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DECOMPOSITION OF REDUCTIVE REGULAR
PREHOMOGENEOUS VECTOR SPACES

by Hubert RUBENTHALER

Abstract. — Let (G, V ) be a regular prehomogeneous vector space (abbrevi-
ated to P V ), where G is a reductive algebraic group over C. If V = ⊕n

i=1Vi is a de-
composition of V into irreducible representations, then, in general, the PV’s (G, Vi)
are no longer regular. In this paper we introduce the notion of quasi-irreducible
P V (abbreviated to Q-irreducible), and show first that for completely Q-reducible
P V ’s, the Q-isotypic components are intrinsically defined, as in ordinary repre-
sentation theory. We also show that, in an appropriate sense, any regular PV is
a direct sum of Q-irreducible P V ’s. Finally we classify the Q-irreducible PV’s of
parabolic type.
Résumé. — Soit (G, V ) un espace préhomogène (en abrégé P V ) régulier, où G

est un groupe algébrique réductif, défini sur C. Si V = ⊕n
i=1Vi est une décompo-

sition de V en représentations irréductibles, alors, en général, les espaces prého-
mogènes (G, Vi) ne sont pas réguliers. Dans cet article nous introduisons la notion
de P V quasi-irréductible (en abrégé Q-irréducible), et nous montrons d’abord que
pour les P V complètement Q-réductibles, les composantes Q-isotypiques sont défi-
nies de manière intrinsèque, comme en théorie ordinaire des représentations. Nous
montrons également que, dans un sens approprié, tout P V régulier est une somme
directe de P V quasi-irréductibles. Finalement nous classifions les P V de type pa-
rabolique qui sont Q-irréductibles.

1. Introduction

Let us first recall that a prehomogeneous vector space (abbreviated to
PV ) is a triplet (G, ρ, V ) where G is an algebraic group over C, and ρ is a
rational representation of G on the finite dimensional vector space V , such
that G has a Zariski open orbit in V . The theory of PV’s was created by
Mikio Sato in the early 70’s to provide generalizations of several kinds of

Keywords: reductive groups, prehomogeneous vector spaces, relative invariants, preho-
mogeneous vector spaces of parabolic type.
Math. classification: 11S90, 20G05, 17B20.



2184 Hubert RUBENTHALER

known local or global zeta functions satisfying a functional equation similar
to that of the Mellin transform, the Riemann zeta function, the Epstein
zeta function or the zeta function of a simple algebra [16].
For the basic results on PV’s we refer the reader to [17] and to [4].
There are many papers concerned with local or global zeta functions of

PV’s and their functional equations. Among them let us mention [18], [14],
[13], [1],[15] for example.

There are also many papers concerning the classification theory of PV ’s.
Many of them are written by T. Kimura and his students. We refer to the
bibliography of [4] and to [3], [6], [7], [5] for more details. The regular PV ’s
of parabolic type were classified in [8].
In order to associate a zeta function to a reductive PV one needs a fur-

ther condition on the PV , namely the so-called regularity condition (see
Section 2.1) Therefore knowledge of the structure of the reductive regular
PV ’s as well as their classification is of particular interest. Unfortunately
if (G,V ) is a non irreducible reductive regular PV , it can be seen in easy
examples (see example 2.7) that the irreducible components of the repre-
sentation (G,V ), which are still prehomogeneous, are in general not regu-
lar. This makes understanding the structure of such PV ’s difficult. To get
around this difficulty we introduce the notion of quasi-irreducible PV (ab-
breviated to Q-irreducible) and show that if (G,V ) is a regular reductive
PV , there exists a filtration of the space V :

{0} = Uk+1 ⊂ Uk ⊂ · · · ⊂ U2 ⊂ U1 = V,

and a filtration of the group G

Gk ⊂ Gk−1 ⊂ · · · ⊂ G1 = G,

such that theG′is are reductive and the Ui and Ui+1 areGi-stable. Moreover
(Gi, Ui) is a regular PV and (Gi, Ui/Ui+1) is completely Q-reducible, for
i = 1, . . . , k. See Theorem 3.2 below for the precise statement.
Let us now describe the content of the paper.
It is worthwhile pointing out that usually the group G of a PV is sup-

posed to be connected. For our purpose we do not make this hypothesis.
Therefore in Section 2.1 we begin by giving extensions of basic results to

the case where the group is not connected.
In Section 2.2 we give the definition of Q-irreducible PV ’s and prove

that, if G is reductive and if (G,V ) is a regular PV which is completely
Q-reducible, then the Q-isotypic components of (G,V ) are intrinsically de-
fined.

ANNALES DE L’INSTITUT FOURIER
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In Section 3 we give our structure theorem for reductive regular PV ’s
which was already above.
In Section 4.1 we give a brief account of the theory of parabolic PV ’s, and

in Section 4.2 we give the complete classification of regular Q-irreducible
PV ’s.
Acknowledgement. I obtained the results of this paper a long time ago,

but never published them. I would like to thank Tatsuo Kimura for the
recent stimulating conversations about classification theory of PV ’s which
convinced me to write them up. I would also like to thank the referee for
his careful reading of the manuscript and for his pertinent remarks and
suggestions.

2. Completely Q-reducible regular PV’s

2.1. The regularity for non connected reductive groups

As said in the Introduction a prehomogeneous vector space is a triplet
(G, ρ, V ) where G is an algebraic group over C, and ρ is a rational repre-
sentation of G on the finite dimensional vector space V , such that G has
a Zariski open orbit in V . The open orbit is usually denoted by Ω and
S = V r Ω is the singular set. The elements in the open orbit are called
generic. We often simply write (G,V ) for a PV when we do not need to
make the representation explicit. A relative invariant of the PV (G,V ) is
a rational function f on V , such that there exists a rational character χ of
G, such that for all x ∈ Ω and all g ∈ G, one has f(g.x) = χ(g)f(x). The
character χ determines f up to a multiplicative constant. The subgroups
we shall consider in the sequel are isotropy subgroups. These will be reduc-
tive, but not necessarily connected. Therefore we need to extend slightly
the basic results concerning the regularity.

Proposition 2.1. — Let (G,V ) be a PV, where G is not necessarily
connected and not necessarily reductive. Let G◦ be the connected compo-
nent group ofG. Denote by Ω the open orbit underG◦ and define S = VrΩ.
Let S1, . . . , Sk be the irreducible components of codimension one in S. Let
f1, f2, . . . , fk be irreducible polynomials such that

Si = {x ∈ V |fi(x) = 0}.

The fi’s are (as well known) the fundamental relative invariants of (G◦, V ).
Then:

TOME 61 (2011), FASCICULE 5



2186 Hubert RUBENTHALER

(1) Ω is also the open G-orbit.
(2) For any g ∈ G and for any i ∈ {1, . . . , k}, there exists σg(i) ∈
{1, . . . , k} and a non zero contant c(i, g) such that for all x ∈ V ,
one has fi(g.x) = c(i, g)fσg(i)(x). Therefore the group G acts by
permutations on the set of lines {Cfi, i = 1, . . . , k}.

(3) Let I1 ∪ I2 ∪ · · · ∪ Ir = {1, 2, . . . , k} be the partition defined by
the G-action on the lines Cfi. Define ϕj =

∏
i∈Ij fi. Then ϕj is a

relative invariant under G. Any relative invariant ϕ under G can be
uniquely written in the following way:

ϕ = cϕm1
1 ϕm2

2 . . . ϕmrr

where mj ∈ Z and c ∈ C.

Proof. — 1) Let Ω be the open G◦-orbit of V . Let us prove first that for
any g ∈ G the set g.Ω is a G◦-orbit. Let u = g.x and v = g.y (x, y ∈ Ω) be
two elements in g.Ω. By definition there exists h ∈ G◦ such that x = h.y.
Therefore

u = g.x = gh.y = ghg−1g.y = h′g.y = h′.v

(where h′ = ghg−1 ∈ G◦, because G◦ is a normal subgroup of G). As g.Ω
is open, we have g.Ω = Ω, for all g ∈ G. Hence Ω is also the open G-orbit.

2) Denote by χi the G◦ character of fi. For g ∈ G and x ∈ V , de-
fine ψgi (x) = fi(g.x). Then for h ∈ G◦ we have ψgi (h.x) = fi(gh.x) =
fi(ghg−1g.x) = χi(ghg−1)ψgi (x). Therefore ψgi is an irreducible relative in-
variant of G◦. Hence there exists σg(i) ∈ {1, . . . , k} and a non zero contant
c(i, g) such that for all x ∈ V , one has ψgi (x) = fi(g.x) = c(i, g)fσg(i)(x) .

3) Let ϕj as defined above. Let g ∈ G. One has ϕj(g.x) =
∏
i∈Ij fi(g.x) =

(
∏
i∈Ij c(i, g))ϕj(x). Hence ϕj is a relative invariant under G, with charac-

ter χ̃j(g) = (
∏
i∈Ij c(i, g)). Let ϕ be a relative invariant under G. Let χϕ

be the corresponding G character. As ϕ is a relative invariant under G◦,
one has ϕ = c

∏k
i=1 f

ni
i , where c ∈ C and where ni ∈ Z. We have, for g ∈ G

and x ∈ Ω:

ϕ(g.x) = cχϕ(g)
k∏
i=1

fnii (x) = c

k∏
i=1

fnii (g.x) = c′
k∏
i=1

fniσg(i)(x) (c′ ∈ C).

Therefore from the uniqueness of the decomposition for G◦ relative invari-
ants, we obtain that for every g ∈ G we have nσg(i) = ni. Hence the powers
ni of the fi’s in the same subset Ij , are the same, say mj . This implies that

ϕ = cϕm1
1 ϕm2

2 . . . ϕmrr .

�
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Remark 2.2. — Of course all the fi where i ∈ Ij have the same degree.

Definition 2.3. — Let (G,V ) be a PV where G is a reductive, non
necessarily connected, algebraic group. The PV (G,V ) is called regular if
there exists a relative invariant f such that df

f = gradlog(f) : Ω −→ V ∗

is generically surjective (i.e., has a Zariski dense image). Such a relative
invariant is said to be nondegenerate.

