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ADJOINT REPRESENTATION OF E8 AND DEL PEZZO
SURFACES OF DEGREE 1

by Vera V. SERGANOVA & Alexei N. SKOROBOGATOV

Abstract. — Let X be a del Pezzo surface of degree 1, and let G be the simple
Lie group of type E8. We construct a locally closed embedding of a universal torsor
over X into the G-orbit of the highest weight vector of the adjoint representation.
This embedding is equivariant with respect to the action of the Néron-Severi torus
T of X identified with a maximal torus of G extended by the group of scalars.
Moreover, the T -invariant hyperplane sections of the torsor defined by the roots of
G are the inverse images of the 240 exceptional curves on X.
Résumé. — Soit X une surface de del Pezzo de degré 1, et soit G un groupe

de Lie simple de type E8. Nous montrons que tout torseur universel sur X est un
sous-ensemble localement fermé de la G-orbite d’un vecteur du plus grand point
de la représentation adjointe. Ce plongement est équivariant par rapport à l’action
du tore de Néron–Severi T de X, identifié avec un tore maximal de l’extension de
G par le groupe de scalaires. En outre, les sections hyperplanes T -invariantes du
torseur définies par les racines de G sont les images réciproques des 240 courbes
exceptionnelles de X.

Introduction

Let G be the split simple Lie group of type E8 with Lie algebra g. Let
X be a split del Pezzo surface of degree 1, and let T be a universal torsor
over X. In this paper we construct an embedding of T into the G-orbit of
the highest weight vector of the adjoint representation of G in g. This orbit
is the affine cone (G/P )a (with the zero removed) over the generalised
Grassmannian G/P ⊂ P(g). Let H ⊂ G be a split maximal torus, and
let T ⊂ GL(g) be the extension of H by the centre of GL(g). The above
embedding is equivariant with respect to the action of T identified with the
Néron–Severi torus of X. Moreover, the T -invariant hyperplane sections of

Keywords: Universal torsors, del Pezzo surfaces, Lie groups, homogeneous spaces.
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T corresponding to the 240 roots of E8 are the inverse images of the 240
lines on X. This extends the main result of [7] to del Pezzo surfaces of
degree 1.

Generalising the blowing-up construction of [7, Section 4] we prove the fol-
lowing result which may be of independent interest. Let g = h⊕(

⊕
β∈R gβ)

be a semisimple Lie algebra with a Cartan subalgebra h and a root system
R. Let α ∈ R be a long simple root, and let V be the simple g-module whose
highest weight ω is the fundamental weight dual to α. Define a Z-graded Lie
algebra structure on g by setting h ⊂ g0, and gβ ⊂ gn if β − nα is a linear
combination of simple roots other than α. Then there is a natural Z-grading
on V = ⊕n>0Vn such that giVj ⊂ Vj−i. The subalgebra g0 is the direct
sum of the 1-dimensional abelian Lie algebra and a semisimple Lie algebra
g′. Each graded component Vi is a g′-module; moreover, V1 is the simple g′-
module of highest weight −α. Let G (resp. G′) be the split simply connected
semisimple Lie group whose Lie algebra is g (resp. g′), and let H ⊂ G be
the Cartan subgroup with Lie algebra h. The G-orbit of the highest weight
vector in P(V ) is the homogeneous space G/P , where P is the maximal
parabolic subgroup of G defined by α. Similarly, G′/P ′ ⊂ P(V1) is the G′-
orbit of the highest weight vector in P(V1). Let G6−2 ⊂ G be the unipotent
subgroup whose Lie algebra is the nilpotent Lie subalgebra g6−2 ⊂ g. Fi-
nally, let Hω be the 1-parameter subgroup of the maximal torus H such
that the kernel of the natural surjection Ĥ = P (R) → Ĥω is given by
(x, ω) = 0, where P(R) is the weight lattice. In Theorem 1.6 we construct
an open subset of G/P invariant under the semi-direct product G6−2oHω

such that the quotient is isomorphic to P(V1) blown-up at G′/P ′.
Although we largely follow the same strategy of proof as in [7] the gener-

alisation from the cases A4, D5, E6, E7 to the case E8 is far from straight-
forward. The root system E7 is obtained from E8 by removing α = α8, the
simple root corresponding to the last node of the longest leg of the Dynkin
diagram. (Here and elsewhere we use Bourbaki’s notation.) A number of
difficulties stem from the fact that the simple Lie algebra g of type E8
graded by α8 has five non-zero graded components gn and not three as
was the case for (A4, α3), (D5, α5), (E6, α6) and (E7, α7), so in our case
G6−2 is no longer trivial. The main result of Section 2 is Theorem 2.1
applicable whenever the grading of g has length 5. Let (G′/P ′)a be the
affine cone over G′/P ′. Theorem 2.1 says that a natural torsor under the
multiplicative group Gm over the blowing-up of a subvariety Z ⊂ V1 \ {0}
at Z∩(G′/P ′)a is isomorphic to a locally closed subset of (G/P )a provided
there exists a symmetric bilinear form on g−1 with values in g−2 satisfying
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E8 AND DEL PEZZO SURFACES OF DEGREE 1 2339

certain properties. This form allows us to construct a section of a quotient
morphism by the action of G6−2. In Section 3 we zoom in on the cases E7
and E8 and prove some technical lemmas about these algebras and related
homogeneous spaces. The preparations for the proof proper start in Section
4, where we construct the required symmetric form, which turns out to be
essentially unique. Its construction is made possible by the following fact
(undoubtedly well known to experts): blowing up a point on a del Pezzo
surface of degree 2 one obtains a del Pezzo surface of degree 1 only if the
point does not belong to the union of exceptional curves and the branch
curve of the anti-canonical double covering (Lemma 4.1). The proof of the
main result of this paper, Theorem 5.3, is finished in Section 5.

The equations of universal torsors over del Pezzo surfaces of degree 1
were studied in [9] and [10] via the Cox ring. It would be interesting to
generalise Thm. 2.5 of [8] to the case of del Pezzo surfaces of degree 1, and
so obtain a representation-theoretic interpretation of these equations.

1. The blow-up theorem

Throughout the paper we denote by k a field of characteristic 0 with an
algebraic closure k. We refer to [1] or [2] for the standard theory of Lie
algebras, Lie groups and their representations.

Let G be a split simply connected semisimple group, with a Borel sub-
group B defined over k, and a split maximal torus H ⊂ B, H ' Grm,k.
These data define a root system R together with a basis of simple roots
∆. Let W be the Weyl group of R. If α ∈ R, then α∨ = 2

(α,α)α is the
corresponding coroot.
Let α ∈ ∆ be a simple root, and ω be the fundamental weight dual to

α, that is, (ω, α∨) = 1, and (ω, β∨) = 0 if β ∈ ∆ \ {α}.
LetG→ GL(V ) be the irreducible representation with the highest weight

ω. Let P ⊂ G, P ⊃ B, be the maximal parabolic subgroup such that
G/P is the orbit of the highest weight vector v in P(V ). The orbit Gv is
(G/P )a \ {0}, where (G/P )a is the affine cone over G/P . Let G̃ be the
reductive subgroup of GL(V ) generated by G and the scalar matrices.

Let g, h, b be the corresponding Lie algebras. A simple root α ∈ ∆ turns
g = h ⊕ (

⊕
β∈R gβ) into a graded Lie algebra g =

⊕
n∈Z gn, where h ⊂ g0

and gβ ⊂ gn if n is the coefficient of α in the decomposition of β into an
integral linear combination of simple roots. The subalgebra p = g>0 is the
Lie algebra of P . The subalgebra g0 is reductive, and is the direct sum of
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2340 Vera V. SERGANOVA & Alexei N. SKOROBOGATOV

its 1-dimensional centre and the semisimple Lie algebra g′ = [g0, g0] (cf.
[2], 23.3). The Dynkin diagram of g′ is obtained from that of g by removing
the node corresponding to α.

