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GLOBAL EXISTENCE FOR COUPLED
KLEIN-GORDON EQUATIONS WITH DIFFERENT

SPEEDS

by Pierre GERMAIN (*)

Abstract. — Consider, in dimension 3, a system of coupled Klein-Gordon
equations with different speeds, and an arbitrary quadratic nonlinearity. We show,
for data which are small, smooth, and localized, that a global solution exists, and
that it scatters. The proof relies on the space-time resonance approach; it turns out
that the resonant structure of this equation has features which were not studied
before, but which are generic in some sense.
Résumé. — Soit, en dimension 3, un système d’équations de Klein-Gordon dont

les vitesses sont différentes, avec des termes non-linéaires quadratiques. On montre,
pour des données suffisamment petites, regulières et localisées, qu’une solution
globale existe et qu’elle disperse. La preuve repose sur la méthode des résonances
en espace-temps. La structure des résonances du système se trouve être d’un type
qui n’avait pas été étudié jusqu’ici, mais qui est générique dans un certain sens.

1. Introduction

1.1. Presentation of the problem

The aim of this paper is to prove global existence and scattering for the
system of Klein-Gordon equations

(1.1)


�u1 + u1 = Q1(u1, uc)
�cuc + uc = Qc(u1, uc)
(u1, ∂tu

1)(t = 0) = (u1
0, u

1
1)

(uc, ∂tuc)(t = 0) = (uc0, uc1)

Keywords: Klein-Gordon, global existence, resonances.
Math. classification: 35L70, 47H60.
(*) The author is grateful to Nader Masmoudi for suggesting this question to him and for
early discussions; and to the anonymous referee for his many suggestions which greatly
improved this article.



2464 Pierre GERMAIN

where u1, uc, are real functions of (t, x) ∈ R× R3, we denoted

�
def= ∂2

t −∆ and �c
def= ∂2

t − c2∆,

and we make the assumption that Q1 and Qc vanish quadratically

Q1(u, v), Qc(u, v) = O(|u|2 + |v|2).

The data u1
0, u

1
1, u

c
0, u

c
1 will be chosen small, smooth and localized in space.

This equation models the nonlinear interaction of two types of Klein-
Gordon waves, one propagating fast, the other slowly. If c is very large with
respect to 1, it is for instance a toy model for the Euler-Maxwell equation
describing plasmas; in that case, the fast waves would be electromagnetic,
and the slow waves accoustic(1) .
Another source of interest of this equation is mathematical: the space-

time resonant structure of (1.1) has features which have not been studied
yet, and which are representative of a large class of equations: this is de-
tailed in Section 2.3.

1.2. Known results on global solutions of semilinear wave
and Klein-Gordon equations

We shall quickly review some results on global solutions of wave and
Klein-Gordon equations. We shall focus on the equation set in R3+1,
and on quadratic nonlinearities Q = Q(u, ∂u).

1.2.1. Scalar Klein-Gordon equation

It is important to notice first that in dimension 3 and for the Klein-
Gordon equation, 2 is the Strauss exponent. This means that a quadratic
nonlinearity (as opposed to any larger power |u|2+ε) is barely too weak
for dispersive and Strichartz estimates alone to give global existence and
scattering. In other words, resonances need to be taken into account.
Global existence in the case of small and localized data for �u + u =

Q(u, ∂u) was proved independently by Shatah [17] (by the normal form
method) and by Klainerman [15] (by the vector fields method).

(1)To be slightly more precise, the linearization of the Euler-Maxwell equation around
an equilibrium state of constant density, zero velocity, and zero electromagnetic fields is
essentially given by a system of Klein-Gordon equations with very different velocities;
as for the nonlinearity, it is quadratic and higher order, but not semilinear as in the
present paper.
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COUPLED KLEIN-GORDON EQUATIONS WITH DIFFERENT SPEEDS 2465

Another line of research is the study of weakly decaying data, which
somehow corresponds to ignoring space resonances (see Section 1.3); we
mention in particular Delort and Fang [3], where Xs,b methods are em-
ployed.

