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EQUATIONS OF SOME WONDERFUL
COMPACTIFICATIONS

by Pascal HIVERT

Abstract. — De Concini and Procesi have defined the wonderful compacti-
fication X̄ of a symmetric space X = G/Gσ where G is a complex semisimple
adjoint group and Gσ the subgroup of fixed points of G by an involution σ. It is
a closed subvariety of a Grassmannian of the Lie algebra g of G. In this paper we
prove that, when the rank of X is equal to the rank of G, the variety is defined by
linear equations. The set of equations expresses the fact that the invariant alternate
trilinear form w on g vanishes on the (−1)-eigenspace of σ.
Résumé. — De Concini et Procesi ont défini la compactification magnifique

minimale d’un espace symétrique X = G/H où G est un groupe complexe semi-
simple adjoint et H le sous-groupe des points fixes par une involution σ. C’est une
sous-variété fermée d’une Grassmannienne des sous-espaces vectoriels de l’algèbre
de Lie de G. Dans cet article, nous démontrons que, lorsque le rang de X est égal au
rang de G, la variété est définie par des équations linéaires. Ces équations traduisent
l’annulation de l’espace propre de σ de valeur propre −1 par la forme trilinéaire
alternée invariante sur l’algèbre de Lie de G. L’article finit par des exemples lorsque
le rang de G est deux.

1. Introduction

Throughout this paper, the Lie algebras, the vector spaces and the pro-
jective spaces are defined over the complex field C. Let g be a semisimple
Lie algebra with adjoint group G, and κ be the Killing form on g. The trilin-
ear alternate form w : (x, y, z) 7→ κ([x, y], z) is invariant under the adjoint
action: it is an element of (

∧3
g∨)G. We put g = dim g.

Let σ be an involution of G, and H = Gσ be the closed subgroup con-
sisting of fixed points by σ. The rank of the symmetric space X = G/H is
the maximal dimension of the (−1)-eigenspace of σ acting on a σ-invariant

Keywords: Wonderful compactification, symmetric space, Lie algebra, adjoint group,
scheme.
Math. classification: 14L30, 20G05.
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Cartan subalgebra of g (σ induces an involution on the Lie algebra g, de-
noted again by σ, moreover this involution preserves the Killing forms on
g). By definition, the rank of the symmetric space is less than or equal to
the rank of g.

In [2], the minimal wonderful compactification X̄ of X is defined as the
closure in the Grassmannian G(dim gσ, g) of the G-orbit of the point gσ,
the Lie algebra of Gσ. The action of G in X̄ has the following properties.

1. The variety X̄ is a union of finitely many G-orbits.
2. The set X̄ rG · gσ is a union of r hypersurfaces Si, i ∈ {1, . . . , r}. As

a consequence of Theorem 3.1 of [2], the integer r is equal to the rank
of X.

3. The orbit closures are the intersections SJ =
⋂
i∈J Si where J is a

subset of {1, . . . , r}. By convention, we put S∅ = X̄.
4. SJ1 ∩ SJ2 = SJ1∪J2 and codimSJ = ]J .
We may ask how to define a set of equations of X̄ in G(dim gσ, g): we do

not know any reference to this question in the literature. In this paper, we
give an answer when the rank of X is equal to the rank of G denoted by l
that is to say there exists h a Cartan subalgebra such that σ|h = −idh. It
follows that σ(Φ) = −Φ where Φ is the root system of (g, h). Thus, σ is
completely known, the symmetric space of maximal rank is unique up to
isomorphism.

Theorem 1.1. — If the rank ofX is equal to l, X̄ is defined in G( g−l2 , g)
by linear equations.

Let us give a sketch of the proof. We assume in this paper that rankX= l.

Definition 1.2. — Let W be a vector subspace of g.
(1) The subspaceW is a nullspace for (g, w) if w vanishes onW×W×W .
(2) The subspace W is a maximal nullspace for (g, w) if it has maximal

dimension for property (1).

We call Y the set of all maximal nullspaces. This a closed subset of a
Grassmannian G(d′, g), where d′ is the dimension of maximal nullspaces
for (g, w).
For an involution σ of g, the direct sum g = gσ ⊕ g−1 where g−1 is the

(−1)-eigenspace is orthogonal with respect to κ; moreover the subspace
g−1 is a nullspace for (g, w). Any Borel subalgebra is a nullspace, so the
maximal dimension is greater than or equal to d := g+l

2 .
We first prove that any maximal nullspace contains a Cartan subalgebra

of g, and we deduce from this fact that d′ = d. If W is a maximal nullspace
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which contains a Cartan subalgebra h, let Φ be the root system of (g, h). We
prove that for any α ∈ Φ, the vector space Cxα⊕Cx−α, generated by a root
vector of ±α meets W along a line. We deduce a correspondence between
the orbits of Y under G and the orbits of the parabolic subalgebras of g (the
corresponding parabolic subalgebra of W is p = W + [W,W ]). The closed
orbit consists of Borel subalgebras, and to prove the smoothness of Y , we
analyze its tangent space over this orbit. This description corresponds to
the wonderful compactification by the mapW 7→W⊥. We finish this paper
with examples when l = 2: sl(3) and sp(4).
For classical simple Lie algebras, Theorem 1.4 of chapter 4 in [8] gives the

involutive automorphisms corresponding to the symmetric spaces of max-
imal rank. Hence, we can describe these symmetric spaces, we summarize
it in the next table.

sl(n) P(S2Cn)

sp(2n) Hilb2 (IG(n, 2n))

so(2n) G(n, 2n)/ ∼

so(2n+ 1) G(n, 2n+ 1)

For the first line, S2Cn is the space of quadrics on Cn. For the second
line, this is the Hilbert variety of length two subschemes of the isotropic
Grassmannian. For the third line, the equivalence ∼ identifies a subspace
and its orthogonal.
These symmetric spaces are (by definition) birationnally equivalent to

their wonderful compactifications, but they have singular locus. For exam-
ple, the variety of complete quadrics is the wonderful compactification of
maximal rank for sl(n) : this is the blow up of P(S2Cn) along the singular
locus.