Proposition 2.4 (Compare with [4], Th. 2.28), and [17], Remark 11
p. 64). — Let G be a reductive algebraic group. Let G◦ be the connected
component group of G and suppose that (G,V ) is a PV.
The following conditions are equivalent:

i) (G,V ) is regular.
ii) There exists a relative invariant f such that the Hessian Hf (x) =

Det
(

∂2f
∂xi∂xj

(x)
)
is not identically zero

iii) The singular set S is a hypersurface.
iv) The open orbit Ω = V r S is an affine variety.
v) Each generic isotropy subgroup is reductive.
vi) Each generic isotropy subalgebra is reductive.

Suppose moreover that these conditions hold. Then any polynomial f
satisfying S = {x ∈ V |f(x) = 0} is a nondegenerate relative invariant of
G◦. In the notations of Proposition 2.1 the set of such polynomials which
are relative invariants under G is the set of polynomials of the form

f = cϕm1
1 ϕm2

2 . . . ϕmrr

where mj ∈ N∗ and c ∈ C∗.

Proof. — We will of course use the same result which is known for con-
nected reductive groups ([4], Th. 2.28. and [17]).

First of all we remark that by the same proof as in the case where the
group is connected (see [17], Proposition 10 p. 62 and Remark 11 p. 64) we
obtain i) ⇔ ii).
i) ⇒ iii): If (G,V ) is regular, there exists a nondegenerate relative in-

variant f . This function is also a relative invariant of (G◦, V ), hence the
singular set for the G◦ action is an hypersurface. But the singular set for
G is the same as for G◦, from Proposition 2.1. Assertion iii) is proved.
iii) ⇒ iv): This is classical: the complementary set of a hypersurface is

always an affine variety.
iv) ⇒ v): From [4], Th. 2.28, we know that for x ∈ Ω, the isotropy

subgroup G◦x is reductive. Hence the isotropy subgroup Gx is reductive.
v)⇒ vi): As the Lie algebras of G◦ and of G are the same, this is obvious.

TOME 61 (2011), FASCICULE 5
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vi) ⇒ i): Let S1, . . . , Sm be the irreducible components of S. They cor-
respond to irreducible polynomials f1, . . . , fm which are the fundamental
relative invariants for G◦. We know from [4], Th. 2.28 that if vi) is sat-
isfied then (G◦, V ) is regular and therefore any polynomial f such that
S = {x ∈ V |f(x) = 0} is a nondegenerate relative invariant under G◦.
Among them the functions which are relative invariants under G are of
the proposed form from Proposition 2.1. Hence (G,V ) is regular and i) is
true. �

Remark 2.5. — Under the assumptions of the preceding Proposition,
the polynomial f = f1f2 . . . fk = ϕ1ϕ2 . . . ϕr is the unique polynomial of
minimal degree which defines S. It is a relative invariant under G.

2.2. Quasi-irreducible PV’s and complete Q-reducibility

The following result is often very useful.

Proposition 2.6. — Let (G,V ) be a PV. Here we do not suppose that
G is connected and we do not suppose that G is reductive. Suppose that
V = V1 ⊕ V2 where V1 and V2 are two non trivial G-invariant subspaces of
V . Denote by p1(resp. p2) the projections on V1(resp. V2) defined by this
decomposition.

1) The representations (G,V1) and (G,V2) are PV’s. Moreover the
open orbits in V1(resp. V2) are the projections of ΩV i.e., ΩVi =
pi(ΩV ), i = 1, 2.

2) Let x0+y0 be a generic element of (G,V ), with x0 ∈ V1 and y0 ∈ V2.
Let also Gx0 (resp. Gy0) be the isotropy subgroup of x0 (resp. y0).
Then (Gy0 , V1) and (Gx0 , V2) are PV’s, and x0 is generic in (Gy0 , V1)
and y0 is generic in (Gx0 , V2).

3) One has Gx0 ∩Gy0 = Gx0+y0 . The open Gy0 -orbit in V1 is equal to
ΩV1(y0) = {x ∈ V1, x + y0 ∈ ΩV } and the open Gx0 -orbit in V2 is
equal to ΩV2(x0) = {y ∈ V2, x0 + y ∈ ΩV }.

4) The subgroup G̃ generated by Gx0 and Gy0 is open, and hence
closed, therefore we have G̃ = G if G is connected. More precisely
the subset Gx0 .Gy0 is open in G.

5) Suppose that G is reductive, and that (G,V ) and (G,V1) are regu-
lar. Then (Gx0 , V2) is a regular reductive PV .

Proof. — 1) As the projections p1 and p2 are open maps, the sets ΩVi =
pi(ΩV ), i = 1, 2 are open. Let x1 and x2 be two elements in ΩV1 . From

ANNALES DE L’INSTITUT FOURIER
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the definition there exists y1 and y2 in V2 such that x1 + y1 and x2 + y2
belong to ΩV . Therefore there exists g ∈ G such that g.(x1 +y1) = x2 +y2.
Hence g.x1 = x2. Hence two elements in ΩV1 are conjugate. Conversely the
conjugate of an element in ΩV1 is still in ΩV1 . This proves the first assertion
for V1. The argument for V2 is the same.

2) Define n = dimV , n1 = dimV1, n2 = dimV2. As (G,V ) is pre-
homogeneous, we have n = dimG − dimGx0+y0 and as (G,V1) is also
prehomogeneous we have n1 = dimG− dimGx0 . Therefore

n = n1 + n2 = dimG− dimGx0+y0

= dimG− dimGx0 + dimGx0 − dimGx0+y0

= n1 + dimGx0 − dimGx0+y0 .

Therefore n2 = dimGx0 − dimGx0+y0 and as Gx0+y0 = (Gx0)y0 is the
isotropy subgroup of y0 in Gx0 , the representation (Gx0 , V2) is prehomoge-
neous, and y0 is generic for this space.

3) The assertion Gx0∩Gy0 = Gx0+y0 is obvious. It is clear that ΩV2(x0) =
{y ∈ V2, x0 + y ∈ ΩV } is stable under Gx0 . Moreover if y1, y2 ∈ ΩV2(x0),
then x0 + y1, x0 + y2 ∈ ΩV and there exists g ∈ G such that g(x0 + y1) =
x0 + y2, and hence g ∈ Gx0 and gy1 = y2. This proves that the open
Gx0 -orbit in V2 is ΩV2(x0). The proof for the space (Gy0 , V2) is symmetric.

4) Consider the set O = (ΩV1(y0)⊕ΩV2(x0) ∩ΩV . This set is nonempty
(x0 + y0 ∈ O) and open. Let x + y ∈ O. Then x ∈ ΩV1(y0) and we know
from the third assertion that there exists g1 ∈ Gy0 such that g1x = x0.
Hence g1(x+ y) = x0 + g1y. As x+ y ∈ ΩV , we have also x0 + g1y ∈ ΩV .
Hence g1y ∈ ΩV2(x0). Then we know that there exists g2 ∈ Gx0 such that
g2g1y = y0. Hence g2g1(x + y) = x0 + y0. Therefore the elements of O
are conjugate under the set Gx0 .Gy0 . Hence Gx0 .Gy0/Gx0+y0 ' O is an
open subset of G/Gx0+y0 ' ΩV . This implies that Gx0 .Gy0 is open in G.
Therefore the group G̃ generated by Gx0 and Gy0 is open and hence closed.
If G is connected, then G̃ = G

5) From Proposition 2.4 we know that Gx0 is reductive and from asser-
tion 2) we know that (Gx0 , V2) is a PV . As (Gx0)y0 = Gx0+y0 , using again
Proposition 2.4, we obtain that (Gx0 , V2) is regular. �

Unfortunately the irreducible components of a reductive regular PV are
in general not regular as shown by the following example.

Example 2.7. — Let G = C∗ × SLn × C∗, let V = Cn × Cn and define
ρ as follows:

ρ(x, g, y)(v, w) = (xvg−1, y−1gw)

TOME 61 (2011), FASCICULE 5



2190 Hubert RUBENTHALER

where x, y ∈ C∗, g ∈ SLn, where v ∈ Cn is considered as a row vector
and where w ∈ Cn is considered as a column vector. A simple computation
shows that if v0 = (1, 0, . . . , 0) and w0 = t(1, 0, . . . , 0), then the isotropy

subgroup is the set of triplets (x,
(
x 0
0 A

)
, x), where A ∈ GLn−1, and such

that x.DetA = 1, and this proves that (G, ρ, V ) is a regular PV. In fact the
scalar product Q(v, w) = v.w of v and w is the unique relative invariant.
The irreducible components are V1 = Cn × {0} and V2 = {0} × Cn, and
the PV’s (G, ρ|Vi , Vi) (i = 1, 2) are obviously not regular.

The following lemma is also useful in the sequel.

Lemma 2.8. — Let (G,V ) be a PV whereG is not necessarily connected
and not necessarily reductive and suppose that V = V1 ⊕ V2 where V1 and
V2 are G-invariant subspaces.

a) Let f be a relative invariant of (G,V1). Then the function f̃ defined
by f̃(x+y) = f(x) (x ∈ V1, Y ∈ V2) is a relative invariant of (G,V )
with the same character as f .

b) Let f be a relative invariant of (G,V ) which is not identically zero
on V1, then for x ∈ V1, y ∈ V2, we have f(x+ y) = f(x).

