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ON THE RATIONAL APPROXIMATION
TO THE THUE–MORSE–MAHLER NUMBERS

by Yann BUGEAUD

Abstract. — Let (tk)k>0 be the Thue–Morse sequence on {0, 1} defined by
t0 = 0, t2k = tk and t2k+1 = 1− tk for k > 0. Let b > 2 be an integer. We establish
that the irrationality exponent of the Thue–Morse–Mahler number

∑
k>0 tkb−k is

equal to 2.
Résumé. — Soit (tk)k>0 la suite de Thue–Morse définie sur {0, 1} par t0 =

0, t2k = tk et t2k+1 = 1 − tk pour k > 0. Soit b > 2 un entier rationnel.
Nous démontrons que l’exposant d’irrationalité du nombre de Thue–Morse–Mahler∑

k>0 tkb−k est égal à 2.

1. Introduction

Let ξ be an irrational, real number. The irrationality exponent µ(ξ) of ξ
is the supremum of the real numbers µ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < 1
qµ

has infinitely many solutions in rational numbers p/q. It follows from the
theory of continued fractions that µ(ξ) is always greater than or equal to
2, and an easy covering argument shows that µ(ξ) is equal to 2 for almost
all real numbers ξ (with respect to the Lebesgue measure). Furthermore,
Roth’s theorem asserts that the irrationality exponent of every algebraic
irrational number is equal to 2. It is in general a very difficult problem to
determine the irrationality exponent of a given transcendental real number
ξ. Apart from some numbers involving the exponential function or the
Bessel function (see the end of Section 1 of [1]) and apart from more or

Keywords: Irrationality measure, Thue–Morse sequence, Padé approximant.
Math. classification: 11J04, 11J82.



2066 Yann BUGEAUD

less ad hoc constructions (see below), there do not seem to be examples
of transcendental numbers ξ whose irrationality exponent is known. When
they can be applied, the current techniques allow us only to get an upper
bound for µ(ξ).
Clearly, the irrationality exponent of ξ can be read on its continued

fraction expansion. But when ξ is defined by its expansion in some integer
base b > 2, we do not generally get enough information to determine the
exact value of µ(ξ). A combinatorial, and naïve, method is the following.
Write

(1.1) ξ = bξc+
∑
k>1

ak
bk
,

where ak ∈ {0, 1, . . . , b−1} for k > 1 and b·c denotes the integer part func-
tion. Assume that there are positive integers n, r,m such that an+h+ir =
an+h for h = 1, . . . , r and i = 1, . . . ,m. With such a triple (n, r,m) of
positive integers, we associate the rational number ξn whose b-ary expan-
sion is defined as follows: Truncate the expansion of ξ after the n-th digit
an and complete by repeating infinitely many copies of the finite block
an+1 . . . an+r. Clearly, ξn is a good rational approximation to ξ which sat-
isfies

|ξ − ξn| <
1

bn+(m+1)r ,

since ξ and ξn have their first n+(m+1)r digits in common. If we find infin-
itely many triples (n, r,m) as above for which (m+1)r is ‘large’ compared to
n, then we get a good lower bound for µ(ξ). If, in addition, these triples con-
stitute a ‘dense’ sequence, in a suitable sense, then we can often deduce an
upper bound for µ(ξ). In most cases, in particular when µ(ξ) is small, both
bounds do not coincide. This is pointed out e.g., in Lemma 4 of [15], where
it is shown by this method that µ(

∑
k>1 3−bτkc) = τ for every real number τ

at least equal to (3+
√

5)/2, and that τ 6 µ(
∑
k>1 3−bτkc) 6 (2τ−1)/(τ−1)

if 2 6 τ < (3 +
√

5)/2.
There are however several examples of real numbers defined by their ex-

pansion in some integer base and whose continued fraction expansion is
known, see [4, 17, 13, 7, 11], hence, whose irrationality exponent is deter-
mined. Among these examples are some automatic numbers [4, 11]. Recall
that a real number ξ is an automatic number if there exists an integer b > 2
such that the b-ary expansion of ξ can be generated by a finite automaton;
see [6] for precise definitions.
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Adamczewski and Cassaigne [2] established that the irrationality expo-
nent of every irrational automatic number is finite. Subsequently, Adam-
czewski and Rivoal [3] were able to bound from above the irrationality
exponent of automatic numbers ξ constructed with Thue–Morse, Rudin–
Shapiro, paperfolding or Baum–Sweet sequences, but their bounds, al-
though quite small, are presumably not best possible. They gave two meth-
ods for producing rational approximations to the automatic numbers ξ
considered in [3]. A first one is based on Padé approximants to the gener-
ating function of the automatic sequence. A second one is the naïve method
described above: If some block of digits occurs at least twice near the be-
ginning of the sequence, then the sequence is “close” to a periodic sequence,
thus the associated real number is “close” to a rational number.
In this note we focus on the most classical family of automatic numbers,