Let G′ ⊂ G be the semisimple simply connected group with Lie alge-
bra g′.
The vector space V is the direct sum V = ⊕n>0Vn, where Vn is spanned

by the vectors of weight τ such that n is the coefficient of α in the decom-
position of the root ω − τ into a linear combination of simple roots. It is
clear that V is a graded g-module, that is, giVj ⊂ V−i+j . We have V0 = kv.

Lemma 1.1. — The map g 7→ gv defines an isomorphism of g′-modules
g−1 → V1. Moreover, V1 is an irreducible g′-module with highest weight
−α.
The g′-module V2 is isomorphic to V +

2 ⊕ V
−

2 , where the map g 7→ gv

is an isomorphism of g′-modules g−2 → V −2 , and V +
2 = S2(V1)/V (−2α),

where V (−2α) is the irreducible g′-module with highest weight −2α.

Proof. — Let U(g) be the universal enveloping algebra of g. Consider the
generalised Verma module M = U(g)⊗U(p) kv. By the Poincaré–Birkhoff–
Witt theorem the composite map U(g6−1)→ U(g)→M is an isomorphism
of left U(g6−1)-modules, and also of g′-modules. The grading on U(g6−1)
induced by the grading on g6−1 defines a grading M = ⊕n>0Mn. We have
the following decompositions of g′-modules:

M0 = kv, M1 = g−1v, M2 = g−2v ⊕ S2(g−1)v.

Let X−α ⊂ g−α be a non-zero element. The g-module V is isomorphic to
the quotient M/N , where the g-submodule N is generated by X2

−αv. The
standard relations in U(g) imply that N = U(g60)X2

−αv. The grading on
M induces the grading N = ⊕i>0Ni. We have N0 = N1 = 0, and hence
V1 = M1 ' g−1. If β 6= α is a simple root, then β − α is not a root,
thus X−α is a highest weight vector of the g′-module V1; in particular,
V1 is an irreducible g′-module with highest weight −α. The g′-module N2
is generated by X2

−αv, thus N2 ' V (−2α). We obtain V2 = M2/N2 =
g−2 ⊕

(
S2(g−1)/V (−2α)

)
. �

We shall identify the g′-modules g−1 and V1 by the isomorphism that
sends g to gv. The exponential map exp(x) =

∑
n>0 ad(x)n/n! on the

nilpotent Lie subalgebra g6−1 is a morphism of affine varieties

exp : g6−1 → GL(g)

whose image is contained in G. For x ∈ g−1 = V1 we write

exp(x)v = v + x+ p2(x) + p3(x) + . . . ,

ANNALES DE L’INSTITUT FOURIER
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where pn(x) is in HomG′(Sn(V1), Vn). Let p(x, y) be the polarisation of
p(x) = p2(x). Then p(x, y) = 1

2 (xy + yx)v ∈ V +
2 is the symmetric part of

xyv. The skew-symmetric part of xyv is 1
2 [x, y]v ∈ V −2 . Note that we have

p(x) ∈ V +
2 .

Let P ′ ⊂ G′ be the stabiliser of X−αv in P(V1). This is a parabolic
subgroup of G′, and the affine cone (G′/P ′)a over G′/P ′ is G′(X−αv)∪{0}.

We now introduce an important subgroup of G̃. DefineD ⊂ GL(V ) as the
1-dimensional torus whose element gt, t ∈ k∗, acts on Vi as multiplication
by t1−i. It is easy to see that D ⊂ G̃. Indeed, let r be the positive rational
number such that rω is a primitive element of the root lattice Q(R). This
lattice is identified with the cocharacter lattice of H. Let Hω ⊂ H be the
1-dimensional subtorus defined by rω ∈ Q(R). Then D is contained in
the 2-dimensional torus generated by the scalar matrices and Hω, so that
D ⊂ G̃.

Lemma 1.2. — (G′/P ′)a = (G/P )a ∩ V1 = p−1(0)

Proof. — Let us prove the first equality. The tangent space to (G/P )a
at x is kx+ gx. If x ∈ (G′/P ′)a ⊂ V1, then

Tx,(G/P )a
∩ V1 = (kx+ gx) ∩ V1 = kx+ g′x = Tx,(G′/P ′)a

.

Hence (G′/P ′)a is an irreducible component of (G/P )a ∩ V1. On the other
hand, the closed set (G/P )a ∩ V1 is a union of G′-orbits, but the closure
of any non-zero orbit contains the unique closed orbit (G′/P ′)a. Hence
(G′/P ′)a = (G/P )a ∩ V1.
If p(x) = 0, then obviously pn(x) = 0 for all n > 2. Thus exp(x)v = v+x

is in (G/P )a. Hence gt exp(x)v = tv + x is also in (G/P )a for any t ∈ k∗.
But (G/P )a is a closed set, so that the limit point x ∈ V1 is contained in
it. By the first equality we see that x is actually in (G′/P ′)a. On the other
hand, p(X−αv) = 0, and since p is G′-equivariant, p vanishes on the orbit
G′(X−αv), and hence on (G′/P ′)a. �

Let B− ⊂ G be the opposite Borel subgroup, and N− ⊂ G its unipotent
radical; thus B− = N−H. Let b− (resp. n−) be the Lie algebra of B− (resp.
of N−). Then N− = exp(n−), and

n− = g6−1 ⊕ (n− ∩ g0) ⊂ g60.

The decreasing family of nilpotent subalgebras g6−n ⊂ n−, n > 1, defines
a decreasing family of unipotent subgroups G6−n = exp(g6−n) ⊂ N−.

Let πn : (G/P )a → Vn be the natural projections. Let π+
2 (resp. π−2 ) be

the projection to V +
2 (resp. to V −2 ).

TOME 61 (2011), FASCICULE 6



2342 Vera V. SERGANOVA & Alexei N. SKOROBOGATOV

The Bruhat decomposition represents G/P as a disjoint union of the
Bruhat cells B−(kvµ) ⊂ P(V ), where vµ ∈ V is a vector of weight µ = w(ω),
and w is a coset representative of W modulo the Weyl group of P . Since
V0 = kv is the trivial g0-module, the big (open) cell is B−(kv) = N−(kv) =
G6−1(kv). The preimage of the big cell in (G/P )a is a dense open subset
of (G/P )a given by π0(x) 6= 0.

Lemma 1.3. — If µ ∈Wω is a weight of Vn, n > 2, then π1(B−vµ) = 0.

Proof. — For any x ∈ Vn we have B−x ⊂ ⊕i>nVi since V is a graded
g-module. �

Let G6−2oD ⊂ G̃ be the semidirect product. It is clear that it preserves
the fibres of π1 : (G/P )a → V1.

Proposition 1.4. — If x ∈ V1, x 6∈ (G′/P ′)a, then

π−1
1 (x) = (G6−2 oD)exp(x)v.

If x ∈ V1, x ∈ (G′/P ′)a \ {0}, then

π−1
1 (x) = G6−1x ∪ (G6−2 oD)exp(x)v.

Proof. — Let y ∈ π−1
1 (x), x 6= 0. Then y is contained in B−vµ for some

µ = w(ω). Since x 6= 0 we have vµ = v or vµ ∈ V1, by Lemma 1.3. In the
first case, after applying an appropriate element u ∈ D, we ensure that
π0(uy) = v and therefore uy is in G6−1v = exp(g6−1)v. Since π1(uy) =
π1(y) = x we see that π−1

1 (x) = Dexp(x+ g6−2)v = (G6−2 oD)exp(x)v.
In the second case y ∈ V>1, moreover

y ∈ exp(g6−1)exp(n− ∩ g0)vµ ⊂ G6−1(G′/P ′)a,

since exp(n− ∩ g0) ⊂ G′ and vµ ∈ (G′/P ′)a. Now π1(y) = x implies that
x ∈ (G′/P ′)a and y ∈ G6−1x. Since (G′/P ′)a is a subset of (G/P )a, we
see that G6−1x is also a subset of (G/P )a. This completes the proof. �

It follows that π−1
1 (V1 \ {0}) is the union of

(G6−2 oD)exp(g−1 \ {0})v = (G6−1 \G6−2)k∗v

and G6−1((G′/P ′)a \ {0}).
From now on we assume that α is a long root of the root system R.

