R27i7j|'

We put

Tap.Ri kot = {m € Z | min{a,, e —b,} < pm + an — b, < Ry},
Tap,Ri,Re2 =0 and

Tab,Ry Rovi =

e—a; b
m € 7 min{ai,l,e - bifl} <pm-4a;—1 —bi—1 < min{ Z’ Z}
p p

for 3 < i < n. We consider the map

U Sebrirain-1 = Tuprirens 0i)i<ir<n = —vu(vn-1)
2<i<h—1
for 3 < h < n+ 1. We can easily check that this map is injective. So we
have
> [Sabriraiin—1] < | Tappa,Rahl
2<i<h—1
and

dapry iy < D (1Swp iy kol + Tun ri mavil):
1<ign

We take (a’,b") € Z" x Z™ and (R}, R}) € I,y such that 0 < af, b <e
and Zlgign(‘sg’,é’,R’l,R;ﬂ + |Tg/’é/’33’3/2’i\) is the maximum. We can prove
that \TEI’E’R;}RIZ’A < 1 for all 4 as in the proof of Lemma 2.2.

We can also show that

(Az) if |Sg/,ﬁ’,R/1,R/2,i + |Tg’,ﬁ’,R’1,R’2,i| = €g + 1 forl 2 1, then
|Sg’,é’7RiﬁRéai+1| + |Tg’,k”Ri’R’27i+1‘ Set+er—pl+1
for ¢ # 1, and that

(Bi) if [Sar v ry Ryl + [Tw p ry Ryl = €0 + 1 and [Sy p gy Ry iv1] +
Tw v R, Ryi+1] = €0+ €1 —p+1, then

S0 v, Ry Ry it2| + T v Ry Ry it | < €0 — (p—1)er +1

for 2 <i < n—1 as in the proof of Lemma 2.3. By the same argument, we
can show that

(Al) if |Sg/,§’,R’1,R’2,1| + ‘TQQQ’,RQ,R&” =eg+ 1 forl > 1, then

|Sar v Ry ry 2| + | Tar b Ry Ry 2| < €0+ €1 =Pl
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and that

(Bn) if [Sw ', ry myml + [T p ry my | = €0 + 1 and [So v gy ryal +
Tar v, ry,Ry,1| = €0 + €1 —p+1, then
1S v Ry Ry 2| + | Tar v Ry Ry 2| < €0 — (P — Den,

using the followings:

1Sar v ry ry 1l + [ Tar vy Ry 1| < Ray pRa+ Re < e, [S p Ry Ry 2l < Ra
and Ty i my2 =0

Firstly, we treat the case where 0 < e; < p — 1, that is, (a) or (b). We
note that eg +e1 —pl+1<eg —p(l —1) — 1 in the case 0 < e; < p—2,

and that eg+e; —pl+1=e—p(l—1)and eg — (p—1)es +1 < ep — 3 in
the case e; = p — 1. Then (4;) for all ¢ and (B;) for ¢ # 1 implies

dap iy < Y (1Sabrn ol + [ Tab i Rovil)
1<ign

< D (18w vy myil + 1 Tary my myil) < meo
1<ign
for (g, b) € Z™ x 7™ and (Rh Rg) S I&Q such that g%W,O,Q,Q,Rth (F/) 75 0
and 0 < a1,b; < e. So we get the desired bound, if 1 < e; < p— 1. In the
case e; = 0, we have to eliminate the possibility of equality. In this case, if
we have equality, we get that >, ;. (|Sab.Ri Rovil + |Tab. Ry Ro.il) i the
) = eg for all i by (4;) for all i.

maximum and (|Sg.p, 7y, R il + |Tab. Ry Rovi
Then we have

Ry =Ry =-¢eg, g —1<a; <ep, peg <b; <peg+1for2<i<n

by the followings:

pR1+ Ro = €,|Sab,R1,Ro 1| + [Tab,R1,Ro 1| < R1,y[Sab,Ri o 2| < Ra,
|Sa,b, R, Ro il + [Tab, Ry Ry il < min{(e —a;)/p,b;/p} for 2<i<n

and
[Sab. Ry Roil = €0 — 1 for i 7 2.