Proof. — a) Let χf be the character of f . For g ∈ G, we have:

f̃(g.x+ g.y) = f(g.x) = χf (g)f(x) = χf (g)f̃(x+ y).

b) For x ∈ V1, y ∈ V2 let us set f̃(x+ y) = f(x). From a) we know that
f̃ is a relative invariant of (G,V ) with the same character as f . Therefore
there exists a constant c ∈ C such that f̃ = c.f . But as f̃ = f on V1, we
have necessarily c = 1. �

Definition 2.9. — Let G be a reductive group (not necessarily con-
nected) and let (G,V ) be a regular PV .

a) The prehomogeneous vector space (G,V ) is called 1-irreducible if
the singular set S = VrΩ is an irreducible hypersurface. (According
to Proposition 2.1, this is equivalent to the fact that there exists
only one fundamental relative invariant under G◦, up to constants).

b) The prehomogeneous vector space (G,V ) is called almost irreducible
if for any proper invariant subspace U ⊂ V , the prehomogeneous
vector space (G,U) has no nontrivial relative invariant.

c) The prehomogeneous vector space (G,V ) is called quasi-irreducible
(abbreviated Q-irreducible) if for any proper invariant subspace
U ⊂ V , the prehomogeneous vector space (G,U) is not regular.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.10. — We will see that for an important class of PV ’s, namely
the PV ’s of parabolic type, the three notions of irreducibility introduced
in the preceding definition are in fact equivalent. See Theorem 4.16 below.
However this is not true for general PV ’s as shown by the example given
in Remark 4.17.

Remark 2.11. — It is well known that if (G,V ) is irreducible, than there
exists at most one fundamental relative invariant. Therefore the irreducible
regular PV ’s are 1-irreducible. The PV from Example 2.7 is 1-irreducible
but not irreducible.

Proposition 2.12. — Let (G,V ) be a regular PV where G is reduc-
tive. Among the various definitions of irreducibility, we have the following
implications:

(G,V ) is 1− irreducible ⇒ (G,V ) is almost irreducible ⇒ (G,V )
is Q− irreducible.

Proof. — Suppose that (G,V ) is not almost irreducible. Then it exists a
proper invariant subspace U ⊂ V such that (G,U) has a non trivial relative
invariant f . Let W be a G-invariant supplementary subspace to U . Then
according to Lemma 2.8 the function f̃ defined by f̃(x + y) = f(x) (x ∈
U, y ∈ W ) is a relative invariant on V depending only on x. Therefore the
map df̃

f̃
cannot be generically surjective. But as (G,V ) is regular there

exists a relative invariant ϕ such that dϕ
ϕ is generically surjective. This is

not the case if ϕ = cf̃k (c ∈ C). Therefore there exists another fundamental
relative invariant, and hence (G,V ) is not 1-irreducible.
Suppose now that (G,V ) is not Q-irreducible. Then there exists a proper

invariant subspace U ⊂ V such that (G,U) is regular. Hence (G,U) has a
non trivial relative invariant. Therefore (G,V ) is not almost irreducible. �

Proposition 2.13. — Let (G,V ) be a PV where G is reductive. Sup-
pose that V = ⊕ni=1Vi where each Vi is a G-invariant subspace such that
(G,Vi) is regular. Let Ω and Ωi be the open orbits of (G,V ) and (G,Vi)
respectively (i = 1, . . . , n). Then (G,V ) is regular and Ω = ⊕ni=1Ωi. More-
over any polynomial relative invariant of (G,V ) is a product of relative
invariants of the spaces (G,Vi).

Proof. — Let us make the usual identification V ∗ = ⊕ni=1V
∗
i . Let fi be a

relatively invariant polynomial of (G,Vi) such that ϕi = dfi
fi

: Ωi −→ V ∗i is
generically surjective. Replacing eventually fi by its square, we can suppose
that ∂◦(fi) > 1 (∂◦(fi) denotes the degree of fi). Define a relative invariant

TOME 61 (2011), FASCICULE 5



2192 Hubert RUBENTHALER

of (G,V ) by:

f(x1, x2, . . . , xn) = f1(x1)f(x2) . . . fn(xn) (xi ∈ Vi).

Then ϕ(x1, x2, . . . , xn) = df(x1, x2, . . . , xn)
f(x1, x2, . . . , xn) = ϕ1(x1) ⊕ ϕ2(x2) ⊕ · · · ⊕

ϕn(xn). As the map xi −→ ϕi(xi) is generically surjective from Ωi to V ∗i ,
we see that ϕ is generically surjective from ⊕ni=1Ωi to V ∗. Then from Propo-
sition 2.4 we obtain that (G,V ) is regular. Moreover we have det dϕ(x1, x2,

. . . , xn) =
n∏
i=1

det dϕi(xi) and we know from [17] p. 63 that the Hessian Hf

is given by
Hf (x) = (1− r) det dϕ(x).f(x)k

where r = ∂◦(f) and where k = dimV . Hence Hf 6= 0 on ⊕ni=1Ωi. On
the other hand it is known ([17], p. 70(1) , [12] p. 22–23), that if Hf 6= 0
then Ω = {x | f(x)Hf (x) 6= 0}. This implies that ⊕ni=1Ωi ⊂ Ω. The reverse
inclusion is a consequence of Proposition 2.6. The set Si = Vi r Ωi is
a hypersurface defined by an equation Pi = 0 where Pi is a relatively
invariant polynomial on Vi (Proposition 2.4). We will choose Pi of minimal
degree among the polynomials defining Si. Then Pi = fi,1 . . . fi,li where
the (fi,j)′s are irreducible relatively invariant polynomials under G◦ on Vi,
which are algebraically independent. From Remark 2.5 we know that we
can write Pi = ϕi,1 . . . ϕi,mi , where the ϕi,j ’s are polynomials on Vi which
are relatively invariant under G. As Ω = ⊕ni=1Ωi we obtain that

S = V r Ω =
{

(x1, x2, . . . , xn) ∈ V |P (x1, x2, . . . , xn) =
n∏
i=1

Pi(xi) = 0
}
.

Using again Proposition 2.1, we obtain that any G-relatively invariant
polynomial on V is a product of polynomials of the form ϕ

αi,j
i,j , where

αi,j ∈ N. �

Definition 2.14. — Let G be a reductive group (not necessarily con-
nected ) and let (G,V ) be a PV . The PV (G,V ) is called completely
Q-reducible if there exists a decomposition V = ⊕ni=1Vi where the Vi’s are
G-invariant subspaces such that (G,Vi) is Q-irreducible. The spaces Vi are
then called Q-irreducible components of (G,V ).

(1) In the paper by M. Sato and T. Kimura, it is written that if (G, V ) is a regular P V
with G reductive, and if f is a relative invariant with Hf 6= 0, then Ω = {x |Hf (x) 6= 0},
but analyzing their proof it is easy to see that in fact Ω = {x | f(x)Hf (x) 6= 0} (the first
assertion would be wrong if ∂◦f = 2).
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Remark 2.15. — We know from Proposition 2.13 that a completely Q-
irreducible PV is regular.

It is well known that for an ordinary finite dimensional completely re-
ducible representation of a group G the equivalence classes occuring in any
decomposition into irreducibles are uniquely determined, as well as the iso-
typic components. Our next aim is to prove analogous results for completely
Q-reducible regular PV ’s where the irreducible components are replaced
by the Q-irreducible components and the isotypic components are replaced
by the Q-isotypic components.

Theorem 2.16. — Let (G,V ) be a completely Q-reducible PV . Let
V = ⊕ni=1Vi be a decomposition of V into Q-irreducible components. Let
W ⊂ V be an invariant subspace such that (G,W ) is regular. Then (G,W )
is a completely Q-reducible PV . Moreover if Wj is a Q-irreducible compo-
nent of (G,W ), there exists an integer `(j) ∈ {1, 2, . . . , n} such that the
representation (G,Wj) is equivalent to (G,V`(j)).

The equivalence classes of the Q-irreducible components arising in (G,V )
are uniquely determined.
Let δ be an equivalence class of one of the Q-irreducible components

arising in V = ⊕ni=1Vi (i.e., an equivalence class of one of the represen-
tations (G,Vj)). Let I(δ) = {i | (G,Vi) ∈ δ} and let m(δ) = CardI(δ) be
the multiplicity of δ. Let also V (δ) = ⊕i∈I(δ)Vi be the so-called Q-isotypic
component of δ. Then m(δ) does not depend on the decomposition of V
into Q-irreducible subspaces. Moreover if U ⊂ V is an invariant subspace
of type δ (this means that U is a direct sum of Q-irreducible invariant
subspaces which are all of type δ), then U is a subspace of V (δ). In other
words the Q-isotypic components are uniquely determined.

Proof. — Let Vj = ⊕`(j)i=1U
i
j be a decomposition of Vj into irreducible

components in the ordinary sense. As we are only interested in equiv-
alence classes of representations we can assume that W = (⊕j∈AVj) ⊕
(⊕j∈Ac ⊕i∈Ij U ij), where A is a subset of {1, 2, . . . , n} and where Ij is a
proper subset of {1, 2, . . . , `(j)}. After renumbering, we can suppose that
Ij = {1, 2, . . . ,m(j)} where m(j) < `(j). Let us denote by xj the vari-
able in Vj and by xij the variable in U ij . Hence xj = (x1

j , x
2
j , . . . , x

`(j)
j ). Let

j1, j2, . . . , jk be the elements of A, and jk+1, . . . , jn be the elements in Ac.
Let f be a relative invariant of (G,W ) such that df

f
is generically sur-

jective. Then f is a function in the variables:(
xj1 , . . . , xjk ;x1

jk+1
, . . . , x

m(jk+1)
jk+1

; . . . ;x1
jn , . . . , x

m(jn)
jn

)
.
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We know from Proposition 2.13 that f is a product of relative invariants
of the Vj ’s. Hence

f(xj1 , . . . , xjk ;x1
jk+1

, . . . , x
m(jk+1)
jk+1

; . . . ;x1
jn , . . . , x

m(jn)
jn

)

= fj1(xj1) . . . fjk(xjk)fjk+1(x1
jk+1

, . . . , x
`jk+1
jk+1

) . . . fjn(x1
jn , . . . , x

`jn
jn

)

where each fjr is a relative invariant of (G,Vjr ). Therefore:

fjk+1 depends only on the variables x1
jk+1

, . . . , x
m(jk+1)
jk+1

...
...

...
fjn depends only on the variables x1

jn
, . . . , x

m(jn)
jn

.

But as df
f

= dfj1

fj1

⊕ · · · ⊕ dfjk
fjk
⊕
dfjk+1

fjk+1

⊕ · · · ⊕ dfjn
fjn

is generically surjec-

tive, each dfjr
fjr

must be generically surjective. For example
dfjk+1

fjk+1

will be

generically surjective from an open set of U1
jk+1
⊕· · ·⊕Um(jk+1)

jk+1
to its dual.

