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POSITIVE SHEAVES OF DIFFERENTIALS COMING
FROM COARSE MODULI SPACES

by Kelly JABBUSCH & Stefan KEBEKUS (*)

Abstract. — Consider a smooth projective family of canonically polarized
complex manifolds over a smooth quasi-projective complex base Y ◦, and suppose
the family is non-isotrivial. If Y is a smooth compactification of Y ◦, such that
D := Y \ Y ◦ is a simple normal crossing divisor, then we can consider the sheaf of
differentials with logarithmic poles along D. Viehweg and Zuo have shown that for
some m > 0, the mth symmetric power of this sheaf admits many sections. More
precisely, the mth symmetric power contains an invertible sheaf whose Kodaira-
Iitaka dimension is at least the variation of the family. We refine this result and
show that this “Viehweg-Zuo sheaf” comes from the coarse moduli space associated
to the given family, at least generically.

As an immediate corollary, if Y ◦ is a surface, we see that the non-isotriviality
assumption implies that Y ◦ cannot be special in the sense of Campana.
Résumé. — On considère une famille projective lisse de variétés canoniquement

polarisées sur une base quasi-projective lisse Y . Si la famille n’est pas iso-triviale,
Viehweg et Zuo ont montré que toute bonne compactification de Y admet des
formes pluricanoniques avec au plus des pôles logarithmiques le long du bord. Plus
précisément leur résultat montre qu’une puissance symétrique suffisamment grande
du faisceau des différentielles logarithmiques contient un sous-faisceau inversible
dont la dimension de Kodaira-Iitaka est au moins égale à la variation de la famille.
En suivant la construction de Viehweg-Zuo on montre que le faisceau inversible de
Viehweg-Zuo provient, au moins génériquement, de l’espace de module “grossier”
associé à la famille.

Comme corollaire immédiat on obtient que la base d’une famille non-isotriviale
ne peut pas être spéciale au sens de Campana.
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1. Introduction and statement of main result

1.1. Introduction

Throughout this paper, we consider a smooth projective family f◦ :
X◦ → Y ◦ of canonically polarized complex manifolds, of relative dimen-
sion n, over a smooth complex quasi-projective base. We assume that the
family is not isotrivial, and let µ : Y ◦ → M be the associated map to the
coarse moduli space, whose existence is shown, e.g. in [10, Thm. 1.11]. We
fix a smooth projective compactification Y of Y ◦ such that D := Y \ Y ◦ is
a divisor with simple normal crossings.
In this setup, Viehweg and Zuo have shown the following fundamental

result concerning the existence of logarithmic pluri-differentials on Y ◦.

Theorem 1.1 (Existence of pluri-differentials on Y , [12, Thm. 1.4(i)]).
There exists a numberm > 0 and an invertible sheaf A ⊆ Symm Ω1

Y (logD)
whose Kodaira-Iitaka dimension is at least the variation of the family,
κ(A ) > Var(f◦). �

The “Viehweg-Zuo” sheaf A was crucial in the study of hyperbolicity
properties of manifolds that appear as bases of families of maximal varia-
tion and has been used to show that any minimal model program of the
pair (Y,D) factors the moduli map, [4, 5, 6], see also the survey [7]. In spite
of its importance, little is known about further properties of the sheaf A .
For example, it is unclear to us how the Viehweg-Zuo construction be-
haves under base change. The goal of this short note is to refine the result
of Viehweg and Zuo somewhat, and show that the Viehweg-Zuo sheaf A

comes from the coarse moduli space M, at least generically. A precise state-
ment is given in Theorem 1.4 below.
Theorem 1.4 directly relates to a conjecture of Campana. In [1, Conj.

12.19] Campana conjectured that the assumption “f◦ not isotrivial” im-
mediately implies that the base manifold Y ◦ is not special. In other words,
any family of canonically polarized varieties over a special base manifold
is necessarily isotrivial. In the case where Y ◦ is a surface, the conjecture
is claimed in [1, Thm. 12.20]. However, we had difficulties following the
proof. We will show in Section 4 that Campana’s conjecture in dimension
two is an immediate corollary to Theorem 1.4. Using a more advanced line
of argumentation, Campana’s conjecture in dimension three can also be
deduced. Details will appear in a forthcoming paper(1) .
(1)Note added in proof: the paper has appeared as “Families over special base manifolds
and a conjecture of Campana”, Mathematische Zeitschrift, DOI: 10.1007/s00209-010-
0758-6
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Throughout the present paper we work over the field of complex numbers.