1.2.2. Scalar wave equation

Still in dimension 3, this problem is much more delicate than Klein-
Gordon: indeed, the decay given by the linear wave equation is 1

t , which
makes a quadratic nonlinearity short-range.
It has been observed that the properties of the equation �u = Q(u, ∂u)

depend crucially on the structure of Q. If Q(u, ∂u) = (∂tu)2 or u∂tu,
John [12] was able to prove finite time blow up; but forQ being the null form
(∂tu)2− (∇u)2, Klainerman [14] and Christodoulou [1] obtained global so-
lutions for small and localized data. Klainerman relied on the vector fields
method, whereas Christodoulou used a change of independent variables
(conformal mapping).

1.2.3. Systems of wave equations

Consider the system �ciui = Qi(∂u), where u = (ui) is a vector, we
assume the velocities to be different, ci 6= cj if i 6= j, and Qi is a quadratic
polynomial, Qi =

∑
αβjk a

αβjk
i ∂αui∂βuj .

Yokoyama [20] (and Sideris and Tu in the quasilinear case [18]) proved
that small and localized data yield a global solution if the interaction of
a wave with itself has a null form structure; or more precisely if for each
i the quadratic form

∑
αβ a

αβii
i ∂α · ∂β · is the null form of Christodoulou

and Klainerman. His proof relies on the vector fields method. Notice that,
in particular, the interaction between waves ui, uj , with different speeds
might be any polynomial depending only on ∂u.
An example of Ohta [16] shows that, if Q is allowed to depend on u

(and not only its derivatives), then interactions between different waves
might produce blow up in finite time. For more recent developments, see
Katayama and Yokoyama [13].

1.2.4. Systems of Klein-Gordon equations

Different masses. Systems of Klein-Gordon equations which have been
considered have the form �ui + m2

iui = Qi(u, ∂u), where u = (ui) is a
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2466 Pierre GERMAIN

vector, the masses mi are assumed to be different, and Qi are quadratic
polynomials.
In space dimension 3, Tsutsumi [19] studied a slightly different system,

by considering the Maxwell Higgs equation in a neighbourhood of an equi-
librium. He proved global existence for small and localized data; see also
Hayashi, Naumkin and Wibowo [9].

We also mention the case of dimension 2, since the resonance condition
appears more clearly. Tsutsumi proved that, if for any i, j, mi 6= 2mj ,
then a global solution exists for small and localized data. Finally, Delort,
Fang, and Xue [4] were able to show that if for some i, j, mi = 2mj , then
the global existence result still holds if the nonlinearity has a null form
structure.

Different velocities. The equation (1.1), which is the subject of the
present article, is a system of Klein-Gordon equations with different veloc-
ities. It might be surprising that this case has remained unsolved, whereas,
for instance, systems of wave equations (whose decay is much lower than
for Klein-Gordon) with different velocities could be treated.
From the point of view of the vector fields method, the reason is the

following: consider the algebra of vector fields which commute with two
Klein-Gordon equations with different velocities. It turns out to be too
small to obtain enough time decay to close the estimates. Another point
of view is provided by the space-time resonances approach, which will be
presented in the next subsection; from this point of view, we will see that
the equation (1.1) has new features.

1.3. Space-time resonances

We first discuss briefly the concept of space-time resonance, introduced
in Germain, Masmoudi and Shatah [7] [6] [5]; we later explain how it sheds
light on the already mentioned results.

1.3.1. General presentation

Transformation of the equation In order to present the idea of space-time
resonance, consider a fairly general scalar quadratic nonlinear dispersive
equation {

i∂tu+ P (D)u = Q(u, ū)
u(t = 0) = u0,

ANNALES DE L’INSTITUT FOURIER
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where P (D) is a real Fourier multiplier, and Q(u, ū) is either u2, or ū2 or
uū. Switching to the unknown function f = e−itP (D)u (the “profile”), and
to the Fourier side, Duhamel’s formula can be written

(1.2) f̂(t, ξ) = û0(ξ) + 1
(2π)d/2

∫ t

0

∫
eisφ(ξ,η)f̂(s, η)f̂(s, ξ − η) dη ds,

(where we denoted for simplicity indifferently f̂ for f̂ or ̂̄f) with
φ(ξ, η) = P (ξ)± P (η)± P (ξ − η),

where the signs ++, −− and −+ correspond respectively to Q being u2,
ū2, and uū.