Now we have a; = 0 and by = (p + 1)eg by R; = Ra = eg. We show that
|Ta.b,R1,Ry,i| = 0 for 3 < i < n. We assume that |1, 5, R, R,.io| = 1 for some
i9 # 1,2, and let m be the unique element of Ty p R, R,,i,- Then, by the
definition of Ty b R, ,Rs,is, We have
. fe—ai, b . .
min — min{a;,—1,€ — bj,—1} = pm — min{e — a;,_1,b;,-1}
zp—122

9
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because
pep < min{e — a;o—1,bi,—1} < pep + 1
and
pm — min{e — a;,—1,bi,—1} > 0.
This contradicts the possibilities of a;,—1, a;,, bi,—1 and b;,. The same

argument shows that |T, 4 g, r,,1| = 0. Now we have |Sqp R, R,,i| = €o for
all 4, and that

ay =0, by = (p+ 1)eg, a; = ep, b; = peg for 2 < i < n.
Then we have
a1 =by —pri —ryand a; — i =b; —pr; for 2<i<n

for (r})1<i<n = (e0)1<i<n. This contradicts (). So we have dqp r, R, <
neg — 1, if e; = 0.

We can check that if e; = 0, a7 = 0, b5 = (p+ 1l)eg — 1, R1 = ey,
Ry = e — 1, a; = ep and b; = peg for 2 < ¢ < n, then dyp r, R, =
> i<i<n |Sab,Ri Ry il = neg — 1. We can check also that if 1 <ep <p—1,
a1 =0,b1 =(p+1)eg+1, Ry =ep, Ry = ey + 1, a; = eg and b; = peg for
2<i<n, then dgp Ry Ry 2 D 1<icn |Sab, R Rovil = n€0.

Secondly, we treat (c). In this case, we note that eg +e; —pl +1 =
eo—p(l—1)+1and eg — (p—1)es + 1 < eg — 5. Then (4;) for all ¢ and
(B;) for i # 1 implies

dap iy iy < D (1Sab iy kol + Tup ri Ravil)

1<i<n
n
< D (Sww rymyil + 1 Twy mymyal) Smeot |5
1<i<n

for (a,b) € Z™ x Z" and (Ry, R2) € I, such that 0 < a1,b; < e. So we get
the desired bound.

We can check that if e = p, a1 = 0,b; = (p+ 1)eg +1, Ry = e,
Ry = e +1,a; =20+ 1—ep; and b; = peg; for 2 < ¢ < n, then
dab,Ry, Ry 2 E1<i<n |SQ,Q,R1,Rz,i| = nep + [n/2]. U

Next, we consider the remaining case, that is, the case where
max{—ai, by —e} > 0.

In this case, vy (u® — ¢(v1)v2u”) > max{0, a1 + by — e} implies pry +ry =
by — a1, because a; < max{0,a; + by — e}. So the condition u*Mp C
(1® ¢)(¢*(Mp)) C M implies

pr1 + 79 = by — ay, max{—ay,b; —e} < ro < min{e —ay, by }.
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We note that if n = 1, then pry; + ro = b — a; contradicts () because
r1 = ro. S0 we may assume n > 2. We put

Iop = {(Rl,Rg) S/ ) pR1 + Ry = by —ay,
max{—ay,b; — e} < Ry < minfe — a’labl}}

and mgp = [(max{fal,bl —e} — 1)/p}. We note that By > mgep+1>0
and Re > max{—a1,b; — e} > 0. We put

GRVe0,0,0,R:,R,(F) =

1
{<(0 11)) My p v € GRV: 0,a5F)

Uu(vl) = —Ry, 'Uu(”UQ) = Rz}

v; € F'((u)),

for (R1,R2) € Ip. Then we have a disjoint union
GRvi0as )= |  9%vioasr .r(F)
(RlyRZ)eIg,ﬁ

by Lemma, 1.1. Extending the field IF, we may assume that Y %v; 0,a.b,R:,R-
(F) # 0 if and only if Y%v, 0,a.6,r:,r, (F) # 0 for each (Ry, R2) € Iap,
(a,b) € Z™ x Z™ and any finite extension F’ of F.

