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SMOOTH COMPONENTS OF SPRINGER FIBERS

by William GRAHAM & R. ZIERAU (*)

Abstract. — This article studies components of Springer fibers for gl(n) that
are associated to closed orbits of GL(p)×GL(q) on the flag variety of GL(n), n =
p+q. These components occur in any Springer fiber. In contrast to the case of arbi-
trary components, these components are smooth varieties. Using results of Barchini
and Zierau we show these components are iterated bundles and are stable under
the action of a maximal torus of GL(n). We prove that if L is a line bundle on the
flag variety associated to a dominant weight, then the higher cohomology groups
of the restriction of L to these components vanish. We derive some consequences
of localization theorems in equivariant cohomology and K-theory, applied to these
components. In the appendix we identify the tableaux corresponding to these com-
ponents, under the bijective correspondence between components of Springer fibers
for GL(n) and standard tableaux.
Résumé. — Cet article étudie les composantes des fibres de Springer pour gl(n)

qui sont associées à des orbites fermées de GL(p)×GL(q) dans la variété de dra-
peaux de GL(n), n = p + q. Ces composantes apparaîssent dans toute fibre de
Springer. En contraste avec le cas de composantes arbitraires, ces composantes
sont des variétés lisses. En utilisant des résultats de Barchini et Zierau, nous mon-
trons que ces composantes sont des fibrés itérés et sont stables sous l’action d’un
tore maximal de GL(n). Nous démontrons que si L est un fibré en droites sur
la variété de drapeaux associée à un poids dominant, alors les groupes de coho-
mologie de degré supérieur de la restriction de L à ces composantes s’annulent.
Nous déduisons quelques conséquences des théorèmes de localisation en cohomolo-
gie équivariante et K-théorie, appliqués à ces composantes. Dans l’appendice, nous
indentifions les tableaux correspondants à ces composantes, via la correspondance
bijective entre les composantes des fibres de Springer pour GL(n) et les tableaux
standard.

Introduction

Let G be a complex reductive algebraic group with flag variety B. The
moment map µ : T ∗B→ g∗ is called the Springer resolution. If we identify

Keywords: Springer fibers, iterated bundles, flag varieties, nilpotent orbits.
Math. classification: 14L35, 14M15, 20G20, 22E46.
(*) The first author was partially supported by a grant from the N.S.A.



2140 William GRAHAM & R. ZIERAU

g∗ with g by using a nondegenerate G-invariant bilinear form, then the
image of µ is the nilpotent cone in g, and the Springer fibers are the inverse
images of nilpotent elements of g. A Springer fiber µ−1(X) can be identified
with its image under the projection T ∗B → B. This image is the set of
Borel subalgebras of g that contain X, or equivalently, the set Bu of points
in B fixed by the unipotent element u = expX.
In the classic papers [27] and [28], Springer constructed a representation

of the Weyl group W on the cohomology spaces of a Springer fiber. Subse-
quently, the Springer fibers and these Springer representations have played
an important role in several areas in representation theory. Nevertheless,
the geometry of the Springer fibers is still not well-understood. The fixed
point scheme Bs of a semisimple element s ∈ G is smooth ([20]) and stable
under the action of a maximal torus of G. In contrast, the Springer fibers
Bu are almost always singular. Indeed, they must be singular because the
different irreducible components of Bu often intersect. The individual com-
ponents of Bu can be singular as well. Moreover, the components are not
in general stable under the action of a maximal torus of G. These facts all
complicate the study of the Springer fibers.
In this paper, building on the work of Barchini and Zierau ([2]), we

study certain components of Springer fibers in case G = GL(n). As above,
we view the Springer fiber as a subscheme of the flag variety B. Our main
result is that these components are isomorphic to iterated fiber bundles
constructed using subgroups of G. Thus, in contrast to the general case,
these components are smooth and stable under the action of a maximal
torus H of G. Using this description of the components, we calculate Betti
numbers, we obtain a character formula related to associated cycles of dis-
crete series representations, and we express the (equivariant) cohomology
andK-theory classes defined by the components in terms of Schubert bases.

We now describe our results in more detail. Let (G,K) denote the pair
of groups (G,K) = (GL(n), GL(p)×GL(q)), p+ q = n. The group K acts
with finitely many orbits on B. Fix a closed K-orbit Q. Note that Q is
isomorphic to the flag variety for K. Let γQ denote the restriction of µ to
the conormal bundle T ∗QB. The image γQ(T ∗QB) is the closure of a single
K-orbit K · f ; f is called generic. The inverse image γ−1

Q (f) is a single
component of the Springer fiber µ−1(f). We say that such a component is
associated to the closed K-orbit Q. We view the component γ−1

Q (f) as a
subvariety of B. In fact, because the projection of T ∗QB to B is Q, we see
that γ−1

Q (f) ⊂ Q ⊂ B.

ANNALES DE L’INSTITUT FOURIER
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In [2], the authors define a sequence of pairs (G0,K0) = (G,K) ⊃
(G1,K1) ⊃ · · · ⊃ (Gm,Km), where (Gi,Ki) is a pair of the same type
as (G,K). They define elements fi ∈ gi = Lie Gi so that f =

∑
fi is

generic. They also define parabolic subgroups Qi = LiUi ⊂ HKi, where H
is the diagonal torus. The main results of [2] (see Proposition 1.6 below)
imply that

(1) γ−1
Q (f) = Qm · · ·Q1Q0 · b = Lm · · ·L1L0 · b ⊂ G/B,

where B is a Borel subgroup of G, chosen so that the orbit Q is K · b. Let
Ri = Qi ∩Qi−1 and define

Xm = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2
Q1 ×

R1
Q0/R0;

Xm is a bundle over Qm/Rm with fibers isomorphic to Xm−1. Equation (1)
implies that the map F : Xm → γ−1

Q (f) defined by F ([qm, qm−1, . . . , q0]) =
qm · · · q1q0 · b is surjective. The main result of this paper (Theorem 2.7) is
that F is an isomorphism of algebraic varieties. This theorem implies that
the component γ−1

Q (f) is a fiber bundle over Qm/Rm, which is a generalized
flag variety for a product of general linear groups, with fiber isomorphic to
a component of the same type for a smaller pair (G′,K ′) (Corollary 2.13).

The description of γ−1
Q (f) as an iterated bundle has a number of applica-

tions. It implies that γ−1
Q (f) is H-invariant, and makes it easy to calculate

the Betti numbers of γ−1
Q (f) (see Remark 2.16). Using our description of

γ−1
Q (f) we determine the H-fixed points (Proposition 4.1), and also the

weights of H acting on the tangent spaces at these points (Corollary 4.2).
This makes it possible to apply localization theorems in equivariant K-
theory and Borel-Moore homology. Using these theorems we obtain a for-
mula for the character of H acting on

∑
i(−1)iHi(γ−1

Q (f),Oγ−1
Q (f)(τ)),

where Oγ−1
Q (f)(τ) is an invertible sheaf on γ−1

Q (f) corresponding to the
weight τ of H (Theorem 4.4). This formula is of interest because of a re-
sult of J.-T. Chang [5], which states that the dimension of H0(γ−1

Q (f),
Oγ−1
Q (f)(τ)) is the multiplicity of K · f in the associated cycle of a dis-

crete series representation of U(p, q). If τ is sufficiently dominant, the
higher cohomology groups vanish, so our formula gives the character of
H0(γ−1

Q (f),Oγ−1
Q (f)(τ)). As another application of our results and localiza-

tion theorems, we obtain formulas expressing the classes defined by γ−1
Q (f)

in equivariant cohomology and K-theory in terms of Schubert bases (Theo-
rems 4.6 and 4.7). These formulas imply corresponding non-equivariant for-
mulas, answering (for these components) a question raised by T. A. Springer
([29]), and answered in some special cases by J. Güemes ([18]).

TOME 61 (2011), FASCICULE 5



2142 William GRAHAM & R. ZIERAU

Typically one wants to understand the components in some Springer
fiber µ−1(f). In the approach taken here (and in [2]) the “f” is a moving
target. However, it is readily seen that often two closed orbits Q and Q′
give generic elements f and f ′ in the same nilpotent G-orbit. When this
occurs, by translating by some g ∈ G, the components γ−1

Q (f) and γ−1
Q′ (f ′)

may be identified with components in a single Springer fiber. The purpose
of the appendix is to label the components studied in this article in terms
of the usual parametrization of components. This will therefore identify
the components of any Springer fiber that are of the form γ−1

Q (f) (under
the above identification) for some closed Q and generic f . Recall that the
nilpotent orbits in gl(n) are parametrized by partitions of n. If f is in the
orbit corresponding to the partition λ, the components of the Springer fiber
µ−1(f) are parametrized by the set of standard tableaux on the shape of
λ; see [26] and [30]. In the appendix, we describe the standard tableaux
corresponding to the components we consider in this paper. In fact, the
Springer fiber corresponding to any nilpotent orbit contains components
of the type considered in this article.
Results about the smoothness of components of Springer fibers appear in

the literature. An example of a nonsmooth component of a Springer fiber in
sl(6) is given in [32]. More recently L. Fresse ([10]) has determined exactly
which components are smooth for Springer fibers of nilpotents in gl(n) hav-
ing tableau with exactly two columns. Springer fibers of nilpotent elements
in gl(n) have been studied by F. Fung ([12]) in the case where the Young
diagram of f is either of hook shape or has two rows. He shows that the com-
ponents are iterated bundles and he computes the Betti numbers of compo-
nents in these cases. Combinatorial formulas for Betti numbers of Springer
fibers are contained in the work of G. Lusztig (see for example [23]). A
direct computation for gl(n) is given in [9]. Note that our formulas are for
Betti numbers of individual components. Some of our applications of our
main result use a description of H-fixed points (Prop. 4.1); fixed points
are determined in some special cases in [11]. The components of Springer
fibers associated to closed K-orbits in B have been studied for other clas-
sical groups by Barchini and Zierau, and they have obtained descriptions
that are similar to that in the case of (G,K) = (GL(n), GL(p) × GL(q)),
p+q = n. We believe that these descriptions imply that in the other classi-
cal cases these components are again isomorphic to iterated bundles. This
will be pursued elsewhere.

ANNALES DE L’INSTITUT FOURIER
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Notation. — We work over the field of complex numbers. We fix once
and for all the pair of complex groups

(G,K) = (GL(n), GL(p)×GL(q)), p+ q = n.

Then K is the fixed point group of the involution Θ given by conjuga-
tion by the matrix Ip,q := diag(Ip,−Iq). The decomposition of g into ±1-
eigenspaces is written as g = k⊕ p.
The diagonal Cartan subgroup is denoted by H. As is customary we

denote the Lie algebras of G,K,H, etc. by g, k, h, etc. The root system
∆(h, g) is {εi−εj : i 6= j}, where εk ∈ h∗ is defined by εk(diag(z1, . . . , zn)) =
zk. The system of roots of h in k is ∆c = {εi − εj : 1 6 i, j 6 p or p + 1 6
i, j 6 n (and i 6= j)}. We will consider many positive systems for ∆(h, g).
However, we fix once and for all the following positive system in ∆c:

∆+
c = {εi − εj : 1 6 i < j 6 p or p+ 1 6 i < j 6 n}.

For each root εi−εj , we let Xi,j be the root vector equal to the matrix with
a one in the (i, j) entry and zeros elsewhere. If L is a reductive subgroup
of K containing the Cartan subgroup H, then the Weyl group is denoted
by W (L).

1. Preliminaries

A detailed description of the components of the Springer fibers associated
to closed K-orbits in B is given in [2]. Since this description plays a key
role in the results of this article, we begin by carefully describing certain
statements in [2]. Then we will give some consequences of these statements
that will be needed later in the article.

1.1. Components associated to closed K-orbits

The closed K-orbits in B are in one-to-one correspondence with positive
systems ∆+ ⊂ ∆(h, g) that contain ∆+

c . Such a one-to-one correspondence
is given by associating to ∆+ the Borel subalgebra b = h + n−, n− =∑
α∈∆+ g(−α). Then Q = K · b is the corresponding closed K-orbit in B.
Let us fix a positive system ∆+ containing ∆+

c , thus fixing a correspond-
ing closed K-orbit Q = K · b. As described in [2, Section 2], the restriction
of the moment map µ : T ∗B → g∗ to the conormal bundle T ∗QB may be
identified with a map γQ : K ×

B∩K
(n−∩p)→ Nθ, where Nθ is the variety of

nilpotent elements of g contained in p. The map γQ is given by the formula

γQ(k, Y ) = k · Y (:= Ad(k)(Y )).