Lemma 1.5. — The group G6−2 acts freely on π−1
1 (x) for any vector

x ∈ V1 \ {0}.

Proof. — Recall that v is a vector of highest weight ω, so we can write
v = vω. By Lemma 1.3, π−1

1 (V1 \ {0}) is contained in the union of B−k∗vω
and B−k∗vµ, where µ ∈Wω is a weight of V1, hence it is enough to prove

ANNALES DE L’INSTITUT FOURIER
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that G6−2 acts freely on these cells. If rα is the reflection in the simple root
α, then rα(ω) = ω − α is the weight of X−αv ∈ V1, thus in the latter case
µ ∈ W′(ω − α), where W′ is the Weyl group of g′. Due to G′-invariance
it suffices to check that the stabilisers of vω and vω−α in G6−2 are trivial.
Since G6−2 is unipotent this is equivalent to the triviality of the stabilisers
in the Lie algebra g6−2. The stabiliser of any weight vector vµ in g6−2 is
a direct sum of root spaces. On the other hand, if µ is an extremal weight
of V and β is a root of g, then either gβvµ = 0 or g−βvµ = 0. A simple sl2
argument shows that if (µ, β) < 0 then g−βvµ = 0 and gβvµ 6= 0. We claim
that (µ, β) < 0 for µ = ω or µ = ω − α and any root β of g6−2. Indeed if
µ = ω, then (ω, β) < 0 for any root β of g6−1. Now let µ = ω−α. Then we
have (ω−α, β) = (rα(ω), β) = (ω, rα(β)). Our assumption that α is a long
root implies that rα(β) ∈ {β − α, β, β + α}, thus rα(β) is a root of g6−1,
so that (ω, rα(β)) < 0. This implies that (ω − α, β) < 0 and so completes
the proof of the lemma. �

Theorem 1.6. — Let π = (π1, π
+
2 ) : (G/P )a → V1⊕V +

2 be the natural
projection. Define the open subset U ⊂ (G/P )a as the complement to the
union of closed subsets π−1

1 (0) and (π+
2 )−1(0).

(i) G6−2 acts freely on U , and the fibres of π contained in U are orbits
of G6−2.
(ii) G6−2 o D acts freely on U preserving the fibres of the projection

U → V1 \ {0} × P(V +
2 ), which are orbits of G6−2 oD.

(iii) G6−2\U → (G6−2 oD)\U is a torsor under D ∼= Gm.
(iv) (G6−2 oD)\U is isomorphic to V1 \{0} blown up at (G′/P ′)a \{0}.

The exceptional divisor is given by π0(x) = 0.

We write various quotient morphisms in the theorem as a commutative
diagram, where B is the blowing-up of (G′/P ′)a \ {0} in V1 \ {0}:

U

π

��

� � // V0 × (V1 \ {0})× (V +
2 \ {0})× V

−
2 × V>3

π

��
G6−2\U

��

� � // (V1 \ {0})× (V +
2 \ {0})

��
(G6−2 oD)\U � � // (V1 \ {0})× P(V +

2 )

��
B // V1 \ {0}

(1.1)

TOME 61 (2011), FASCICULE 6



2344 Vera V. SERGANOVA & Alexei N. SKOROBOGATOV

Proof. — If t ∈ k∗ and h ∈ G6−2 are such that gthξ = ξ, then π+
2 (ξ) =

π+
2 (gthξ) = t−1π+

2 (ξ) 6= 0, hence t = 1. Then g = 1 by Lemma 1.5, so that
G6−2 oD acts freely on U . By Proposition 1.4 we can write U = U1 ∪U2,
where

U1 ⊂ (G6−2 oD)exp(g−1 \ {0})v, and U2 ⊂ G6−1
(
(G′/P ′)a \ {0}

)
,

since for x ∈ (G′/P ′)a we have p(x) = 0 so that no point in the set
(G6−2 o D)exp(x)v is in U . We note that U2 is the closed subset of U
given by π0(x) = 0.
If ξ ∈ U1, then π+

2 (ξ) is proportional to p(π1(ξ)), thus Lemma 1.2 implies
that π+

2 (ξ) 6= 0 is equivalent to π1(ξ) /∈ (G′/P ′)a, so that

U1 = G6−2exp(g−1 \ (G′/P ′)a)k∗v.

The fibres of π contained in U1 are orbits of G6−2, and those of

U1 −→ (V1 \ {0}) × P(V +
2 )

are orbits of G6−2 oD. Moreover, the morphism

(G6−2 oD)× (V1 \ (G′/P ′)a) −→ U1

sending (s, x) to s exp(x)v, is an isomorphism. In particular, π1 gives rise
to a trivial (G6−2 oD)-torsor U1 → V1 \ (G′/P ′)a.

If ξ ∈ U2, then ξ can be written as ξ = h exp(y)x, where x ∈ (G′/P ′)a \
{0}, y ∈ g−1 ' V1, h ∈ G6−2. Then π+

2 (ξ) = p(x, y), so that

U2 = G6−2{exp(y)x |x ∈ (G′/P ′)a, y ∈ V1, p(x, y) 6= 0}.

Let x be a non-zero point of (G′/P ′)a. Let us observe that p(x, y) = 0 for
y ∈ V1 if and only if y is in the tangent space Tx,(G′/P ′)a

, since p(x) = 0
gives a system of quadratic equations defining (G′/P ′)a, by Lemma 1.2.
Thus the zero set of p(x, y) in

(
(G′/P ′)a \ {0}

)
× V1 is the tangent bundle

of (G′/P ′)a \ {0}. Moreover, for such pairs (x, y) we have exp(y)x = x.
For this we need to show that yx = 0, and this follows from [x, y] = 0
by the remarks after Lemma 1.1, so we only need to prove that x and y

commute. Recall that Tx,(G′/P ′)a
is kx + g′x ⊂ V1. By the G′-invariance

we can assume without loss of generality that x = X−αv, so that we must
show that [X−α, [X−α, g′]] = 0. For this it is enough to prove that for any
root β of g′ we have [X−α, [X−α, Xβ ]] = 0. But β 6= α, and it is well known
that β− 2α is never a root for any long root α 6= β. This finishes the proof
that exp(y)x = x.
Let us show that the fibres of the restriction of π to U2 are orbits of

G6−2. If exp(y)x and exp(y′)x′ have the same image under π, then x′ = x

ANNALES DE L’INSTITUT FOURIER
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and p(x, y) = p(x, y′), so that y′ − y ∈ Tx,(G′/P ′)a
. As we have seen, this

implies exp(y′ − y)x = x. Since

exp(y′) = h exp(y)exp(y′ − y)

for some h ∈ G6−2, we are done. It follows that the fibres of

U2 −→ (V1 \ {0}) × P(V +
2 )

are orbits of G6−2 oD, which completes the proof of (i) and (ii). Part (iii)
is now obvious.
Let us prove (iv). Let N be the normal bundle to (G′/P ′)a \ {0} in V1,

that is, the cokernel of the injective map of vector bundles T(G′/P ′)a
→ V1.