1.2. Statement of the main result

Roughly speaking, the main result of this paper is that the Viehweg-Zuo
sheaf comes from the coarse moduli space M. To formulate the statement
precisely, we use the following notation.

Notation 1.2. — Consider the subsheaf B ⊆ Ω1
Y (logD), defined on

presheaf level as follows: if U ⊂ Y is any open set and σ ∈ Γ
(
U, Ω1

Y (logD)
)

any section, then σ ∈ Γ
(
U, B

)
if and only if the restriction σ|U ′ is in the

image of the differential map

dµ|U ′ : µ∗
(
Ω1

M

)
|U ′ −→ Ω1

U ′ ,

where U ′ ⊆ U∩Y ◦ is the open subset where the moduli map µ has maximal
rank.

Remark 1.3. — By construction, it is clear that the sheaf B is a satu-
rated subsheaf of Ω1

Y (logD). We say that B is the saturation of Image(dµ)
in Ω1

Y (logD).

With this notation, the main result of the paper is then formulated as
follows.

Theorem 1.4 (Refinement of the Viehweg-Zuo Theorem 1.1). — There
exists a number m > 0 and an invertible subsheaf A ⊆ Symm B whose
Kodaira-Iitaka dimension is at least the variation of the family, κ(A ) >
Var(f◦).

1.3. Outline of the paper

We begin the proof of Theorem 1.4 in Section 2 with a summary of
Viehweg-Zuo’s proof of Theorem 1.1. Using the notation and results of
Section 2, a proof of Theorem 1.4 is given in Section 3. We end this pa-
per with Section 4, where we briefly recall Campana’s notion of a special
logarithmic pair, give the precise statement of his conjecture and give an
extremely short proof for families over surfaces.

TOME 61 (2011), FASCICULE 6
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2. Review of Viehweg-Zuo’s proof of Theorem 1.1

To prepare for the proof of Theorem 1.4, we give a very brief synopsis
of Viehweg-Zuo’s proof of Theorem 1.1, covering only the material used
in the proof of Theorem 1.4. The reader who is interested in a detailed
understanding is referred to the original paper [12] and to the survey [11].
The overview contained in this section and the facts outlined in Section 2.4
can perhaps serve as a guideline to the original references.

2.1. Setup of notation

Throughout the present Section 2, we choose a smooth projective com-
pactification X of X◦ such that the following holds:

(1) The difference ∆ := X\X◦ is a divisor with simple normal crossings.
(2) The morphism f◦ extends to a projective morphism f : X → Y .

It is then clear that ∆ = f−1(D) set-theoretically. Removing a suitable
subset S ⊂ Y of codimension codimY S > 2, the following will then hold
automatically on Y ′ := Y \ S and X ′ := X \ f−1(S), respectively.

(3) The restricted morphism f ′ := f |X′ is flat.
(4) The divisor D′ := D ∩ Y ′ is smooth.
(5) The divisor ∆′ := ∆ ∩X ′ is a relative normal crossing divisor, i.e.

a normal crossing divisor whose components and all their intersec-
tions are smooth over the components of D′.

In the language of Viehweg-Zuo, [12, Def 2.1(c)], the restricted morphism
f ′ : X ′ → Y ′ is a “good partial compactification of f◦”.

Remark 2.1 (Restriction to a partial compactification). — Let G be
a locally free sheaf on Y , and let F ′ ⊆ G |Y ′ be an invertible subsheaf.
Since codimY S > 2, there exists a unique extension of the sheaf F ′ to
an invertible subsheaf F ⊆ G on Y . Furthermore, the restriction map
Γ
(
Y, F

)
→ Γ

(
Y ′, F ′

)
is an isomorphism. In particular, the notion of

Kodaira-Iitaka dimension makes sense for the sheaf F ′, and κ(F ′) = κ(F ).