TOME 61 (2011), FASCICULE 5



2144 William GRAHAM & R. ZIERAU

It is a well-known fact that the image of γQ is the closure of a single K-
orbit in Nθ. An element f of n− ∩ p is said to be generic in n− ∩ p when
γQ(T ∗QB) = K · f .
Our first goal is to describe a particular generic element f in n−∩p. Note

that each positive system ∆+ containing ∆+
c is defined by a ∆-regular, ∆+

c -
dominant λ ∈ h∗ by ∆+ = {α : 〈α, λ〉 > 0}. The notation λ = (λ1, . . . , λn)
is used for λ =

∑
λiεi. Note that λ is ∆+

c -dominant means that the first p
coordinates are decreasing, as are the last q coordinates. We build f from
λ inductively; first f0 is specified (as a sum of certain root vectors) and a
subgroup G1 (a lower rank general linear group) of G is determined. Then
f1 is chosen in g1 and a subgroup G2 of G1 is given by the same procedure.
One continues, obtaining f0, f1, . . . , fm−1; then f = f0 + · · ·+ fm−1 is our
generic element. The inductive procedure is easily described by forming an
“array” from λ. This array consists of two rows of numbered dots and is
constructed as follows. If the greatest coordinate of λ is among the first p
coordinates then place the first dot in the upper row, otherwise place it in
the lower row. Working from left to right, place the next dot in the upper
row if the next greatest coordinate of λ is among the first p coordinates
and in the lower row otherwise. Continue in this manner. The jth dot
(counting from the left) is in the upper row exactly when the jth greatest
coordinate of λ is among the first p coordinates. Again working from left
to right, number the dots in the upper row with 1, 2, . . . , p and those in the
lower row by p+ 1, p+ 2, . . . , p+ q = n. For example, if (G,K) is the pair
(GL(7), GL(4)×GL(3)) and λ = (7, 6, 4, 3, 5, 2, 1), then the array is

r1 r2
r
5

r3 r4
r
6

r
7 .

We define a block in the array to be a set of dots in the array that is max-
imal with respect to the properties (i) all dots lie in the same row and (ii)
the dots are consecutive. In the example the blocks are {1, 2}, {5}, {3, 4}
and {6, 7}.

Suppose that our array has N blocks. Define j1, . . . , jN ∈ {1, 2, . . . , n}
so that ji is the label of the dot farthest to the right in the ith block. Set

f0 =
N−1∑
i=1

Xji+1,ji ,

ANNALES DE L’INSTITUT FOURIER
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where Xji+1,ji
is the root vector for εji+1 − εji

normalized as in the last
paragraph of the introduction. Note that f0 ∈ n− ∩ p. (Each Xji+1,ji

is
noncompact since blocks alternate between lying in the upper and lower
rows. Each root εji+1 − εji

is negative since ji+1 is to the right of ji, so
λji+1 < λji .) We call j1, . . . , jN the first string through the array. It is
useful to express this by connecting the dots labelled by each pair ji, ji+1.
In the example the first string is 2, 5, 4, 7, which is depicted by

r1 r2
@
@
@r

5
�
��

�
��

r3 r4
HHH

HHHr
6

r
7

,

and
f0 = X7,4 +X4,5 +X5,2.

To complete the description of the generic element f in n− ∩ p we intro-
duce a subgroup G1 of G. Let {e1, e2, . . . , en} be the standard basis of Cn

and set
V0 = SpanC eji

: i = 1, . . . , N
W0 = SpanC ej : j /∈ {j1, . . . , jN}.

Define

G1 = {g ∈ G : g(W0) ⊂W0 and g(eji
) = eji

, i = 1, . . . , N}.

Here are a few properties of G1 that allow the inductive procedure to work;
see [2].

(i) G1 is isomorphic to GL(n−N).
(ii) G1 is Θ-stable and, settingK1 = (G1)Θ = K∩G1, the pair (G1,K1)

is of the same type as (G,K).
(iii) h1 := h ∩ g1 is a Cartan subalgebra of g1 (and of k1) and ∆+

1,c :=
{α|h1 : α ∈ ∆+

c , g
(α) ⊂ g1, α|h1 6= 0} is a positive system of roots

in k1.
(iv) b1 := b ∩ g1 is the Borel subalgebra of g1 defined by λ1 := λ|h1 ,

which is ∆(h1, g1)-regular and ∆+
1,c-dominant. Q1 = K1 · b1 is a

closed orbit in the flag variety for G1.
(v) G1 centralizes f0.

Working in G1 we choose f1 ∈ n1∩p1 (= n∩g1∩p) in the same way that
f0 was chosen in g. This amounts to omitting the dots of the first string
through the array to obtain a smaller array and forming a second string.

TOME 61 (2011), FASCICULE 5



2146 William GRAHAM & R. ZIERAU

This second string consists of the labels of the dots farthest to the right in
the blocks of the smaller array. In the example the smaller array is

r1 r3
r
6

and f1 = X6,3. A crucial observation is that in passing to the smaller array
it is possible (and likely) that several blocks “collapse” to one block. (In
the example, 1 and 3 are in different blocks of the array for g, but are in
the same block of the array for g1.)
Continue by defining a subgroup G2 of G1 just as G1 was chosen in G.

In this way there is a sequence of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gm
and a sequence fi ∈ n− ∩ p, i = 1, . . . ,m − 1. The procedure ends when
fm = 0 (i.e., when there is at most one block in the array for gm). It follows
from [2, Thm. 3.2] that

(1.1) f = f0 + · · ·+ fm−1

is generic in n− ∩ p.

Remark 1.1. — The construction given here differs slightly from that
of [2] in that the strings in [2] pass through the dots farthest to the left in
each block. One easily checks that there is a k ∈ K so that our f and Gi
are conjugate by k to the f and Gi of [2]. In fact, the element k may be
chosen to represent an element of W (K).

To describe γ−1
Q (f) we need to define several subgroups of K and of

Ki = K ∩ Gi, i = 1, . . . ,m. Consider K first. Let Π be the set of simple
roots in ∆+ and set S = Π ∩∆+

c . Define 〈S〉 = SpanC S ∩∆c and

qK = h +
∑

α∈〈S〉∪∆+
c

g(−α).

Then qK is a parabolic subalgebra of k. Let QK denote the corresponding
parabolic subgroup ofK. Note that 〈S〉 consists of all roots εj−εk for which
j, k are labels of dots in the same block. Now define parabolic subgroups
Qi,K , i = 1, . . . ,m of Ki in the same manner. It follows from Theorem 4.1
and Equation (4.3) of [2] that

(1.2) γ−1
Q (f) = Qm,K · · ·Q1,KQK · b ⊂ B.

ANNALES DE L’INSTITUT FOURIER
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1.2. The action of the maximal torus H

It is not the case that a maximal torus of K acts on each irreducible
component of a Springer fiber. However, we will see that the maximal
torus H does in fact act on each component associated to a closed K-orbit
in B. In this subsection we establish this fact and give a variant of (1.2)
for which the action of H is more apparent.

Lemma 1.2. — Let H be the diagonal Cartan subgroup. Then

Qm,K · · ·Q1,KQK = (HQm,K) · · · (HQ1,K)(HQK).

Proof. — We show, by induction, that Qi,K · · ·Q1,KQK = (HQi,K) · · ·
(HQ1,K)(HQK) for each i = 0, 1, . . . ,m. The i = 0 case is QK = HQK ,
which clearly holds since QK is a parabolic subgroup of K. Assume that
the i− 1 case holds. We may decompose H into the product of subgroups
H ′ and H ′′ as follows. The subgroup H ′ consists of all h′ so that

h′(ej) =
{
ej , if j is in one of the first i strings
zjej , otherwise

and H ′′ consists of all h′′ so that

h′′(ej) =
{
zjej , if j is in one of the first i strings
ej , otherwise.

(Here zj ∈ C.) Note that H ′ ⊂ Qi,K and H ′′ commutes with Ki (and so
commutes with Qi,K). Therefore

(HQi,K) · · · (HQ1,K)(HQK)
= (H ′Qi,K)(H ′′HQi−1,K) · · · (HQ1,K)(HQK)
= Qi,K(HQi−1,K) · · · (HQ1,K)(HQK)
= Qi,K · · ·Q1,KQK , by the inductive hypothesis.

�

Corollary 1.3. — The maximal torus H acts on γ−1
Q (f).

Definition 1.4. — Let qi = h + qi,K for i = 1, . . . ,m and q0 = qK .

It is easy to see that qi is a parabolic subalgebra of the reductive Lie
algebra h + ki. Write qi = li + u−i and write the corresponding parabolic
subgroup Qi as LiU−i .

Remark 1.5. — Note that Li is slightly different than the group Li in
[2] in that we are including the full torus H in Li. Also, the group Qi

TOME 61 (2011), FASCICULE 5



2148 William GRAHAM & R. ZIERAU

appearing in [2] is some parabolic subgroup of Gi. We have no need to
consider such a group and use Qi to denote the group HQi,K of [2].

The next proposition follows from Lemma 1.2, equation (1.2) and [2,
Theorem 4.8].

Proposition 1.6. — γ−1
Q (f) = Qm · · ·Q1Q0 · b = Lm · · ·L1L0 · b.

1.3. The parabolics Qi

There are two useful descriptions of the parabolic subgroups Qi, one in
terms of roots and the other in terms of flags.
Suppose that there are Ni blocks in the array for gi. List them (from left

to right) as Bi1, . . . , BiNi
(where the i = 0 case is the case of the original

array in g).
Let Si be the set of simple roots in ∆(h, gi)∩∆+ that are compact. Then

〈Si〉 := SpanC Si ∩∆(h, ki) is the set of roots εj − εk so that j, k are both
in a block Bil , for some l. Then

qi = li + u−i with

li = h +
∑

α∈〈Si〉

g(α)

u−i =
∑

α∈∆+
i,c

r〈Si〉

g(−α).

Alternatively, we may describe Qi as the stabilizer of a flag. Let (F i) be
the flag {0} ⊂ F iNi

⊂ F iNi−1 ⊂ · · · ⊂ F i2 ⊂ F i1, with

F ik = SpanC ej : j ∈ Bik ∪ · · ·BiNi
, k = 1, 2, . . . , Ni.

Then Qi is the subgroup of HKi stabilizing the flag (F i).
Here are several immediate properties of Qi = LiU

−
i , i = 0, 1, . . . ,m.

(1) Li is isomorphic to (Torus)×ΠlGL(nil) where nil is the cardinality
of Bil .

(2) Qi stabilizes fk, for k < i.

(3) u−i ⊂ u−i−1, i = 1, 2, . . . ,m.
The next lemma will be used in a crucial way in Section 2.

Lemma 1.7. — For i = 1, . . . ,m the following facts hold.
(i) Li∩Qi−1 is a parabolic subgroup of Li, and Qi∩Qi−1 is a parabolic

subgroup of Qi.

ANNALES DE L’INSTITUT FOURIER
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(ii) The nilradical of li ∩ qi−1 is li ∩ u−i−1, and a Levi factor of li ∩ qi−1
is li ∩ li−1.

(iii) The nilradical of qi ∩ qi−1 is u−i + (li ∩ u−i−1), and a Levi factor is
li ∩ li−1.

(iv) Letting vi = u−i−1 ∩ li, vj ∩ vk = {0}, for j 6= k.

Proof. — Since Li ∩Qi−1 ⊃ Li ∩ (B ∩Ki−1) = Li ∩B, a Borel subgroup
of Li, we see that Li∩Qi−1 is a parabolic subgroup of Li. As the nilradical
U−i of Qi is contained in U−i−1 by property (3) above, we see that Qi∩Qi−1
contains a Borel subgroup of Qi, so Qi∩Qi−1 is a parabolic subgroup of Qi.

The nilradical of li ∩ qi−1 is spanned by g(−α) for α = εa − εb, a < b,

with a and b in the same block for gi, but in different blocks for gi−1. These
are precisely the roots in u−i−1 ∩ li. A Levi factor of li ∩ qi−1 is spanned by
h along with the g(±α) for α = εa − εb, a < b, with a and b in the same
block for gi and for gi−1. This is li∩ li−1. This proves (ii); (iii) follows since
qi ∩ qi−1 = (li ∩ qi−1)⊕ u−i and li ∩ qi−1 = li ∩ li−1 + li ∩ u−i−1.
To verify (iv) we may assume that j < k. Suppose that vj∩vk is nonzero;

since vj ∩ vk is h-stable it must contain some root space, say g(−(εa−εb)) ⊂
vj ∩ vk. Then a, b are in the same block for gk, but in different blocks for
gk−1. But since j 6 k−1, a and b must be in different blocks for both gj−1
and gj . But this contradicts g(−(εa−εb)) ⊂ vj . �

2. The structure of γ−1
Q (f)

In this section we show that γ−1
Q (f) is isomorphic, as an algebraic variety,

to an iterated bundle. Note that we are giving γ−1
Q (f) the reduced scheme

structure induced by the closed embedding of γ−1
Q (f) in B.