Therefore from Definition 2.3 we know that (G,U1
jk+1
⊕ · · · ⊕ U

m(jk+1)
jk+1

)
would be regular. But this is impossible, since (G,Vk+1) is Q-irreducible.
Hence (G,W ) ' (G,⊕j∈AVj), and this shows that (G,W ) is completely
Q-reducible.
Let W = ⊕kj=1Wj be a decomposition of W into Q-irreducible compo-

nents. Then the same proof as above, applied to Wj instead of W shows
that (G,Wj) is equivalent to (G,⊕k∈BVk), where B ⊂ {1, . . . , n}. But as
(G,Wj) is Q-irreducible the set B is a single element. The same proof ap-
plied to V shows that any Q-irreducible component of V is equivalent to
some Vi. Hence the equivalence classes of the Q-irreducible components are
uniquely determined.
Let us now prove the assertion concerning the multiplicities. Let V =

⊕rk=1Uk be another decomposition of V into Q-irreducible components. We
can suppose that r 6 n. From above we know that (G,U1) ' (G,Vi1) where
i1 ∈ {1, . . . , n}. Then by a classical argument (G,⊕nk=2Uk) ' (G,⊕i6=i1Vi).
Then inductively one proves that r = n and that there exists a permutation
σ of {1, . . . , n} such that (G,Ui) ' (G,Vσ(i)). Therefore the multiplicity
does not depend on the decomposition into Q-irreducibles.
Let now U ⊂ V be an invariant Q-irreducible subspace of type δ and

define V ′ = ⊕i/∈I(δ)Vi. Let S be a G-invariant supplementary space of
U ∩ V (δ) in U. Hence we have:

U = U ∩ V (δ)⊕ S, V = V (δ)⊕ V ′.
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For s ∈ S let us write s = v1 + v2 with v1 ∈ V (δ) and v2 ∈ V ′. The
linear mapping ϕ : S −→ V ′ defined by ϕ(s) = v2 is injective, because
if ϕ(s) = v2 = 0, then s = v1 ∈ U ∩ V (δ) ∩ S = {0}. Moreover ϕ is
G-equivariant. Suppose that U ∩ V (δ) = {0}. If this is the case, we have
S = U , and then S′ = ϕ(S) is a subspace of type δ of V ′. This is not
possible from the definition of V ′ and from what we have proved before.
Therefore U∩V (δ) 6= {0}. Define U ′ = U∩V (δ)⊕S′. As ϕ is G-equivariant,
the subspace U ′ is invariant of type δ. Let f be a relative invariant of
(G,U ′) such that df

f
is generically surjective. From Proposition 2.13 we

know that f(x, s′) = ϕ1(x)ϕ2(s′), where x ∈ U ∩ V (δ), s′ ∈ S′, and where
ϕ1 and ϕ2 are relative invariants of (G,V (δ)) and (G,V ′) respectively. As
df

f
= dϕ1

ϕ1
⊕ dϕ2

ϕ2
, we obtain that dϕ1

ϕ1
and dϕ2

ϕ2
are generically surjective.

This implies that (G,U ∩V (δ)) is regular and this is possible if and only if
U ∩ V (δ) = U , because (G,U) is Q-irreducible. Hence U ⊂ V (δ). �

3. The decomposition theorem for reductive regular PV’s

3.1. An example

Of course, reductive regular PV ’s are not necessarily completely Q-
reducible as shown by the following example.

Example 3.1. — Let n > 2 be an integer and let G = GL(n,C)×C∗ and
V = S(n,C)×Cn where S(n,C) is the space of complex n by n symmetric
matrices. The action of G on V is given by

(g, a)(X, v) = (gXtg, atg
−1
v), g ∈ GL(n,C), a ∈ C∗, X∈ S(n,C), v ∈ Cn.

The isotropy subgroup of (In, e1), where In is the identity matrix and
where e1 is the first vector of the canonical basis of Cn, is easily seen to be
isomorphic to the orthogonal group O(n− 1). This proves that (G,V ) is a
reductive regular PV . The irreducible components are S(n,C) and Cn. As
(G,Cn) is not regular, it follows that (G,V ) is not completely Q-reducible.

3.2. Structure of reductive regular PV’s

The following theorem shows the structure of reductive regular PV ’s.
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Theorem 3.2. — Let (G,V ) be a reductive regular PV and let x be a
generic element of V . Denote by Gx the isotropy subgroup of x. There exist
a sequence of subspaces V1, V2, . . . , Vn such that V = V1 ⊕ V2 ⊕ · · · ⊕ Vn, a
sequence of integers i1 = 1 < i2 < · · · < ik 6 n and a sequence of reductive
subgroups

Gx = Gk+1 ⊂ Gk ⊂ · · · ⊂ G1 = G

with the following properties:
1) If x = x1 + x2 + · · ·+ xn with xj ∈ Vj , then

G`+1 = (G`)xi`+···+xi`+1−1 .

2) For ` ∈ {1, . . . , k} the space Vi` ⊕ · · · ⊕ Vn is G`-invariant and
(G`, Vi` ⊕ · · · ⊕ Vn) is a regular PV .

3) If i` 6 j 6 i`+1 − 1, then Vj is G`-invariant , (G`, Vj) is a Q-
irreducible PV and (G`, Vi`⊕· · ·⊕Vi`+1−1) is a maximal completely
Q-reducible PV in Vi` ⊕ · · · ⊕ Vn . Moreover Vi`+1 ⊕ · · · ⊕ Vn is
G` − invariant but does not contain any subspace U 6= {0} such
that (G`, U) is regular.

Proof. — The proof goes by induction on dimV . There is nothing to
prove if dimV = 1. Suppose that the theorem is proved for all reductive
regular PV ’s such that dimV 6 r. Let then (G,V ) be a reductive regular
PV such that dimV = r + 1. Let V ′ ⊂ V be an invariant subspace such
that (G,V ′) is completely Q-reducible and maximal in V for this property.
Denote by

V ′ = V1 ⊕ V2 ⊕ · · · ⊕ Vi2−1

a decomposition of V ′ into Q-irreducible components. Let V ′′ be an invari-
ant supplement of V ′. If V ′′ = {0} the PV (G,V ) is completely Q-reducible
and the proof is finished. From the maximality of V ′ and Proposition 2.13,
we know that (G,V ′′) does not contain any invariant subspace U 6= {0}
such that (G,U) is regular.
Let x be a generic element in V . Let us write:

x = x1 + x2 + · · ·+ xi2−1 + x′′ where xj ∈ Vj and where x′′ ∈ V ′′.

Define G2 = Gx1+···+xi2−1 . From Proposition 2.4 we know that G2 is re-
ductive and from Proposition 2.6 5) we know that (G2, V

′′) is regular. As
dimV ′′ 6 r, we know by induction that there exists a sequence of integers
i2 < i3 < · · · < ik 6 n and a sequence of reductive subgroups

Gx = (G2)x′′ = Gk+1 ⊂ Gk ⊂ · · · ⊂ G2
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which have the required properties for the triplet (G2, V
′′, x′′). Then the

sequences i1 < i2 < i3 < · · · < ik 6 n and

Gx = (G2)x′′ = Gk+1 ⊂ Gk ⊂ · · · ⊂ G2 ⊂ G1 = G

have the required properties for the triplet (G,V, x). �

Let us give three examples of the kind of decompositions arising in the
preceding Theorem.

Example 3.3. — Let us return to Example 3.1. In the notations of the
preceding Theorem, we take for G2 the isotropy of In ∈ S(n,C), namely
O(n,C)× C∗, and V1 = S(n,C) and V2 = Vi2 = Cn.

Example 3.4 (Example of the “descending chains” of F. Sato [14]). —
Let Vm = M(m + 1,m) be the space of complex (m + 1) × m matrices.
Define V = Vn⊕Vn−1⊕· · ·⊕V1 and let G = SO(n+ 1)×GL(n)×GL(n−
1)× · · · ×GL(1). The group G acts by

(gn+1, gn, . . . , g1)(xn, . . . , x1) = (gn+1xng
−1
n , gnxn−1g

−1
n−1, . . . , g2x1g

−1
1 )

where gn+1 ∈ SO(n + 1), gi ∈ GL(i), xi ∈ Vi for i = 1, . . . , n. This
representation is a regular PV and the fundamental relative invariants are
given by

Pk(xn, xn−1, . . . , x1) = det(txk txk−1 . . .
txnxn . . . xk−1xk).

This PV is called the PV of descending chains of size n (see [14] for the
details). It is then easily seen that (G,Vn) is a maximal Q-completely re-

ducible subspace (in fact it is irreducible regular). Taking x0
n =

[
In
0

]
as

regular element of (G,Vn), a simple computation shows that its isotropy
subgroup Gx0

n
is equal toD(SO(n)×SO(n))×GL(n−1)×· · ·×GL(1) where

D(SO(n) × SO(n)) stands for the diagonal subgroup of SO(n) × SO(n),
the first factor being diagonally embedded in SO(n + 1). Therefore the
regular PV (Gx0

n
, Vn−1 ⊕ · · · ⊕ V1) is essentially the PV of descending

chains of size n − 1. Therefore the sequence of completely Q-reducible
spaces (under the successive isotropy subgroups) appearing in Theorem 3.2
is Vn, Vn−1, . . . , V1.

Example 3.5. — Let G = GL(2)× Spin(10)×C∗ where Spin(10) is the
Spin group in dimension 10. Consider the representation [Λ1 ⊗ ρ ⊗ Id] ⊕
[Id⊗Spin⊗�] of G where Λ1 is the natural 2-dimensional representation
of GL(2), where ρ is the vector representation of Spin(10), where Spin
is the half-spin representation of Spin(10), and where � is the natural
representation by multiplication of C∗ on C.