We fix (R1, R2) € Iop, and assume Y %v; 0,0, 11,8, (F) # 0. If v,(v1) =
—Ry and vy (v3) = —Rj, the condition

Uy (u‘“ - ¢(’l}1)7}2ub1) > max{0,a; + b; — e}

is equivalent to the following: There uniquely exist v1,0,72,0 € (F')* and
Y1,i57Y2,i € F' for 1 < i < mgyp such that

—Uy <Ul - > ’Yl,iURlJ”) SRy —mgap — 1,

0<i<mag
—Ro+pt
—y <vz - E Yo,u” TP ) < Ry — max{—ay,b; — e},
0<i<ma,p

71,072,0 = 1, Z M,iY2,0—i = 0 for 1 <1 < mgp.
0<i<l

We note that (’Yl,i)ogigmg& determines (71,i,72,i)0<i<ma. -
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We prove that for 0 < i < mg,g there uniquely exist 2 < ng; < ny,; <
n+1,rm;; €Qforn; <j<n+1landry,;; € Z for 2 < j < ng; such
that r19; € Zforn1o<j<n+1and

aj —rrigr1 = by —priag <max{0,a; +b; —e} for ny; <j<m,

Tintl = R =1, T1in,, <min{an, ,—1,6 = by, 1},

a; — 1o 41 =b; —pra;; < max{0,a; +b; e} for 2<j<ng; — 1,

. . € — anz i
roi2 = Ra — pi, T2 n,, < min
Define r1;; e Qfor 2 < j <n+1and ry;; € Z fo 2<j<n+1such
that
Tlingl = B1— 14, aj — 71441 =b; —pri;; for 2< 5 < n,
T2,4,2 = R2 —pi, aj — TQ,iJJrl = bj — p’l"gﬁi,j for 2 < _j < n.
We put

ni; = max{{S <js<n+1 ’ T4, S min{aj_l,e - bj_l}} U {2}},

Ng i = min {2<j<n

72,45 < min{e pag7;}} U {n+ 1}

We consider (v;)1<i<n that gives a point of ¥%v; 0.4.b.R; R, (F). Then we

32,32,

have 7”10; = —vu(vj) € Zfornio < j<n+1land rog; = —v,(v;) € Z
for 2 < j < ngyp. It remains to show that ny; < ny;. We have ny; < ng
and ni g < n1,;, because 71 ;5 < 71,05 and 1o ;5 <120, for 2 < j<n+ 1.
So it suffices to show noo; < n1,0,. If noo; = n1,0,5, we have

a1 = by — puy(v1) — vu(v2) and aj — vy, (vj11) = bj — vy (vj) for 2 < j < n,

and this contradicts ().
We put

Mypryry = {0< i <mgp | 1145 € Zforny; <j<n+1}.

For (v;)1<i<n that gives a point of Y%v; 0,06, k., k. (F'), we take v, 72,
and 14, N2, 71,5, 72,i,; as above. We note that v, ; = 0if i ¢ Map R, Ro-
We put

Mi,a bRy Rej = {0< i
M2,2,§7R17R27] {0 <

K2
vj =v; — E Yraus = E Yo,iu R

1€M1,a,b,Ry,Ry.j 1€M2,a.b,Ry,Ry.j
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for 2 < j < n+ 1. This is well-defined by the above remark. We put