Definition 2.1. — Let Ri = Qi ∩Qi−1, for i = 1, 2, . . . ,m, and R0 =
Q0 ∩B (= K ∩B).

For k = 0, . . . ,m, consider Qk ×Qk−1 × · · · ×Q0 with the mixing action
of Rk ×Rk−1 × · · · ×R0 given by

(qk, qk−1, . . . , q1, q0) · (rk, rk−1, . . . , r1, r0)

= (qkrk, r−1
k qk−1rk−1, . . . , r

−1
2 q1r1, r

−1
1 q0r0).

We denote the quotient by

(2.1) Xk = Qk ×
Rk

Qk−1 ×
Rk−1

· · · ×
R2
Q1 ×

R1
Q0/R0.
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The equivalence class of (qk, . . . , q1, q0) ∈ Qk× · · ·×Q1×Q0 is denoted by
[qk, . . . , q1, q0]. We will write X = Xm. The map

(2.2) Qm × · · · ×Q1 ×Q0 → γ−1
Q (f)

defined by (qm, . . . , q1, q0) 7→ qm · · · q1q0 · b is a surjection from Qm × · · · ×
Q1 ×Q0 onto γ−1

Q (f) (by Prop. 1.6) and clearly descends to a surjection

(2.3) F : X → γ−1
Q (f).

We define Fk : Xk → γ−1
Q (f) by the analogous formula (so F = Fm).

Proposition 2.2. — The space X = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2
Q1 ×

R1

Q0/R0 is a smooth projective variety and F : X → γ−1
Q (f) is a morphism

of varieties.

Proof. — This type of argument is fairly standard, but we include it for
completeness. We show by induction on k that Xk is a smooth projective
variety, that each Xk has a natural Qk action induced by the action of
left multiplication of Qk on Qk × Xk−1, and that Fk : Xk → γ−1

Q (f) is a
morphism of varieties. If k = 0, then X0 = Q0/R0 is a partial flag variety
for Q0, since R0 contains a Borel subgroup of Q0. In particular, X0 is a
smooth projective Q0-variety. Moreover, since the map Q0 → γ−1

Q (f) is
constant on R0-orbits, the universal mapping property of quotients ([3,
II.6.3]) implies that the induced map F0 : X0 → γ−1

Q (f) is a morphism of
varieties.
Assume that our assertions have been proved forXk−1. Let Rm act by the

mixing action on Qk ×Xk−1. Now, Qk → Qk/Rk is a principal Rk-bundle,
andXk−1 is projective. Moreover, some power of any line bundle onXk−1 is
Qk−1-equivariant, by [24, Cor. 1.6], so Xk−1 has a Qk−1-equivariant ample
line bundle. This line bundle is Rk-equivariant, as Rk ⊂ Qk−1. By [24,
Prop. 7.1], this implies the existence of a principal bundle

Qk ×Xk−1 → Xk := Qk ×
Rk

Xk−1,

where Xk is quasi-projective. To see that Xk is projective, we need to show
that Xk is complete. As in the proof of [24, Prop. 7.1], we have a fiber
square

Qk ×Xk−1 −−−−→ Qky y
Xk −−−−→ Qk/Rk.

Since Xk−1 is projective, the top map is proper. The vertical maps are flat
and surjective (as they are principal bundle maps), hence faithfully flat.
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Therefore, since the top map is proper, by descent ([17, Section 8.4-5]), so
is the bottom map. As Qk/Rk is a partial flag variety (since Rk contains
a Borel subgroup of Qk), Qk/Rk is complete. Therefore Xk is complete.
Also, since Xk−1 is smooth, the top morphism is smooth; so by descent,
the bottom morphism is smooth. As Qk/Rk is smooth, we see that Xk is
smooth. Since Qk × Rk acts (algebraically) on Qk ×Xk−1, by [3, II.6.10],
Qk acts algebraically on Xk. Thus, Xk is a smooth projective variety with a
Qk-action induced from the left multiplication action of Qk on Qk×Xk−1,
as desired. �

Remark 2.3. — In the preceding proof, we constructedXk inductively as
the quotient (in the sense of algebraic geometry, as in [3, II.6]) of Qk×Xk−1
by Rk. From this, one can show inductively that Xk is the quotient (in the
same sense) of Qk × Qk−1 × · · · × Q0 by Rk × Rk−1 · · · × R0. Indeed, we
have a surjective map

Qk ×Qk−1 × · · · ×Q0 → Qk ×Xk−1 → Xk.

Since Qk × · · · ×Q0 is irreducible, this implies that Xk is also. The second
map is a quotient by Rk; by induction, the first map is a quotient by
Rk−1 × · · · × R0. Therefore, the composition is a quotient by Rk × · · ·R0.
(This follows, for example, because each map is open, being a quotient
morphism. Therefore the composition is open; by [3, Lemma II.6.2], the
composition is a quotient morphism. The composition is also an orbit map
(that is, constant on Rk × · · · × R0-orbits). So by definition, Xk is the
quotient of Qk ×Qk−1 × · · · ×Q0 by Rk ×Rk−1 · · · ×R0.)

Remark 2.4. — Consider the map

Qm ×Qm−1 × · · · ×Q0 → K/Rm ×K/Rm−1 × · · · ×K/R0

defined by

(qm, qm−1, . . . , q0) 7→ (qmRm, qmqm−1Rm−1, . . . , qmqm−1 · · · q0R0).

This map is constant on Rm×· · ·×R0-orbits, so by the universal mapping
property, it induces a map φ : Xm → K/Rm ×K/Rm−1 × · · ·K/R0. If V
is a representation of Rm × · · · × R0, there is an induced vector bundle
on
∏
iK/Ri. Pulling back by φ yields a vector bundle on X whose sheaf

of sections we denote by OX(V ). If V is a 1-dimensional representation
corresponding to a character τ we will denote this sheaf simply by OX(τ).
We will mostly be interested in this when V is simply a representation of
R0 (that is, for i > 0, Ri acts trivially on V ).
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Remark 2.5. — The analogues of the preceding proposition and remarks
hold for other varieties constructed as quotients by mixing actions. We will
use this below.

The following lemma is based on a suggestion of Peter Trapa. The lemma
applies whenQ is a closed orbit, proving that the components γ−1

Q (f) under
consideration are smooth varieties.

Lemma 2.6. — Let Q ⊂ B be a K-orbit whose closure Q ⊂ B is
smooth. Let γ denote the restriction of the moment map to the conor-
mal bundle T ∗QB of Q in B, and let f ∈ Nθ be such that γ(T ∗QB) = K · f .
Then γ−1(f) is smooth.

Proof. — Since T ∗QB is nonsingular, by [19, III, Cor. 10.7], there is a
nonempty open subscheme V ⊂ K · f such that the restriction of γ to
γ−1(V ) is smooth. For any k ∈ K, the restriction of γ to γ−1(kV ) is also
smooth, so replacing V by ∪k∈KkV we may assume that V is K-invariant.
Therefore V ⊃ K · f . For any v ∈ V , γ−1(v) is smooth ([19, III, Theorem
10.2]). As f ∈ V , γ−1(f) is smooth. �

Theorem 2.7. — The map F : X → γ−1
Q (f) is an isomorphism of vari-

eties.

Proof. — By Zariski’s Main Theorem ([3, Section AG.18.2]), a bijective
morphism onto a smooth variety is an isomorphism, so the theorem will be
proved once we see that F is bijective.
We prove that F is bijective by proving a little more. Consider Xk as in

(2.1) and Fk : Xk → γ−1
Q (f) as above. We apply induction on k to prove

that each Fk, k = 0, 1, . . . ,m, is a bijection onto its image Qk · · ·Q1Q0 · b.
The k = 0 case is immediate since X0 = Q0/R0 and R0 = Q0 ∩ B.

Suppose k > 1 and

qk · · · q1q0 · b = q′k · · · q′1q′0 · b.

Then for some b ∈ B ∩K,

(2.4) q−1
k q′k = qk−1 · · · q0bq

′ −1
0 · · · q′ −1

k−1 .

Claim. — q−1
k q′k ∈ Rk.

Once the claim is proved, it will follow that qk−1 · · · q1q0 · b = rkq
′
k−1 · · ·

q′1q
′
0 · b, for some rk ∈ Rk. The inductive hypothesis is that Fk−1 is a

bijection, so
[qk−1, . . . , q0] = [rkq′k−1, . . . , q

′
0] ∈ Xk−1.
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Therefore,

[qk, qk−1, . . . , q0] = [q′kr−1
k , rkq

′
k−1, q

′
k−2, . . . q

′
0] = [q′k, q′k−1, . . . , q

′
0]

in Xk.
To prove the claim it is enough to show that q−1

k q′k ∈ Qk−1. For this we
use the following lemma.

Lemma 2.8. — There is a sequence of parabolic subalgebras p(k), k =
0, 1, . . . ,m of k so that

(i) q = p(0) ⊂ p(1) ⊂ · · · ⊂ p(m) = k, and
(ii) p(k) ∩ (h + kk) = qk, k = 0, 1, . . .m.

Proof of lemma. — For each k = 0, 1, . . . ,m − 1 consider sets C(k)
l ⊂

{1, 2, . . . , n} with the following properties.

(1) {1, 2, . . . , n} is the disjoint union of C(k)
1 , . . . C

(k)
Jk

.
(2) Each C(k)

l consists of consecutive integers and lies either in {1, . . . , p}
or in {p+ 1, . . . , n}.

(3) Every gk-block has labels that are contained in exactly one C(k)
l and

each C(k)
l contains at most one gk-block.

(4) Each C(k)
l is the union of C(k−1)

j for several j.

Set C(m)
1 = {1, . . . , p} and C(m)

2 = {p+ 1, . . . , n}.
It follows from (3) that J0 = N (the number of blocks in the original

array) and C(0)
1 , . . . , C

(0)
N are the original blocks.

We need to establish the existence of a family C(k)
l that satisfies (1)-(4).

Intuitively, each C(k)
l is the union of all C(k−1)

j meeting a common gk-block.
This is not quite the case because (2) must be satisfied. The sets C(k)

l are
not uniquely determined by (1)-(4), but we give one choice below.
LetNk be the number of gk-blocks. Let’s list these blocks asB(k)

1 , . . . , B
(k)
Nk

by first listing, from left to right, those blocks B(k)
1 , . . . , B

(k)
pk occurring in

the upper row. Then continue with the blocks B(k)
pk+1, . . . , B

(k)
Nk

in the lower
row. Define an increasing sequence of integers a0, a1, . . . , aNk+1 by

(2.5) ai =


1, i = 0
the index of the leftmost dot in B(k)

i , i = 1, . . . , pk
p+ 1, i = pk+1
the index of the leftmost dot in B(k)

i−1, i = pk+2, . . . , Nk+1.
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Using the notation [a, b) = {r ∈ Z : a 6 r < b} we define

C
(k)
i = [ai, ai+1), for i = 0, 1, . . . , Nk and

C
(k)
Nk+1 = [aNk+1, n],

(2.6)

for k = 0, 1, . . . ,m− 1. Note that these sets are not necessarily nonempty,
even for a given value of k. For example, often the first dot in the first block
is labelled by 1; in this case a1 = 1, so C(k)

0 = ∅.
Since {1, . . . , p} is the disjoint union of C(k)

0 , . . . , C
(k)
pk and {p+ 1, . . . , n}

is the disjoint union of C(k)
pk+1, . . . , C

(k)
Nk+1, properties (1) and (2) hold. Prop-

erty (3) holds since each aj is leftmost in a gk-block.
It remains to show that (4) holds. For this it suffices to show that each

C
(k−1)
i is contained in some C(k)

j . Let a′0, a′1, . . . be the sequence of integers
defined in (2.5), but for gk−1-blocks. We need to check that for any i =
0, . . . , Nk−1,

[a′i, a′i+1) ⊂ [aj , aj+1), for some j and
[a′Nk−1+1, n] ⊂ [aNk+1, n].