TOME 61 (2011), FASCICULE 5



2198 Hubert RUBENTHALER

This representation is a PV whose generic isotropy subgroup is isomor-
phic to the exceptional simple Lie group G2 (see (42) p. 397 of [6]). Another
argument to prove the prehomogeneity and the regularity is to remark that
it corresponds to a PV of parabolic type in E8 (see Section 4) and that the
corresponding grading element is the semi-simple element of an sl2-triple
(see [8], case E3

8 in Proposition 6.2.4 a) p. 134). The irreducible subspace
V2 corresponding to the Spin representation is not regular (Proposition 31
p. 121 in [17]). The irreducible subspace V1 ' C20 of the representation
[Λ1 ⊗ ρ ⊗ Id] is well known to be regular. Its generic isotropy subgroup is
locally isomorphic to SO(2)× SO(8)× C∗ ([17], (15) p. 145) and the rep-
resentation (G2 = SO(2)× SO(8)× C∗, V2) is regular by Proposition 2.6.

4. Classification of Q-irreducible reductive PV’s
of parabolic type

4.1. PV’s of parabolic type

At this point a brief summary of the theory of PV ’s of Parabolic type is
needed.
The PV ’s of parabolic type were introduced by the author in [9], [10]

(see also [11] and [12])
Let g be a simple complex Lie algebra. Let h be a Cartan subalgebra of g

and denote by Σ the set of roots of (g, h). As usually, for α ∈ Σ, we denote
by Hα the corresponding co-root in h. We fix once and for all a system
of simple roots Ψ for Σ. We denote by Σ+ (resp. Σ−) the corresponding
set of positive (resp. negative) roots in Σ. Let θ be a subset of Ψ and
let us make the standard construction of the parabolic subalgebra pθ ⊂ g

associated to θ. As usual we denote by 〈θ〉 the set of all roots which are
linear combinations of elements in θ, and put 〈θ〉± = 〈θ〉 ∩ Σ±.
Set

hθ = θ⊥ = {X ∈ h |α(X) = 0 ∀α ∈ θ}, h(θ) =
∑
α∈θ

CHα

lθ = zg(hθ) = h⊕
∑
α∈〈θ〉

gα, n±θ =
∑

α∈Σ±r〈θ〉±
gα.

Then pθ = lθ⊕n+
θ is called the standard parabolic subalgebra associated

to θ. There is also a standard Z-grading of g related to these data. Define
Hθ to be the unique element of hθ satisfying the linear equations

α(Hθ) = 0 ∀α ∈ θ and
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α(Hθ) = 2 ∀α ∈ Ψ r θ.

The above mentioned grading is just the grading obtained from the eigen-
space decomposition of adHθ:

dp(θ) = {X ∈ g | [Hθ, X] = 2pX}.

Then we obtain easily:

g = ⊕p∈Zdp(θ), lθ = d0(θ), n+
θ =

∑
p>1

dp(θ), n−θ =
∑
p6−1

dp(θ).

It is known that (lθ, d1(θ)) is a prehomogeneous vector space (in fact all
the spaces (lθ, dp(θ)) with p 6= 0 are prehomogeneous, but there is no loss
of generality if we only consider (lθ, d1(θ))). These spaces have been called
prehomogeneous vector spaces of parabolic type ([9]). There are in general
neither irreducible nor regular. But they are of particular interest, because
in the parabolic context, the group (or more precisely its Lie algebra lθ)
and the space (here d1(θ)) of the PV are embedded into a rich structure,
namely the simple Lie algebra g. For example the derived representation of
the PV is just the adjoint representation of lθ on d1(θ). Moreover the Lie
algebra g also contains the dual PV , namely (lθ, d−1(θ)).
It may be worthwhile noticing also that d1(θ) =

∑
β∈σ1

gβ , where σ1
is the set of roots which belong to the set (Ψ \ θ) + Zθ, where Zθ is the
Z–span of θ.
As these PV ’s are in one to one correspondence with the subsets θ ⊂ Ψ,

we make the convention to describe them by the mean of the following
weighted Dynkin diagram:

Definition 4.1. — The diagram of the PV (lθ, d1(θ)) is the Dynkin
diagram of (g, h) (or Σ ), where the vertices corresponding to the simple
roots of Ψ r θ are circled (see an example below).

This very simple classification by means of diagrams contains never-
theless some immediate and interesting information concerning the PV
(lθ, d1(θ)) (for all these facts, see [9], [10] or [11]):
• The Dynkin diagram of l′θ = [lθ, lθ] (i.e., the semi-simple part of the Lie
algebra of the group) is the Dynkin diagram of g where we have removed
the circled vertices and the edges connected to these vertices.
• In fact as a Lie algebra lθ = lθ

′ ⊕ hθ and dim hθ = the number of circled
vertices.
• The number of irreducible components of the representation (lθ, d1(θ)) is
also equal to the number of circled roots. More precisely, if α is a (simple)
circled root, then any nonzero root vector Xα ∈ gα generates an irreducible
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lθ–module Vα, and d1(θ) = ⊕α∈ΨrθVα is the decomposition of d1(θ) into
irreducibles.
In fact the decomposition of the representation (lθ, d1(θ)) into irreducibles

can also be described by using the eigenspace decomposition with respect
to ad(hθ). Let me explain this. For each α ∈ h∗, let α be the restriction of
α to hθ and define

gα = {X ∈ g | ∀H ∈ hθ, [H,X] = α(H)X}.

Then g0 = lθ and for α ∈ Ψ \ θ, we have Vα = gα. Hence we can write

d1(θ) = ⊕α∈Ψrθg
α.

Moreover one can notice (always for α ∈ Ψ r θ) that Vα = gα =∑
β∈σα1

gβ , where σα1 is the set of roots which belong to α + 〈θ〉.
•Moreover one can directly read the highest weight of Vα from the diagram.
The highest weight of Vα relatively to the Borel sub-algebra b−θ = h ⊕∑
α∈〈θ〉− gα is α̃ = α|h(θ) . Let ωβ (β ∈ θ) be the fundamental weights of

l′θ (i.e., the dual basis of (Hβ)β∈θ). For each circled root α (i.e., for each
α ∈ Ψrθ ), let Jα = {(βi)} be the set of roots in θ (= non-circled) which are
connected to α in the diagram. From elementary diagram considerations
we know that Jα may be empty and that there are always no more than 3
roots in Jα.
If Jα = ∅, then Vα is the trivial one dimensional representation of lθ.
If Jα 6= ∅, then α̃ =

∑
i∈Jα ciωβi where ci = α(Hβi) and α(Hβi) can be

computed as follows:

(R)


if ||α||6 ||βi||, then α(Hβi) = −1 ;
if ||α||> ||βi|| and if α and βi are connected by j arrows (16j63),

then α(Hβi) = −j .

Let us illustrate this with an example.

Example 4.2. — Consider the following diagram:th
α1

th
α2
> t

β1

t
β2

The preceding diagram is the diagram of a PV of parabolic type inside
g ' F4. Here we have θ = {β1, β2} and Ψ r θ = {α1, α2}. The Lie algebra
lθ is isomorphic to A2⊕hθ where dim hθ = number of circled roots = 2. As
Jα1 = ∅, the representation of l′θ on Vα1 is the trivial representation. Hence
the action of lθ on Vα1 reduces to the character of hθ given by the restriction
of the root α1 to hθ. On the other hand we have Jα2 = {β1}. Therefore,
applying the rules (R) above, we see that Vα2 is the irreducible A2–module
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with highest weight −2ω1, where {ω1, ω2} is the set of fundamental weights
of A2 corresponding to β1 and β2. Again the action of hθ on Vα2 is scalar
with eigenvalue the restriction of α2 to hθ.

One can prove ([9]) that the PV of parabolic type (lθ, d1(θ)) is irreducible
if and only if pθ is a maximal parabolic subalgebra, i.e., if and only if Ψrθ
is reduced to a single root α1.

The PV ’s of parabolic type which are irreducible and regular were clas-
sified by the list of the “weighted” Dynkin diagram of g, where the root α1
in the discussion above is circled. This classification was announced first in
[9] and then given explitly in [10] and [11] (see also the book [12]).

Remark 4.3. — Of course the irreducible regular PV ’s of parabolic type
are Q-irreducible. Therefore in order to complete the classification of the
Q-irreducible PV ’s of parabolic type, it is enough to consider only PV ’s
which are reducible. This will be done in the rest of the paper.

For further use we need also to introduce the notion of subdiagram of
the weighted Dynkin diagram associated to (Ψ, θ). Let Γ be a subset of
Ψ r θ, that is a subset of the circled roots. For α ∈ Γ define Ψα to be the
connected component of θ ∪ {α} containing α. Define then

ΨΓ = ∪α∈ΓΨα and θΓ = θ ∩ΨΓ.

Definition 4.4. — The weighted Dynkin diagram associated to the
pair (ΨΓ, θΓ) is called a subdiagram of the diagram associated to (Ψ, θ).

It can be noticed that a subdiagram is just a subset Γ of the circled
roots together with the non-circled roots which are connected to a root in
Γ (through a path in the non-circled roots). It may also be noticed that the
subdiagrams of a connected diagram are not necessarily connected. Let us
give an example.

Example 4.5. — Consider the following weighted diagram in D9

D = t
β1

t
α1

h t
α2

h t
β2

t
α3

h t
β3

t� t α4h
β4
@ tβ5

where θ = {β1, β2, β3, β4, β5} and Ψ r θ = {α1, α2, α3, α4}.
We have:

θ ∪ {α1} = t
β1

t
α1

h t
β2

t
β3

t
β4

t
β5
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Therefore the irreducible subdiagram associated to {α1} is given by:

D{α1} = t
β1

t
α1

h
Similarly the subdiagrams of D corresponding to Γ = {α1, α4} and Γ =

{α3, α4} are respectively:

D{α1,α4} = t
β1

t
α1

h t
β3

t� t α4h
β4
@ tβ5

D{α3,α4} = t
β2

t
α3

h t
β3

t� t α4h
β4
@ tβ5

Definition 4.6. — A weighted Dynkin diagram will be called regular
(resp. Q-irreducible) if the corresponding PV of parabolic type is regular
(resp. Q-irreducible).