namely the Thue–Morse–Mahler numbers. Let

t = t0t1t2 . . . = 0110100110010110100101100110100110010110 . . .

denote the Thue–Morse word on {0, 1} defined by t0 = 0, t2k = tk and
t2k+1 = 1− tk for k > 0. Alternatively, tk = 0 (resp. 1) if the number of 1’s
in the binary expansion of k is even (resp. is odd). Note also that, if σ is
the morphism defined by σ(0) = 01 and σ(1) = 10, then t is precisely the
fixed point of σ starting with 0.
Let b > 2 be an integer. In a fundamental paper, Mahler [16] established

that the Thue–Morse–Mahler number

ξt,b =
∑
k>0

tk
bk

= 1
b

+ 1
b2

+ 1
b4

+ 1
b7

+ 1
b8

+ . . .

is transcendental (see Dekking [14] for an alternative proof, reproduced in
Section 13.4 of [6]). Adamczewski and Rivoal [3] showed that the irrational-
ity exponent of ξt,b is at most 4, improving the upper bound of 5 obtained
in [2]. At the end of [3], they conjectured that the irrationality exponent
of ξt,b is at most 3. Let us add some comments: since t begins with 01101,
it also begins with σn(011)σn(01), for n > 1. Consequently, ξt,b is close to
the rational ρn whose b-ary expansion is purely periodic of period σn(011),
in the sense that ξt,b and ρn have their first 5 · 2n digits in common. This
is exactly the method followed in [2] to get that µ(ξt,b) 6 5. Note that this
approach actually yields the better bound µ(ξt,b) 6 4, since the integers
pn and qn defined in Section 6 of [2] have a large common divisor. Using
another combinatorial property of t, we can construct a second sequence
of good rational approximations to ξt,b. Indeed, since t begins with 011,
it also begins with σn(0)σn(1)σn(1), for n > 1. Consequently, ξt,b is close

TOME 61 (2011), FASCICULE 5



2068 Yann BUGEAUD

to the rational πn whose b-ary expansion is ultimately periodic of period
σn(1) and preperiod σn(0). In doing this, we find the rational approxima-
tions denoted by pn/qn in Section 4.2.1 of [3] and obtained by means of
suitable Padé approximants. As noted in [3], this method gives the bound
µ(ξt,b) 6 4. However, if we consider the union of the two sequences (ρn)n>1
and (πn)n>1, a careful computation based on triangle inequalities implies
the improved upper bound µ(ξt,b) 6 3.
The purpose of the present note is to establish a stronger result, namely

that this exponent is equal to 2. Like in many papers on irrationality mea-
sures of classical numbers, our proof makes use of Padé approximants.
Apparently, the Thue–Morse–Mahler numbers are the first examples of ir-
rational numbers ξ defined by their expansion in an integer base and for
which a method based on Padé approximants yields the exact value of µ(ξ).

2. Result

We establish the following theorem.

Theorem. — For any integer b > 2, the irrationality exponent of the
Thue–Morse–Mahler number ξt,b is equal to 2.

The strategy to prove the Theorem seems to be new. We make use of
a result of Allouche, Peyrière, Wen, and Wen [5] on the non-vanishing of
Hankel determinants of the Thue–Morse sequence to get many Padé ap-
proximants to the generating function of the Thue–Morse sequence. By
means of these rational fractions we construct infinitely many good ratio-
nal approximations to the Thue–Morse–Mahler number ξt,b, which form a
sufficiently dense sequence to conclude that the irrationality exponent of
ξt,b cannot exceed 2. We believe that this general method will have further
applications in Diophantine approximation.
The first 20000 partial quotients of the so-called Thue–Morse constant

ξt,2/2 have been computed by Harry J. Smith, see [18]. Open Problem 9 on
page 403 of [6] asks whether the Thue–Morse constant has bounded partial
quotients. We have no idea how to solve this challenging question. Numeri-
cal experimentation performed by Maurice Mignotte tends to suggest that
the answer should be negative and that the continued fraction expansion
of ξt,2/2 shares most statistics with the continued fraction expansion of
almost every real number (in the sense of the Lebesgue measure). Let us
just mention that 1014303 of the first 2447729 partial quotients of ξt,2/2
are equal to 1, and that 45 exceed 100000.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.1. — The Theorem can be made effective. This means that,
for any b > 2 and any positive ε, we can compute explicitly a positive
number q0(ε, b) such that

|ξt,b − p/q| > q−2−ε, for every q > q0(ε, b).