For this it suffices to show that {aj} ⊂ {a′i}. Suppose aj is (leftmost) in a
gk-block B(k)

j . Then aj lies in some gk−1-block B(k−1)
i . Since several gk−1-

blocks collapse to one gk-block and the kth string does not pass through
the leftmost dot in B

(k−1)
i , aj is leftmost in B

(k−1)
i , so equal to a′i. This

proves the claim and completes the verification of (4).
The existence of sets C(k)

l satisfying the properties (1)-(4) is now estab-
lished and we are ready to finish the proof of the lemma.
Define S(k) = {εa+1 − εa : a, a + 1 ∈ C(k)

l for some l}. By Property (2),
〈S(k)〉 := SpanC S(k) ∩∆ = {εa − εb : a, b ∈ C(k)

l , for some l}.

Definition 2.9. — p(k) = (h +
∑
α∈〈S(k)〉 g

(α)) +
∑
α∈∆+

c r〈S(k)〉 g
(−α).

The fact that p(k) is a parabolic subalgebra of k follows from Property (2).
Part (i) of the lemma follows from Property (4). The third property implies
that for each l, C(k)

l ∩
(
{1, 2, · · · , n} r {the first k strings}

)
is a gk-block

(or is empty). Part (ii) of the lemma follows from this. �

We are now in position to prove that q−1
k q′k ∈ Qk−1. Let P (k) = NK(p(k)),

the parabolic subgroup with Lie algebra p(k). Since Q0, . . . , Qk−1 ⊂ P (k−1),
the right hand side of (2.4) is in P (k−1). But the left hand side is in HKk ⊂
HKk−1. We conclude that q−1

k q′k ∈ P (k−1) ∩HKk−1 = Qk−1. �

Remark 2.10. — An alternate proof of Theorem 2.7 may be given as fol-
lows. The map F is finite since it has finite fibers and X is complete. There
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is a natural injection H0(γ−1
Q (f),Ln) → H0(X,F ∗Ln). If this injection is

an isomorphism for some ample line bundle L and all sufficiently large n,
then F is an isomorphism. The injection is an isomorphism because the G-
module structure of H0(X,F ∗Ln) can be computed using the Borel-Weil
Theorem, and it coincides with the G-module structure of H0(γ−1

Q (f),Ln),
which is computed in [2]. This alternative proof implies that γ−1

Q (f) is
smooth without using Lemma 2.6.

Remark 2.11. — If Li ⊂ L0, for all i, then γ−1
Q (f) ∼= Q0/(Q0 ∩ B) ∼=

L0/(L0∩B), so γ−1
Q (f) is a homogeneous variety. However, if the condition

Li ⊂ L0 fails for some i (for example, whenever there is a block in the
array having fewer dots than its two neighbors), then γ−1

Q (f) is not in any
obvious way a homogeneous variety.

2.1. A vanishing theorem

The next result is a vanishing theorem for the higher cohomology groups
of invertible sheaves on γ−1

Q (f) associated to dominant weights.
Let τ ∈ h∗ correspond to a character χτ of H; extend χτ to a character

of K ∩ B = R0. The closed K-orbit Q may be identified with K/(K ∩ B),
so there is an invertible sheaf OQ(τ) on Q (cf. Remark 2.4). As noted in
the introduction, γ−1

Q (f) can be viewed as a subvariety of Q; let Oγ−1
Q (f)(τ)

denote the pullback of the sheaf OQ(τ) to γ−1
Q (f).

Theorem 2.12. — If τ ∈ h∗ is ∆+
c -dominant and integral, then for all

i > 0, we have Hi(γ−1
Q (f),Oγ−1

Q (f)(τ)) = 0.

Proof. — The proof is by induction on the number of strings m. If m = 0
then γ−1

Q (f) = Q and the result holds by the Borel-Weil-Bott theorem.
Suppose the result holds in case there are m− 1 strings.

Define
X(1) = Qm ×

Rm

Qm−1 ×
Rm−1

· · · ×
R2
Q1/R

′
1,

where R′1 = Q1 ∩ B ⊂ R1 = Q1 ∩ Q0. Note that R′1 = R1 ∩ B is a Borel
subgroup of R1. By Theorem 2.7, X(1) ' γ−1

Q1
(f ′), where f ′ = f − f0 and

Q1 is a closed K1-orbit in the flag variety for G1.
Suppose τ ∈ h∗ is ∆+

c -dominant and integral. We wish to show that
Hi(X,OX(τ)) vanishes when i > 0.
The map that forgets the last factor of X is a fibration

g : X →M = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2
Q1/R1.
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This is a fiber bundle associated to the R1-principal bundle

Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2
Q1 →M,

with fibers isomorphic to the R1-variety Q0/R0.
Let U−τ be the irreducible representation of L having lowest weight −τ .

We claim that

(2.7) Hi(X,OX(τ)) ∼= Hi(M,OM (U∗−τ )).

The push-forward sheaf Rig∗OX(τ) is the sheaf of sections on M asso-
ciated to the R1-module Hi(Q0/R0,OQ0/R0(τ)). Since L0 is a Levi fac-
tor of Q0, and R0 = B ∩ K is a Borel subgroup of Q0, there is an iso-
morphism L0/(L0 ∩ B) ∼= Q0/R0. Therefore, Hi(Q0/R0,OQ0/R0(τ)) ∼=
Hi(L0/(L0 ∩ B),OL0/(L0∩B)(τ)). By the Borel-Weil-Bott Theorem, this
group is 0 for i > 0. For i = 0, the group is a Q0-module whose restric-
tion to L0 is isomorphic to U∗−τ . We use the same notation U∗−τ for the
restriction of this module to R1 ⊂ Q0. Thus, we have shown that

g∗OX(τ) = OM (U∗−τ ),

and that for i > 0,
Rig∗OX(τ) = 0.

The Leray spectral sequence now implies that (2.7) holds for all i.
By Lemma 1.7, L1 ∩L0 is a Levi factor of R1. Thus U∗−τ has a filtration

whose associated graded module is a representation on which the unipotent
radical ofR1 acts trivially and on which L1∩L0 acts as U∗−τ |L0∩L1 ' ⊕E∗−τi

.
This induces a corresponding filtration on the sheaf OM (U∗−τ ). Induction
and the long exact sequence in cohomology imply that our desired vanishing
will follow if we can show that

(2.8) Hi(M,OM (E∗−τj
)) = 0, for i > 0.

For this we consider the fibration h : X(1)→M , a fiber bundle with fibers
isomorphic to R1/R

′
1.

To show that (2.8) holds we prove

(2.9) Hi(X(1),OX(1)(τj)) ∼= Hi(M,OM (E∗−τj
)).

In the course of the proof of [2, Theorem 6.6], it is proved that each τj
is dominant with respect to the positive system ∆+

1,c. Therefore, assum-
ing (2.9), the inductive hypothesis implies that (2.8) holds.
We now prove that (2.9) holds. Each τi defines a character of R′1, and the

push-forward sheaf Rih∗OX(1)(τi) is the sheaf of sections on M associated
to the R1-module Hi(R1/R

′
1,OR1/R′1

(τi)). Since L1 ∩L0 is a Levi factor of
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R1, and R′1 = R1 ∩ B is a Borel subgroup of R1, there is an isomorphism
(L1 ∩ L0)/(L1 ∩ L0 ∩B) ∼= R1/R

′
1. Therefore,

Hi(R1/R
′
1,OR1/R′1

(τi)) ∼=
Hi((L1 ∩ L0)/(L1 ∩ L0 ∩B),O(L1∩L0)/((L1∩L0∩B)(τi)).

By the Borel-Weil-Bott Theorem, this group is 0 for i > 0. For i = 0,
the group is a R1-module whose restriction to L1 ∩ L0 is isomorphic to
E∗−τi

. Moreover, we claim that the unipotent radical of R1 acts trivially
on the module H0(R1/R

′
1,OR1/R′1

(τi)). Indeed, if we denote this unipotent
radical by N , then since N is unipotent and normal in R1, the space of N -
fixed vectors in this module is nonzero and R1-stable. Since the R1-module
H0(R1/R

′
1,OR1/R′1

(τi)) is irreducible (as its restriction to L1 ∩ L0 is), the
space of N -fixed vectors must be the entire module, proving the claim.
Thus, we have shown that

h∗OX(1)(τi) = OM (E∗−τi
),

and that for i > 0,
Rih∗OX(1)(τi) = 0.

Again using the Leray spectral sequence we see that for all i and all τj ,

Hi(X(1),OX(1)(τj)) ∼= Hi(M,OM (E∗−τj
)).

Therefore (2.9) holds and the proof of the theorem is complete.
�

2.2. Some topological consequences of Theorem 2.7

A consequence of the theorem is that any component of a Springer fiber
associated to a closed K-orbit is a fiber bundle over a generalized flag
variety for a (smaller) general linear group having fiber that is a component
of a Springer fiber associated to a closed orbit for a smaller pair (G′,K ′).
To make this precise, let S′ be the set of all labels of dots in the array that
are contained in one of the m strings. Set U = SpanC ei : i ∈ S′ and

G′ =
{
g ∈ G : g(U) ⊂ U and g(ej) = ej , when j /∈ S′

}
Let K ′ = K∩G′, h′ = h∩g′ and λ′ = λ|h′ . If Q′ is the corresponding closed
K ′-orbit in the flag variety for G′, then Theorem 2.7 tells us that Xm−1 '
γ−1
Q′ (f). (Note that the algorithm gives the same generic element f .) This

proves the following corollary.
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Corollary 2.13. — In the setting of the Theorem, there is a fibration

(2.10) X → Qm/Rm

having fiber Xm−1. Here Xm−1 is a component of a Springer fiber for the
smaller pair (G′,K ′) associated to a closed K ′-orbit in B′, and Qm/Rm is
a generalized flag variety for Lm.

We remark that often Qm/Rm is just a point (so X = Xm−1). In this
case one may take S′ to be the labels of the dots in the first m− 1 strings.
Then there is a fibration

X → Qm−1/Rm−1

and the fiber is Xm−2, which is again a component of a Springer fiber for
the smaller pair (G′,K ′) associated to a closed K ′-orbit in B′.

If Z is a topological space with finite-dimensional rational cohomology,
we define the Poincaré polynomial of Z to be

Pt(Z) =
∑
i

dimHi(Z,Q)ti.

As an application of Theorem 2.7, we obtain the Poincaré polynomial of
γ−1
Q (f).

Corollary 2.14. — The variety γ−1
Q (f) is simply connected, and the

cohomology ring H∗(γ−1
Q (f); Z) is torsion-free and vanishes in odd dimen-

sions. The Poincaré polynomial of γ−1
Q (f) is

Pt(γ−1
Q (f)) =

m∏
i=0

Pt(Qi/Ri) =
m∏
i=0

Pt(Li/(Li ∩Ri)).

Proof. — We use the notation of (2.1), so X = Xm. We prove by induc-
tion on k that the cohomology H∗(Xk; Z) is torsion-free and vanishes in
odd dimensions, and

Pt(Xk) =
k∏
i=0

Pt(Qi/Ri).

For k = 0 the result holds since X0 = Q0/R0 = L0/(L0∩B) is a flag variety
for the reductive group L0. Suppose the proposition holds for Xk−1. As in
Corollary 2.13, there is a fiber bundle Xk → Qk/Rk with fiber Xk−1.
Since Qk/Rk and Xk−1 are simply connected, the long exact sequence for
homotopy implies that Xk is simply connected. Because H∗(Xk−1; Z) is
free and Qk/Rk is simply connected, the Leray spectral sequence for the
cohomology of this fiber bundle has E2 term

E2 = H∗(Qk/Rk; Z)⊗H∗(Xk−1; Z).
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Since base and fiber have no odd-dimensional cohomology, the spectral
sequence degenerates at E2. This implies that as Z-modules, H∗(Xk; Z)
and H∗(Qk/Rk; Z)⊗H∗(Xk−1; Z) are isomorphic, so

Pt(Xk) = Pt(Xk−1)Pt(Qk/Rk) =
k∏
i=0

Pt(Qi/Ri),

proving the first equality of the proposition. The second equality holds
because Li is a Levi factor of Qi. �

Remark 2.15. — As pointed out by the referee, the cohomology of every
smooth component of a Springer fiber in type A is torsion-free and vanishes
in odd dimensions. This is because for any nilpotent f ∈ g, there is a
regular rank 1 torus S ' C∗ ⊂ H such that Ad(S)f = C∗f . This implies
that the Springer fiber µ−1(f), and hence each irreducible component of
this fiber, is S-stable. Since S acts with isolated fixed points on B, it
acts with isolated fixed points on each component of µ−1(f). Hence, if the
component is smooth, the Bialynicki-Birula theorem gives a decomposition
of the component into cells of even real dimension, and the assertion follows
(cf. [7, §1.10]).