The map (x, y) 7→ (x, p(x, y)) identifies N without its zero section with

G6−2\U2 ⊂
(
(G′/P ′)a \ {0}

)
× (V +

2 \ {0}),

thus (G6−2 oD)\U2 = P(N ). Finally, π1 : (G6−2 oD)\U → V1 \ {0} is a
morphism of smooth varieties which is an isomorphism away from (G′/P ′)a,
whereas π−1

1 ((G′/P ′)a \ {0}) is isomorphic to the projectivisation of the
normal bundle to (G′/P ′)a \ {0} in V1 \ {0}. It is known and not very hard
to prove that this implies the first statement of (iv).
This can also be proved in a more concrete way. An explicit construction

of the blowing-up in terms of the equations of the blown-up subvariety is
given in the proof of [3, Prop. II.7.14] (“the universal property of blowing-
up"). In our case using Lemma 1.2 we obtain that B together with the
natural projection to V1 \ {0} is the Zariski closure of the graph of the
morphism p : V1 \ (G′/P ′)a → P(V +

2 ) in (V1 \ {0})×P(V +
2 ). This graph is

precisely the image of U1 in (V1 \{0})×P(V +
2 ). Hence the (injective) image

of U in (V1 \{0})×P(V +
2 ) is a subset of B. By the previous paragraph this

image contains the exceptional divisor, hence it coincides with B. �

2. The case of grading of length 5

Let us now assume that the grading of g defined by a simple root α has
length 5, i.e., gn = 0 exactly when |n| > 2. An inspection of tables in [1]
shows that this is the full list of such pairs (R, α):
(Bn, αi), i 6= 1; (Cn, αi), i 6= n; (Dn, αi), i /∈ {1, n− 1, n}; (E6, αi), i = 2, 3, 5;

(E7, αi), i = 1, 2, 6; (E8, αi), i = 1, 8; (F4, αi), i = 1, 4; (G2, α2).

Recall that our enumeration of roots follows the conventions of [1].
We keep the notation of the previous section, in particular V is the

simple g-module with highest weight ω, the fundamental weight dual to α.
We identify V1 with g−1, and V −2 with g−2.
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Theorem 2.1. — Assume that the grading of g defined by a simple root
α has five non-zero terms. Let Z be a smooth closed subset of g−1 \ {0}
such that Z0 := Z ∩ (G′/P ′)a is also smooth. Assume that there exists a
linear map s : S2(g−1) → g−2 such that s(x) = 0 and [a, x] = 4s(x, a) for
any x ∈ Z0 and a ∈ Tx,Z .
Define Z̃ = D{exp(x + s(x))v|x ∈ Z} ∩ U , and let Z be the Zariski

closure of Z̃ in π−1
1 (Z) ∩ U . Then

(i) π1 : Z → Z is surjective.
(ii) Z is D-invariant, and D acts freely on Z.
(iii) The quotient D\Z is isomorphic to Z blown up at Z0. The excep-

tional divisor is given by π0(x) = 0.

This theorem states that the above sets are related as follows:

Z̃
� � //

π1

��

Z

π1

��

// D\Z

Z \ Z0

exp(x+s(x))v

OO

� � // Z BlZ0(Z)oo

where the downward arrows π1 are surjective.

Proof. — (i) If x ∈ Z \ Z0, then exp(x + s(x))v ∈ U because x 6= 0
and p(x) 6= 0 by Lemma 1.2. Thus exp(x + s(x))v ∈ Z̃ ⊂ Z. Since x =
π1(exp(x+ s(x))v), we see that x ∈ π1(Z).
Let k[[t]] be the k-algebra of formal power series. Now let x ∈ Z0 and

a ∈ Tx,Z , and let

φ(t) = x+ at+O(t2) ∈ Z(k[[t]])

be a k[[t]]-point of Z. Let us prove that

y = lim
t→0

gt exp
(
φ(t) + s(φ(t))

)
v

is a well defined point of Z. Using the identity g exp(h)g−1 = exp(Adgh)
and the fact that gt (v) = tv we obtain

y = lim
t→0

exp
(
gt (φ(t) + s(φ(t)))g−1

t

)
tv.

Since Adgt
z = tiz for any z ∈ gi, and

φ(t) + s(φ(t)) = x+ at+O(t2) + 2s(x, a)t+O2(t2),

where O2(t2) ∈ g−2, we obtain

y = lim
t→0

exp
(
xt−1 + a+O(t) + 2s(x, a)t−1 +O2(1)

)
tv.
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Since [g−2, g6−1] = 0, by the Campbell–Hausdorff formula for any elements
b, c ∈ g6−1 we have

exp(b)exp(c) = exp
(
b+ c+ [b, c]

2
)
.

Since O2(1) ∈ g−2 and 4s(x, a) = [a, x] we have
y = lim

t→0
exp(O(1))exp(a)exp(xt−1)tv = lim

t→0

(
exp(a)xv +O(1)xtv

)
= exp(a)xv,

where we used that [x, [x, v]] = 2p(x) = 0 which holds because x is in Z0.
Thus, y is well defined and, moreover,

y = exp(a)xv = xv + p(x, a)v modV −2 ⊕ V>2. (2.1)

In particular π1(y) = x. Hence π1 : Z → Z is surjective.
(ii) follows from the D-invariance of Z̃ and Theorem 1.6(ii).
(iii) Let Y = π−1

1 (Z) ∩ U and X = π(Y). It is clear that Y is a closed
subset of X ×kAnk , where Ank = V0⊕V −2 ⊕V>3. By construction Z is closed
in Y, and hence is closed in X ×k Ank :

Z � � //

��@
@@

@@
@@

@ Y � � //

π

��

X ×k Ank

zzvvvvvvvvv

X
We shall prove that π induces an isomorphism Z−̃→X . By the functoriality
of blowing up and Theorem 1.6 (iv), (G−2 o D)\Y ' D\X is isomorphic
to BlZ0(Z), so this is enough to complete the proof of (iii).

Write X0 = π(π−1
1 (Z0)). We have the following useful descriptions of X0

and its complement in X :

X0 = {(x, p(x, a)) ∈ U |x ∈ Z0, a ∈ Tx,Z},

X \ X0 = {(x, tp(x))|x ∈ Z \ Z0, t ∈ k∗}.
The image π(Z) contains X \ X0 by the argument from the beginning of
the proof of (i), and it contains X0 by formula (2.1). Thus π(Z) = X .
Let us show that π induces an isomorphism π−1(X \X0)∩Z−̃→X \X0.

If z = (z0, z1, z
+
2 , z

−
2 , ...) is a k-point of Z, then we have

z0z
+
2 = p(z1), z0z

−
2 = s(z1)v, (2.2)

because these equations are satisfied on the open subset Z̃ ⊂ Z which is
given by z0 6= 0. If y = (y1, y

+
2 ) is a k-point of X \ X0, then p(y1) 6= 0 and

y+
2 6= 0. Suppose that π(z) = y, then z1 = y1 and z+

2 = y+
2 . That implies

that z = gt exp(y1 + s(y1))v, where t is such that y+
2 t = p(y1), is a unique
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point of Z above y. This defines a section of π : Z → X over X \ X0.
Applying Lemma 2.2 below with A = Z and B = X we conclude that X is
isomorphic to Z . The second statement of (iii) is immediate from the first
equation of (2.2). �

Lemma 2.2. — Let B be a normal geometrically integral variety over
a field k, and let ϕ be the projection B ×k Ank → B. Let A ⊂ B ×k Ank
be a closed irreducible subscheme such that ϕ(A) = B. If ϕ induces an
isomorphism of fields of functions k(B)−̃→k(A), then ϕ : A → B is an
isomorphism.

Proof. — Let us denote the field k(A) = k(B) by K. Let Ω ⊂ B be the
largest open subset such that ϕ induces an isomorphism ϕ−1(Ω)∩A−̃→Ω.
Let us show that B \ Ω has codimension at least 2, i.e., Ω contains all the
points of B of codimension 1. Let D ⊂ B be an irreducible divisor, and let
OD ⊂ K be its local ring. Since B is normal, OD is a discrete valuation ring
with valuation val : O∗D → Z. Write Spec (OD) ×B A = Spec (R), where
R is a subring of K that contains OD. If val(x) < 0 for some x ∈ R \ 0,
then R = K and the closed fibre of Spec (R)→ Spec (OD) is empty. Since
Spec (R) → Spec (OD) is surjective we conclude that val(x) > 0 for all
x ∈ R \ 0, hence R = OD. Therefore, the codimension of B \ Ω is at
least 2. The composition of ϕ−1 : Ω → A with any coordinate projection
A ⊂ B ×k Ank → A1

k is a rational function on B which is regular away
from a closed subset of codimension 2, and hence is regular everywhere
on B. Since A is irreducible we have ϕ−1(B) = A, so that ϕ is indeed an
isomorphism. �

We thank J-L. Colliot-Thélène for pointing out this simple proof.