This is justified at the end of the proof.

Remark 2.2. — For an integer b > 2 and an irrational real number ξ
whose b-ary expansion is given by (1.1), let

p(n, ξ, b) = Card{akak+1 . . . ak+n−1 : k > 1}

denote the number of distinct blocks of n letters occurring in the infinite
word a1a2a3 . . . It has been proved independently by several authors that
3(n − 1) 6 p(n, ξt,b, b) 6 4n for n > 1, see Exercise 10 on page 335 and
Note 10.3 on page 341 of [6]. Our Theorem allows us to get some (very
modest) information on the expansion of ξt,b in other bases, namely that,
for any integer b′ > 2, we have

lim
n→+∞

p(n, ξt,b, b
′)− n = +∞.

This follows from the fact that if a real number ξ is such that the sequence
(p(n, ξ, b′)−n)n>1 is bounded, then its irrationality exponent must exceed
2; see [1] for details (the key ingredient is a deep result of Berthé, Holton,
and Zamboni [9] on the combinatorial structure of Sturmian sequences).
Thus, the Thue–Morse–Mahler numbers are among the very few explicit
examples of real numbers for which one can say something non trivial
regarding their expansions in different integer bases.

Remark 2.3. — It was shown in [11] that every rational number greater
than or equal to 2 is the irrationality exponent of some automatic number.
This result motivates the study of the following question [3, 12]:
Is the irrationality exponent of an automatic number always rational?
Results from [12] and the Theorem speak in favour of a positive answer,

but this question seems to be very difficult. It is likely that the proof of the
Theorem can be adapted to determine the irrationality exponent of some
other automatic numbers.

3. Auxiliary results

We begin this section by recalling several basic facts on Padé approx-
imants. We refer the reader to [10, 8] for the proofs and for additional
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results. Let f(z) be a power series in one variable with rational coefficients,

f(z) =
∑
k>0

ckz
k, ck ∈ Q.

Let p, q be non-negative integers. The Padé approximant [p/q]f (z) is any
rational fraction A(z)/B(z) in Q[[z]] such that

deg(A) 6 p, deg(B) 6 q, and ordz=0(B(z)f(z)−A(z)) > p+ q + 1.

The pair (A,B) has no reason to be unique, but the fraction A(z)/B(z) is
unique.
For k > 1, let

Hk(f) :=

∣∣∣∣∣∣∣∣∣
c0 c1 . . . ck−1
c1 c2 . . . ck
...

...
. . .

...
ck−1 ck . . . c2k−2

∣∣∣∣∣∣∣∣∣
be the Hankel determinant of order k associated to f(z). If Hk(f) is non-
zero, then the Padé approximant [k − 1/k]f (z) exists and we have

(3.1) f(z)− [k − 1/k]f (z) = Hk+1(f)
Hk(f) z2k +O(z2k+1).

Our first auxiliary result states that the Hankel determinants of the
Thue–Morse sequence do not vanish. It was proved by Allouche, Peyrière,
Wen, and Wen [5].

Theorem APWW. — Let Ξ(z) be the generating function of the Thue–
Morse sequence on {−1, 1} starting with 1. Then, for every positive integer
k, the Hankel determinant Hk(Ξ) is non-zero and the Padé approximant
[k − 1/k]Ξ(z) exists.

Proof. — This is Corollary 4.1 and Theorem 4.3 from [5]. �

As mentioned in the Introduction, a usual way to prove that a given
number ξ is irrational is to construct an infinite sequence of good rational
approximations to ξ. If this sequence appears to be sufficiently ‘dense’, we
even get a bound for its irrationality exponent by an elementary use of
triangle inequalities; see e.g., Lemma 4.1 from [3] for a precise result.