The resonant sets Viewing the integral in (1.2) from the point of view
of the stationary phase lemma, the critical sets are those where sφ is not
oscillating in s, η, or even worse, both:

T def= {(ξ, η) such that φ(ξ, η) = 0} (“time resonances”)

S def= {(ξ, η) such that ∂ηφ(ξ, η) = 0} (“space resonances”)

R def= S ∩ T (“space-time resonances”).

The central idea is that the sets T , S, and to a greater extent R, are the
obstructions to a linear behaviour of u, for large time, and small data.

Of course, similar manipulations can be performed for any nonlinear
dispersive equation (see below for an example); this leads to a formula
similar to (1.2), and once φ is known, the sets T , S and R can be defined
as above.
Finally, the space and time resonant sets have a physical interpretation:

T corresponds to bilinear interactions of plane waves which are resonant in
the classical sense; S corresponds to bilinear interactions of wave packets
whose group velocities are equal.

The method The method which we apply is straightforward: perform a
(time-dependent) cut-off in the (ξ, η) space in order to distinguish three
regions. Away from T , integrate by parts in s (which amounts to a normal
form transform). Away from S, integrate by parts in η (this is similar to
the vector fields method). There remains a neighbourhood of R; it should
shrink with t, and one has to take advantage of the smallness of this set.

TOME 61 (2011), FASCICULE 6



2468 Pierre GERMAIN

1.3.2. An interpretation of the already mentioned results

The wave as well as the Klein-Gordon equation can be described as a
sum of a + and a − wave; the dispersion relations are
P (ξ) = ±c|ξ| (linear wave equation with velocity c)

P (ξ) = ±
√
m2 + c2|ξ|2 (linear Klein-Gordon equation with mass m

and velocity c)
Then one can define φ as above for each of the possible bilinear interactions.
For instance, in the case of the system �ciui = Qi(∂u), one must consider
interactions between + or − linear waves travelling at different velocities.
It leads to

φ±,±,±ijk = ±ci|ξ| ± cj |η| ± ck|ξ − η|;
resonant sets are then defined in an obvious way.
The space-time resonances approach that was just sketched gives a pos-

sible interpretation of the results mentioned above.
• In the case of the scalar Klein-Gordon equation (Subsection 1.2.1),
R = ∅; that is why the normal form method can be applied globally.

• For the scalar wave equation (Subsection 1.2.2), R is very large,
which is an obstruction to global existence and scattering. This
explains the role of the null form structures: it is precisely for these
nonlinearities that the interaction term vanishes on R.

• Systems of wave equation with different speeds (Subsection 1.2.3)
only have space-time resonances in the following configuration: two
linear waves corresponding to a given velocity ci interact to give a
third linear wave also at velocity ci. Thus a null form is only needed
for this kind of interactions.

• Finally, for Klein-Gordon equations with different masses (Subsec-
tion 1.2.4), space-time resonances may occur only in casemi = 2mj .
For any of these resonant interactions, one observes that ∂ξφ van-
ishes onR, which helps in controlling the nonlinearity: see [6] and [5]
for instances of this phenomenon. It might explain why global exis-
tence can be obtained in dimension 3 even in the presence of these
resonances.