3. The case when the adjoint representation is
fundamental

Consider the case when the adjoint representation of g is a fundamental
representation, i.e., when the maximal root of R is the fundamental weight
ω dual to some simple root α. This happens precisely in the following cases:

(Bn, α2), n > 3; (Dn, α2), n > 4;
(E6, α2), (E7, α1), (E8, α8), (F4, α1), (G2, α2).

The tables in [1] show that the coefficient of α in the decomposition of the
root ω into a linear combination of simple roots is 2. Thus the Z-grading
g = ⊕gn defined by α has exactly five non-zero terms gn, |n| 6 2. The
following properties are easy to check:
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• g0 = g′ ⊕ kz is the direct sum of Lie algebras, where z ∈ h, z 6= 0,
spans the centre of g0, and g′ is semisimple;

• the g′-modules g±1 are isomorphic symplectic irreducible g′-modules
such that all weights have multiplicity 1;

• g±2 are trivial g′-modules, dim g±2 = 1;
• z is a grading element of g, i.e. [z, g] = ng for any g ∈ gn.

We can choose generators v ∈ g2 and w ∈ g−2 so that z = [v, w]. Using
that gn = 0 for |n| > 3 one checks that [[y, w], v] = y for any y ∈ g1, and
[[x, v], w] = x for any x ∈ g−1. We identify the g0-modules g−1 and g1 via
the isomorphism that sends x to [x, v]; its inverse sends y to [y, w]. Define
a symplectic form on g−1 by

〈a, b〉w = [a, b],

where a, b ∈ g−1. This form is g′-invariant, and hence is non-degenerate,
by the irreducibility of the g′-module g−1.

Lemma 3.1. — For any y ∈ (G′/P ′)a ⊂ g−1 and a ∈ Ty,(G′/P ′)a
we

have 〈y, a〉 = 0.

Proof. — Recall that g2 = gω, where ω, the fundamental weight dual to
α, is the highest weight of the adjoint representation of g. Recall also that
the highest weight of the g′-module g−1 is ω−α. Since the symplectic form
〈a, b〉 is G′-invariant, it is enough to prove the statement when y ∈ g−1 is
an eigenvector of H of weight ω − α. Since Ty,(G′/P ′)a

= ky + [g′, y] we
must prove that the vector space [g′, y] has zero intersection with gα. This
follows from the fact that ω − 2α is not a root. �

Define the invariant tensors

p ∈ Homg′(S2(g−1), g0), q ∈ Homg′(S3(g−1), g−1), r ∈ Homg′(S4(g−1), k)

as follows:

p(x) = 1
2ad2

x(v), q(x) = 1
6ad3

x(v), r(x)w = 1
24ad4

x(v).

Then for any x ∈ g−1 we can write exp(x)v as the sum of graded compo-
nents

exp(x)v = v + [x, v] + p(x) + q(x) + r(x)w. (3.1)
We denote the polarisations of these forms by the same letters, for example

r(a, b, c, d) = 1
576

∑
π∈S4

adπ(a)adπ(b)adπ(c)adπ(d)(v).

Lemma 3.2. — For any x ∈ g−1 we have ad2
x(v) = 2p(x) ∈ g′.
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Proof. — For any x ∈ g−1 we have [[[x, v], x], v] = 0 from the Jacobi
identity, hence [x, [x, v]] ∈ g′ which proves our formula. �

The intersection h′ = g′∩h is a Cartan subalgebra in g′. Let Λ ⊂ (h′)∗ be
the set of weights of g−1; recall that all the weights of g−1 have multiplicity
1. Let Xµ ∈ g−1 be a non-zero vector of weight µ ∈ Λ. Then any x ∈ g−1 is
uniquely written as x =

∑
xµXµ, where xµ is a homogeneous coordinate of

weight µ. Set cµ = 〈Xµ, X−µ〉. Then clearly c−µ = −cµ. These numbers are
non-zero since the symplectic form 〈x, y〉 is non-degenerate. We can write

r(x) =
∑

µ1+µ2+µ3+µ4=0
rµ1,µ2,µ3,µ4x

µ1xµ2xµ3xµ4 ,

where the monomials correspond to all sets of four (not necessarily distinct)
elements of Λ with zero sum.
Write q(x) =

∑
qµ(x)Xµ. We have [Xµ, x] = cµx

−µw and [Xµ, q(x)] =
cµq
−µ(x)w.

Lemma 3.3. — We have the following formulae:
∂r(x)
∂xµ

= cµq
−µ(x) = 〈Xµ, q(x)〉, (3.2)

∂q(x)
∂xβ

= [Xβ , p(x)] + 1
2cβx

−βx = [Xβ , p(x)] + 1
2 〈Xβ , x〉x. (3.3)

Proof. — The left hand side of (3.2) multiplied by 24 is

[Xµ, [x, [x, [x, v]]]] + [x, [Xµ, [x, [x, v]]]] + [x, [x, [Xµ, [x, v]]]]
+ [x, [x, [x, [Xµ, v]]]].

Here the first term equals 6[Xµ, q(x)]. The second term is

6[Xµ, q(x)] + [[x,Xµ], [x, [x, v]]] = 6[Xµ, q(x)],

since p(x) ∈ g′ by Lemma 3.2, and g′ is the stabiliser of w. The third term
equals [x, [Xµ, [x, [x, v]]]]+[x, [[x,Xµ], [x, v]]], but since [w, [x, v]] = −x, it is
the same as the second term. Finally, the fourth term is [x, [x, [Xµ, [x, v]]]]+
[x, [x, [[x,Xµ], v]]]. Using [w, v] = −z and [z, x] = −x we conclude that it
is the same as the third term, thus completing the proof of (3.2).
The left hand side of (3.3) multiplied by 6 is the following expression

[Xβ , [x, [x, v]]] + [x, [Xβ , [x, v]]] + [x, [x, [Xβ , v]]].

The first term equals 2[Xβ , p(x)]. The second term is the sum of the first
term and [[x,Xβ ], [x, v]] = cβx

−βx. The last term is the sum of the second
term and [x, [[x,Xβ ], v]] = −cβx−β [x, [w, v]] = cβx

−βx. �
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For the sake of completeness we list here some formulae that follow from
(3.2) and (3.3), but which will not be used in the rest of the paper:

∂2r(x)
∂xµ∂xβ

w = [Xµ, [Xβ , p(x)]] + 1
2 〈Xµ, x〉〈Xβ , x〉w;

for any x, a ∈ g−1 we have

q(x, x, a) = 1
3 [a, p(x)] + 1

6 〈a, x〉x, r(x, x, x, a) = 1
4 〈a, q(x)〉.

From now on we only consider the case when g is the simple Lie algebra
of type E8. We have dim g = 248, g′ is the simple Lie algebra of type E7,
dim g′ = 133, and dim g±1 = 56. It is well known that g′ is the algebra of
endomorphisms of g−1 preserving the quartic form r(x) and the symplectic
form 〈x, y〉 (see, e.g., [4], Thm. 6.2.3 and Remark 6.2.4). Moreover, all
the coefficients rµ1,µ2,µ3,µ4 are non-zero (see [4, Thm. 6.1.2] for a precise
formula). We deduce from (3.2) that for any µ ∈ Λ the cubic form qµ(x) is a
linear combination of the monomials xµ1xµ2xµ3 such that µ1 +µ2 +µ3 = µ

with non-zero coefficients. In particular, qµ(x) is not divisible by xµ, for
any µ ∈ Λ.
The following technical lemma will be used later in the construction.

Lemma 3.4. — Let ρ(x) ∈ S3(g∗−1) be a non-zero homogeneous cubic
form of weight β ∈ Λ,

ρ(x) =
∑

µ1+µ2+µ3=β
cµ1,µ2,µ3x

µ1xµ2xµ3 .

If cµ1,µ2,µ3 = 0 whenever µi = β, then ρ(x) is not identically zero on
(G′/P ′)a.