4.2. Classification of Q-irreducible reductive PV’s
of parabolic type

We adopt the following numbering of the roots for classical simple Lie
algebras t

α1
tp p p p p p p p p t t t

αn
An

t
α1

t t tp p p p p p p t > t
αn

Bn

t
α1

t tp p p p p p p p p t t< t
αn

Cn

t
α1

t t tp p p p p t tαn−2
�

tαn−1

@ tαn Dn

The classification of Q-irreducible PV ’s in the classical simple Lie al-
gebras needs now some technical lemmas. If ωi is the fundamental weight
corresponding to the root αi, we denote by Λi(g) the corresponding rep-
resentation of g. If this representation can be lifted to a group G with
Lie algebra g, we will denote by Λi(G) the lifted representation of G. For
example we will denote by Λ1(GL(n)) (resp. by Λn(GL(n))) the natural
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representation of GL(n) on Cn (resp. the dual of the natural representation
of GL(n) on Cn).

Lemma 4.7. — Let G be a simple classical group. Let d1 = dim Λ1(G).
Let n 6 d1 and consider the PV (G × GL(n),Λ1(G) ⊗ Λn(GL(n))) (it is
a PV because it is parabolic). Then either this PV is regular, or there
exists a normal unipotent subgroup of the generic isotropy subgroup which
is included in G.

Proof. — IfG is of typeAk then an obvious calculation shows the Lemma.
If G is of type Bk or Dk, then we know from table 1 in [10], that the

given PV is always regular.
The same argument holds if G is of type Ck and if n is even.
If G is of type Ck and if n is odd, the space is not regular and the

calculations made at p. 102 of [17] show the assertion concerning the normal
unipotent subgroup. �

Lemma 4.8. — Let G be a reductive algebraic group and let Λ be a rep-
resentation of G of dimension r. Let p and q be two integers such that p < q

and r < q. Suppose that the representation [Λp−1(GL(p))⊗ Λ1(GL(q))]⊕
[Λq−1(GL(q)) ⊗ Λ] of the group GL(p) × GL(q) × G is prehomogeneous
(this is automatically the case if p > r). Then:

1) If p 6= r, the preceding PV is not regular and there exists a non-
trivial normal unipotent subgroup of the generic isotropy subgroup
which is included in GL(q).

2) If p = r, the preceding PV is regular and 1-irreducible (hence Q-
irreducible from Proposition 2.12).

Proof. — As G only acts through its representation Λ(G), we can assume
that G ⊂ GL(r). The space of the representation is M(q, p) ⊕ M(r, q)
(where M(u, v) stands for the space of u × v matrices), and the group
GL(p)×GL(q)×G acts by

(g1, g2, g3)(X,Y ) = (g2Xg
−1
1 , g3Y g

−1
2 )

where g1 ∈ GL(p), g2 ∈ GL(q), g3 ∈ G, X ∈M(q, p), Y ∈M(r, q).
As usually we denote by Ω the open orbit in M(q, p)⊕M(r, q).
• Suppose first that p < r.
As the representation is supposed to be prehomogeneous, we know from

Proposition 2.6 that the open orbits of the components are matrices of

maximal rank inM(q, p) andM(r, q) respectively. LetX0 =
[
Ip
0

]
∈M(q, p)

where Ip is the identity matrix of size p. An easy calculation shows that
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the isotropy subgroup of (X0, 0) ∈M(q, p)⊕M(r, q) is the set of matrices
of the form:(
g1,

[
g1 B

0 D

]
, g3

)
, g1 ∈ GL(p), D ∈ GL(q − p), B ∈M(p, q − p), g3 ∈ G.

It can also be easily seen that that the set O of matrices of the form[
u | 0

]
.

[
g1 B

0 D

]
where g1 ∈ GL(p), D ∈ GL(q − p), B ∈ M(p, q − p), u ∈ GL(r),

[
u | 0

]
∈

M(r, q) contains a Zariski open subset of M(r, q).
Therefore O ∩ {m ∈M(r, q) | (X0,m) ∈ Ω} 6= ∅.
This implies that there exists a generic element of the form (X0, Y0)

where Y0 = (y0, 0) with y0 ∈ GL(r). Again a simple calculation shows that
the isotropy subgroup of (X0, Y0) is the set of triplets of the form:(

g1,

 g1 B1
0 D1

0

0 D2 D3

 , g3

)

where g1 ∈ GL(p), D1 ∈ GL(r − p), D2 ∈ M(q − r, r − p), D3 ∈ GL(q −
r), g3 ∈ G ⊂ GL(r) and where

y0.

[
g1 B1
0 D1

]
= g3.y0.

It is now clear that the set of triplets of the form(
Ip,

[
Ir 0

0 D2 Iq−r

]
, Ir

)
is a unipotent normal subgroup of the(generic)isotropy subgroup of (X0,Y0).

• Suppose that p > r.

Let X0 =
[
Ip
0

]
∈ M(q, p) and let Y0 =

[
Ir 0

]
∈ M(r, q). The isotropy

subgroup of (X0, Y0) is the set of triples of matrices of the form([
g3 0
C1 D1

]
,

 g3 0
C1 D1

0
D2

0 0 D3

 , g3

)
,

where g3 ∈ G ⊂ GL(r), D1 ∈ GL(p − r), C1 ∈ M(p − r, r), D3 ∈ GL(q −
p), D2 ∈M(p− r, q − p).
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A simple calculation of dimensions shows now that the representation is
prehomogeneous and that (X0, Y0) is generic. Of course the set of triplets
of the form (

Ip,

 Ip 0
D2

0 Iq−p

 , Ir)
is a unipotent normal subgroup of the(generic)isotropy subgroup of (X0,Y0).

• Finally suppose that p = r.

Let X0 =
[
Ip
0

]
∈M(q, p) and let Y0 =

[
Ip 0

]
∈M(p, q). The isotropy

subgroup of (X0, Y0) is the set of triplets of the form

(∗)
(
g3,

[
g3 0
0 D

]
, g3

)
where g3 ∈ G ⊂ GL(p), D ∈ GL(q − p).
Again an easy computation of dimensions shows that this representation

is prehomogeneous. As the generic isotropy subgroup is reductive, this PV
is regular.
Let G1 be the subgroup of GL(p) × GL(q) × G generated by a generic

isotropy subgroup and by the commutator subgroup SL(p)× SL(q)×G′.
The characters of the relative invariants are exactly those characters which
are trivial on G1 (this is true for any PV). From (∗) it is easy to see
that G/G1 is always a one dimensional torus, hence there exists only one
fundamental relative invariant. One can remark that this invariant is given
by f(X,Y ) = det(Y X), X ∈M(p, q), Y ∈M(q, p). �

Lemma 4.9. — Consider the representation

[Λp−1(GL(p))⊗ Λr−1(GL(r))]⊕ [Id(GL(p)⊗ Λ2(GL(r))]

of the group GL(p) × GL(r), with r > 3. Note that this representation is
prehomogeneous since it is infinitesimally equivalent to the PV of parabolic
type associated to the diagram

t t tp p p p p t tg
αp

tp p p p p t t�tgαp+r
@t Dp+r

1) If r is odd and if p = r − 1, this space is regular and 1-irreducible
(hence Q-irreducible from Proposition 2.12).

2) If r is odd and p 6 r − 2, this space is not regular and there exists
a non-trivial normal unipotent subgroup of the generic isotropy
subgroup which is included in SL(r).
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Proof. — The space of the representation is V = M(r, p) ⊕ Skew(r),
where Skew(r) denotes the spaces of skew-symmetric matrices of size r,
and the action of the group GL(p)×GL(r) is given by

(g1, g2)(X,Y ) = (tg−1
2 Xg−1

1 , g2Y
tg2),

where g1 ∈ GL(p), g2 ∈ GL(r), X ∈ M(r, p), Y ∈ Skew(r). From the com-
putations in [17], p. 75–76, we know that if r = 2m+1, there exists a generic
element Y0 ∈ Skew(r), such that the isotropy subgroup of (0, Y0) ∈ V is
the set of pairs of the form (

g1,

[
A B

0 D

])

where g1 ∈ GL(p), A ∈ Sp(m), B ∈ M(2m, 1), D ∈ GL(1), and where
Sp(m) denotes the symplectic group inside GL(2m).

• Suppose that p = r − 1.

One shows easily that ifX0 =
[
Ir−1

0

]
∈M(r, r−1), the isotropy subgroup

of (X0, Y0) is the set of pairs of matrices of the form(
g1,

[
tg−1

1 0
0 D

])
,

where g1 ∈ Sp(m), D ∈ GL(1).
A simple calculation of dimensions proves then that (X0, Y0) is generic.

As the preceding isotropy subgroup is reductive, this PV is regular. The
normal subgroup G1 of GL(r− 1)×GL(r) generated by this isotropy sub-
group and the commutator subgroup SL(r − 1)× SL(r) is of codimension
one. Therefore this PV is 1-irreducible. The fundamental relative invariant
is given by f(X,Y ) = Pf(tX.Y.X) (X ∈M(r, r− 1), Y ∈ Skew(r)), where
Pf(Z) denotes the Pfaffian of the skew-symmetric matrix Z.

• Suppose that p 6 r − 2.

Set X0 =
[
Ip
0

]
∈ M(r, p). Then the isotropy subgroup of (X0, Y0) is the

set of pairs of matrices of the form

(
g1,

 tg−1
1 0 0
X Y B

0 0 D

),
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whereX ∈M(r−1−p, p), Y ∈ GL(r−1−p), D ∈ GL(1), B ∈M(r−1−p, 1),
and where [

tg−1
1 0
X Y

]
∈ Sp(m).

Then the set of matrices

Ip 0 0
0 Ir−1−p B

0 0 1

 is a normal unipotent subgroup

in SL(r). �

Remark 4.10. — If r is odd and p is even (p < r − 2) the function
(X,Y ) 7−→ Pf(tX.Y.X) (where Pf stands for the Pfaffian) is a non-trivial
relative invariant of the PV considered in Lemma 4.9, which is non regular
for these values of p and r. Hence the result from [9] which asserts that
an irreducible PV of parabolic type is regular if and only if there exists a
non-trivial relative invariant is no longer true if the representation is not
irreducible.(See also Remark 4.12 for another example).