ANNALES DE L’INSTITUT FOURIER
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2.2. Construction of the τ0
p,q

The starting point of the Viehweg-Zuo construction is the standard se-
quence of logarithmic differentials associated to the flat morphism f ′,

(2.1) 0→ (f ′)∗Ω1
Y ′(logD′)→ Ω1

X′(log ∆′)→ Ω1
X′/Y ′(log ∆′)→ 0,

where Ω1
X′/Y ′(log ∆′) is locally free. It is a standard fact, [3, II, Ex. 5.16],

that Sequence (2.1) defines a filtration of the pth exterior power,

ΩpX′(log ∆′) = F 0 ⊇ F 1 ⊇ · · · ⊇ F p ⊇ F p+1 = {0},

with F r/F r+1 ∼= (f ′)∗
(
ΩrY ′(logD′)

)
⊗Ωp−rX′/Y ′(log ∆′). Taking the sequence

0 −→ F 1 −→ F 0 −→ F 0
/
F 1 −→ 0

modulo F 2, we obtain

(2.2) 0→ (f ′)∗
(
Ω1
Y ′(logD′)

)
⊗ Ωp−1

X′/Y ′(log ∆′)→

F 0
/
F 2 → ΩpX′/Y ′(log ∆′)→ 0.

Setting L := ΩnX′/Y ′(log ∆′), twisting Sequence (2.2) with L −1 and push-
ing down, the connecting morphisms of the associated long exact sequence
give maps

τ0
p,q : F p,q −→ F p−1,q+1 ⊗ Ω1

Y ′(logD′),
where

F p,q := Rqf ′∗(Ω
p
X′/Y ′(log ∆′)⊗L −1)

/
torsion.

Set N p,q
0 := ker(τ0

p,q).

2.3. Alignment of the τ0
p,q

The morphisms τ0
p,q and τ0

p−1,q+1 can be composed if we tensor the latter
with the identity morphism on Ω1

Y ′(logD′). More specifically, we consider
the following morphisms,

τ0
p,q ⊗ IdΩ1

Y ′
(logD′)⊗q︸ ︷︷ ︸

=:τp,q

: F p,q ⊗
(
Ω1
Y ′(logD′)

)⊗q →
F p−1,q+1 ⊗

(
Ω1
Y ′(logD′)

)⊗q+1
,

and their compositions

(2.3) τn−k+1,k−1 ◦ · · · ◦ τn−1,1 ◦ τn,0︸ ︷︷ ︸
=:τk

: Fn,0 → Fn−k,k ⊗
(
Ω1
Y ′(logD′)

)⊗k
.

TOME 61 (2011), FASCICULE 6
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2.4. Fundamental facts about τk and N p,q
0

Theorem 1.1 is shown by relating the morphism τ0
p,q with the structure

morphism of a Higgs-bundle coming from the variation of Hodge structures
associated with the family f◦. Viehweg’s positivity results of push-forward
sheaves of relative differentials, as well as Zuo’s results on the curvature
of kernels of generalized Kodaira-Spencer maps are the main input here.
Rather than recalling the complicated line of argumentation, we simply
state two central results from the argumentation of [12].

Fact 2.2 (Factorization via symmetric differentials, [12, Lem. 4.6]). —
For any k, the morphism τk factors via the symmetric differentials

Symk Ω1
Y ′(logD′) ⊆

(
Ω1
Y ′(logD′)

)⊗k
.

More precisely, the morphism τk takes its image in

Fn−k,k ⊗ Symk Ω1
Y ′(logD′).

�

Consequence 2.3. — Using Fact 2.2 and the observation that Fn,0 ∼=
OY ′ , we can therefore view τk as a morphism

τk : OY ′ −→ Fn−k,k ⊗ Symk Ω1
Y ′(logD′).

While the proof of Fact 2.2 is rather elementary, the following deep result
is at the core of Viehweg-Zuo’s argument.

Fact 2.4 (Negativity of N p,q
0 , [12, Claim 4.8]). — Given any numbers p

and q, there exists a number k and an invertible sheaf A ′ ∈ Pic(Y ′) of
Kodaira-Iitaka dimension κ(A ′) > Var(f0) such that

(A ′)∗ ⊗ Symk
(
(N p,q

0 )∗
)

is generically generated. �

2.5. End of proof

To end the sketch of proof, we follow [12, p. 315] almost verbatim. By
Fact 2.4, the trivial sheaf Fn,0 ∼= OY ′ cannot lie in the kernel N n,0

0 of
τ1 = τ0

n,0. We can therefore set 1 6 m to be the largest number with
τm(Fn,0) 6= {0}. Since m is maximal, τm+1 = τn−m,m ◦ τm ≡ 0 and

Image(τm) ⊆ ker(τn−m,m) = N n−m,m
0 ⊗ Symm Ω1

Y ′(logD′).