Remark 2.16. — The polynomials Pt(Li/(Li ∩ Ri)) can be easily com-
puted from the array by the following procedure. IfM is a reductive group,
write pM for the Poincaré polynomial of the flag variety for M . Since all
odd-dimensional cohomology vanishes, it is convenient to write u = t2. If
n > 2, then

pGL(n) = (1− u2)(1− u3) · · · (1− un)
(1− u)n−1 ;

pGL(1) = 1. If P is a parabolic subgroup of M , with Levi factor M ′, then
Pt(M/P ) = pM

pM′
, as follows by considering the fibration M/BM → M/P

with fibers P/BM (here BM ⊂ P is a Borel subgroup of M). By Lemma
1.7, Li ∩ Li−1 is a Levi factor of Li ∩Ri, so if i > 0,

Pt

( Li
Li ∩Ri

)
= pLi

pLi∩Li−1

,

and Pt
(
L0/(L0 ∩ R0)

)
= pL0 . Recall that we denoted the blocks in the

array for gi as Bi1, . . . , BiNi
, and let nil equal the cardinality of Bil . By the

discussion before Lemma 1.7,

pLi
=
∏
l

pGL(ni
l
).

We define subblocks of the blocks for gi (in case i > 0) as follows. Let
a and b be in the same block for gi. If they are also in the same block
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for gi−1, we say they are in the same subblock. List the lengths of the
subblocks as mi

1,m
i
2, . . .. By the proof of Lemma 1.7, the roots of li ∩ li−1

are εa − εb, a < b, with a and b in the same subblock. Hence

pLi∩Li−1 =
∏
l

pGL(mi
l
).

From these facts one can readily calculate Pt(γ−1
Q (f)). For example, in

the case of the array considered in Section 1.1, we find that Pt(γ−1
Q (f)) =

(1 + u)4 = (1 + t2)4.

Example 2.17. — We illustrate these ideas with the following example.
Consider the pair (GL(14), GL(9)×GL(4)) and

λ = (13, 10, 9, 8, 7, 4, 3, 2, 1 | 12, 11, 6, 5).

The array with first string is

r1
Q
Q
Q
QQr

10
r

11
��

��
��

��
�r2 r3 r4 r5
Q
Q
Q
QQr

12
r

13
��

��
��

��
�r6 r7 r8 r9

.

The arrays for (G1,K1) and (G2,K2) are

r
10
�
�
�
��

r2 r3 r4
A
A
Ar
12
�
�
�
��

r6 r7 r8
and

r2
�
�
�
��

r3 r6 r7
.

Then (except for a few factors of the torus, which play no role)

L = GL(1)×GL(4)×GL(4)×GL(2)×GL(2)
L1 = GL(3)×GL(3)×GL(1), L1 ∩ L = L1

L2 = GL(4), L2 ∩ L1 = GL(2)×GL(2).

From this it is easy to see that the Poincaré polynomial is

(1 + u)3(1 + u+ u2)3(1 + u+ u2 + u3)3, u = t2.

The generalized flag variety Qm/Rm (m = 2) is the Grassmannian
G2(C4). Therefore, the fibration (2.10) is

X1 → G2(C4),

and X1 is the component of a Springer fiber for (GL(9), GL(5) × GL(4))
with

λ′ = (13, ∗, ∗, 8, 7, ∗, ∗, 2, 1 | 12, 11, 6, 5).
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Here the coordinates in the 2, 3, 6 and 7 places are omitted in passing to G′.

3. Representations on tangent spaces to iterated bundles
at fixed points

The maximal torus H acts on γ−1
Q (f) with finitely many fixed points,

which we describe explicitly in the next section. If x ∈ γ−1
Q (f) is an H-fixed

point, then the tangent space Txγ−1
Q (f) is a representation of H. Using the

structure of γ−1
Q (f) as an iterated bundle, we can describe the weights of

this representation. Then we can apply localization theorems in equivariant
cohomology and K-theory to the study of γ−1

Q (f).
In this section we will describe the representations on tangent spaces

to fixed points in case H is any algebraic group acting on any variety X
constructed as an iterated bundle. Related calculations have been done,
for example, in the case of Bott-Samelson-Demazure varieties (see e.g. [4]).
However, for lack of a reference, we have decided to give the result for a
general iterated bundle. In the next section, we will apply these results to
the case where H is a maximal torus acting on X = γ−1

Q (f).

3.1. Generalities

We begin with some notation. Given a left action of an algebraic group
Q on a space X and an element q ∈ Q, let L(q) : X → X denote the map
induced by the left action of q and let C(q) denote the map Q→ Q given
by conjugation by q. If H is a subgroup of Q and x ∈ X is H-fixed, then the
map H → GL(TxX) given by h 7→ L(h)∗ = dL(h) defines a representation
of H. Finally, if ξ ∈ q and X is smooth, let ξ# denote the induced vector
field on X, whose value ξ#

x at x ∈ X is determined by the rule that if φ is
a function on X, then

ξ#
x φ = d

dt

(
φ(exp(tξ)x

)∣∣
t=0.

Lemma 3.1. — Let x ∈ X be fixed by q ∈ Q and let ξ ∈ q. Then

(3.1) L(q)∗(ξ#
x ) = (Ad(q)ξ)#

x .

Proof. — If we apply the left side of (3.1) to a function φ on X, we
obtain

d

dt
(φ(q exp(tξ)x)

∣∣∣
t=0

.
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If we apply the right hand side of (3.1) to φ, we obtain
d

dt

(
φ(exp(tAd(q)ξ)x

)∣∣∣
t=0

= d

dt

(
φ(q exp(tξ)q−1x

)∣∣∣
t=0

.

Since x is fixed by q−1, the two calculations agree. �

3.2. The case of a mixed space

Throughout this subsection, Q will denote an algebraic group, and H

and R will denote subgroups of Q. Suppose that M is a smooth algebraic
variety with an R-action. We write X̃ = Q ×M and we let X denote the
“mixed space” X = Q×

R
M . Under mild hypotheses (cf. Remark 2.5) X is

a smooth algebraic variety, and we assume this is the case. Let π : X̃ → X

denote the quotient morphism. We write [q,m] for π(q,m) (for q ∈ Q,
m ∈M). The group Q×R acts on X̃, so for (q, r) ∈ Q×R we have maps
L(q, r) := L(q) × L(r) and C(q) × L(r) from X̃ to X̃. Also, Q acts on X,
and we have π ◦ L(q, 1) = L(q) ◦ π. Note also that if ξ ∈ r then there is an
induced vector field ξ# on M .

Observe that L(q, 1)∗ maps V = q× TmM isomorphically onto T(q,m)X̃.
We define ρ : V → T[q,m]X as the composition

(3.2) ρ = π∗ ◦ L(q, 1)∗.

Lemma 3.2. — The point [q,m] ∈ X is H-fixed ⇔ q−1Hq ⊂ R, and m
is q−1Hq-fixed.

Proof. — This is a straightforward computation. �

Suppose now that [q,m] is H-fixed. Let V = q ⊕ TmM , and define an
H-module structure on V by the formula

h · (ξ, v) = (Ad(q−1hq)ξ, L(q−1hq)∗v),

for ξ ∈ q, v ∈ TmM . We define an H-module structure on r by the formula

h · ξ = Ad(q−1hq)ξ.

Lemma 3.3. — The embedding ψ : r → V defined by ψ(ξ) = (ξ,−ξ#
m)

is H-equivariant.

Proof. — Write s = q−1hq. Using the preceding two lemmas, we have

ψ(h · ξ) = (Ad(s)ξ,−(Ad(s)ξ)#
m) = (Ad(s)ξ,−L(s)∗(ξ#

m)) = h · ψ(ξ),

as desired. �
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Let V1 denote the H-submodule ψ(r) of V .
The main purpose of this subsection is to prove the following proposition.

Proposition 3.4. — With notation as above, assume that [q,m] is an
H-fixed point of X. The map ρ : V → T[q,m]X is H-equivariant with kernel
V1, and hence induces an H-module isomorphism V/V1 → T[q,m]X.

Proof. — To show that ρ is H-equivariant we must show that

(3.3) L(h)∗ρ(ξ, v) = ρ(Ad(s)ξ, L(s)∗v),

where s = q−1hq. Now,

L(h)∗ ◦ ρ = L(h)∗ ◦ π∗ ◦ L(q, 1)∗ = (π ◦ L(hq, 1))∗.

Direct computation shows that

π ◦ L(hq, 1) = π ◦ L(q, 1) ◦ (C(s)× L(s)).

Therefore,

L(h)∗ ◦ ρ = π∗ ◦ L(q, 1)∗ ◦ (C(s)∗ × L(s)∗) = ρ ◦ (Ad(s)× L(s)∗),

which implies that ρ is H-equivariant.
Since V1 and ker ρ have the same dimension, to show that they are equal

it suffices to show that V1 ⊂ ker ρ. Observe that for all r ∈ R, the point
(qr, r−1m) lies in the fiber π−1([q,m]). This implies that the vector v ∈
T(q,m)X̃ defined by

v · φ = d

dt

(
φ(q exp(tξ), exp(−tξ)m

)∣∣
t=0

satisfies π∗(v) = 0. But

v = L(q, 1)∗(ξ,−ξ#
m),

so we see that ρ((ξ,−ξ#
m)) = 0. Hence V1 ⊂ ker ρ, as desired. �

Let H act on q by the rule

h · ξ = Ad(q−1hq)ξ.

If [q,m] is H-fixed, then q−1Hq ⊂ R. Thus, r is an H-submodule of q,
and hence q/r is an H-module. Moreover, m is q−1Hq-fixed, so the map
H → GL(TmM) given by h 7→ L(q−1hq)∗ defines anH-module structure on
TmM . By combining these H-module structures, we obtain an H-module
structure on q/r⊕ TmM . On the other hand, since [q,m] is H-fixed, there
is an H-module structure on T[q,m]X.

Corollary 3.5. — Assume that the hypotheses of the preceding propo-
sition hold, and assume in addition that H is reductive. Then T[q,m]X and
q/r⊕ TmM are isomorphic H-modules.
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Proof. — Let W be an irreducible H-module. If U is any H-module let
multW (U) denote the multiplicity ofW in U . By the preceding proposition,
we have

multW (T[q,m]X) = multW (V )−multW (V1).
Since V = q⊕TmM , and since by definition, V1 ∼= r as H-modules, we have

multW (T[q,m]X) = multW (q) + multW (TmM)−multW (r)
= multW (q/r) + multW (TmM).

Since any irreducibleH-module occurs with the same multiplicity in T[q,m]X

and in q/r⊕ TmM , we conclude that these H-modules are isomorphic. �

3.3. Iterated bundles

We now apply the results of the preceding subsection to iterated bundles.
Let Q0, . . . , Qn be subgroups of an algebraic group G and suppose that
H ⊂ Qn. Suppose that R0, . . . , Rn are subgroups of G with Ri ⊂ Qi−1∩Qi
for i > 0, and R0 ⊂ Q0. Let X̃ = Qn × Qn−1 × · · · × Q0, and let X =
Qn ×

Rn

Qn−1 ×
Rn−1

· · · ×
R2
Q1 ×

R1
Q0/R0. Let π : X̃ → X denote the quotient

morphism. If x̃ = (qn, . . . , q0) ∈ X̃, write [qn, . . . , q0] for π(x̃). The following
lemma is a straightforward computation.

Lemma 3.6. — The point [qn, . . . , q0] ∈ X isH-fixed⇔ for i = 0, · · · , n,
we have C(q−1

i q−1
i+1 · · · q−1

n )(H) ⊂ Ri.

Assume that [qn, . . . , q0] is H-fixed. Let V = qn ⊕ · · · ⊕ q0. Define an
H-module structure on V by making h ∈ H act on the qi summand by
Ad(C(q−1

i q−1
i+1 · · · q−1

n )(h)). Then rn ⊕ · · · ⊕ r0 is an H-submodule of V .
This gives an H-module structure on V/(rn⊕ · · · ⊕ r0) ∼= qn/rn⊕ · · · q0/r0.
As an immediate consequence of the definitions of the H-module struc-

tures, we have the following lemma.