N i o = L0 )1<icn € F/ (W)™ | (vi)1<i<n € F/((u)™ gives

a point of Y%v;, 0.a,0,r1,r. (F)}-

Then we have

N} yryror = L(0)1<icn € F'()™ | ~vu(v1) < Ry —mgp — 1,

—vu(v2) < Ry — max{—ay,b1 — e}, (C2)}

by the construction of (v})1<i<n and the conditions (Cq) and (C2). This
implies that N, g g, w C F'((u))" is an F'-vector subspace, and

N;Q,Rl,RQ,]F/ o FIHan

We put

Ny Ro s = Nap. iy o [F (1]

and dZ,Q,Rth = dimgp N;’Q,RI’R%F,. We note that dimgp N;’Q’RI’RZ’F, is
independent of finite extensions F/ of F. By Lemma 1.1, giving an ele-
ment of N;,b,Rl,RQ,]F’ and (’)/17i)0<1<m2’2 such that 71,0 # 0 and T, = 0 if
i ¢ Map Ry R, is equivalent to giving a point of Y %v, 0.a.6,r1, R, (F'). By
choosing a basis of Nj b Ry r,r Over F, we have a morphism

n
dg,g,Rl,RZ‘HMg-,E,RLRz |_1)

Jab,Ri Ry © Ap X Gmr — Y %v. 0

such that fop R, R, (F') is injective and the image of f4 4. g, r, (F’) is equal
t0 YR Ve 0,a.0,R1,R> (F'). We put dap.ry ry = dy g, r, + |Mab,Ry,Ro|- Then
we have (1) and

dy, =

= max da bRy Ry |-
g%VF,o,g,g,Rl,RQ(F)?é@{ . 2}

In this maximum, we consider all (a,b) € Z™ x Z™. We have already ex-
amined dqp R, R, for (a,b) such that a; > 0 and b; < e. So it suffices to
bound dg g, ,r, for (a,b) such that max{—ai,b; —e} > 0.

LEMMA 3.3. — Ifmax{—ay,b; — e} > 0, the followings hold:

(a) In the case e; = 0, we have dgap R, R, < neg — 1.
(b) In the case 1 < ey < p—1, we have dqp r, R, < Ne€o.
(c) In the case e; = p, we have dop R, R, < N€o + [1/2].
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Proof. — We put

Sﬂ,é’Rl’Rz’l = {(Uh 0,... ((u>) ’ u "
1 <7 <min{Ry —mgp —1,a,,e— bn}}7

vy =u "2,

Sa.b,R1,R22 = {(0,112707 -5 0) € F((w)"

- b
1<rs < min{Rg — max{—ay, b — e}, € a2, 2}},

v =u ",

Sg,@,&,]«b,i = {(07 ey 07’Ui,O, A ,0) c F((u))"

e—a; b;
]-grigmin{ailve_bil; I,Z}
p p

for 3 <i < n, and

Sab,Ry,Rayij =

{(Oa"'70avi7vi+17"'7Uj+170a"'70) € F((u))n

r; <min{a;—1,e —b;_1} if i £ 2, 19 < Ry — max{—ay,by —e} if i =2,
uMvpg = ub’qﬁ(w) and —vy, (v;41) > min{a;, e — b} for ¢ <1< j,

e—a; b
Uu(ijrl) < min{pjﬂa ]pﬂ} lf] 7é n,

— vy (v1) S Ry —mgp — 1 ifj:n}

for 2 < i < j < n. In the above definitions, v; is on the i-th component.
Then, as in the proof of Lemma 2.1, we can check that |J; Sap Ry ,Rs,i U
Ui’j Sa,b,R1,Ra,i,j 15 an [F-basis of N;Q’RLRQ,F. So we have d;g,Rl,RQ =