ANNALES DE L’INSTITUT FOURIER
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In other words, τm gives a non-trivial map

τm : OY ′ ∼= Fn,0 −→ N n−m,m
0 ⊗ Symm Ω1

Y ′(logD′).

Equivalently, we can view τm as a non-trivial map

(2.4) τm : (N n−m,m
0 )∗ −→ Symm Ω1

Y ′(logD′).

By Fact 2.4, there are many morphisms A ′ → Symk
(
(N n−m,m

0 )∗
)
, for k

large enough. Together with (2.4), this gives a non-zero morphism A ′ →
Symk·m Ω1

Y ′(logD′).
We have seen in Remark 2.1 that the sheaf A ′ ⊆ Symk·m Ω1

Y ′(logD′)
extends to a sheaf A ⊆ Symk·m Ω1

Y (logD) with κ(A ) = κ(A ′) > Var(f◦).
This ends the proof of Theorem 1.1. �

3. Proof of Theorem 1.4

3.1. Setup and assumptions

The proof of Theorem 1.4 makes use of essentially all results explained
in Section 2. Since the assumptions of Theorems 1.1 and 1.4 agree, we
maintain the full setup and all notation introduced in Section 2.

3.2. Reduction to a study of the τ0
p,q

The construction outlined in Section 2 essentially says that the sheaf A

constructed by Viehweg-Zuo is a symmetric product of the image sheaves
of the τ0

p,q. The precise statement is the following.

Proposition 3.1. — To prove Theorem 1.4, it suffices to show that

(3.1) Image(τ0
p,q) ⊆ F p−1,q+1 ⊗B′

for all p and q, where B′ := B|Y ′ and B ⊆ Ω1
Y (logD) is the sheaf defined

in Notation 1.2.

Remark 3.2. — Since B is saturated, it is enough to check inclusion
(3.1) on an open set.

Proof of Proposition 3.1. — If (3.1) holds, the image of the morphisms τk

defined in (2.3) lies in Fn−k,k ⊗
(
B′
)⊗k. Furthermore, by Fact 2.2,

Image(τk) ⊆ Fn−k,k ⊗ Symk B′.

TOME 61 (2011), FASCICULE 6
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If we chose the number m as in Section 2.5 above, the image of τm is then
contained in N n−m,m

0 ⊗ Symm B′, and τm can be seen as a non-trivial
map

τm : (N n−m,m
0 )∗ −→ Symm B′.

As in Section 2.5, we obtain a map A ′ → Symk·m B′, with κ(A ′) >
Var(f◦), and Remark 2.1 gives the extension to a sheaf A ⊂ Symk·m B,
with κ(A ) = κ(A ′). �

3.3. Proof of Inclusion (3.1) in a simple case

It remains to check Inclusion (3.1). Before tackling the problem in gen-
eral, we consider a trivial case first.

Proposition 3.2. — If the variation of f◦ is maximal, i.e. Var(f◦) =
dimY ◦, then Inclusion (3.1) holds.

Proof. — If the variation of f◦ is maximal, then the moduli map Y ◦→ M

is generically finite onto the closure of its image. In particular, the sheaf B

introduced in Notation 1.2 equals Ω1
Y (logD). Inclusion (3.1) is therefore

trivially satisfied. �

3.4. Comparing families with respect to Inclusion (3.1)

Given two families, one the pull-back of the other via a dominant mor-
phism, an elementary comparison of the morphisms τ0

p,q associated with
the families shows that Inclusion (3.1) holds for one of the families if and
only if it also holds for the other. We will later use the following Compari-
son Proposition to show that the Viehweg-Zuo sheaf of a family essentially
only depends on the image of the base in the coarse moduli space, and not
so much on the family itself.