2. Maximal nullspaces for (g, w)

We follow the above-mentioned sketch.

Proposition 2.1. — Every maximal nullspace contains a regular semi-
simple element.

Remark. — Let T be a maximal torus of G, and µ a one-parameter
subgroup of T . We say that µ is regular if any µ-stable vector space W is
T -stable. In particular, if h is the Lie algebra of T , W is h-stable. See [3]
for more details.

TOME 61 (2011), FASCICULE 5
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Let V be a maximal nullspace for (g, w) and recall that dimV = d′ > d.
Take µ a regular one-parameter subgroup and let V0 = limt→0 µ(t) ·V . The
vector space V0 is µ-stable, so h-stable, maximal for (g, w).

Lemma 2.2. — If V0 contains a regular semisimple element, then so
does V .

Proof. — We consider the tautological vector bundle K over the Grass-
mannian G(d′, g), p : K → G(d′, g) and q : K → g the two projections.
Let grs be the open set of regular semisimple elements of g. Since p is flat,
p
(
q−1(grs)

)
is an open set of G(d′, g) containing V0, and so there exists

t0 ∈ C∗ such that µ(t0)V is included in q
(
p−1(grs)

)
. Finally, if µ(t0)V

contains a regular semisimple element, so does V . �

We prove Proposition 2.1 using a decreasing induction on

m = sup
h

dimV ∩ h,

where h ranges through all Cartan subalgebras.
Proof of Proposition 2.1. — The case m = l is obvious.
Letm < l, and assume the result is true for all k such thatm < k 6 l. Let

h be a Cartan subalgebra such that dimV ∩h = m, T be a maximal torus of
G such that h is the Lie algebra of T , µ be a regular one-parameter subgroup
of T , and Φ be the root system of (g, h). It follows that V0 = limt→0 µ(t) ·V
is h-stable, so we can choose to write it as the direct sum

V0 = V0 ∩ h⊕
⊕
α∈S

Cxα,

where S is a subset of Φ and xα a non zero vector of the root space gα.
Denoting R = S ∩ (−S), two cases appear.

i) R = ∅, so ]S 6 g−l
2 , hence l > dimV0 ∩ h = dimV0− ]S > l, so this

forces h ⊂ V0; the conclusion follows from Lemma 2.2.
ii) For α ∈ R, the linear form w(xα, x−α, .) vanishes on V0, so we have

V0 ∩ h ⊂ kerα. The vector space V0 ∩ h⊕C(xα + x−α) is an abelian
Lie algebra consisting of semisimple elements so is contained in a
Cartan subalgebra h1: dimV0 ∩ h1 > dimV0 ∩ h. By induction, V0
contains a regular semisimple element, hence so does V .

�

Corollary 2.3.
(a) The maximal nullspace V contains a Cartan subalgebra.
(b) There exists a one-parameter subgroup µ such that V0 =

limt→0 µ(t) · V is a Borel subalgebra.

ANNALES DE L’INSTITUT FOURIER
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(c) dimV = d.

Proof. — Let s be a regular semisimple element contained in V .
(a) The centralizer c(s) is a Cartan subalgebra. let g be the quotient of g

by c(s), π be the projection on g. Since ψs = w(s, ., .) is a non degenerate
skewsymmetric bilinear form over g and π(V ) is an isotropic subspace,

dim π(V ) 6 1
2 dim g

dimV − dimV ∩ c(s) 6 1
2 (dim g− dim c(s))

dimV ∩ c(s) > l

and finally c(s) ⊂ V .
(b) Let T be a maximal torus of G with Lie algebra h := c(s), Φ be

the root system of (g, h), µ be a regular one-parameter subgroup of T . It
follows that the limit subspace V0 has a decomposition

V0 = h⊕
⊕
α∈S

Cxα,

where S and −S form a partition of Φ. Now, for α, β ∈ S such that α+ β

is a root, w(xα, xβ , x−α−β) 6= 0 proves that α+ β ∈ S, so we can choose a
basis of Φ such that S is the set of positive roots.
(c) follows from (b) and dimV = dimV0. �

Let V be a maximal nullspace of (g, w) containing a Cartan subalgebra h,
Φ be the root system of (g, h), choose α ∈ Φ, and let h0 be an element of
h such that its centralizer is c(h) = h ⊕ gα ⊕ g−α. Using the argument in
the proof of Corollary 2.3 (the first point), we have dimV ∩ c(h) > l + 1.
But h ⊂ V , so dimV ∩ (gα ⊕ g−α) > 1. The linear form w(xα, x−α, ·) is
non zero on h, and so dimV ∩ (gα ⊕ g−α) = 1.

Lemma 2.4. — Let V ∈ Y . There exists a Cartan subalgebra h such
that

V = h⊕
⊕
α∈Φ+

Lα,

where Φ is the root system of (g, h) and Lα is a vector subspace of dimension
1 of gα ⊕ g−α.