Lemma 3.1. — Let ξ be a real number. Assume that there exist a real
number θ > 1, positive real numbers c1, c2 and a sequence (pn/qn)n>1 of
rational numbers such that

(3.2) qn < qn+1 6 q
θ
n, (n > 1),

ANNALES DE L’INSTITUT FOURIER
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and
c1q

2
n 6

∣∣∣∣ξ − pn
qn

∣∣∣∣ 6 c2
q2
n

, (n > 1).

Then the irrationality exponent of ξ is at most equal to 2θ.

We stress that the rational numbers occurring in the statement of Lem-
ma 3.1 are not assumed to be written in their lowest form.

Proof. — Let p/q be a reduced rational number whose denominator is
sufficiently large. Let n > 2 be the integer determined by the inequalities

(3.3) qn−1 < 2c2q 6 qn.

We deduce from (3.2) and (3.3) that

(3.4) qn 6 (2c2q)θ.

If p/q 6= pn/qn, then the triangle inequality and (3.3) give∣∣∣∣ξ − p

q

∣∣∣∣ > ∣∣∣∣pq − pn
qn

∣∣∣∣− ∣∣∣∣ξ − pn
qn

∣∣∣∣
>

1
qqn
− c2
q2
n

>
1

2qqn
>

1
2(2c2)θq1+θ ,(3.5)

by (3.4). If p/q = pn/qn, then we have

(3.6)
∣∣∣∣ξ − p

q

∣∣∣∣ =
∣∣∣∣ξ − pn

qn

∣∣∣∣ > c1
q2
n

>
c1

(2c2q)2θ ,

again by (3.4). The combination of (3.5) and (3.6) yields that the irra-
tionality exponent of ξ is at most equal to 2θ. �

Our last auxiliary result is an elementary lemma.

Lemma 3.2. — Let k and n0 be positive integers. Let (aj)j>1 be the
increasing sequence composed of all the numbers of the form h2n, where
n > n0 and h ranges over the odd integers in [1, 2k − 1]. Then, there exists
an integer j0 such that

aj+1 6 (1 + 2−k+1)aj , (j > j0).

Proof. — Observe that every integer of the form m2n with n > n0 +
k and m ∈ {2k−1, 2k−1 + 1, 2k−1 + 2, . . . , 2k − 1, 2k} belongs to (aj)j>1.
Consequently, for j large enough, we have

aj+1

aj
6 max

2k−16h62k

h+ 1
h

= 2k−1 + 1
2k−1 .

This proves the lemma. �
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4. Proof of the Theorem

Preliminaries

In the proof of the Theorem, it is much more convenient to work with
the Thue–Morse sequence on {−1, 1} which begins with 1, that is, with the
sequence

t′ = t′0t
′
1t
′
2 . . . = 1 − 1 − 1 1− 1 1 1 − 1 − 1 1 1 − 1 . . .

Note that t′k = 1− 2tk, for k > 0. Since, for b > 2, we have

ξt′,b :=
∑
k>0

t′k
bk

= b

b− 1 − 2ξt,b,

the numbers ξt,b and ξt′,b have the same irrationality exponent. Let

Ξ(z) =
∑
k>0

t′kz
k

denote the generating function of t′. Since t′0 = 1, t′2k = t′k and t′2k+1 = −t′k
for k > 0, we check easily that

(4.1) Ξ(z) = (1− z)Ξ(z2).

The fact that Ξ(z) satisfies a functional equation plays a crucial role in
Mahler’s method [16] and in the proof of the Theorem.

First step: Construction of infinite sequences of good rational
approximations to ξt′,b

Let k be an odd positive integer and m be a positive integer. It fol-
lows from Theorem APWW and (3.1) that there exist integer polynomials
Pk,0(z), Qk,0(z) of degree at most k−1 and k, respectively, and a non-zero
rational number hk such that

Ξ(z)− Pk,0(z)/Qk,0(z) = hkz
2k +O(z2k+1).

Then, there exists a positive constant C(k), depending only on k, such that
(4.2)∣∣∣∣Ξ(z2m

)− Pk,0(z2m)
Qk,0(z2m) − hkz

2m+1k

∣∣∣∣ 6 C(k)z2m+1k+2m

, for 0 < z 6 1/2.