Proposition 3.3 (Comparison Proposition). — Consider a Cartesian
diagram of smooth projective families of n-dimensional canonically polar-
ized manifolds over smooth quasi-projective base manifolds, as follows

X̂◦
Γ //

f̂◦

��

X̃◦

f̃◦

��
Ŷ ◦

γ

dominant
// Ỹ ◦.

ANNALES DE L’INSTITUT FOURIER
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Let f̂ ′ : X̂ ′ → Ŷ ′ and f̃ ′ : X̃ ′ → Ỹ ′ be two good partial compactifications,
in the sense introduced in Section 2.1. Then Inclusion (3.1) holds for f̂ ′ if
and only if it holds for f̃ ′.

Proof. — We have noted in Remark 3.2 that it suffices to check Inclu-
sion (3.1) on an open subset. In particular, it suffices to consider the re-
strictions of the morphisms τ0

p,q and of all relevant sheaves to Ŷ ◦ and Ỹ ◦.
This greatly simplifies notation because the logarithmic boundary terms
do not appear in the restrictions, and we can write, e.g., Ωp

Ỹ ◦
instead of

the more complicated Ωp
Ỹ ′

(log D̃′).
Shrinking Ŷ ◦ and Ỹ ◦ further, if necessary, we may assume without loss

of generality that γ is surjective and smooth. We may also assume that the
moduli map µ̃ : Ỹ ◦ → M has maximal rank. By assumption, the moduli
map µ̂ : Ŷ ◦ →M is the composition µ̂ = µ̃ ◦ γ.

As in Section 2, we need to discuss the connecting morphisms τ0
p,q on

Ŷ ◦ and on Ỹ ◦, respectively. For clarity of notation we indicate the relevant
space by indexing all morphisms and sheaves with either a hat or a tilde.
That way, we write

τ̂0
p,q : F̂ p,q → F̂ p−1,q+1 ⊗ Ω1

Ŷ ◦
and τ̃0

p,q : F̃ p,q → F̃ p−1,q+1 ⊗ Ω1
Ỹ ◦
,

where F̂ p,q := Rq f̂◦∗
(
Ωp
X̂◦/Ŷ ◦

⊗ (Ωn
X̂◦/Ŷ ◦

)−1) and the sheaf F̃ p,q on Ỹ ◦ is
defined analogously. Finally, set

B̂◦ := Image
(
dµ̂ : µ̂∗(Ω1

M)→ Ω1
Ŷ ◦

)
and

B̃◦ := Image
(
dµ̃ : µ̃∗(Ω1

M)→ Ω1
Ỹ ◦

)
.

Since γ is smooth and the moduli map µ̃ has maximal rank, µ̂ also has
maximal rank, and both B̃◦ and B̂◦ are saturated in Ω1

Ỹ ◦
and Ω1

Ŷ ◦
, re-

spectively. Better still, the differential dγ : γ∗(Ω1
Ỹ ◦

) → Ω1
Ŷ ◦

induces an
isomorphism

(3.3) dγ : γ∗(B̃◦)
∼=−−→ B̂◦.

Since B̃◦ and B̂◦ are saturated, to prove Proposition 3.3 it is equivalent
to show that

(3.4) Image(τ̂0
p,q) ⊆ F̂ p−1,q+1 ⊗ B̂◦ ⇐⇒ Image(τ̃0

p,q) ⊆ F̃ p−1,q+1 ⊗ B̃◦.

To prove (3.4), we aim to identify the sheaves F̂ p,q and γ∗
(
F̃ p,q

)
and show

that images of the τ̂0
p,q are naturally identified with the pull-backs of the

images of τ̃0
p,q. For a precise statement, recall that there are isomorphisms

TOME 61 (2011), FASCICULE 6
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Γ∗
(
Ωp
X̃◦/Ỹ ◦

) ∼= Ωp
X̂◦/Ŷ ◦

for all p. Since taking cohomology commutes with
flat base change, [3, III Prop. 9.3], we obtain isomorphisms

ιp,q : γ∗
(
F̃ p,q

) ∼=−−→ F̂ p,q

for all p and q. Tensoring ιp,q with the differential dγ : γ∗
(
Ω1
Ỹ ◦

)
→ Ω1

Ŷ ◦

gives a map

(3.5) ιp,q ⊗ dγ : γ∗
(
F̃ p,q ⊗ Ω1

Ỹ ◦

)
−→ F̂ p,q ⊗ Ω1

Ŷ ◦
.