Proof. — Let g′0 ⊂ g′ denote the stabiliser of the hyperplane of g−1 given
by xβ = 0. Then g′0 ' k ⊕ g′′ is a direct sum of Lie algebras, where g′′ is
the simple Lie algebra of type E6. The g′′-module g−1 is the direct sum of
irreducible submodules

g−1 = W−3 ⊕W−1 ⊕W1 ⊕W3, (3.4)

where W3 and W−3 are trivial g′′-modules of dimension 1, Xβ ∈ W3, and
W1 and W−1 are dual g′′-modules of dimension 27. Moreover, there exists
an element h in the centre of g′0 such that [h, v] = iv for any v ∈ Wi. The
polynomial ρ(x) must have weight 3 with respect to h, so

ρ(x) ∈ (S2(W ∗3 )⊗W ∗−3) ⊕ (W ∗3 ⊗W ∗1 ⊗W ∗−1) ⊕ S3(W ∗1 ).

Let φ : g−1 →W1 be the natural projection. SinceW ∗3 is spanned by xβ our
assumption on ρ(x) implies that ρ(x) ∈ S3(W ∗1 ), so that ρ(x) = ρ(φ(x))
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for any x in g−1. Since φ((G′/P ′)a) = W1, the non-zero form ρ(x) cannot
vanish everywhere on (G′/P ′)a. �

4. Curves on del Pezzo surfaces of degree 2

For a curve C on a smooth surface X we write [C] for the class of C in
the Picard group PicX. We denote the intersection index of divisors D1
and D2 on X by (D1.D2).

Lemma 4.1. — Let M1, . . . ,M8 be points in P2
k such that the blow-up

of P2
k in M1, . . . ,M8 is a del Pezzo surface X of degree 1. Let X ′ be the del

Pezzo surface of degree 2 obtained by blowing-up P2
k at M1, . . . ,M7, and

let M be the point corresponding to M8 in X ′. Let B ⊂ X ′ be the branch
curve of the anti-canonical double covering κ : X ′ → P2

k. Then M 6∈ B.
The induced map of cotangent spaces

κ∗ : T∗κ(M),P2 −→ T∗M,X′

is an isomorphism.

Proof. — Let σ : X → X ′ be the morphism inverse to the blowing-up
of M in X ′, and let E = σ−1(M) be the exceptional divisor. Since X is
a del Pezzo surface of degree 1 it is clear that M does not belong to the
exceptional curves of X ′. It is well known that κ(B) ⊂ P2

k is a smooth
quartic curve, and that the union of exceptional curves of X ′ is the inverse
image of the union of bitangents to κ(B) ⊂ P2

k, see [5, Ch. 4]. Thus if
M ∈ B, then the tangent line L to κ(B) at κ(M) is not a bitangent. Hence
κ−1(L) is a rational curve with one node atM and no other singular points.
Let C be the strict transform of κ−1(L) in X, that is, the Zariski closure
of κ−1(L) \ {M} in X. The multiplicity of M in κ−1(L) is 2, hence the
intersection index (C.E) = 2. For the same reason we have the following
relation in PicX:

[C] + 2[E] = σ∗(κ−1(L)) = σ∗(−KX′) = −KX + [E].

Hence [C] = −KX − [E] and so (C. − KX) = 0, which contradicts the
ampleness of −KX . �

Let T ′ ⊂ GL(g) be the torus generated by the maximal torus H ′ of
G′ and the 1-dimensional torus Gm whose element t ∈ k∗ acts on gn as
multiplication by tn+2. (Note that H ′ ∩Gm = {±1}.) We denote by χ0 the
character of T ′ by which T ′ acts on the 1-dimensional centre of g0. This
gives natural exact sequences

0 −→ Q(E7) −→ T̂ ′ −→ Ĝm = Z −→ 0
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and
0 −→ Zχ0 −→ T̂ ′ −→ Ĥ ′ = P (E7) −→ 0.

For χ ∈ T̂ ′ let Snχ(g−1) be the weight χ eigenspace of Sn(g−1), and let
Snχ(g∗−1) be the dual space of homogeneous forms. In other words, we have
φ(x) ∈ Snχ(g∗−1) if and only if φ(tx) = χ(t)−1φ(x).

Define (G′/P ′)sf
a as the open subset of (G′/P ′)a consisting of stable

points with respect to H ′ (which means that the H ′-orbits are closed with
finite stabilisers), with the additional condition that the stabilisers in T ′ are
trivial. By geometric invariant theory [6] the quotient Y ′ = T ′\(G′/P ′)sf

a

exists as a quasi-projective variety. By [7, Thm. 2.7] the canonical morphism
f ′ : (G′/P ′)sf

a → Y ′ is a universal torsor. By [7, Thm. 6.1] there is an em-
bedding X ′ ↪→ Y ′ such that the images of the weight hyperplane sections
cut the exceptional curves on X ′. Moreover, the restriction of f ′ to X ′ is a
universal torsor T ′ → X ′, and so defines an isomorphism T̂ ′ → PicX ′. It
follows that the natural restriction map PicY ′ → PicX ′ is an isomorphism.
The type of the universal torsor f ′ : T ′ → X ′ up to sign is an isomorphism
τ : T̂ ′−̃→PicX ′ described on page 397 of [7]. We reproduce this description
here for the convenience of the reader. Let χ ∈ T̂ ′, and let φ(x) ∈ Snχ(g∗−1).
Let Zφ ⊂ T ′ be the closed T ′-invariant subset given by φ(x) = 0, and let
Cφ = X ′ ∩ f ′(Zφ). If φ(x) does not vanish identically on T ′, then Cφ is a
curve on X ′ whose class in PicX ′ equals τ(χ). Following a convention of
[7] we identify T̂ ′ with PicX ′ via the isomorphism −τ . Then by formula
(14) of [7] the intersection index (Cφ.−KX′), also called the degree of Cφ,
equals n. Moreover, by formula (15) of [7] we have

H0(X ′,O(Cφ)) = k[T ′]−χ = Snχ(g∗−1)/
(
I(T ′) ∩ Snχ(g∗−1)

)
. (4.1)

Here are some important examples of curves of low degree on X ′. If n = 1
and µ ∈ T̂ ′ is a weight of g−1, we denote by `µ the exceptional curve in
X ′ cut by the image of the hyperplane section given by xµ = 0. It is clear
that [`µ] = µ. We note that µ is a weight of g−1 if and only if χ0 − µ is a
weight of g−1. According to formula (12) of [7] the intersection index of `µ
and `ν can be written as

(`µ.`ν) = 1
2 − (µ, ν), (4.2)

where the last pairing is the standard bilinear form on Q(E7)⊗Q applied
to the restrictions of µ and ν to Ĥ ′ = P (E7).

For n = 2 we have S2(g−1) = V +
2 ⊕ V (−2α) = g′ ⊕ V (−2α) (cf. Lemma

1.1). If φ(x) ∈ S2
χ0

(g∗−1), then Cφ is an anti-canonical curve, i.e. [Cφ] = χ0 =
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−KX′ . Indeed, this is the only effective divisor class with self-intersection
2 which is orthogonal to Q(E7) ⊂ PicX ′.

Now let ξ ∈ T̂ ′ be a weight of g′, ξ 6= χ0. Then it can be checked using
(4.2) that ξ = µ+ν, where µ, ν ∈ T̂ ′ are weights of g−1 such that the inter-
section index (`µ.`ν) = 1. Thus for φ(x) ∈ S2

ξ (g∗−1) the curve Cφ is linearly
equivalent to `µ+`ν , where (`2

µ) = (`2
ν) = −1, (`µ.`ν) = 1, so that (C2

φ) = 0.
The Riemann–Roch theorem implies dim H0(X ′,O(Cφ)) = 2, hence Cφ be-
longs to a pencil of curves whose generic members are irreducible smooth
rational curves. They have degree 2 and so are called conics. Let Pξ ⊂ X ′

be the unique curve through M in this family. Since M does not lie on the
exceptional curves of X ′, the curve Pξ is a geometrically integral conic.