22 150, Ry Rasil + 225 ;150 b, Ry Rasis|-
We put

Tab,R1,Ral = {m ez { min{a,,e—b,} < pm+a, —b, < Rl—mab—l},

Tab,Ry,Rs,2
{m €7
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and

Tap, Ry Royi =

{mGZ

for 3 < ¢ < n. We note that these definitions for S, p.r, Ro.i» Sa.b,R1,Roi,j
and Ty p R R,,: in the case max{—aq,b1 — e} > 0 are compatible with the
definitions in the case max{—a, b — e} < 0, if max{—ay,b; —e} = 0. So
in the following, we can consider also the case max{—aj,b; — e} = 0. We

e—a; b
min{ai,l,e — bifl} <pm-—+a;—1 — bi_1 < mm{ 7'7 7‘}}
p p

need to consider this case in the following arguments.
We consider the map

U Sabrirein1U{0<i <map | n2i=h} = Tupry rons
2<j<h—1

(vi)igicn = —Uu(Vh—1), T T2 n_1

for 3 < h < n+ 1. We can easily check that this map is injective and that
{0 ma b | N = 2} Tg&le,Rz,Z

So we have (Zzgfsgjgn |Sg,Q,R1,Rz7i,j|) +mep+ 1< 21@'@ | Tab, Ry, Rasil
and

dﬂanRl,Rz < Z,Q,Rl,Rg + Map + 1< Z (|S&Q7R17R27i| + |T27Q,R1,R2,i|)'
1<i<n

We take (a”,b") € Z"xZ" and (R, RY) € I,y such that max{—a},e—
b{} > 0 and Zl<z<n(|sa” b, Ry \RY i
We can prove that [Ty Ry Ry.i| < 1foralli # 2 as in the proof of Lemma
2.2.

We show that we may take (a” b”) € Z" xZ™ and (RY, Ry) € I, 3 such
that 0 < —af =0/ —e < p—1.If —af > by — e, then we replace b} by bf +1
and RY by Ry + 1. We again have (R, RY) € I,y after the replacement.
This replacement increases 21@'@1(|Sg”,b”,R’1’,R;/,i| + |Tw v Ry Ry i ) by
0 or 1, but by the maximality there is no case Where it increases by 1.
Similarly, if —a < b} — e, we may replace af by af —1 and Rj by RJ + 1.
So we may assume —aj = b} —e.

If —af > p and min{b4/p, (e — a3)/p} > RY, we replace RY by R} —1
and RY by Ry + p. By

w b Ry Ry |) I8 the maximum.

/!

e
R’2’+p<5+p<e+p<e—a’{= 1
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we again have (RY, Ry) € I,y after the replacement. This replacement
increases Yy i, (ISa v ry Ry il + T v ry Ry i|) Dy at least p — 2. This
is a contradiction. So if —a! > p, we have min{b} /p, (e — ay)/p} < RY. If
—af = p, we replace af by af + p, b by v/ —p, R{ by R} — 1 and Rf
by Ry — p. We again have (R, RY) € I,y after the replacement. This
replacement does not change Zl<i<n(\Sgu’bnyR/l/’R,zlvi| A+ T v RY RY i ).
Iterating these replacements, we may assume 0 < —af = b/ —e < p— 1.
We already treated the case where —af = b — e = 0. So we may assume
1 < —af =b] —e <p—1. We note that [Ty 7 gy ry 2| < 1 in this case.
Now we can show that

(A}) if [Sar v my Ry

+ |TQ”,Q”,R’1/,R’2’,1‘| =e¢eg+ [ forl > 1, then
1S v ry Ry i1 4 | Tar Ry Ry ita| < eo+ e —pl+1

for i # 1, and that

(BY) if |Sar v my ry il + | Tar pr ry ry il = €0+ 1 and [Sor v my Ry 1]+
T b ry Ry i+1| = €0 + €1 —p+ 1, then

|SQ//79”1R§[/7R,2,77;+2| + |Tﬂ//1§/,7R,1/7R/2/7i+2‘ g €0 — (p - 1)61 + 1

for 2 <i < n—1 as in the proof of Lemma 2.3. By the same argument, we
can show that