Remark. — If α, β are two positive roots such that α+β is a root, and if
we denote by vα+β , vα, vβ basis of Lα+β , Lα, Lβ , then w(vα, vβ , vα+β) = 0
shows vα+β is defined, up to a scalar, by vα, vβ . Let ∆ be a root basis
according to a Borel subalgebra. It is easy to compute that, up to conjugacy,
we have two choices for Lα, α ∈ ∆: this is a root space or not.

TOME 61 (2011), FASCICULE 5
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3. Orbits of Y

The set Y of maximal nullspaces of (g, w) is a closed subset of G :=
G(d, g), and is stable by the adjoint action of G. Thanks to Corollary 2.3,
there is one closed orbit consisting of Borel subalgebras. In this section, we
give a condition for two elements of Y to be conjugate.

Proposition 3.1.
(i) The minimal parabolic subalgebra which contains V ∈ Y is pV :=

V + [V, V ].
(ii) If V1 and V2 are two elements of Y such that pV1 = pV2 , then V1

and V2 are conjugate under G.

Proof.
(i) is obvious using Lemma 2.4.
(ii) Assume pV1 = pV2 . Up to conjugacy of V2 under the adjoint group of

pV1 , assume the existence of a Cartan subalgebra h contained in V1 ∩ V2.
Choosing a root system of (g, h), there are two Borel subalgebras b1 and
b2 such that, for i ∈ {1, 2}

pVi = bi ⊕
⊕
α∈Si

Cx(i)
−α, Vi = Vi ∩ bi ⊕

⊕
α∈Si

C(x(i)
α + x

(i)
−α),

where Si is the set of positive roots (roots of bi) α such that Vi contains no
roots vectors of ±α and xiα a root vector of α such that x(i)

α +x
(i)
−α ∈ Vi for

all α in Si. There exists g in the adjoint group of pV1 such that g · b1 = b2.
Hence, for each α in S1, there exists β in S2 such that g · x(1)

α and x(2)
β are

colinear. Let ∆1 the root basis of Φ given by b1. Up to conjugacy by an
element of the maximal torus of G with Lie algebra equal to h, assume that
g · (x(1)

α + x
(1)
−α) ∈ V2 for α ∈ ∆1 ∩ S1. The last remark of section 2 gives

that g · (x(1)
α + x

(1)
−α) ∈ V2 for α ∈ S1. Check that g · V1 ∩ b1 ⊂ V2 ∩ b2 to

conclude. �

Remark. — The number of orbits in Y is equal to 2l, the number of
parabolic orbits. Indeed, Proposition 3.1 says that V1 and V2 are in the
same orbit in Y if and only if pV1 and pV2 are conjugate. Conversely, for
each parabolic subalgebra p, we can find an element of Y such that pV = p.

Moreover, there is only one orbit with dimension equal to dimY , given
by the parabolic subalgebra g,

Y = G · V ,

where V is the direct sum h⊕
⊕

α∈Φ+ C(xα + x−α).

ANNALES DE L’INSTITUT FOURIER
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Given a Cartan subalgebra h such that the restriction of the involution
σ to h is −idh, it follows that σ(xα) = tαx−α with t2α = 1. Since gσ =∑
α∈Φ+ C(xα + tαx−α), it is easy to see that

g−1 = (gσ)⊥ = h⊕
⊕
α∈Φ+

C(xα − tαx−α)

(orthogonality being given by the Killing form). So, as sets, Y and the won-
derful compactification are isomorphic (we identify G(d− l, g) and G(d, g)
by the isomorphism W 7→W⊥).
As a consequence, Y has dimension d. The next section shows that the

equality is also true as a variety.

4. Equations of Y

Recall that the Grassmannian variety G has an exact sequence of locally
free sheaves:

(4.1) 0 −→ K −→ g⊗OG −→ Q −→ 0,

where K is the tautological sheaf of rank d and Q the quotient sheaf of
rank g−l

2 . The datum w ∈
∧3

g∨ gives a section w1 : OG →
∧3

K∨ and
by transposition, a morphism tw1 :

∧3
K → OG, whose image is an ideal

defining Y as a scheme, denoted by IY .

Remark. — We describe this last morphism locally. Let Λ ∈ Y , take a
base x1, . . . , xd of Λ and y1, . . . , yn−d a base of a complementary W of Λ.
We can identify U = Hom(Λ,W ) with an affine open set of G by identifying
u ∈ Hom(Λ,W ) with the graph of u viewed in Λ⊕W = g. Denote by Xi,j ,
with 1 6 i 6 d and 1 6 j 6 g − d, the coordinates with respect to the
previous basis. So tw1 :

∧3 Λ⊗OG,Λ → OG,Λ sends xi1
∧
xi2
∧
xi3 ⊗ 1 to

(4.2) Fi1,i2,i3 := w

(
xi1 +

∑
j

Xi1,j yj , xi2 +
∑
j

Xi2,j yj , xi3 +
∑
j

Xi3,j yj

)
.

The polynomials Fi1,i2,i3 for 1 6 i1 < i2 < i3 6 d span IY,Λ. To show that
Y is isomorphic, as a scheme, to the wonderful compactification, we prove
that Y is a smooth scheme. It is sufficient to show that Y is smooth on
the minimal orbit, so we must analyze the stalk of Ω1

Y , the sheaf of Kähler
differentials, at a Borel subalgebra.

Theorem 4.1. — The scheme Y is smooth.

Before proving the theorem, we need the following lemma.

TOME 61 (2011), FASCICULE 5
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Lemma 4.2. — Let b be a Borel subalgebra of g. The linear map D

defined by ∧3
b −→ b⊗ [b, b]

v1 ∧ v2 ∧ v3 7−→ v1 ⊗ [v2, v3] + v2 ⊗ [v3, v1] + v3 ⊗ [v1, v2]

has corank less than or equal to d.