Equivalence (3.4), and hence Proposition 3.3, is an immediate consequence
of the Isomorphism (3.3) and of the following claim.

Claim 3.6. — Given any numbers p and q, the sheaf morphism (3.5)
induces an isomorphism between the image of τ̂0

p,q and the pull-back of the
image of τ̃0

p,q,

ιp,q ⊗ dγ : γ∗
(
Image(τ̃0

p,q)
) ∼=−−→ Image(τ̂0

p,q).

It remains to prove Claim 3.6. Observe that Claim 3.6 follows trivially
from the definitions of τ̃0

p,q and τ̂0
p,q if we are in the simple case where Ŷ 0

is a product, say Ŷ ◦ ∼= Ỹ ◦ × Z̃◦, and where γ is the projection to the first
factor. Locally in the analytic topology, however, any smooth morphism
looks like the projection morphism of a product. Since Claim 3.6 can be
checked locally analytically, this proves the claim and ends the proof of
Proposition 3.3. �

3.5. End of proof of Theorem 1.4

To complete the proof of Theorem 1.4, we compare our original family
to one that is of maximal variation. The starting point is the existence of
a universal family on a finite cover.

Theorem 3.4 (Existence of a universal family on a finite cover, [8,
Prop. 2.7], see also [10, Thm. 9.25]). — Let M′ ⊆ M be the reduced ir-
reducible component that contains the image of Y ◦. Then there exists a
reduced normal scheme M̃, a finite and surjective morphism γ : M̃ → M′

and a family of canonically polarized varieties u : Ũ → M̃ such that γ is
precisely the moduli map associated with the family u. �

Let Z ′ ⊆ Y ◦×MM̃ be an irreducible component of the fiber product that
dominates Y ◦, let W ′ := Image(Z ′) ⊆ M̃ be the closure of the image of Z ′

in M̃ and choose desingularizations W → W ′ and Z → Z ′ such that the

ANNALES DE L’INSTITUT FOURIER
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natural map Z ′ → W ′ extends to give a dominant map Z → W . Setting
X◦Z := X◦ ×Y ◦ Z, ŨZ := Ũ ×

M̃
Z and ŨW := Ũ ×

M̃
W , we obtain linked

Cartesian diagrams as follows

Brief Article

The Author

January 6, 2011

X◦

f◦

��

X◦
Z

f◦
Z

��

�� ŨZ

uZ

��

�� ŨW

uW
family of

max. var.
��

�� Ũ

u
family of

max. var.��
Y ◦ Z

dominant
�� Z

dominant
�� W

gen. finite
�� �M

finite, surjective

moduli map of u
�� M.

1

Recall from Proposition 3.2 that Inclusion (3.1) holds for the family uW ,
which is of maximal variation. The Comparison Proposition 3.3 then asserts
that Inclusion (3.1) also holds for the family uZ .

The families f◦Z and uZ are not necessarily isomorphic, but induce the
same moduli map Z →M. Since for any point z ∈ Z, the fibers (f◦Z)−1(z)
and u−1

Z (z) are isomorphic, the scheme of Z-isomorphisms,

I ′ := IsomZ

(
X◦Z , ŨZ

)
⊆ HomZ

(
X◦Z , ŨZ

)
⊆ HilbZ

(
X◦Z ×Z ŨZ

)
surjects onto Z. Since all fibers (f◦Z)−1(z) ∼= u−1

Z (z) are canonically po-
larized manifolds and have only finitely many automorphisms, the natural
map I ′ → Z is quasi-finite. Let I be a desingularization of a component
of I ′ that dominates Z. Recall that taking Hilb, Hom and Isom commutes
with base change. In particular, we have an isomorphism of I-schemes,

IsomI

(
X◦Z ×Z I, ŨZ ×Z I

) ∼= IsomZ

(
X◦Z , ŨZ

)
×Z I.

Looking at the right hand side, it is clear that there exists a section I →
IsomI

(
X◦Z ×Z I, ŨZ ×Z I

)
, i.e., an isomorphism of I-schemes, X◦Z ×Z I ∼=

ŨZ ×Z I. In summary, we obtain a diagram as follows,

X◦

f◦

��

X◦Z ×Z I

f◦I

��

oo oo
∼= // ŨZ ×Z I

uI

��

// ŨZ

uZ

��
Y ◦ I

γY

dominant
oo I

γZ

dominant
// Z.