Lemma 3.7. — Assume that [qn, . . . , q0] ∈ X isH-fixed. The embedding
ψ : rn ⊕ · · · ⊕ r0 → V which takes (ξn, . . . , ξ0) to

(ξn,−Ad(q−1
n−1)ξn + ξn−1,−Ad(q−1

n−2)ξn−1 + ξn−2, . . . ,−Ad(q−1
0 )ξ1 + ξ0)

is H-equivariant.

Let V1 denote ψ(rn ⊕ · · · ⊕ r0); if [qn, . . . q0] is H-fixed, then V1 is an
H-submodule of V . Denote by L(qn, . . . , q0) the map of X̃ to itself which
sends (an, . . . , a0) to (qnan, . . . , q0a0). Let

(3.4) ρ = π∗ ◦ L(qn, . . . , q0)∗ : V → T[qn,...q0]X.
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Lemma 3.8. — Let x = [qn, . . . , q0] ∈ X. Let ξ ∈ q, and let ξ# denote
the induced vector field on X. Then ξ#

x = ρ(Ad(q−1
n )ξ, 0, . . . , 0).

Proof. — Let φ be a function on X. Then

ξ#
x φ = d

dt
φ
(

[exp(tξ)qn, . . . , q0]
)∣∣∣
t=0

= d

dt
φ
(

[qn exp(tAd(q−1
n )ξ), . . . , q0]

)∣∣∣
t=0

.

Tracing through the definitions shows that this equals

ρ(Ad(q−1
n )ξ, 0, . . . , 0)φ.

�

The main purpose of this subsection is to prove the following proposition.

Proposition 3.9. — With notation as above, assume that x = [qn, . . . ,
q0] is an H-fixed point of X. The map ρ : V → T[qn,...,q0]X is H-equivariant
with kernel V1, and hence induces an H-module isomorphism V/V1 →
T[qn,...,q0]X.

Proof. — The proof is by induction on n. The case n = 0 is handled
by Proposition 3.4, taking M to be a point. Suppose that the proposition
is true for n − 1. Let M = Qn−1 ×

Rn−1
· · · ×

R2
Q1 ×

R1
Q0/R0 and let m =

[qn−1, . . . , q0] ∈M . Then we can identify X with Qn ×
Rn

M and the point x

with [qn,m]. Let
ρn : qn ⊕ TmM → TxX

be the map defined in (3.2) (with Qn in place of Q, and Rn in place of R),
and let

ρn−1 : qn−1 ⊕ · · · ⊕ q0 → TmM

be the analog of the map ρ (with M in place of X and m in place of x).
We have

qn ⊕ qn−1 ⊕ · · · ⊕ q0
1×ρn−1−→ qn ⊕ TmM

ρn−→ TxX,

and
ρ = ρn ◦ (1× ρn−1).

By hypothesis, x = [qn,m] is H-fixed. By Lemma 3.2, this implies thatm
is H ′ = C(q−1

n )(H)-fixed. By Proposition 3.4, the map ρn is H-equivariant,
and our inductive hypothesis implies that ρn−1 is H ′-equivariant. Combin-
ing these, we can show that ρ is H-equivariant as follows. To simplify the
notation, write ri = C(q−1

i q−1
i+1 · · · q−1

n )(h) ∈ Ri. Then
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L(h)∗ρ(ξn, . . . , ξ0) = L(h)∗ρn
(
ξn, ρn−1(ξn−1, . . . , ξ0)

)
= ρn

(
Ad(rn)ξn, L(rn)∗ρn−1(ξn−1, . . . , ξ0)

)
by H-equivariance of ρn. Using H ′-equivariance of ρn−1, this equals

ρn
(
Ad(rn)ξn, ρn−1(Ad(rn−1)ξn−1, . . . ,Ad(r0)ξ0)

)
which (as ρ = ρn ◦ (1× ρn−1)) is

ρ
(
Ad(rn)ξn,Ad(rn−1)ξn−1, . . . ,Ad(r0)ξ0

)
= ρ(h · (ξn, . . . , ξ0)).

Hence ρ is H-equivariant, as desired.
It remains to check that ker ρ = V1. We will make use of the following

observation: if f : V → W is a linear map of vector spaces, and if A ⊂ V ,
B ⊂ W are subspaces such that f(A) = B, then f−1(B) = A + ker f . As
ρ = ρn ◦ (1× ρn−1), we see that

ker ρ = (1× ρn−1)−1(ker ρn).

By Proposition 3.4,

ker ρn =
{

(ξ,−ξ#
m) | ξ ∈ rn

}
.

By Lemma 3.8,
ρn−1

(
Ad(q−1

n−1)ξ, 0, . . . , 0
)

= ξ#
m.

Therefore, if we let

A =
{(
ξ,−Ad(q−1

n−1)ξ, 0, . . . , 0
)
| ξ ∈ rn

}
⊂ qn ⊕ · · · ⊕ q0,

we see that (1× ρn−1)(A) = ker ρn. Therefore, by the observation above,

(1× ρn−1)−1(ker ρn) = A+ ker(1× ρn−1) = A+ (0⊕ ker ρn−1).

By our inductive hypothesis,

ker ρn−1 =
{

(ξn−1,−Ad(q−1
n−2)ξn−1+ξn−2, . . . ,−Ad(q−1

0 )ξ1+ξ0) | ξi ∈ ri
}
.

Hence, from the definition of V1, we see that

A+ (0⊕ ker ρn−1) = V1,

so ker ρ = V1, as desired. �

Recall that qn/rn ⊕ · · · q0/r0 has an H-module structure defined after
Lemma 3.6.

Corollary 3.10. — Assume that the hypotheses of the preceding pro-
position hold, and in addition assume thatH is reductive. Then T[qn,··· ,q0]X

and qn/rn ⊕ · · · q0/r0 are isomorphic H-modules.
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Proof. — This is proved by an argument similar to the proof of Corol-
lary 3.5. �

It is convenient to give an alternative formulation of the corollary in case
H is a torus and each q−1

i . . . q−1
n is in the normalizer NG(H) of H. If V

is a representation of the torus H, let Φ(V ) denote the multiset of weights
of H acting on V (this is the set of weights, where each weight is counted
with multiplicity). We adopt the convention that if s occurs a times in the
multiset A, and b times in the multiset B, then s occurs a+ b times in the
multiset A ∪B.
The group NG(H) acts on weights by the rule that if λ is a weight of

H (so eλ : H → C∗ is a homomorphism), and w ∈ NG(H), then wλ is the
weight satisfying

ewλ(h) = eλ(w−1hw).
With these definitions, we can reformulate the preceding corollary as fol-
lows.

Corollary 3.11. — Assume the hypotheses of Proposition 3.9 hold.
Assume in addition that H is a torus and that each q−1

i . . . q−1
n is in the

normalizer of H. Then Φ(T[qn,··· ,q0]X) is

qn · Φ(qn/rn) ∪ qnqn−1 · Φ(qn−1/rn−1) ∪ · · · ∪ qnqn−1 · · · q0 · Φ(q0/r0).

Proof. — This follows from Corollary 3.10 and the definition of the H-
action on qn/rn ⊕ · · · ⊕ q0/r0 given after Lemma 3.6. �

Remark 3.12. — The results of this section can be generalized to remove
the assumption that the Qi are subgroups of a group G. Instead of Ri ⊂
Qi−1 ∩ Qi, what we need are inclusions Ri ⊂ Qi and homomorphisms
Ri → Qi−1.

3.4. Induced vector bundles

Keep the notation of the previous subsection. If V is a representation of
R0, then

V = Qn ×
Rn

Qn−1 ×
Rn−1

· · · ×
R1
Q0 ×

R0
V → X

is a Qn-equivariant vector bundle. If x = [qn, . . . , q0] is fixed by H, then
the fiber Vx is a representation of H, which is described as follows.

Proposition 3.13. — With notation as above, if x = [qn, . . . , q0] is
fixed by H, then as an H-module, Vx is isomorphic to V , with H-action
given by

h · v = C(q−1
0 · · · q−1

n )(h)v,

TOME 61 (2011), FASCICULE 5



2168 William GRAHAM & R. ZIERAU

for h ∈ H, v ∈ V . (Note that the right side of this equation makes sense,
since C(q−1

0 · · · q−1
n )(h) ∈ R0 and V is a representation of R0.)

Proof. — We have an isomorphism f: V→Vx given by v 7→ [qn, . . . , q0, v].
An element h ∈ H acts on Vx by

h · f(v) = [hqn, qn−1, . . . , q0, v]

= [qnC(q−1
n )(h), qn−1, . . . , q0, v]

= [qn, C(q−1
n )(h)qn−1, . . . , q0, v]

...

= [qn, . . . , q0, C(q−1
0 · · · q−1

n )(h)v]

= f(C(q−1
0 · · · q−1

n )(h)v).

The proposition follows. �

Corollary 3.14. — Keep the assumptions of the previous proposition.
Assume in addition that H is a torus and that each q−1

i . . . q−1
n is in the nor-

malizer of H, so in particular H ⊂ R0. Suppose that V is a 1-dimensional
representation of R0 and that the weight of H on V (induced by the inclu-
sion H ⊂ R0) is λ. Then the weight of H acting on Vx is qn · · · q0 · λ.

Proof. — This follows immediately from the proposition and the defi-
nition of the action of the normalizer of H on weights of H given in the
preceding subsection. �

4. Localization and γ−1
Q (f)

We return to the situation of Section 2. Using the computations of Sec-
tion 3, we apply localization theorems in equivariant cohomology and K-
theory to γ−1

Q (f). The first application gives a character formula for coho-
mology of Oγ−1

Q (f)(τ). This is related to associated cycles of discrete series
representations. The second application is to express the homology and K-
theory classes determined by γ−1

Q (f) ⊂ B in terms of Schubert bases. This
answers (for the components γ−1

Q (f)) a question of Springer.
The first step is to determine the fixed points of the action of H. Recall

that the fixed point set of H on B is W · b, where W is the Weyl group of
G. Since γ−1

Q (f) is a subset of B, the fixed points on γ−1
Q (f) are a subset

of W · b. In fact, γ−1
Q (f) is contained in the flag variety for K, so the fixed

points are a subset of W (K) · b.
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Proposition 4.1. — The fixed point set of the action of H on γ−1
Q (f)

is

(4.1)
{
wm · · ·w1w0 · b : wi ∈W (Li)

}
.

Proof. — We prove the following statement by induction on k: the fixed
point set of H on Qk · · ·Q1Q0 · b is

(4.2)
{
wk · · ·w1w0 · b : wi ∈W (Li)

}
,

for k = 0, 1, . . . ,m. For k = 0 this is clear since Q0 · b = L0 · b is the flag
variety for L0. Assume that (4.2) holds for k−1, and let w ·b = qk · · · q1q0 ·b
be a fixed point in Qk · · ·Q1Q0 ·b. Using the fact (proved in Section 2) that
Fk : Xk → Qk · · ·Q1Q0 · b is an H-equivariant bijection, we have

h[qk, . . . , q1, q0] = [qk, . . . , q1, q0] ∈ Xk, for all h ∈ H.

Therefore, hqk ≡ qk modulo Rk, for all h ∈ H. In other words, qk · rk is a
fixed point of the action of H on the (generalized) flag variety Qk/Rk =
Lk/Rk ∩ Lk. We conclude that qk = wkrk, for some representative wk of
W (Lk) and rk ∈ Rk. Therefore,

w−1
k w · b = rkqk−1 · · · q1q0 · b

is H-fixed. By the inductive hypothesis the righthand side is wk−1 · · ·w1w0 ·
b, wi ∈W (Li). The proposition now follows. �

Recall that if V is an H-module then Φ(V ) denotes the set of weights of
V , counted with multiplicity.

Corollary 4.2. — The weights of H on the tangent space to the H-
fixed point wm · · ·w1w0 · b of γ−1

Q (f) (where wi ∈W (Li)) are

wn · Φ(qn/rn) ∪ wnwn−1 · Φ(qn−1/rn−1) ∪ · · · ∪ wnwn−1 · · ·w0 · Φ(q0/r0).

All the weights have multiplicity 1.

Proof. — The description of the weights is an immediate consequence
of Corollary 3.11. Each weight has multiplicity 1 because if w ∈ W , then
Twbγ

−1
Q (f) ⊂ TwbB, and H acts with multiplicity 1 on TwbB. �

Recall that the representation ring R(H) is the free abelian group spanned
by eµ, as µ runs over all weights of H. The multiplication in R(H) is
defined by the rule eλeµ = eλ+µ. Let µ1, . . . , µn be weights of H. Let
Cµi

denote the 1-dimensional representation of H corresponding to µi,
and let V = ⊕iCµi . Corresponding to V there is the element

∑
i e
µi of

R(H); by abuse of notation we will also write V for this element. Define
λ−1(V ) =

∏
i(1 − eµi) ∈ R(H). We will make use of the following general
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fact, which is a consequence of the localization theorem in equivariant K-
theory (see [6, Remark 5.11.8]).