Proof. — Let b = h ⊕
⊕

α∈Φ+ gα be a root space decomposition. For h
and k in h, α and β in Φ+, we have

α(k)h⊗ xα = D(h ∧ k ∧ xα) + α(h)k ⊗ xα,(4.3)
α(h)xα ⊗ xβ = D(h ∧ xα ∧ xβ) + β(h)xβ ⊗ xα − h⊗ [xα, xβ ],(4.4)
xα+β ⊗ xα+β = D(xα+β ∧ xα ∧ xβ)− xα ⊗ [xβ , xα+β ](4.5)

+ xβ ⊗ [xα, xα+β ].

Let A be the subspace of coker D spanned by hα ⊗ xα, where α(hα) = 2
and α ∈ Φ+. For suitable h and k, equalities (4.3) and (4.4) show that
h ⊗ xα with α(h) = 0 are in ImD, and xα ⊗ xβ with α 6= β are in A,
hence it follows from (4.5) that xα ⊗ xα ∈ A if α is not simple. Finally,
cokerD ⊂ A. So the number of generators is g−l

2 + l = d. �

Proof of Theorem 4.1. — Let b be a Borel subalgebra, h ⊂ b be a Cartan
subalgebra, Φ be the root system of (g, h), with positive roots given by b,
and g = b ⊕ n− be a root space decomposition with basis x1, . . . , xd for b
(positive root vectors and a basis of h), y1, . . . , yn−d for n− (negative root
vectors) such that κ(xi, yi) 6= 0, for i ∈ {1, . . . , d}. We use the following
exact sequence on sheaves of differentials:

IY /I
2
Y −→ ΩG ⊗OY −→ ΩY −→ 0.

Locally, we can compute the differential of Fi1,i2,i3 in ΩG,b (image of the
first map in the sequence). The result is

(4.6) dFi1,i2,i3 =
∑
j

w(yj , xi2 , xi3) dXi1,j +
∑
j

w(xi1 , yj , xi3) dXi2,j

+
∑
j

w(xi1 , xi2 , yj)dXi3,j .

But ΩG,b is isomorphic to (g/b)∨ ⊗ b, sending dXi,j to y∨i ⊗ xj , where
y∨i = 1

κ(xi,yi)κ(xi, ·) (the duality is relating to the Killing form κ, and we
normalize to have y∨i (yi) = 1). For the first sum in (4.6), we have

ANNALES DE L’INSTITUT FOURIER
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∑
j

w(yj , xi2 , xi3) y∨j ⊗ xi1 = κ

(∑
j

κ(yj , [xi2 , xi3 ])
κ(yj , xj)

xj , ·
)
⊗ xi1(4.7)

= κ([xi2 , xi3 ], ·)⊗ xi1 .(4.8)

The composition map
∧3

b ⊗ OG,b → IY,b/I
2
Y,b → ΩG,b ⊗ OY,b sends

xi1
∧
xi2
∧
xi3 to

κ([xi2 , xi3 ], ·)⊗ xi1 + κ([xi1 , xi2 ], ·)⊗ xi3 + κ([xi3 , xi1 ], ·)⊗ xi2 .

Thanks to Lemma 4.2, we conclude that corank of IY,b/I2
Y,b → ΩG,b⊗OY,b

is less than of equal to d, so rank ΩY,b 6 d, and the result follows. �

A consequence of Theorem 4.1 is that Y is isomorphic to the wonderful
compactification.

Theorem 4.3. — The equations of Y in G are linear.

Proof. — Recall that
∧d

K = OG(−1), so Hom
(∧d

K,
∧3

K
)
'∧d−3

K∨, and so
∧3

K(1) '
∧d−3

K∨. Moreover, from (4.1), we have∧d−3
g∨⊗OG �

∧d−3
K∨. This forces

∧d−3
K∨ to be spanned by its sec-

tions, and so does it to
∧3

K(1). Thanks to the morphism tw1, IY (1) is
spanned by its sections. �

We give a result on global sections of IY (1) when g is a simple Lie
algebra. Extending w :

∧3
g → C to

∧k+3
g →

∧k
g with k a positive

integer, we build a g-invariant differential operator on
∧
g, denoted by δ∗,

satisfying (δ∗)2 = 0. On the other side, by identifying g and his dual by
the Killing form, w can be seen as an element of

∧3
g, the morphism of

g-module
∧k

g
∧w→
∧k+3

g with k a non negative integer defines another g-
invariant differential operator on

∧
g, denoted by δ. Finally, We have built

two complexes (
∧
g, δ) and (

∧
g, δ∗).

Let h be a Cartan subalgebra of g, Φ be the root system of (g, h). We
choose Φ+ a set of positive roots of Φ, and denote by ρ is the half sum of
positive roots. The g-module

∧
g has highest weight 2ρ. The morphisms

δ and δ∗ vanish on all occurrences of V2ρ the irreducible representation of
highest weight 2ρ in

∧
g, so the complexes (

∧
g, δ) and (

∧
g, δ∗) are not

acyclic.
For k in {1, . . . , g}, we search the occurrences of the representation V2ρ

in ∧kg.
(1) If k < ]Φ+ = g−l

2 or k > g − ]Φ+ = g+l
2 , then there is no weight

vector of weight 2ρ in ∧kg. So V2ρ does not appear in this case: we
put ∧kg :=

∧k
g.