1.3.3. Application to our problem

For the problem which is the subject of this article (equation (1.1)), one
needs to define several phase functions corresponding to all the possible

ANNALES DE L’INSTITUT FOURIER



COUPLED KLEIN-GORDON EQUATIONS WITH DIFFERENT SPEEDS 2469

interactions. They read

φk,`,mε0,ε1,ε2
(ξ, η) def= ε0〈ξ〉k − ε1〈η〉` − ε2〈ξ − η〉m,

where k, l,m equal 1 or c and ε0, ε1, ε2 equal + or − (see Subsection 1.4
for the definition of 〈·〉k, and Subsection 3.1 for the full derivation of this
formula). The associated time, space, and space-time resonant sets are

T k,`,mε0,ε1,ε2

def= {(ξ, η) such that φk,`,mε0,ε1,ε2
= 0}

Sk,`,mε0,ε1,ε2

def= {(ξ, η) such that ∂ηφk,`,mε0,ε1,ε2
= 0}

Rk,`,mε0,ε1,ε2

def= T k,`,mε0,ε1,ε2
∩ Sk,`,mε0,ε1,ε2

.

(1.3)

We will see in Section 3.2 that space time resonances occur for some
interactions. Then Rk,`,mε0,ε1,ε2

has dimension 2 and is of the form {|η| =
R , ξ = λη} for real numbers R and λ. Furthermore (in general), ∂ξφ does
not vanish on R.
Thus, known methods of proof do not seem to apply here; a new approach

is needed, which will be explained in the next section.

1.4. Notations

We use the following notations:

• Japanese brackets: 〈x〉 def=
√

1 + x2 and 〈x〉c
def=
√

1 + c2x2.
• Fourier transform: [Ff ](ξ) = f̂(ξ) def= 1

(2π)d/2

∫
e−ixξf(x) dx.

• Fourier multiplier: F(m(D)f)(ξ) def= m(ξ)f̂(ξ).
Furthermore, we often write f

m(D) instead of
[ 1
m

]
(D)f .

• Pseudo-product operator with symbol m:

Tm(f, g) def= F−1
∫
m(ξ, η)f̂(η)ĝ(ξ − η) dη.

• Inhomogeneous Sobolev spaces:

‖u‖Hs
def= ‖〈D〉su‖2 and ‖u‖W s,p

def= ‖〈D〉su‖p.

• Space time norms: for instance LpW s,q stands for Lpt ([0,∞),W s,q
x ).

• δ-neighbourhood of E: Bδ(E) def= {x such that dist(x,E) 6 δ}.
• Inequalities with implicit constants: A . B (respectively A & B)

indicates that, for a constant C (depending on the context), A 6
CB (respectively A > CB). Finally A ∼ B if A . B and B . A.

TOME 61 (2011), FASCICULE 6
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2. Main result and ideas of the proof

2.1. Outcome, source, and separation of resonances

We introduce new concepts which will be crucial when dealing with the
system (1.1).

Definition 2.1. — A frequency X is called the outcome of a space-time
resonance if for some η, (X, η) belongs to ∪k,`,m,ε0,ε1,ε2Rk,`,mε0,ε1,ε2

. Loosely
speaking, such a frequency might be created by a space-time resonant in-
teraction.
A frequency X is called the source of a space-time resonance if either

(ξ,X) for some ξ, or (X + η, η) for some η, belongs to ∪k,`,m,ε0,ε1Rk,`,mε0,ε1,ε2
.

Loosely speaking, such a frequency might have a space-time resonant in-
teraction with another one.

Intuitively, space-time resonances can feed themselves if some sources of
space-time resonances are also outcome of space-time resonances. If this
does not happen, we say that the resonances are separated.

Definition 2.2. — The resonances separation condition holds if no out-
come frequency of a space-time resonance is also a source frequency of a
space-time resonance.