An induction based on (4.1) gives that

Ξ(z) =
m−1∏
j=0

(1− z2j

)Ξ(z2m

),
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hence, by (4.2), we obtain∣∣∣∣Ξ(z)−
m−1∏
j=0

(1− z2j

)Pk,0(z2m

)/Qk,0(z2m

)− hk
m−1∏
j=0

(1− z2j

) z2m+1k

∣∣∣∣
6 C(k)z2m+1k+2m

,

(4.3)

for 0 < z 6 1/2.
For simplicity, set

Pk,m(z) =
m−1∏
j=0

(1− z2j

)Pk,0(z2m

)

and
Qk,m(z) = Qk,0(z2m

).
Note that Pk,m(z)/Qk,m(z) is the Padé approximant [2mk− 1/2mk]Ξ(z) of
Ξ(z).
Let m0(k) be a positive integer such that

(4.4) C(k)2−2m

6
hkΞ(1/2)

2 , for m > m0(k).

Assume that m is at least equal to m0(k). Since

Ξ(1/2) 6
m−1∏
j=0

(1− 2−2j

) 6
m−1∏
j=0

(1− z2j

) 6 1

holds for 0 < z 6 1/2, it follows from (4.3) and (4.4) that we have

(4.5) hkΞ(1/2)
2 z2m+1k 6

hk
∏m−1
j=0 (1− z2j ) z2m+1k

2 6

∣∣∣∣Ξ(z)− Pk,m(z)
Qk,m(z)

∣∣∣∣
and

(4.6)
∣∣∣∣Ξ(z)− Pk,m(z)

Qk,m(z)

∣∣∣∣ 6 3hk
∏m−1
j=0 (1− z2j ) z2m+1k

2 6
3hk
2 z2m+1k,

for 0 < z 6 1/2.
Let b > 2 be an integer. Taking z = 1/b in (4.5) and (4.6) and recalling

that Ξ(1/b) = ξt′,b, we obtain the inequalities

(4.7) hkΞ(1/2)
2 b−2m+1k 6

∣∣∣∣ξt′,b −
Pk,m(1/b)
Qk,m(1/b)

∣∣∣∣ 6 3hk
2 b−2m+1k.

Define the integers
pk,m = b2

mkPk,m(1/b)

TOME 61 (2011), FASCICULE 5
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and
qk,m = b2

mkQk,m(1/b).
Note that the polynomial Qk,0(z) (and, hence, the polynomial Qk,m(z))
does not vanish at z = 0. This observation and (4.7) show that there exist
positive real numbers c1(k), . . . , c6(k), depending only on k, such that

(4.8) c1(k)b2
mk 6 qk,m 6 c2(k)b2

mk,

(4.9) c3(k)
b2m+1k

6

∣∣∣∣ξt′,b −
pk,m
qk,m

∣∣∣∣ 6 c4(k)
b2m+1k

,

and, combining (4.8) and (4.9),

(4.10) c5(k)
q2
k,m

6

∣∣∣∣ξt′,b −
pk,m
qk,m

∣∣∣∣ 6 c6(k)
q2
k,m

.

Consequently, for every odd positive integer k, we have constructed an
infinite sequence of rational numbers (pk,m/qk,m)m>m0(k) that are close to
ξt′,b.

Second step: Upper bound for the irrationality exponent of ξt′,b

Let K > 2 be an integer. Let (VK,n)n>1 be the sequence of positive
integers composed of all the integers qk,m with k odd, 1 6 k 6 2K − 1,
m > m0(k), ranged by increasing order. It follows from Lemma 3.2 and
(4.8) that there exists an integer n0(K) such that

(4.11) VK,n < VK,n+1 6 V
1+2−K+2

K,n , for n > n0(K).

Furthermore, by (4.10), there are positive integers UK,n and positive con-
stants C1(K), C2(K), depending only on K, such that

(4.12) C1(K)
V 2
K,n

6

∣∣∣∣ξt′,b −
UK,n
VK,n

∣∣∣∣ 6 C2(K)
V 2
K,n

, for n > n0(K).

We then deduce from (4.11), (4.12) and Lemma 3.1 that the irrationality
exponent of ξt′,b is at most equal to 2 + 2−K+3. Since K is arbitrary and
ξt′,b is irrational, this exponent must be equal to 2. Recalling that ξt,b and
ξt′,b have the same irrationality exponent, this concludes the proof of the
Theorem.
This proof can be made effective, since, as shown in [10, 8], the coefficients

of the polynomials Pk,0(z), Qk,0(z) and the rational numbers hk can be
expressed as determinants of matrices whose entries are elements of the
sequence t′.
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