TOME 61 (2011), FASCICULE 5
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(2) If g−l2 6 k 6
g+l
2 ,
∧k− g−l2 h∧

∧
α∈Φ+ xα (xα a root vector of α) is the

weight space of weight 2ρ in
∧k

g. Hence,
∧k− g−l2 h⊗ V2ρ represents

all occurrences of V2ρ in
∧k

g. Let ∧kg be a g-submodule of
∧k

g

such that
∧k

g = ∧kg⊕
∧k−g+d

h⊗ V2ρ.
Thanks to the fact that δ and δ∗ preverse the weights, we can defined the
restriction of δ, δ∗ to ∧g. We have constructed (∧g, δ) a subcomplex of
(
∧
g, δ).

Lemma 4.4. — Assume g is simple. The sequences

0 −→ ∧m
′
g

δ−→ ∧m
′+3

g
δ−→ · · · δ−→ ∧g−3

g
δ−→

g∧
g −→ 0,

0 −→ C δ−→ ∧3
g

δ−→ · · · δ−→ ∧m−3
g

δ−→ ∧mg −→ 0,
with m ∈ {g − 2, g − 1, g} and m′ ∈ {0, 1, 2}, are exact.

Remarks. — We could write sequences with δ∗ decreasing wedge powers
of g, which gives other exact sequences for ∧g.

The complex (
∧
g, δ) is a direct sum of two complexes, the first ∧g is

acyclic, and the second given by
∧
h⊗V2ρ with h a Cartan subalgebra of g,

is trivial.

Assume for the moment this lemma. In the proof of Theorem 4.3, tw1 :∧3
K(1)→ OG(1) '

∧d
K gives a g-invariant morphism on global sections∧d−3

g = H0(
∧3

K(1)) → H0(OG(1)) =
∧d

g, it is just δ. We deduce the
following proposition.

Proposition 4.5. — If g is simple, then H0(IY (1)) contains δ
(∧d−3

g
)
.

This proposition shows that we can embed the wonderful compactifica-
tion in a projective space with dimension smaller than P(

∧d
g).

Now we prove Lemma 4.4. The main idea is the study of ζ = δ∗δ + δδ∗

as a g-invariant differential operator. The multiplication by an element
of g and the derivation (action by an element of g∨) spans the ring of
differential operators on

∧
g identified to the Clifford algebra Cliff(g ⊕

g∨, ev) where ev is the duality bracket. Recall that Cliff(g ⊕ g∨, ev) has a
Z/2Z-graduation, which allows us to put a structure of Lie superalgebra.
Define a filtration (F i) with F i spanned by products of multiplications and
at most i derivations. We recall two useful results:
1. [F i, F j ] ⊂ F i+j−1,
2. an element χ of F i is zero if χ|∧kg

= 0; for k 6 i, in other words,
elements of F i are completely known by the image of

⊕
k6i

∧k
g.
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For our case, δ ∈ F 0 and δ∗ ∈ F 3 so ζ = [δ, δ∗] ∈ F 2. The Casimir
operator c and powers of the Euler operator e, e0 = id, e, e2 (e is defined
as e|∧ig = i · id) are g-invariant differential operators in F 2. We need the
following lemma to prove that ζ is a linear combination of c, id, e and e2.

Lemma 4.6. — Denote by Va1ω1+···+alωl the irreducible representation
of g with highest weight a1ω1 + · · ·+ alωl, where ω1, . . . , ωl are the funda-
mental weights according the notations of [1]. We have:

(i)
∧2

sl(n + 1) = sl(n + 1) ⊕ V2ω1+ωn−1 ⊕ Vω2+2ωn , for n > 3, and∧2
sl(3) = sl(3)⊕ V3ω1 ⊕ V3ω2 ,

(ii)
∧2

sp(2n) = sp(2n)⊕ V2ω1+ω2 , for n > 2,
(iii)

∧2
so(n) = so(n)⊕ Vω1+ω3 , for n > 6,

(iv)
∧2

f4 = f4 ⊕ Vω2 ,
(v)

∧2
g2 = g2 ⊕ V3ω1 ,

(vi)
∧2

e6 = e6 ⊕ Vω4 ,
(vii)

∧2
e7 = e7 ⊕ Vω3 ,

(viii)
∧2

e8 = e8 ⊕ Vω8 .

The proof of this lemma is given by computation with a program named
LiE (see [7]).
Except for sl(n + 1), the g-module C ⊕ g ⊕

∧2
g has four irreducible

factors: c, id, e, e2 form a basis of g-invariant differential operators of F 2,
so ζ is a linear combination of c, id, e and e2. For sl(n+ 1), n > 2, remark
that

∧2
sl(n+1) = sl(n+1)⊕W ⊕W∨, withW = V2ω1+ωn−1 orW = V3ω1 ,

and ζ, c, id, e, e2 do not distinguish an irreducible representation and its
dual. Considering W ⊕W∨ as one factor, C⊕g⊕

∧2
g has four factors. We

can treat sl(n+ 1) as the other simple Lie algebras.
There exist a scalar a and a polynomial P of degree less than or equal to

2 such that ζ−ac = P (e). Applying this expression on 1 ∈ C and w ∈
∧3

g,
it follows that P (0) = P (3) = δ∗(w). But the isomorphism

∧k
g '

∧g−k
g

shows that P (g − 3) = P (g) = P (3). Finally, P is constant, thus

(4.9) ζ = ac+ δ∗(w)id.

If Vλ is an irreducible representation of highest weight λ, denote by the
scalar cλ the action of c on Vλ. So, applying (4.9) to the highest weight
vector of V2ρ, we have 0 = ac2ρ + δ∗(w), and so

ζ = δ∗(w)
(

id− 1
c2ρ

c

)
.