2.2. The main theorem

Theorem 2.3. — Assume that the resonances separation condition is
satisfied for (1.1). Then there exists an integer N , and a constant ε > 0
such that if∥∥(u1

0, u
c
0)
∥∥
HN+1 +

∥∥(u1
1, u

c
1)
∥∥
HN

+ ‖x(u1
0, u

c
0)‖H3 +

∥∥x(u1
1, u

c
1)
∥∥
H2 < ε,

then there exists a global solution to (1.1) such that

for any t,
∥∥(u1, uc)

∥∥
HN+1 . ε and

∥∥(u1, uc)
∥∥

3 .
ε√
t
,

and furthermore u scatters in HN+1: for k = 1, c, there exist solutions Uk
of �kUk + Uk = 0 with data in HN+1 ×HN such that∥∥u1 − U1∥∥

HN+1 + ‖uc − U c‖HN+1 −→ 0 as t→∞.
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When are resonances of (1.1) separated? We believe that it is always
the case, except maybe for exceptional values of c, but this is not so easy
to prove in general: one has to compare solutions of rather complicated
algebraic equations. However, the resonances separation condition can be
very easily checked numerically for given values of c. In the Appendix, we
present elementary computations which show that resonances are separated
for c = 5.

2.3. Genericity of the problem

First notice that a modification of the proof of Theorem 2.3 would give
global solutions and scattering for nonlinear dispersive equations such that
some general assumptions are satisfied and furthermore: the decay of the
linear part is the same as for Klein-Gordon; the nonlinearity is quadratic;
and resonances are separated.

From the point of view of space-time resonances, the problem under
study has features which seem generic, and which had not been examined
before:

• The dimension of the space-time resonant set R is 2 in the 6-
dimensional frequency space (ξ, η). This is natural, under nondegen-
eracy assumptions, since T has dimension 5, and S has dimension
3.

• The space-time resonant set R is not simply a linear subspace, as
in the previous works [7] [6] [5].

• The particular form of the space time resonant sets ({|ξ| = R , η =
λξ} for real numbers R, λ) is to be expected (in general) if the
dispersion relations P (ξ) only depend on |ξ|.

• The ξ derivative ∂ξφ does not (generically in c) vanish on R: this
of course should be expected in general.

2.4. Ideas of the proof

Local existence is standard; thus the proof will consist in proving global
a priori estimates, which will be stated in Section 4.1. They will be derived
by splitting the (ξ, η) space.

TOME 61 (2011), FASCICULE 6
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2.4.1. Splitting the (ξ, η) space.

Let us first write Duhamel’s formula for one of the possible quadratic
interactions occuring in (1.1) (we drop all indices and inessential constants,
see Section 3.1 for the exact expression)

f̂(t, ξ) = f̂0(ξ) +
∫ t

0

∫
e−isφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds.

We split the above as follows

f̂(t, ξ) = f̂0(ξ)−
∫ t

0

∫
e−isφ [χsT + χsS + χsR] f̂(s, η)

〈η〉
f̂(s, ξ − η)
〈ξ − η〉

dη ds

where χtT , χtS , and χtR are time-dependent cut-off functions localizing re-
spectively away from S, away from T , and in a neighbourhood of R which
shrinks as t→∞. As already explained, the idea in order to obtain the de-
sired estimates is to integrate by parts in η the term containing χtT ; in s the
term containing χS ; and to use the (increasing) smallness of the support
of χtR in order to estimate the last term.

We describe next a few difficulties which one must face when applying
this plan; and how they are overcome.

2.4.2. Singularities of the cut-off functions, and the associated
pseudo-product operators.

As t converges to infinity, the cut-off functions become singular along
the set R, which is a surface with a non-zero curvature. One is thus led to
estimating pseudo-product operators with singularities along surfaces with
non-trivial geometry. Achieving a deep understanding of these operators
seems quite difficult, but rough bounds can be obtained easily. Why is that
enough? The idea is that the nonlinearity is exactly at the Strauss exponent,
which means that only a very small gain (in time decay) is needed in order
to close the estimates. Actually, even our very crude bounds suffice to give
this gain.