We have seen that Inclusion (3.1) holds for the family uZ . Since γZ is dom-
inant, the Comparison Proposition 3.3 applies to show that Inclusion (3.1)
holds for the family uI , or, equivalently, for the family f◦I . Another appli-
cation of the Comparison Proposition 3.3 to the morphism γY then shows
that Inclusion (3.1) holds for the family f◦. Theorem 1.4 then follows from
Proposition 3.1. �
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4. Application of Theorem 1.4 to families over special
surfaces

As an immediate corollary to Theorem 1.4, we see that any smooth pro-
jective family of canonically polarized manifolds over a special surface Y ◦
is isotrivial, as conjectured by Campana. We first recall the precise defi-
nition of a special logarithmic pair below, taking the classical Bogomolov-
Sommese vanishing theorem as our starting point.

Theorem 4.1 (Bogomolov-Sommese vanishing, [2, Sect. 6]). — Let Y
be a smooth projective variety and D ⊂ Y a reduced, possibly empty
divisor with simple normal crossings. If p 6 dimY is any number and
A ⊆ ΩpY (logD) any invertible subsheaf, then the Kodaira-Iitaka dimension
of A is at most p, i.e., κ(A ) 6 p. �

In a nutshell, we say that a pair (Y,D) is special if the inequality in the
Bogomolov-Sommese vanishing theorem is always strict.

Definition 4.2 (Special logarithmic pair). — In the setup of Theo-
rem 4.1, a pair (Y,D) is called special if the strict inequality κ(A ) < p

holds for all p and all invertible sheaves A ⊆ ΩpY (logD). A smooth, quasi-
projective variety Y ◦ is called special if there exists a smooth compactifi-
cation Y such that D := Y \ Y ◦ is a divisor with simple normal crossings
and such that the pair (Y,D) is special.

Remark 4.3. — If Y ◦ is a smooth, quasi-projective variety and if (Y1, D1)
and (Y2, D2) are two smooth compactifications with snc boundary divisors,
as in Definition 4.2, then an elementary computation shows that the pair
(Y1, D1) is special if and only if (Y2, D2) is special. Specialness can thus be
checked on any snc compactification.

With this notation in place, Campana has conjectured the following.

Conjecture 4.4 (Generalization of Shafarevich Hyperbolicity, [1, Conj.
12.19]). — Let f : X◦ → Y ◦ be a smooth family of canonically polarized
varieties over a smooth quasi-projective base. If Y ◦ is special, then the
family f◦ is isotrivial.

As mentioned in the Introduction, in the case where Y ◦ is a surface,
Conjecture 4.4 is claimed in [1, Thm. 12.20]. However, we had difficulties
following the proof, and offer a new proof, which is an immediate corollary
to Theorem 1.4.

Corollary 4.5 (Campana’s conjecture in dimension two). — Conjec-
ture 4.4 holds if dimY ◦ = 2.
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Proof. — We maintain the notation of Conjecture 4.4 and let f : X◦ →
Y ◦ be a smooth family of canonically polarized varieties over a smooth
quasi-projective base, with Y ◦ a special surface. Since Y ◦ is special, it is
not of log general type, and hence by [6, Thm. 1.1], Var(f◦) < 2. Suppose
Var(f◦) = 1 and choose a compactification (Y,D) as in Definition 4.2, then
by Theorem 1.4 there exists a number m > 0 and an invertible subsheaf
A ⊆ Symm B such that κ(A ) > 1. However, since B is saturated in the
locally free sheaf Ω1

Y (logD), it is reflexive, [9, Claim on p. 158], and since
Var(f◦) = 1, the sheaf B is of rank 1. Thus B ⊆ Ω1

Y (logD) is an invertible
subsheaf, [9, Lem. 1.1.15, on p. 154], and Definition 4.2 of a special pair
gives that κ(B) < 1, contradicting the fact that κ(A ) > 1. It follows that
Var(f◦) = 0 and that the family is hence isotrivial. �

A proof of Campana’s Conjecture 4.4 in higher dimensions will appear
in a forthcoming paper.
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