Lemma 4.11. — Let D2 be the group (C∗)2 identified with the 2 × 2
diagonal matrices, and denote by ∆ the natural representation of D2 on
C2. Consider the representation

[Λp−1(GL(p))⊗ Λ1(SL(q))⊗ Id(D2)]⊕ [Id(GL(p))⊗ Λq−1(SL(q))⊗∆]

of the group GL(p)× SL(q)×D2. Note that this representation is preho-
mogeneous since it is infinitesimally equivalent to the PV of parabolic type
associated to the diagram

t
α1

t tp p p p p t
αp−1

tg t
β1

p p p p p t tβq−1
�

tg
@tg Dp+q+1

1) If q > p and p = 2 this PV is regular and 1-irreducible (hence
Q-irreducible from Proposition 2.12).

2) If q > p and p 6= 2, then this PV is not regular and there exists
a non-trivial normal unipotent subgroup of the generic isotropy
subgroup which is included in SL(q).

Proof. — The space of the representation is M(q, p) ⊕M(2, q) and the
action of GL(p)× SL(q)×D2 is given by

(g1, g2, g3)(X,Y ) = (g2Xg
−1
1 , g3Y g

−1
2 ),

where g1 ∈ GL(p), g2 ∈ SL(q), g3 ∈ D2, X ∈M(q, p), Y ∈M(2, q).
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• Suppose that q > p and p = 2.

Let X0 =
[
I2
0

]
∈M(q, 2) and let Y0 =

[
I2 0

]
∈M(2, q). A computation

shows that the isotropy subgroup of (X0, Y0) is the set of triplets of the form(
d,

[
d 0
0 g

]
, d

)
, where d ∈ D2 and g ∈ GL(q− 2). From the dimensions of

the full group and of the isotropy subgroup, we see that (X0, Y0) is generic.
Moreover as the isotropy subgroup is reductive, the PV is regular. The
subgroup G1 generated by the commutator subgroup (' SL(2) × SL(q))
and the generic isotropy is the subgroup of triples (g1, g2, g3) with det g1 =
det g3. Hence G/G1 is one dimensional, therefore the PV is 1-irreducible.
It is easy to see that the function (X,Y ) 7−→ det(Y X) is the fundamental
relative invariant.

• Suppose that q > p and p > 2.

Let X0 =
[
Ip
0

]
∈M(q, p) and let Y0 =

[
I2 0

]
∈M(2, q). Then again one

proves that (X0, Y0) is generic and one shows that its isotropy subgroup is
the set of triples of the form([

d 0
0 D

]
,

d 0 0
C D B

0 0 D′

 , d),
where d ∈ D2, D ∈ GL(p−2), B ∈M(p−2, q−p), D′ ∈ GL(q−p). The set

of matrices of the form

I2 0 0
0 Ip−2 B

0 0 Iq−p

 is a normal unipotent subgroup

of SL(q).

• Suppose that q > p and p = 1.

Let X0 =

1
1
0

 ∈ M(q, 1) and let Y0 =
[
I2 0

]
∈ M(2, q). It is easy to

verify that (X0, Y0) is generic and that its isotropy subgroup is the set

of triples of the form
(
λ,

λ 0 0
0 λ 0
γ −γ D

 , [λ 0
0 λ

])
, where λ ∈ C∗, D ∈

GL(q − 2), λ2 detD = 1, γ ∈ M(q − 2, 1). The subset of matrices of the

form

1 0 0
0 1 0
γ −γ Iq−2

 is a normal unipotent subgroup of SL(q). �
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Remark 4.12. — If
[
x1
x2

]
is a vector in C2, let f1 and f2 be the two

projections defined by fi

([x1
x2

])
= xi, i = 1, 2. Consider the PV from

Lemma 4.11, with q > p and p = 1. It is quite obvious that the mappings
(X,Y ) 7−→ fi(Y.X) are relative invariants which are algebraically inde-
pendant. This gives another example of a parabolic PV having nontrivial
relative invariants and which is nonregular (see Remark 4.10).

Lemma 4.13. — Let (lθ, d1(θ)) be a PV of parabolic type in a simple
Lie algebra g. Suppose that its diagram is of the following typep p p p p p p p p p tg

α1

tg
α2

p p p p p p p p p p
where the boldface line stands for one or more edges in the Dynkin

diagram. In other words, in the notation of Section 4.1, we suppose that
Ψrθ contains two roots α1 and α2 (but possibly others) with (α1|α2) 6= 0.
Let Ψ1 be the connected component of Ψr {α2} containing α1 and let Ψ2
be the connected component of Ψ \ {α1} containing α2. Set θ1 = θ ∩ Ψ1
and θ2 = θ ∩Ψ2. Define

D1(θ) =
⊕

α∈Ψ1rθ1

gα, D2(θ) =
⊕

α∈Ψ2rθ2

gα.

(For the notations see Section 4.1, D1(θ) (resp. D2(θ)) is just the sum of
the irreducible components of d1(θ) arising from the left of the root α1
(resp. from the right of the root α2). Then:

(Lθ, d1(θ)) is regular ⇐⇒ (Lθ, D1(θ)) and (Lθ, D2(θ)) are regular.

Proof. — Suppose first that (Lθ, D1(θ)) and (Lθ, D2(θ)) are regular.
Then, as d1(θ) = D1(θ) ⊕ D2(θ), we know from Proposition 2.13 that
(Lθ, d1(θ)) is regular.

Conversely suppose that (Lθ, D1(θ)) is not regular (for example). Let
X1 +X2 (Xi ∈ Di(θ)) be a generic element in d1(θ). Then X1 is generic in
(Lθ, D1(θ)) (see Proposition 2.6). From the hypothesis we know that the
isotropy subgroup (Lθ)X1 is not reductive (Proposition 2.4), hence (Lθ)X1

contains a nontrivial normal unipotent subgroup U . The Lie algebra u of U
is a nonzero ideal in (lθ)X1 . Let l1(resp. l2) be the semi-simple subalgebra
of g corresponding to θ1(resp. θ2). One has lθ = hθ ⊕ l1 ⊕ l2. From the
hypothesis on α1 and α2, we have [l2, X1] = {0}. Therefore (lθ)X1 = (hθ ⊕
l1)X1 ⊕ l2, and hence u ∈ (hθ ⊕ l1)X1 . But as u is the Lie algebra of a
unipotent subgroup we have u ∈ l1. But as [l1, X2] = {0}, we obtain that
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U stabilizes also X2. As (lθ)X1+X2 = (lθ)X1 ∩ (lθ)X2 , we see that u is an
ideal in (lθ)X1+X2 . Hence U is a normal subgroup of (Lθ)X1+X2 . Therefore
(Lθ, d1(θ)) is not regular. �

Theorem 4.14. — The Q-irreducible PV ’s of parabolic type which are
not irreducible regular are exactly the PV ’s from Table 1 at the end of
the paper (where the numbers pi are the number of roots in the connected
components of θ).

Proof. — A consequence of Lemma 4.13 is that the diagram of a Q-
irreducible PV of parabolic type will never contain two circled roots which
are connected by one or more edges. Therefore we will never consider such
diagrams in this proof.
♦ Let us first consider the case of classical simple Lie algebras.
As we do not consider irreducible PV ’s, we assume that Card(Ψrθ) > 2.

• The case An.
a) Suppose that Card(Ψ r θ) = 2. Consider a diagram of the type:

(4.1) t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p t t
p3

which is supposed to be Q-irreducible. If p1 > p2, Lemma 4.7 implies that
either the subdiagramt tp p p p p p p p p t

p1
th tp p p p p p p p p

p2
t

is regular or the generic isotropy subgroup contains a nontrivial normal
unipotent subgroup which is included in SL(p1+1). Therefore, in the second
case, this unipotent subgroup will be included in the generic isotropy of the
diagram 4.1. Hence, in the second case the diagram 4.1, will not be regular.
Therefore we have necessarily p1 < p2. The same arguments show that we
have also p3 < p2. But then, from Lemma 4.8 we obtain that this PV is
regular if and only if p3 = p2, and in this case it is 1-irreducible.
b) Suppose that Card(Ψ r θ) > 2. Suppose that the following diagram

is Q-irreducible:
(4.2)t tp p p p p p p p p t

p1
th tp p p p p p p p p

p2
t th tp p p p p p p p p p p p p p t th tp p p p p p p p t t

pn (n>4)
As before Lemma 4.7 implies that p1 < p2 and pn < pn−1. By induction

the same argument shows that there exists i ∈ {2, . . . , n − 1} such that
pi−1 < pi and pi+1 < pi. If pi−1 6= pi+1 Lemma 4.8 implies that there
exists a normal unipotent subgroup in the generic isotropy subgroup of the
subdiagram
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t tp p p p p p p p p t
pi−1

th tp p p p p p p p p
pi

t th tp p p p p p p p p t t
pi+1

which is included in SL(pi). But this subgroup will still be included in the
generic isotropy of the diagram 4.2, and hence the diagram 4.2 would not
be regular.
If pi−1 = pi+1 Lemma 4.8 implies that the subdiagram above is regular,

hence diagram 4.2 is never Q-irreducible.

• The case Bn.
a) Suppose that Card(Ψ r θ) = 2. Suppose that the diagram

(4.3) t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p t > t
p3

is Q-irreducible. As in the case An a) before, Lemma 4.7 implies that p1 <

p2 and 2p3 + 1 < p2 + 1. Then Lemma 4.8 implies that the diagram 4.3
is Q-irreducible if and only if 2p3 + 1 = p1 + 1, which is the condition in
Table 1.
b) Suppose that Card(Ψ r θ) > 2. Suppose that the following diagram

is Q-irreducible:
(4.4)t tp p p p p p p p p t

p1
th tp p p p p p p p p

p2
t th tp p p p p p p p p p p p p p p p t th tp p p p p p p p p t> t

pn (n > 4)
Then as before Lemma 4.7 implies that p1 < p2 and 2pn < pn−1. There

are then two possibilities:
− either there exists i ∈ {2, . . . , n−2} such that pi−1 < pi and pi+1 < pi,

− or pn−2 < pn−1 and 2pn < pn−1.
In both cases Lemma 4.8 implies that either diagramm 4.4 contains a

regular subdiagram or it is not regular. We have showed that diagram 4.4
is never Q-irreducible.