(All) if |Sg”,§”,R/1’,R’2’71| + ‘Tg”&”,R’l’,R/Q/,ﬂ =eg+ [ for [ > 0, then
|Sar v ry Ry 2l + [ Tar v Ry ry 2| < €0+ e1—pl,
and that

(B’:l) lf |SQ",Q/,,R/1/,RIQ’7TL| + |Tg”,Q”,R’1’7R;’,n‘ = €p + 1 and |SQ”,QN,RI1/7R{Z/;1I +
|TQH,QH7R,1,,R/2/,1| = €p + €1 —p + 17 then

|SQN,Q”,R/1/,R/2/,2| + |T2//,QH,R/1/,R/2/,2| < 60 — (p _ 1)617
using the followings:
11
|SQ”,Q”,RY,R,2/,1I + |TQ”,Q”,R/1/,RIQI71| < R] — 1, pRl + R2 =€ — 2@1,

|Sar v Ry Ry 2l < Re+af, 1< —a <p—1
and |Tg”,é”,R’1',R'2',2| é 1
Then (A}) for all ¢ and (B]) for ¢ # 1 implies that
(|Sg”,§”,RN,R”,i| —|— |TQII,Q”.,R”,RN,Z'|) < ’n,eo
1042 1042

1<ign
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in the case 0 < e; < p— 2, and that

Z <|Sa” b// R// R// | + ‘Ta” b” R// R”,’L|) neg + |:;L:|

1<ign
in the case e; = p — 1. It remains to eliminate the possibility of equality in
the case e; = 0.

We assume that e = 0 and Zlgign(|SEN1§//,R/1/73/2/’1" + |Tg”,Q”,R/1',R'2’,i|) =
neg. Then (Aj) for all i implies that [Sy» p vy Ry il + |Tar b Ry RY il = €0
for all . Now we have

eo = |Sar v ry ry 1l + [Ty my Ry 2| < Bu—1
and
eo — 1 < [Syrp ry Ry 2| < Ro +af.

This implies e + p — 1 — af < pRy + Rs. Because pR; + Ry = e — 2df,
this inequality happens only in the case —a} = p — 1, and in this case the
above inequalities become equality. So we have eg—1 = [Sqr 7, R!.RY 2| and
Ry = eq+p—2. By |Tyr p ry Ry 2| = 1, we have Ry < min{(e— aQ)/p7 by /p}.
So we get ay < eg—p(p—2) < eg—3, but this contradicts [Sy v rr Ry 3| >

ep — 1. Thus we have eliminated the possibility of equality in the case
€1 = 0. ]

The claim (2) follows from Lemma 3.2 and Lemma 3.3. O

REMARK 3.4. — By Lemma 1.2, we can check that there is Vg satisfying
the conditions for My in Proposition 3.1.

4. Main theorem

To fix the notation, we recall the definition of the zeta function of a
scheme of finite type over a finite field.

DEFINITION 4.1. — Let X be a scheme of finite type over F. We put
gr = |F|. The zeta function Z(X;T) of X is defined by

Here,
exp(f(T)) = Y~ f(T)" € Q[T]
for f(T') € TQ[[TT].
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THEOREM 4.2. — Let Z(9%#v,0;T) be the zeta function of 4Ry, o.
Then the followings are true.

(1) After extending the field F sufficiently, we have

dvg
Z(GRv, 0;T) = [[ (1 = [FI'T) "™
i=0
for some m; € Z such that may. > 0.
(2) If n =1, we have

If n > 2, we have

n+1 e n—2|{e+1 e+2
<dwy < .
0<% [ 2 Hpﬂ}r[ 2 Hpﬂ}r{pﬂ}

Furthermore, each equality in the above inequalities can happen
for any finite extension K of Q.

Proof. — This follows from Proposition 1.3, Proposition 2.1, Proposi-
tion 3.1 and Remark 3.4. g
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