Lemma 1 of chapter 2 in [5] gives that cλ < c2ρ, if λ 6= 2ρ and 2ρ dominates
the dominant weight λ. Moreover, an irreducible g-module V which appears
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in
∧
g has highest weight dominated by 2ρ: the restriction of ζ to V is just

the multiplication by a non-zero scalar, except for V2ρ.
Proof of Lemma 4.4. — Let k be a positive integer, and V be an ir-

reducible representation which appears in Ker(δ) ∩ ∧kg, ζ|V = λidV with
λ 6= 0. This statement implies that if x ∈ V then x = δ

( 1
λδ
∗(x)

)
∈ Im(δ).

So all irreducible representations appearing in Ker(δ) ∩ ∧kg are subsets of
Im(δ)∩∧kg, so Ker(δ)∩∧kg = Im(δ)∩∧kg. This forces the two sequences
to be exact. �

5. Correspondence between orbits of Y and
sets of simple roots

The results on orbits of Y agree with the nice properties of the wonderful
compactification. Let h be a Cartan subalgebra of g such that σ|h = −idh.
Let Φ be the root system of (g, h).
1. Denote by pi the parabolic subalgebra spanned by a Borel subalge-

bra b such that h ⊂ b and by g−αj where j runs over {α1, . . . , αi−1,
αi+1, . . . , αl}, with ∆ = {α1, . . . , αl} a root basis with respect to b.
The orbit closures corresponding to the pi’s are the l hypersurfaces Sαi .

2. The orbit closures are SI = ∩α∈ISα where I ⊂ ∆.
Now, we explain the correspondence between orbit closures and subsets

of ∆. Denote by b− the Borel subalgebra spanned by h and x−α (with
α ∈ ∆), n = [b−, b−], N the adjoint group of n, and T the maximal torus
of G with Lie algebra equal to h. Let

Yh = {U ∈ Y such that U ∩ b− = h}.

The last remark of Section 2 shows that
p : C∆ −→ Yh

(tα)α∈∆ 7−→ h⊕
⊕

α∈Φ+(xα + tαx−α)

where, for α, β in Φ such that α+ β ∈ Φ,

tα+β = −w(xα+β , x−α, x−β)
w(x−α−β , xα, xβ) tαtβ ,

is a T -equivariant isomorphism, so dimYh = l (the action of T on C∆ is
defined by eh.(tα)α∈∆ = (eα(h)tα)α∈∆). We prove that there is a correspon-
dence between G-orbit closures of Y and T -orbit closures of C∆, which are
the CI , where I is a subset of ∆ (the T -orbits have the form (C∗)I with I
a subset of ∆).
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Proposition 5.1. — The morphism
ψ : N × Yh −→ Y

(n,U) 7−→ n.U

is an open immersion.

Proof. — If n1, n2 are in N , and U1, U2 are two elements of Yh such that
n1 ·U1 = n2 ·U2, then n−1

2 n1 · h = (n−1
2 n1 ·U1)∩ b− = U2 ∩ b− = h, that is

to say n−1
2 n1 = 1 (the normalizer of a maximal torus contains no unipotent

elements), so U1 = U2: ψ is injective. Moreover, dimN ×Yh = dimY forces
ψ to be dominant, so finally ψ is birational. We conclude with a corollary
of the main theorem of Zariski: since ψ is birational, with finite fibres, then,
because Y is smooth, ψ is an isomorphism between X and an open subset
U of Y . �

Let O be an orbit of Y and U ∈ O. Recall that pU = U + [U,U ] is a
parabolic subalgebra of g, so there exists a subset S of Φ+ such that pU is
conjugate to p = b ⊕

∑
α∈−S g

α. Now we build an element V of Yh such
that p = V + [V, V ]:

V = h⊕
⊕

α∈Φ+rS

Cxα ⊕
⊕
α∈S

C(xα + x−α),

with xα ∈ gα for α ∈ Φ+ and x−α ∈ g−α for α ∈ S such that w(xα +
x−α, xβ + x−β , xα+β + x−α−β) = 0 if α, β and α + β are in S (this is
possible thanks to Lemma 2.4 and its following remark). Since pU and
p are conjugate, Proposition 3.1 implies that V and U are conjugate, so
O ∩ Yh 6= ∅.

Proposition 5.2. — There is a bijection between the T -orbit closures
of Yh and the G-orbit closures of Y , defined as follows:{

G− orbit closure inY
}
←→

{
T − orbit closure inYh

}
O 7−→ O ∩ Yh.

This map preserves intersections. Moreover, G-orbit closures are smooth.

Remark. — For a G-orbit closure O, the set O∩Yh is a T -stable closed
set, so is isomorphic to (C)I where I is a subset of ∆.

Proof. — Let O be a G-orbit closure of Y . The closed set O∩ψ(N ×Yh)
of ψ(N ×Yh) is T -stable and N -stable, so there exists a subset I of ∆ such
that O ∩ ψ(N × Yh) = ψ(N × CI). But O ∩ ψ(N × Yh) is open in O, so
O = ψ(N × CI). This forces the map O 7→ O∩Yh to be an injection. Since
Y has 2l orbit closures and the cardinal of P(∆) is equal to 2l, the bijection
follows.
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It is clear that O ∩ ψ(N × Yh) ' N × CI is smooth. If the singular set
of O is non empty, it is a G-stable closed set, so meets O ∩ ψ(N × Yh), a
contradiction. �

Remarks. — Let O be a G-orbit closure of Y . There exists I ∈ P(∆)
such that O = ψ(N × CI).