• The cases Cn and D1
n.

These cases can be treated in the same way as the cases An and Bn. It
must be noticed that in the Cn case one cannot have a diagram where the
root αn is circled. This is because the subdiagramt t tp p p p p p p p p t t< th
would be regular (see the list of the irreductible regular PV ’s of parabolic
type in [10] or in [12]).

• The case D2
n.

a) Suppose that Card(Ψ r θ) = 2. Suppose that the diagram
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(4.5) t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t t tp p p p p p p p p t� th
@ t

is Q-irreducible. Then p2 is even because if p2 is odd the subdiagram

t tp p p p p t t� th
@ t Dp2+1

would be regular (see the list of the irreductible regular PV ’s of parabolic
type in [10] or in [12]).
On the other hand from Lemma 4.7 we get that p2 > p1. Then Lemma 4.9

implies that only the case where p1 = p2−1 corresponds to a Q-irreducible
PV .
b) Suppose that Card(Ψ r θ) > 2. Suppose that the following diagram

is Q-irreducible:

(4.6)t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p p p p p p p p t th tp p p p p p p p p t� th
@ tpn(n > 3)

For the same reason as for the diagram 4.5, we necessarily have pn even.
Then from Lemma 4.7 we get p1 < p2 and from Lemma 4.9 we get pn 6
pn−1. If pn = pn−1 diagram 4.6 would contain the regular subdiagram

t tp p p p p p p p p t
pn−1

th tp p p p p p p p p
pn−1

t t
Hence p1 < p2 and pn < pn−1. There exists then i ∈ {2, . . . , n} such

that pi−1 < pi and pi+1 < pi. From Lemma 4.8 we obtain that either
the diagram 4.6 is not Q-irreducible (if pi−1 = pi+1), or non regular (if
pi−1 6= pi+1). In any case diagram 4.6 is never Q-irreducible.

• The case D3
n.

a) Suppose that Card(Ψrθ) = 2. It is easy to prove that the subdiagram

t tp p p p p t t� th
@ th Dn

is regular if and only if n = 3 , and then D3 = A3 and the corresponding
diagram was already considered in the An case.
b) Suppose that Card(Ψ r θ) = 3. Suppose that the following diagram

is Q-irreducible.
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(4.7) t tp p
p1

p p p p p p t th tp p p p p p p p t tt �
th

@ thp2

We know from Lemma 4.11 that if p2 > p1 and p1 6= 1, diagram 4.7 is not
regular. If p2 > p1 and p1 = 1, the same Lemma implies that diagram 4.7
is Q-irreducible.
If p1 = p2, diagram 4.7 contains obviously an An−2 regular irreducible

subdiagram.
If p1 > p2, diagram 4.7 cannot be regular, as shown by Lemma 4.7.
c) Suppose that Card(Ψ r θ) > 3. The corresponding diagram is the

following:
(4.8)t tp p p p p p p p p t

p1
th tp p p p p p p p p

p2
t th tp p p p p p p p p p p p p p p p t th tp p p p p p p p p t� th

@ thpn(n > 3)
From Lemma 4.7 and Lemma 4.11 we deduce that if this diagram would

be Q-irreducible, we would have p1 < p2 and pn < pn−1. Then, using
the same method as in the An case, one proves that diagram 4.8 is never
Q-irreducible.
♦ Let us now consider the case of exceptional simple Lie algebras.
We only give the proof for E6. The cases of E7, E8, F4 and G2 are

analogous.
We begin by writing down all possible diagrams in which at least two

roots are circled. The only (important) constraint comes from Lemma 4.13
which excludes diagrams having two circled roots which are connected. If
a diagram contains a regular subdiagram, we will write the subdiagram on
the same line. Taking into account the symmetry of the Dynkin diagram
of E6, the list is as follows:

1) th t tth t t
2) t th tth t t
3) th t tth th t ⊃ th t t th
4) th t tth t th ⊃ th t t t th
5) t th tth th t ⊃ t th t
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6) th t tht t t ⊃ t tht t t
7) th t tt th t ⊃ t tt th t
8) th t tt t th ⊃ t tt t th
9) t th tt th t
10) th t tht t th ⊃ t tht t
Let us consider the case 1) in the list above. The corresponding PV is

infinitesimally equivalent to (G,V ) where G = GL(5)×C∗, V = M(5, 1)⊕
Skew(5) and the action is given by: (g, a)(X,Y ) = (agX, gY tg) where a ∈
C∗, g ∈ GL(5), X ∈M(5, 1), Y ∈ Skew(5).

Define J =
[

0 I2
−I2 0

]
∈ Skew(4). Let then

X0 =
[
0
1

]
∈M(5, 1) and Y0 =

[
J 0
0 0

]
∈ Skew(5).

An easy computation shows that (X0, Y0) is generic and that its isotropy

subgroup is the set of pairs of matrices of the form
([A 0

0 a

]
, a−1

)
, where

A ∈ Sp(2), a ∈ C∗. Hence the PV is regular and one easily shows that the
unique fundamental relative invariant is given by

f(X,Y ) = Pf

([
Y X

−(tX) 0

])
.

For the cases 2) and 9) one computes a generic isotropy isotropy subgroup
and one observes that it is not reductive. �

Remark 4.15. — The exceptional Q-irreducible PV ’s arising in E6, E7
and E8 are particular cases of families of Q-irreducible PV ’s which are not
parabolic in general. More precisely the representations

(GL(n)× C∗, [Λ1(GL(n))⊗�]⊕ [Λ2(GL(n))⊗ Id])(n odd)
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and

(GL(n)×GL(n− 1), [Λ1(GL(n))⊗ Λ1(GL(n− 1))]⊕ [Λ1(GL(n))⊗ Id])

are 1-irreducible PV ’s. (Here � denotes the one dimensional representation
of C∗ on C by multiplications). The first representation is an extension of
the E6 and E8 cases, the second one is an extension of the E7 case.
For the first representation the fundamental relative invariant is given

by

f(X,Y ) = Pf

([
Y X

−(tX) 0

])
, (X ∈M(n, 1), Y ∈ Skew(n))

and for the second representation it is given by

f(X,Y ) = det(
[
X Y

]
), (X ∈M(n, n− 1), Y ∈M(n, 1)).

Note that the first PV above is example 8) p. 95 of [3] and that the
second PV is a particular case of the families of PV ’s studied in Section 4
of [7].

A consequence of the preceding classification is the following statement.

Theorem 4.16. — The Q-irreducible PV ’s of parabolic type are 1-
irreducible. In other words the three definitions of irreducibility given in
Definition 2.9 are equivalent for PV ’s of parabolic type.

Remark 4.17. — (2) Let G = (GL(n))p+1, and let V = (M(n))p. We
denote by g = (gi) an element in G and by v = (vj) an element in V .
Consider the representation of G on V defined by (gi).(vj) = (gjvjg−1

j+1).
Then (G,V ) is a regular PV with p fundamental relative invariants given
by fj(v) = det(vj). Let N = pn2 = dim(V ) and consider the castling
transformation (see [17] or [4]) of (G,V ) given by (G × GL(N − 1), V ⊗
CN−1). It is known ([17] p. 67–68, and Remark 26 p. 73), that the regularity
and the number of fundamental relative invariants does not change under
castling transformation, therefore (G × GL(N − 1), V ⊗ CN−1) is regular
and has also p fundamental relative invariants. But it is easy to see that
any proper G×GL(N − 1)-invariant subspace of V ⊗CN−1 is of the form
U ⊗CN−1, with dim(U) < N − 1, and then (G×GL(N − 1), U ⊗CN−1) is
a so-called trivial PV , which has no fundamental relative invariant. Hence
(G×GL(N−1), V ⊗CN−1) is a Q-irreducible PV which is not 1-irreducible.
Therefore Theorem 4.16 is no longer true for non parabolic PV ’s.

(2) I would like to thank Tatsuo Kimura for providing me with this example.
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Remark 4.18. — E. B. Dynkin has classified all sl2-triples in the simple
Lie algebras ([2]). He has proved that the semi-simple element of an sl2-
triple is always conjugate to an element H in a fixed Cartan subalgebra
such that α(H) = 0, 1 or 2 for every simple root α. For the exceptional Lie
algebras he gave the list of all such elements (which correspond effectively
to an sl2-triple) in the form of weighted Dynkin diagrams where the simple
root α has weight α(H) = 0, 1 or 2. If the grading element Hθ of a given
PV of parabolic type (see Section 4.1) is the semi-simple element of a sl2-
triple, then, from the definition, the weighted Dynkin diagram where the
(non circled) roots in θ have weight 0, and the (circled) roots in Ψr θ have
weight 2 appears in Dynkin’s list. We have proved in [9] that an irreducible
PV of parabolic type is regular if and only if the corresponding grading
element Hθ is the semi-simple element of an sl2-triple. As the weighted
Dynkin diagrams corresponding to E6, E7, E8 in Table 1 below do not
appear in tables 18, 19, 20 of [2], such a result is no longer true for Q-
irreducible PV ’s of parabolic type.
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Table 1: non irreducible, Q-irreducible P V ’s of parabolic type

An

(p2>p1>0)
t tp p p p p p p p p t

p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p t t
p1

Bn

p2>p1,
2p3=p1, p3>0)

t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p t > t
p3

Cn

p2>p1,
2p3=p1+1, p3>0

p2 odd

t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p t < t
p3

D1
n

p2>p1,
2p3=p1+1, p3>2

p2 even

t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t th tp p p p p p p p p t� t
@ tp3

D2
n

p2>2,
p1=p2−1, p2 even

t tp p p p p p p p p t
p1

th tp p p p p p p p p
p2

t t tp p p p p p p p p t� th
@ t

D3
n

p2>1
t th t t tp p p p p p p p p

p2

t t tp p p p p p p p p t� th
@ th

E6

th t tth t t

E7

t t tth th t t

E8

th t tth t t t t
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