Let us denote by g×−1 the open subset of g−1 consisting of the points with
all weight coordinates non-zero. Similarly, X ′× denotes the complement to
the union of exceptional curves in X ′. Since X = BlM (X ′) is a del Pezzo
surface of degree 1, we have M ∈ X ′×. Then f ′−1(M) ⊂ g×−1, that is, the
coordinates of any point in the fibre above M are non-zero. Let x0 ∈ T ′ be
a k-point in the fibre over M . For y ∈ g×−1 we let y

x0
denote the element of

the diagonal torus of GL(g−1) that sends x0 to y.
Lemma 4.2. — There exists a non-empty open set Ω ⊂ (G′/P ′)a such

that for any y ∈ Ω(k), any root µ of g′, any weight ν of g−1 and any
quadratic polynomial s(x) of weight 0 with respect to H ′ neither of the
forms pµ(x), qν(x)− xνs(x) vanishes identically on y

x0
T ′.

Proof. — (cf. [7, Prop. 6.2], the first statement) For contradiction as-
sume that pµ(xy/x0) vanishes at every point (x, y) of T ′ × (G′/P ′)a. Up
to proportionality pµ(u) is a unique quadratic polynomial in I((G′/P ′)a)
of weight µ. So for any x ∈ T ′ we have

pµ
(
x

x0
u

)
= tpµ(u)

for some t ∈ k∗. Write

pµ(u) =
∑

µ1+µ2=µ
cµ1,µ2u

µ1uµ2 .

By symmetry cµ1,µ2 6= 0 whenever µ1 + µ2 = µ. We can choose a point
x ∈ T ′(k) such that f ′(x) belongs to exactly one exceptional curve of X ′.
If this curve corresponds to the weight µ1, then xµ1 = 0 and xν 6= 0 for
any ν 6= µ1. It follows that t = 0, a contradiction.

Now assume that for any x ∈ T ′ we have

qν
(
x

x0
u

)
− xν

xν0
uνs

(
x

x0
u

)
∈ I((G′/P ′)a).
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We choose a point x ∈ T ′(k) such that f ′(x) lies on the exceptional curve
corresponding to ν, but not on any other exceptional curve of X ′. Then
xν = 0 is the only vanishing coordinate of x. Since qν(x) is not divisible by
xν we obtain a contradiction with Lemma 3.4. �

Let us fix an open set Ω as in Lemma 4.2, and pick up a k-point y0 in
Ω×. Define

T̃ ′ = y0

x0
T ′, X̃ ′ = T̃ ′/T ′, p̃(x) = p

(
y0

x0
x

)
.

Let M̃ be the point f ′(y0) ∈ X̃ ′. An obvious isomorphism X ′−̃→X̃ ′ sends
M to M̃ , so that X is isomorphic to the blowing-up of M̃ in X̃ ′.

Lemma 4.3. — If ξ ∈ T̂ ′ is a weight of g′, ξ 6= χ0, then the closed subset
of T ′ given by p̃ξ(x) = 0 is f ′−1(Pξ).

Proof. — (cf. [7, Cor. 6.3]) Since y0 ∈ (G′/P ′)a we have p̃(x0) = 0. Now
use the fact that Pξ is only one curve on X ′ through M whose class in
PicX ′ is ξ. �

Corollary 4.4. — The orbit T ′y0 is the scheme-theoretic intersection
T̃ ′∩(G′/P ′)a. This implies the following relation among the tangent spaces
at y0:

Ty0,(G′/P ′)a
∩ Ty0,T̃ ′ = Ty0,T ′y0 . (4.3)

Proof. — (cf. [7, Cor. 6.4]) We can easily find two weights µ and ν such
that the intersection index of the conics Pµ and Pν is 1, that is, M is the
point of intersection of Pµ and Pν with multiplicity 1. Hence the orbit T ′y0
is the scheme-theoretic intersection of T̃ ′ and the subvariety of g−1 given
by pµ(x) = pν(x) = 0. This implies our statement. �

Proposition 4.5. — There exists a quadratic form s(x) ∈ S2
χ0

(g∗−1)
such that

s(y0) = 0, 〈y0, a〉+ 4s(y0, a) = 0 for any a ∈ Ty0,T̃ ′ . (4.4)

It is unique up to addition of a form from the ideal of T̃ ′.

Proof. — We write κ : X̃ ′ → P2
k = P

(
H0(X̃ ′,−KX̃′)∗

)
for the anti-

canonical double covering. By Lemma 4.1 the induced map κ∗ : T∗
κ(M̃),P2 →

T∗
M̃,X̃′ , is an isomorphism. Since f ′ : T̃ ′ → X̃ ′ is a torsor under T ′ we have

TM̃,X̃′ = Ty0,T̃ ′/Ty0,T ′y0 , so the induced map f ′∗ : T∗
M̃,X̃′ → T∗

y0,T̃ ′ is
identified with the canonical injection (Ty0,T̃ ′/Ty0,T ′y0)∗ → T∗

y0,T̃ ′ . The
morphisms f ′ and κ thus induce the following maps:

T∗
κ(M̃),P2−̃→T∗

M̃,X̃′−̃→(Ty0,T̃ ′/Ty0,T ′y0)∗ ↪→ T∗
y0,T̃ ′ .
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By (4.1) we have

H0(X̃ ′,−KX̃′) = S2
χ0

(g∗−1)/
(
I(T̃ ′) ∩ S2

χ0
(g∗−1)

)
.

There is a canonical isomorphism

T∗
κ(M̃),P2 = {s ∈ S2

χ0
(g∗−1)/

(
I(T̃ ′) ∩ S2

χ0
(g∗−1)

)
such that s(y0) = 0}.

Consider the linear form L ∈ T∗
y0,T̃ ′ defined by L(a) = 〈y0, a〉, where

a ∈ Ty0,T̃ ′ . For any y ∈ (G′/P ′)a and any a ∈ Ty,(G′/P ′)a
we have 〈y, a〉 =

0 by Lemma 3.1. In particular, Ty0,T ′y0 ⊂ Ker (L), hence L belongs to
the subspace (Ty0,T̃ ′/Ty0,T ′y0)∗. It is straightforward to check that the
map f ′∗κ∗ : T∗

κ(M̃),P2 → T∗
y0,T̃ ′ sends s to the linear form s(y0, a), where

a ∈ T∗
y0,T̃ ′ . Therefore, there exists a quadratic form s ∈ S2

χ0
(g∗−1) satisfying

(4.4). Its uniqueness modulo the ideal of T̃ ′ is clear. �

Let us now define

q̃(x) = q

(
y0

x0
x

)
− y0

x0
x s

(
y0

x0
x

)
.

Lemma 4.6. — If µ ∈ T̂ ′ is a weight of g−1, then the closed subset of T ′
given by q̃µ(x) = 0 is f ′−1(Qµ), where Qµ is the unique rational curve with
a double point at M and no other singularities, such that [Qµ] = χ0 + µ =
−KX′ + [`µ].

Proof. — (cf. [7, Prop. 6.2], the second statement) To check thatM ∈ Qµ
set x = x0. We have s(y0) = 0. Now y0 ∈ (G′/P ′)a implies p(y0) = 0 by
Lemma 1.2, and so qµ(y0) = 0.
Formula (3.3) and condition (4.4) show that the derivatives of q̃(x) vanish

on Ty0,T̃ ′ .
If Qµ is not geometrically integral, the condition (Qµ.−KX′) = 3 implies

that Qµ is either the union of three exceptional curves, or the union of an
exceptional curve and a conic. But M is singular on Qµ, so M must belong
to an exceptional curve, which is a contradiction. �

5. The main theorem

Recall from the introduction that T ⊂ GL(g) is the extension of the
maximal torus H ⊂ G by the centre of GL(g). The torus T is generated
by T ′ and the 1-dimensional torus D ⊂ GL(g), whose element t ∈ k∗ acts
on gn as multiplication by tn+1. We remind the reader that X = BlM (X ′)
is the del Pezzo surface of degree 1 obtained by blowing up the point M
on X ′. Under the canonical isomorphism X ′−̃→X̃ ′, the point M̃ in X̃ ′
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corresponds to M in X ′. By the main theorem of [7] we have a universal
torsor f ′ : T̃ ′ → X̃ ′, where T̃ ′ is a locally closed subset of g−1.