Proposition 4.3. — Let H be a torus acting on a smooth complete
algebraic variety M , and assume that the set MH of H-fixed points on M
is finite. Let L be an H-equivariant line bundle onM , and let L denote the
corresponding invertible sheaf on M . For m ∈ MH , let µ(m) denote the
weight of H on Lm. Then in R(H), we have∑

i

(−1)iHi(M,L) =
∑

m∈MH

eµ(m)

λ−1(T ∗mM) .

In this proposition, the individual terms in the sum on the right hand side
are in the quotient field of R(H); they need not be in R(H), but their sum
is. Combining this proposition with our description of the weights of H on
tangent spaces (Corollary 4.2), and Corollary 3.14, we obtain the following
character formula (with notation as in Section 2).

Theorem 4.4. — Let τ ∈ h∗ be an integral weight. Let Ai denote the
set of weights of H on qi/ri. In R(H), we have∑

i

(−1)iHi(γ−1
Q (f),Oγ−1

Q (f)(τ)) =
∑ ewmwm−1···w0τ∏

i

∏
µ∈Ai

(1− e−wmwm−1···wiµ) .

Here the sum is taken over all products wmwm−1 · · ·w0, where wi ∈W (Li).

Note that in this theorem the sum is not over m+1-tuples (wm, · · · , w0)
where wi ∈ W (Li), but rather over the distinct products wmwm−1 · · ·w0.
Also, if τ is dominant with respect to the positive system ∆+

c , then by the
cohomology vanishing theorem (Theorem 2.12), Theorem 4.4 gives a for-
mula for the character of the H-representation on H0(γ−1

Q (f),Oγ−1
Q (f)(τ)).

Now we turn to the question of expressing homology classes of γ−1
Q (f) in

terms of Schubert bases. Because γ−1
Q (f) is an H-invariant subvariety of B,

it defines classes in the homology (or cohomology) and K-theory (ordinary
or H-equivariant) of B. The homology and K-theory of B have Schubert
bases, that is, bases defined in terms of Schubert varieties. Using local-
ization theorems in equivariant cohomology and K-theory, known results
about Schubert classes, and Corollary 4.2, we can express the equivariant
classes determined by γ−1

Q (f) in terms of the Schubert bases. The expres-
sions in ordinary homology or K-theory are obtained by specializing the
corresponding H-equivariant expressions.
We begin by recalling some known facts about equivariant (co)homology

and Schubert classes. The facts we need can be found in [15] or [22]. Given
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any space Z with H-action, one can define the equivariant cohomology
groups Hi

H(Z) and the equivariant Borel-Moore homology groups HH
i (Z).

ThenHH
∗ (Z) = ⊕iHH

i (Z) is a module for the ringH∗H(Z) = ⊕iHi
H(Z). We

have H∗H(point) = S(Ĥ), the symmetric algebra on the group of characters
ofH. Note that S(Ĥ) is the polynomial ring Z[λ1, . . . , λn], where λ1, . . . , λn
is a basis for the free abelian group Ĥ. By pulling back from the map from
Z to a point, there is a map S(Ĥ) → H∗H(Z), and thus HH

∗ (Z) is an
S(Ĥ)-module. If Z is a complete variety, there is a pairing

( , ) : H∗H(Z)⊗
S(Ĥ) H

H
∗ (Z)→ S(Ĥ).

Now consider Z = B. By definition, the Schubert class Xw is the closure
of B · wb in B. Each Xw defines a class [Xw]H in the equivariant Borel-
Moore homology HH

`(w)(B). The space HH
∗ (B) is a free S(Ĥ)-module with

basis given by [Xw]H . Moreover, there is a basis {xw} of H∗H(B) with the
property that

(xu, [Xv]H) = δu,v,

for all u, v ∈W .
Given a class η ∈ H∗H(B), and u ∈ W , write η(u) for the pullback of

η to the equivariant cohomology group H∗H(ub). Because ub is a point,
this group is identified with S(Ĥ). The statement of Theorem 4.6 will
involve the polynomials xw(u). These polynomials are known. Indeed, [22,
Lemma 11.1.9] contains an explicit formula for elements R(w, u) ∈ S(Ĥ).
In Sections 11.1-11.3 of that book, especially Prop. 11.3.10, the connection
of these elements with equivariant cohomology is explained; the result, in
our notation, is that,

xw(u) = (−1)`(w)R(w, u)

(the sign (−1)`(w) is necessary because we have taken the roots in b to be
negative, the opposite of Kumar’s convention).
Because γ−1

Q (f) is H-invariant, it defines a class [γ−1
Q (f)]H ∈ HH

2d(B),
where d is the complex dimension of γ−1

Q (f). Thus, we can write

[γ−1
Q (f)]H =

∑
w

Aw[Xw]H .

Observe that each Aw is a polynomial in λ1, . . . , λn. Let aw be obtained
from Aw by setting all the λi equal to 0. Then in the ordinary homology
H∗(X) we have the equation

[γ−1
Q (f)] =

∑
w

aw[Xw];
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Springer’s original question was essentially to calculate the coefficients aw.
The Aw can be calculated by pairing with the dual basis:

Aw = (xw, [γ−1
Q (f)]H).

See [15] or [22] for proofs and references for the preceding facts.
If H acts on a smooth variety M and u is an H-fixed point, let Pu(M) ∈

S(Ĥ) denote the product of the weights (with multiplicity) of H on TuM .
(As in Corollary 4.2, ifM is anH-invariant subvariety ofB, then all weights
of TuM must occur with multiplicity 1.) The following proposition gives a
formula for the pairing.

Proposition 4.5. — LetM be a smooth closed H-invariant subvariety
of B, and let η ∈ H∗H(B). Then

(η, [M ]H) =
∑
u∈W

η(u)
Pu(M) ,

where we have written Pu(M) for Pub(M). (The individual terms of the
sum on the right hand side are in the quotient field Q(Ĥ) of S(Ĥ), but the
sum is in S(Ĥ)).

Proof. — This is an immediate consequence of the “integration formula”
of [8, Cor. 1] (the formula given there is an algebraic version of [1, Equation
(3.8)]). In that paper, the calculation is done in equivariant Chow groups,
but the same formula holds in equivariant Borel-Moore homology (in fact,
for B the two theories coincide because B is paved by affines). �

As an immediate consequence, we obtain the following theorem.

Theorem 4.6. —The class [γ−1
Q (f)]H inHH∗ (B) is given by

∑
wAw[Xw]H ,

where
Aw =

∑
u

xw(u)
Pu(γ−1

Q (f))
.

Here the sum is over all u ∈W which can be written as u = wmwm−1 · · ·w0,
where wi ∈ W (Li). Also, if Ai denotes the set of weights of H on qi/ri,
then fixing an expression of u as a product wmwm−1 · · ·w0, we have

Pu(γ−1
Q (f)) =

∏
i

∏
µ∈Ai

wmwm−1 · · ·wiµ.

We can perform the analogous calculations in equivariant K-theory us-
ing almost identical arguments. We begin by recalling some facts about the
equivariant K-theory of the flag variety; see [16] for more details and refer-
ences. If Z is a scheme with an H-action, KH(Z) denotes the Grothendieck
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group of H-equivariant coherent sheaves on Z. This is a module for the rep-
resentation ring R(H), which we recall is the free abelian group spanned by
eµ, for µ ∈ Ĥ. If Z is smooth, then every equivariant coherent sheaf on Z
admits a finite equivariant resolution by locally free sheaves, so KH(Z) can
be identified with the Grothendieck group of H-equivariant vector bundles
on Z. In this case, KH(Z) has a ring structure induced from the tensor
product of vector bundles. If Z is complete, there is a pairing

( , ) : KH(Z)⊗R(H) KH(Z)→ R(Z)

defined by
(v1, v2) =

∑
i

(−1)iHi(Z, v1 · v2).

The group KH(B) is a free R(H)-module with basis {[OXw ]}w∈W , that
is, a basis given by the classes of structure sheaves of Schubert varieties.
Just as in cohomology, there is a dual basis {ξw}w∈W , characterized by the
property that

(ξu, [OXw ]) = δu,w.

Write ξu(w) for the pullback of ξu to the equivariant K-theory group
KH(wb) ∼= R(H). Observe that the ξu(w) are known; [14] and [33] give
explicit formulas for these classes (Willems uses a slightly different basis,
but see [16] for a description of the relations between various bases).
If wb is an H-fixed point of γ−1

Q (f), we can write w = wmwm−1 · · ·w0,
where wi ∈W (Li). Define

Qw(γ−1
Q (f)) = λ−1

(
T ∗wbγ

−1
Q (f)

)
=
∏
i

∏
µ∈Ai

(1− e−wmwm−1···wiµ),

where Ai is as in Theorem 4.6.
The expansion of the class [Oγ−1

Q (f)] in terms of the classes [OXw
] is given

by the following theorem.

Theorem 4.7. — The class [Oγ−1
Q (f)] inKH(B) is given by

∑
w Bw[OXw

],
where

Bw =
∑
u

ξw(u)
Qu(γ−1

Q (f))
.

The sum is over all u ∈ W that can be written as u = wmwm−1 · · ·w0,
where wi ∈W (Li). The corresponding expansion in the ordinary K-theory
K(B) is given by setting all the eλ in each Bu equal to 1.

Proof. — The proof of this theorem is almost the same as the proof of
Theorem 4.6, with K-theory in place of cohomology. We omit the details.

�
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Remark 4.8. — There is a similar expansion for [Oγ−1
Q (f)] in terms of

ξw, obtained by replacing ξw(u) by [OXw
](u) in the above formula. An

explicit expression for the elements [OXw
](u) is given in [14] (see [21] for

another proof).

Appendix A. The standard tableaux for components
associated to closed orbits

A parametrization of the components of a Springer fiber for GL(n) is
given in [30]. This is done in a natural way by associating to each compo-
nent of µ−1(f) a standard tableau. Since this parametrization has become
somewhat standard, in this appendix we identify the standard tableaux of
the components studied in this article (and in [2]). Using this identification
we determine which of the components we consider are Richardson (see
Remark A.6).
We mention that the results of this appendix may be found in the lit-

erature by piecing together a number of results about irreducible Harish-
Chandra modules and their annihilators. For SU(p, q) the set of irreducible
Harish Chandra-modules of a given regular integral infinitesimal character
is in one-to-one correspondence with K-orbits in B. On the other hand
the primitive ideals in the enveloping algebra are parametrized in terms
of standard tableau. In [13] an algorithm is given to associate to the K-
orbitQ corresponding to a Harish-Chandra moduleX the standard tableau
corresponding to Ann(X). The algorithm in fact also constructs a signed
tableau having the same shape as the standard tableau. As shown in [31],
the signed tableau is the associated variety of X and the standard tableau
is the component of the Springer fiber of a generic element for T ∗QB. There-
fore, the statements of this appendix follow from [13] and [31]. We include
the appendix as an alternative that is elementary and purely in terms of
the geometric description of γ−1

Q (f).
We begin by recalling the parametrization in [30]. Suppose that f is

any nilpotent element of g = gl(n). The Young diagram associated to f
consists of rows of boxes; the lengths of these rows are the sizes of the
Jordan blocks of f (which are equal to the lengths of the strings, in the
language of Section 1). By a standard tableau we mean a numbering of a
Young diagram (having n boxes) by the numbers in {1, 2, . . . , n} in such a
way that the numbers increase from left to right along any row and down
any column. The irreducible components of µ−1(f) are parametrized by
the standard tableaux having the same shape as the Young diagram of f .
We will need to describe this parametrization carefully.
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Suppose b ∈ µ−1(f) (i.e., b is a Borel subalgebra containing f). Let (Ei)
be the flag {0} ⊂ E1 ⊂ · · · ⊂ En = Cn that corresponds to b (that is, b is
the stabilizer of (Ei)). Then we may associate to (b, f) a standard tableau
ST (b, f) as follows. The tableau of f |Ei

is obtained from the tableau of
f |Ei−1 by attaching a new box onto the end of a row of the tableau of
f |Ei−1 , or perhaps by starting a new row with one box. The standard
tableau of f |Ei

is obtained from that of f |Ei−1 by inserting the number
i in the new box. The starting point for this procedure is a single box
containing the number 1, corresponding to f |E1 . The statement of [30] is
that for each standard tableau ST having the same shape as the Young
diagram of f there exists a unique irreducible component C of µ−1(f)
so that for b in a dense open subset of C, ST (b, f) = ST . This gives a
one-to-one correspondence between irreducible components and standard
tableaux.
An example is to take f as in the example of Section 1. Let b be as in

that example. Then b is the stabilizer of the flag (Ei) with Ei the span of
the standard basis vectors ej with j among the labels of the i dots farthest
to the right in the array. Then the associated standard tableau is

1 3 5 6
2 4
7

For the generic elements f considered in this paper, there is a simple
algorithm for computing ST (b, f) in terms of the array. The algorithm is
as follows. Relabel the dots in the array with 1, 2, . . . , n in decreasing order
from left to right. Each row in the tableau of f corresponds to a string or a
dot not passed through by a string. Now fill in the boxes of each row with
the new labels of the dots in the corresponding string. The rows with one
box get the new labels of the dots in the array that do not lie in a string
(in increasing order).
In the previous example, with all strings sketched in, we get

r7 r6
@
@
@r

5
��

��
��

r4 r3HH
HHHHr

2
r
1

HH
HHHH .