(a) We have codim O = ](∆ r I).
(b) For α ∈ ∆, ψ(N × C∆r{α}) is a G-stable closed sets of codimension

one of Y , so is equal to Sα.

6. Examples
6.1. The case sl(3)

Let V be a vector space of dimension 3 and S2V be the vector space
of conics on V . The closure Z of the graph of the duality isomorphism in
P(S2V )× P(S2V ∨), defined as,

P(S2V ) · · · −→ P(S2V ∨)
q 7−→ ∧2q,

is called the variety of complete conics, and the map p : Z → P(S2V ) is
known to be the blow up of P(S2V ) along the Veronese surface (conics of
rank one on V ). We refer to the appendix of [6] for more results. So, if J
is the sheaf of ideals of the Veronese surface in P(S2(V )), Z = Proj(J) is
embedded in Proj

(
H0(J(3))

)
= P(C ⊕ V2ρ), where V2ρ is the irreducible

sl(3)-module of dimension 27 which corresponds to the irreducible represen-
tation of highest weight 2ρ. We finish our description with the commutative
diagram:

Z = P ∩ S −→ P := P(C⊕ V2ρ)y y
S := P(S2V )× P(S2V ∨) −→ P(S2V ⊗ S2V ∨)

Remark. — The variety Z can be defined as:

Z =
{

([q ⊗ q′]) ∈ P(S2V ⊗ S2V ∨) such that qq′ ∈ C Id
}
.

We can easily find the orbit closures: one when rank q = 1, an other when
rank q′ = 1, and their intersection (the closed orbit).

Littelmann and Procesi in [2] show that Z is isomorphic to the wonder-
ful compactification of PGL(3)/PSO(3). In this part, we find equations
defining the wonderful compactification in G(3, sl(3)).
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Let e1, e2, e3 be a basis of V and consider the quadratic form q = e2
1+e2

2+
e2

3. The morphism σ : PGL(3) → PGL(3) which sends [g] to [q−1 tg−1 q]
is an involution, and PGL(3)σ = PSO(q). We have seen in Section 4 that
the sheaf of equations of Y in G(5, sl(3)) (and so X̄ in G(3, sl(3))) is the
image IX̄ of

∧3
K → OG(5,sl(3)). So, thanks to Proposition 4.5, for sl(3),

H0(IX̄(1)) is a submodule of the sl(3)-module
∧3

sl(3) which is isomorphic
to
∧2

sl(3)⊕C⊕ V2ρ, and contains
∧2

sl(3). But two cases are impossible:
i. If H0(IX̄(1)) =

∧2
sl(3)⊕V2ρ, then X̄ satisfies the equations of P(C),

and so X̄ is a point.
ii. If H0(IX̄(1)) =

∧2
sl(3)⊕ C, then X̄ ⊂ P(V2ρ). But elements in the

open orbit of X̄ ⊂ P(
∧3

g) have non zero images by δ∗, so they can
not be in V2ρ ⊂ ker δ∗.

Hence, H0(IX̄(1)) =
∧2

sl(3). In particular, X̄ satisfies the equations of
P(C⊕ V2ρ) ⊂ P(

∧3
sl(3)). We summarize the results obtained so far.

Lemma 6.1. — The wonderful compactification is the intersection of
P(C⊕ V2ρ) and G(3, sl(3)) in P(

∧3
sl(3)).

Since Z and X̄ are identified to subvarieties of P(C⊕ V2ρ), we can prove
that the wonderful compactification is isomorphic to the variety of complete
conics.

Proposition 6.2. — There exists a PGL(3)-equivariant automorphism
of P(V2ρ ⊕ C) which sends X̄ to Z.

Proof. — It is enough to find a PGL(3)-invariant isomorphism of P(C⊕
V2ρ) which sends an element of the open orbit of X̄ to an element of the
open orbit of Z.
Now, sl(3) being viewed as a submodule of V ⊗ V ∨, the composition of

morphisms of sl(3)-modules denoted by Ψ,
3∧
sl(3) −→ V⊗V⊗V⊗V ∨⊗V ∨⊗V ∨ −→ V⊗V⊗V ∨⊗V ∨ −→ S2V⊗S2V ∨,

has a restriction to C⊕ V2ρ → C⊕ V2ρ which is an isomorphism.
As q = e2

1 + e2
2 + e2

3 is a non-degenerate conic on V , it gives q ⊗ q∨ =
(e2

1 + e2
2 + e2

3) ⊗ ((e∨1 )2 + (e∨2 )2 + (e∨3 )2) a point of the open orbit of Z,
and so(q), a point of the open orbit of X̄, seen in

∧3
sl(3) as (e1 ⊗ e∨2 −

e2 ⊗ e∨1 ) ∧ (e2 ⊗ e∨3 − e3 ⊗ e∨2 ) ∧ (e1 ⊗ e∨3 − e3 ⊗ e∨1 ). The morphism Ψ
sends the point of X̄ to q ⊗ q∨ + z2, z = e1 ⊗ e∨1 + e2 ⊗ e∨2 + e3 ⊗ e∨3 .
Moreover, the component of q ⊗ q∨ on the factor C in V2ρ ⊕C is 1/2z2, so
φ = idV2ρ + 1

3 idC, the automorphism of V2ρ⊕C sends q⊗ q∨+ z2 to q⊗ q∨.
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Finally, the composition map φ ◦ Ψ is a PGL(3)-equivariant automorphism
of P(V2ρ ⊕ C) which sends X̄ to Z. �

6.2. The case sp(4)

Let V be the irreducible representation of sp(4) of dimension 4. We
describe the elements of sp(4) in block form in the decomposition V =
U ⊕ U∨ (U being an isotropic vector subspace of dimension 2):(

u v

w −tu

)
with u ∈ Hom(U,U), and v ∈ Hom(U∨, U), w ∈ Hom(U,U∨) are symmet-
ric. Let

S =
(

idU 0
0 −idU∨

)
,

then σ : M → SMS is an involution of sp(4) and of its adjoint group
PSp(4). We have sp(4)σ ' U ⊗ U∨ ' gl(2), and the wonderful compacti-
fication of the corresponding symmetric space PSp(4)/GL(2) is of rank 2.
We use the variety Y introduced in Section 3 to describe its wonderful
compactification.
Let W be the irreducible representation of so(5) of dimension 5. Recall

that
∧2

W ' so(5) ' sp(4) ' S2V , and
∧2

V = W ⊕ C. We denote
v : P(V ) → P(S2V ) the Veronese surface embedding and V = v(P(V )),
V ⊂ G(2,W ) the Grassmannian variety of planes in W .

Theorem 6.3. — The wonderful compatification of PSp(4)/GL(2) with
maximal rank is isomorphic to G̃, the blow up of the GrassmannianG(2,W )
along the Veronese surface V.

Note that G̃ is smooth and dim G̃ = dimG(2,W ) = 6. The main idea is to
embed our two smooth varieties in the same projective spaces P(V2ρ⊕sp(4)),
and then we find a PSp(4)-invariant automorphism of P(V2ρ⊕sp(4)) which
sends one of them to the other one.

Remark. — Lemma 4.4 gives the exact sequence of sp(4)-modules:

0 −→
9∧
sp(4) δ−→

6∧
sp(4)/V2ρ

δ−→
3∧
sp(4) δ−→ C −→ 0.

For the proof of Theorem 6.3, we need the decomposition into irreducible
representations of each term:
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6∧
sp(4) = V2ρ ⊕ V4ω1 ⊕ V3ω2 ⊕ V2ω1+ω2 ⊕ V2ω2 ⊕ Vω2 ⊕ sp(4),

3∧
sp(4) = V4ω1 ⊕ V3ω2 ⊕ V2ω1+ω2 ⊕ V2ω2 ⊕ Vω2 ⊕ C.

Proof of Theorem 6.3.
For the wonderful compactification. Choose an element U in the

open orbit of the variety Y and let u be a representative of U in
∧6

sp(4).
Clearly δ(u) = 0, so thanks to the previous remark, u is an element of
V2ρ ⊕ sp(4) so Y ⊂ P(V2ρ ⊕ sp(4)). If c is the Casimir element of sp(4), a
explicit computation shows that u and c.u are independent, so u does not
lie in one irreducible representation.
For the blow up G̃. As GL(W )-module, H0(OG(2,W )(3)) is isomorphic

to the irreducible representation with partition (3, 3) (see Proposition 3.14
in [9]). So using branching formulae in [4], we have the decomposition on
irreducible sp(4)-modules H0(OG(2,W )(3)) = V6ω1 ⊕ V2ω1 ⊕ V2ρ. Now, we
use the exact sequence:

0 −→ IV(3) −→ OG(2,W )(3) −→ OV(3) −→ 0,

where IV is the sheaf of ideals which defines the Veronese surface in the
Grassmannian G(2,W ), and so,

0−→H0(IV(3)) −→ H0(OG(2,W )(3)) −→ H0(OV(3)) −→ H1(IV(3))−→· · ·

Recall that H0(OV(3)) ' H0(OP(V )(6)) = S6V = V6ω1 , so H0(IV(3)) =
V2ρ ⊕ V2ω1 . The pullback of IV(3) is a very ample sheaf of G̃. Indeed,
denote by Q1 the quotient sheaf of the Grassmannian G(2,W ). The mor-
phism S2Q1 ' S2Q∨1 (2) → IV(2) is surjective, so IV(2) is spanned by its
global sections. Since OG(2,W )(1) is a very ample sheaf on G(2,W ), IV(3)
is a very ample sheaf on G̃ = Proj(IV). To conclude, G̃ is a subvariety of
P
(
H0(IV(3))

)
= P(V2ρ ⊕ sp(4)).

The isomorphism. The Veronese surface V and G(2,W ) are PSp(4)-
stable, so is G̃. The fact V ' U⊕U∨ induces thatW '

∧2
U⊕

∧2
U∨⊕sl(2).

It follows that
∧2

U ⊕
∧2

U∨ is an element of the open orbit of G(2,W ),
which means that its intersection with its orthogonal is reduced to zero.
Thus it defines a unique point [x] in P(V2ρ⊕sp(4)) which is invariant under
the action of GL(2).

Since GL(2) ' Gσ, gl(2) ⊂ sp(4) is a point of the open orbit of X̄,
so gl(2)⊥ is a point of the open orbit of Y , invariant under the action of
GL(2). Denote by [y] this point in P(V2ρ ⊕ sp(4)).
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The two points x and y have components only on the GL(2) trivial factor
of V2ρ ⊕ sp(4): there is one trivial factor in sp(4); using Lemma 4.4, and
decomposing each space into irreducible GL(2)-modules, we check that
V2ρ has another one. Now, x and y have non zero components on these
two trivial factors, if it were not the case, G̃ or Y could be embedded in
some smaller G-stable projective space, that is to say P(V2ρ) or P(sp(4)).
We can therefore find two non zero complex numbers α and β such that
φ = αidV2ρ+βidsp(4) sends x to y. The morphism φ is a PSp(4)-equivariant
automorphism of P(sp(4) ⊕ V2ρ) and restricts to an isomorphism between
G̃ and Y . �
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