Let us apply Theorem 2.1 to Z = T̃ ′ and the map s : S2(g−1) → g−2
given by s(x)w, where s(x) is the quadratic form as in Proposition 4.5.
In this case Z0 = T ′y0 = f ′−1(M̃) is one T ′-orbit. Define T = Z. This
is a locally closed subset of (G/P )a ⊂ g. By Theorem 2.1 we obtain the
following commutative diagram

T //

$$III
III

III
II

BlT ′y0(T ′) //

��

X

σ

��
T ′

f ′
// X ′

where the horizontal arrows are torsors under tori, and the vertical arrows
are contractions with smooth centres. Since exp(x+s(x))v is T ′-equivariant,
the torus T ′ acts on T . The 1-dimensional torus D acts on T by construc-
tion, hence T acts on T . The fibres of f : T → X are orbits of T , hence T ,
as a composition of two torsors, is an X-torsor under T .
Let us recall that PicX with the integral bilinear form defined by the

intersection index is identified with the orthogonal direct sum of ZKX

and Q(E8) = P (E8), where (KX)2 = 1, and Q(E8) is equipped with the
standard invariant integral bilinear form multiplied by −1, see [5, Ch. 4].
If β ∈ Q(E8) is a root of g, we let `β be the exceptional curve on X whose
class is [`β ] = −KX + β. These gives all the 240 exceptional curves on X.
The intersection index (`β .`γ) = 1− (β, γ) for any roots β, γ ∈ E8.
Recall that ω ∈ E8 is the highest weight of g. By Theorem 2.1 (iii) the

hyperplane section yω = 0 of T is f−1(`ω), because `ω = σ−1(M) is the
exceptional divisor of σ : X → X ′. By construction, for any root β of g−1
the hyperplane section yβ = 0 of T is f−1(`β). The same is true if β is in
g′ or in g1, by Lemma 4.3 and Lemma 4.6, respectively.

Our next goal is to show that T ⊂ (G/P )sf
a , where the latter set consists

of stable points for the action of H (i.e. the points whose H-orbits in V

are closed and have finite stabilisers) with the additional condition that the
stabilisers in T are trivial, cf. [7, Def. 2.5]. By geometric invariant theory
there exists a quasi-projective variety Y and a map (G/P )sf

a → Y which is
a torsor under T .
If y ∈ g denote by wt(y) the set of roots α such that yα 6= 0 and by

wti(y) the set of roots α of the graded component gi such that yα 6= 0. By
the Hilbert–Mumford criterion y is stable if and only if 0 belongs to the
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interior of the convex hull of wt(y). The stabiliser of y in T is trivial if the
set α− β for all α, β ∈ wt(y) generates the root lattice of g.

Lemma 5.1. — If y ∈ (G/P )a satisfies conditions (i) and (ii) below,
then y ∈ (G/P )sf

a :
(i) if µ and ν are roots of g′ and (µ, ν) = 1, then µ ∈ wt(y) or ν ∈ wt(y);
(ii) wt1(y) and wt−1(y) are not empty.

Proof. — First, let us prove that y is stable. We can apply Prop. 2.4
from [7] to the adjoint representation of g′, since in the case E7 it is a
fundamental representation. By (i) wt0(y) satisfies the condition of this
proposition, and hence 0 is an interior point of the convex hull of wt0(y).
By (ii) the convex hull of wt0(y) is not a face of the convex hull of wt(y),
hence 0 is in the interior of the convex hull of wt(y).
Now let us prove that the stabiliser of y in T is trivial. By the previous

result this stabiliser is finite. By Proposition 2.2 of [7] the differences α −
β for all α, β ∈ wt(y) generate the root lattice of some semisimple Lie
subalgebra of g of rank 8. By (i) this subalgebra contains g′ and (ii) ensures
that it coincides with g. �

Lemma 5.2. — The torsor T is a Zariski closed subset of (G/P )sf
a .

Proof. — First, let us prove that T ⊂ (G/P )sf
a . We use Lemma 5.1 and

prove that any y ∈ T satisfies the conditions (i) and (ii). Let µ and ν be
roots of g0 such that (µ, ν) = 1. Then the corresponding exceptional curves
`µ and `ν are disjoint since (`µ.`ν) = 1− (µ, ν) = 0. Thus either µ ∈ wt(y)
or ν ∈ wt(y), which proves (i).
Assume now that wt1(y) = ∅. Take any two roots µ and ν of g1 such that

(µ, ν) = 1. Then as above we have `µ ∩ `ν = ∅, hence either µ ∈ wt1(y) or
ν ∈ wt1(y), so that wt1(y) cannot be empty. The set wt−1(y) is non-empty
since for any point of X ′ there exists a exceptional curve on X ′ that does
not contain it. This proves that T ⊂ (G/P )sf

a .
We see that X is a subset of Y . Since X is proper, T = f−1(X) is closed

in (G/P )sf
a = f−1(Y ). �

Theorem 5.3. — For the closed embedding X ↪→ Y constructed above,
T = f−1(X) is a universal X-torsor. Moreover, the T -invariant hyperplane
sections of T defined by the roots of g are the inverse images of the excep-
tional curves on X.

Proof. — We know that T → X is a torsor under T , and we also know
that (G/P )sf

a → Y is a universal torsor, that is, its type T̂ → PicY is
an isomorphism. We pointed out above that if β is a root of g−2 ⊕ g−1,
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then yβ = 0 is f−1(`β). Since [`ω] and [`β ] for all roots β of g−1 generate
the abelian group PicX, the restriction map PicY → PicX is surjective.
Since the ranks of PicY and PicX are the same, the restriction map is an
isomorphism. Hence the type T̂ → PicX is an isomorphism. Moreover, it
is easy to see that this isomorphism sends each root β of g to the class of
the corresponding exceptional curve `β . The last claim of the theorem is
already proved for all the roots of g except the one that spans g2. For that
root the claim is proved in Lemma 5.4 below. �

Lemma 5.4. — Let T ⊂ (G/P )sf
a be a T -equivariantly embedded uni-

versal X-torsor whose type T̂ −̃→PicX sends each root β of g to the class
of the corresponding exceptional curve `β ⊂ X. If β is a root of g, then the
hyperplane section yβ = 0 of T is f−1(`β).

Proof. — Let R be the k-algebra of regular functions on (G/P )a. In the
proof of Thm. 2.7 of [7] we showed that the codimension of the complement
to (G/P )sf

a in (G/P )a is at most 2. Hence R is also the algebra of regular
functions on (G/P )sf

a . Let k[T ] be the algebra of regular functions on T .
The closed embedding T ⊂ (G/P )sf

a gives rise to a natural surjective ho-
momorphism of k-algebras Φ : R → k[T ]. The action of T on R and k[T ]
equips these algebras with compatible T̂ -gradings:

R =
⊕
χ∈T̂

Rχ, k[T ] =
⊕
χ∈T̂

k[T ]χ,

where Rχ (respectively, k[T ]χ) denotes the T -eigenspace of weight χ. Since
Φ is T -equivariant and surjective we must have Φ(Rχ) = k[T ]χ for ev-
ery χ ∈ T̂ . If χ = −β, where β is a root of g, then R−β is spanned
by the weight coordinate yβ . Since T is a universal X-torsor, we have
k[T ]−β = H0(X,O(`β)) ∼= k, see the first equality of (4.1). Thus Φ defines
an isomorphism of 1-dimensional vector spaces R−β−̃→k[T ]−β , in partic-
ular, Φ(yβ) 6= 0, so that the hyperplane section of T given by yβ = 0 is
the inverse image of a curve C ⊂ X. By assumption, in PicX we have
[C] = [`β ], hence C = `β , because `β is the only effective divisor in its
class. �
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