One now easily reads off the standard tableau obtained earlier.
The next proposition implies that in the preceding example, the com-

ponent γ−1
Q (f) corresponds to the standard tableau given above. To prove
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this one would need to find an open dense set of Borel subalgebras b′ in
γ−1
Q (f) for which ST (b′, f) is this same standard tableau. This is how the

proof of the proposition proceeds.

Proposition A.1. — Given a closed K-orbit B with base point b as in
Section 1.1, let f ∈ n− ∩ p be the generic element constructed in Section 1.
Then the standard tableau associated to γ−1

Q (f) is ST (b, f).

To prove the proposition it suffices to prove Proposition A.5 below. We
begin with two lemmas.

Lemma A.2. — Suppose b, b′ ∈ µ−1(f) and b and b′ correspond to flags
(Ei) and (E′i). Then ST (b, f) = ST (b′, f) if and only if dim(ker(fk|Ei

)) =
dim(ker(fk|E′

i
)) for each i = 1, 2, . . . , n and each k ∈ Z>0.

Proof. — It follows from the above discussion that ST (b, f) is deter-
mined by the Jordan forms of f |Ei , i = 1, 2, . . . , n. Therefore it is deter-
mined by dim(ker(fk|Ei

)) for each i = 1, 2, . . . , n and each k ∈ Z>0. �

Define Wi = SpanC ej : j is a label of a dot in the ith string, for i =
1, . . . ,m. List the standard basis vectors not in any Wi as ej1 , . . . , ejr−m

(some r) with j1 > j2 > · · · . Now set Wm+i = Ceji . It follows that
Cn = W1 ⊕ · · · ⊕Wr and each Wi is f -stable.
Consider a closed K-orbit Q = K · b and the generic f in n− ∩ p as

in Section 1.1. Let v−1 , . . . , v
−
m be the nilradicals of the parabolic subal-

gebras li ∩ qi−1 of li, as discussed in Lemma 1.7. Let v−0 = l0 ∩ n−. Let
v0, v1, . . . , vm be the nilradicals of the opposite parabolic subalgebras. Then
V := exp(vm) · · · exp(v1) exp(v0) · b is dense and open in γ−1

Q (f).

Lemma A.3. — Suppose Xl ∈ vl and j is arbitrary. Then exp(Xl)ej =
ej + y, where y is a linear combination of standard basis vectors ea with
a < j and a in the same gl-block as j.

Proof. — Consider Xl ∈ vl. Then Xl is a linear combination of root
vectors for εa − εb with a, b in the same gl-block and a < b. Then Xl(ej)
is 0 if j is not in a gl-block and is a linear combination of ea with a in the
same gl-block as j and a < j. The lemma follows. �

Lemma A.4. — For any v ∈ exp(vm) · · · exp(v1) exp(v0), ker(fk) =
ker(fk ◦ v).

Proof. — Since v is invertible, ker(fk) and ker(fk ◦ v) have the same
dimension. So it is enough to show that ker(fk) ⊂ ker(fk◦v). The following
observation will be used. If a, b are in the same gl-block (for some l) and
a < b, then fk(eb) = 0 implies fk(ea) = 0. To see this it suffices to assume
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that l = 0. Then a lies in a later string than the string of b (since strings
pass through the rightmost dot in a block). The statement follows from the
construction of f .
Combining this observation with the preceding lemma, along with the

fact that the kernel of fk is spanned by standard basis vectors, we see that
for all l,

exp(Xl) ker(fk) ⊂ ker(fk).
Induction easily gives

exp(Xl) · · · exp(X0) ker(fk) ⊂ ker(fk), all l.

In particular,
v(ker(fk)) ⊂ ker(fk).

The inclusion follows. �

Proposition A.5. — The standard tableaux ST (b′, f) coincide for all
Borel subalgebras b′ in the dense open set V.

Proof. — Let b′ = v · b ∈ V. Then the flag defining b′ is (E′i) = (v(Ei)).
We have

ker(fk|E′
i
) = v(ker((fk ◦ v)|Ei)) = v(ker(fk|Ei)),

where the second equality is by the preceding lemma. Since v is invertible,
we see that dim(ker(fk|Ei)) = dim(ker(fk|E′

i
)). Now ST (b′, f) = ST (b, f)

follows from Lemma A.2. �

Remark A.6. — By Prop A.1 the standard tableau of any γ−1
Q (f) is eas-

ily found. As observed in Remark 2.11, when Li ⊂ L, for all i = 1, 2, . . . ,m,
γ−1
Q (f) is homogeneous for L (and for Q). In this case, it is in fact homoge-

neous for a parabolic of G as well. A component of a Springer fiber is called
Richardson if it is homogeneous for a parabolic subgroup of G. A general
criterion for a component C of a Springer fiber for GL(n) to be Richardson
is given in [25] in terms of the standard tableau of C. This criterion, along
with Prop. A.1, allows us to say exactly which of the components associ-
ated to closed orbits Q are Richardson. It is not difficult to show that the
following are equivalent.

(1) γ−1
Q (f) is Richardson.

(2) The sizes of the blocks in the array (after reordering if necessary)
give the partition dual to the partition of f .

(3) No “collapse” of blocks occurs in the construction of f .
(4) Li ⊂ L, for all i = 1, 1, . . . ,m.
(5) γ−1

Q (f) = L · b (= Q · b).
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It follows that many components of the form γ−1
Q (f) are not Richard-

son. The simplest such example is for (GL(5), GL(4) × GL(1)) and λ =
(5, 4, 2, 1 | 3).

As briefly discussed in the introduction, given a Young diagram T there
is a closed K-orbit Q in B and a generic f having Young diagram T. In
fact there may be several such Q and f (with perhaps different K, i.e.,
different p, q). Let OT be the nilpotent orbit corresponding to T. Fix a
closed K-orbit Q with corresponding generic f , and a closed K ′-orbit Q′
with corresponding generic f ′. Suppose that f and f ′ are both contained
in OT. Then there exists g ∈ G so that f = g · f ′. It follows that the
Springer fiber µ−1(f) is the g-translate of µ−1(f ′). Therefore the compo-
nents of µ−1(f) are the g-translates of the components of µ−1(f ′). As the
parametrization is given in terms of the linear algebra, it is clear that the
standard tableau of a component is the same as that of its g-translate. We
may conclude that γ−1

Q (f) and γ−1
Q′ (f ′) may be viewed as components in a

single Springer fiber, and the standard tableaux tell us which components.
The following example illustrates the above discussion. We see how a

number of components of a single Springer fiber are of the form γ−1
Q (f),

and therefore have the structure described in this article.
Consider the Young diagram

T = .

Let OT be the corresponding nilpotent orbit in g. We write down all γ−1
Q (f)

that occur as components in a Springer fiber for an element of OT. There
are several pairs (G,K) to consider.

When (p, q) = (1, 7) or (7, 1), any array has just one dot in one of the
two rows. Therefore no string has length 4, and a generic f cannot lie in
OT. A similar argument shows the same holds when (p, q) = (2, 6) or (6, 2).

Now consider (p, q) = (3, 5). There are four closed orbits Q with generic
elements f ∈ OT. We list below these orbits Q (by giving the correspond-
ing λ ∈ h∗), the standard tableau for γ−1

Q (f), and the signed tableau cor-
responding to K · f . (The orbits of K on Nθ are parametrized by signed
tableaux. See [2] for a discussion of these signed tableaux, and how the
tableau corresponding to a generic f is obtained from the array.)

λ = (8, 4, 3|7, 6, 5, 2, 1)
1 3 5 8
2 4 6
7

- + - +
- + -
-
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λ = (8, 5, 4|7, 6, 3, 2, 1)
1 4 6 8
2 5 7
3

- + - +
- + -
-

λ = (5, 4, 1|8, 7, 6, 3, 2)
1 2 4 6
3 5 7
8

+ - + -
- + -
-

λ = (6, 5, 1|8, 7, 4, 3, 2)
1 2 5 7
3 6 8
4

+ - + -
- + -
-

Now consider (p, q) = (4, 4); there are again four cases.

λ = (8, 5, 4, 3|7, 6, 2, 1)
1 3 6 8
2 4 7
5

- + - +
- + -
+

λ = (8, 7, 3, 2|6, 5, 4, 1)
1 2 4 7
3 5 8
6

- + - +
+ - +
-

λ = (7, 6, 2, 1|8, 5, 4, 3)
1 3 6 8
2 4 7
5

+ - + -
+ - +
-

λ = (6, 5, 4, 1|8, 7, 3, 2)
1 2 4 7
3 5 8
6

+ - + -
- + -
+

(Note that the last two come from the first two by interchanging the rows
of the array.)

For (p, q) = (5, 3) there are four cases, each obtained from the (3, 5) case
by interchanging the rows of the array. We get the following.

λ = (7, 6, 5, 2, 1|8, 4, 3)
1 3 5 8
2 4 6
7

+ - + -
+ - +
+
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λ = (7, 6, 3, 2, 1|8, 5, 4)
1 4 6 8
2 5 7
3

+ - + -
+ - +
+

λ = (8, 7, 6, 3, 2|5, 4, 1)
1 2 4 6
3 5 7
8

- + - +
+ - +
+

λ = (8, 7, 4, 3, 2|6, 5, 1)
1 2 5 7
3 6 8
4

- + - +
+ - +
+

In summary, there are 12 closed orbitsQ with generic element inOT. The 12
orbits pair off (under the symmetry of interchanging the rows of the arrays)
into pairs giving the same components, so there are six components of the
type γ−1

Q (f). A further observation is that for (p, q) = (3, 5) (or (5, 3)), of
the four orbits Q, two orbits K · f ⊂ Nθ occur and all four components are
different. This is not the case for (p, q) = (4, 4).

In the example above, where the Springer fiber corresponds to the Jor-
dan form (4, 3, 1), all the components of the form γ−1

Q (f) turn out to be
homogeneous (in fact, Richardson), but for other Jordan forms, this need
not be the case (cf. Remark A.6). However, the situation described in the
example, where a number of components of a single Springer fiber are of
the form γ−1

Q (f), occurs for Springer fibers corresponding to other Jordan
forms, as follows. Let us fix G = GL(n) and consider all pairs (G,Kp,q)
with Kp,q = GL(p) ×GL(q), p + q = n. Fix a Young diagram T and cor-
responding nilpotent orbit OT in g. The key observation is the following.

Lemma A.7. — Suppose Q = Kp,q · b is a closed Kp,q-orbit and Q′ =
Kp′,q′ ·b′ is a closed Kp′,q′ -orbit, and f and f ′ are the corresponding generic
elements. Then ST (b, f) = ST (b′, f ′) if and only if either Q = Q′, or
(p, q) = (q′, p′) and the array for Q is obtained from the array for Q′ by
switching the two rows.

Proof. — This is clear from our description of ST (b, f), since there are
two ways to reconstruct an array from a standard tableau (one with the
last dot in the upper row and one with it in the lower row). �

The lemma implies the following proposition.

Proposition A.8. — Let (G,K) be one of our pairs (GL(n), GL(p)×
GL(q)). For each Young diagram T, the components of the Springer fiber for
OT of the form γ−1

Q (f), with Q a closed K-orbit and f generic, are distinct
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when p 6= q. When p = q there are an even number of such components,
and each occurs for exactly two Q.
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