2.4.3. The high frequencies.

When performing the manipulations explained in Section 2.4.1, pseudo-
products appear which are singular not only close to R, but also at infinity,
in the sense that they are not asymptotically homogeneous of degree 0
there. The idea is to treat the high frequencies by an argument independent

ANNALES DE L’INSTITUT FOURIER
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of resonances (essentially, Strichartz estimates), which gives that u can
be controlled in HN for N very large. We now split the quadratic term
into frequencies less, or more, than tδ, where δ is very small. The piece
containing frequencies less than tδ can be controlled, for the singularity at
∞ of the pseudo-products is barely felt; and the piece containing frequencies
more than tδ can be estimated directly, if Nδ is big enough.

2.4.4. The separation of resonances condition.

It is used in the following way: let χO localize smoothly to a (very small)
neighbourhood of the frequencies which are the outcome of a space-time
resonance, and let χ̃O satisfy χO + χ̃O = 1. Then χ̃O(D)u will satisfy
stronger estimates than χO(D)u.
In order to prove the estimates on χ̃O(D)u, we use the fact χ̃O(D)u

does not see space-time resonances; or in other words χ̃O(ξ)χtR(ξ, η) = 0,
as follows immediately from the definitions.
In order to prove the estimates on χO(D)u, we use the separation of

resonances condition. It implies that, as far as nearly space-time resonant
frequencies are concerned, χO(D)u can be written as a quadratic expression
in χ̃O(D)u. This is helpful since the estimates on χ̃O(D)u are stronger.

3. Examination of the resonances

3.1. Duhamel’s formula in Fourier space

It will first of all be convenient to assume that Q1 and Qc are quadratic
polynomials; treating terms of order three and higher is very easy, so we
can forget about them. Thus in the following

Q1(u1, uc) = α(u1)2+β(uc)2+γu1uc Qc(u1, uc) = δ(u1)2+ε(uc)2+ζu1uc.

for some real constants α, β, γ, δ, ε, ζ. Next we diagonalize the linear part
of the equation by adopting the new unknown functions

uk±
def= ∂tu

k ± i〈D〉kuk for k = 1 or c

which are associated to the profiles

fk±
def= e∓it〈D〉ku±

and the initial data

uk±,0 = fk±,0
def= uk1 ± i〈D〉kuk0 .

TOME 61 (2011), FASCICULE 6
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Writing Duhamel’s formula for u gives for k = 1, c and ε0 = ±,

(3.1) ukε0
(t) = eiε0t〈D〉ukε0,0

+
∑

ε1,ε2=±

∑
`,m=1,c

ak,`,mε0,ε1,ε2

∫ t

0

∫
eiε0(t−s)〈D〉u

`
ε1

(s)
〈D〉`

umε2
(s)

〈D〉m
ds

where the ak,`,mε0,ε1,ε2
are real coefficients (which can be expressed in terms of

α, β, γ, δ, ε, ζ). Equivalently, the equations for the profiles in Fourier space
are

f̂kε0
(t, ξ) = f̂kε0,0(ξ)

+
∑

ε1,ε2=±

∑
`,m=1,c

ak,`,mε0,ε1,ε2

(2π)d/2

∫ t

0

∫
e−isφ

k,`,m
ε0,ε1,ε2

f̂ `ε1
(s, η)
〈η〉`

f̂mε2
(s, ξ − η)
〈ξ − η〉m

dη ds

where the phases are given by

φk,`,mε0,ε1,ε2
(ξ, η) def= ε0〈ξ〉k − ε1〈η〉` − ε2〈ξ − η〉m.

3.2. Quadratic resonances

Following the space-time resonance method explained in the introduc-
tion, we need to compute the sets

T k,`,mε0,ε1,ε2

def= {φk,`,mε0,ε1,ε2
= 0} (time resonances)

Sk,`,mε0,ε1,ε2

def= {∂ηφk,`,mε0,ε1,ε2
= 0} (space resonances)

(3.2)

and their intersection

Rk,`,mε0,ε1,ε2

def= T k,`,mε0,ε1,ε2
∩ Sk,`,mε0,ε1,ε2

(space-time resonances).

The analysis of these sets requires some computations, which we delegate
to the Appendix. We will only use the results given below, lemmas 3.1
and 3.2.

Lemma 3.1. — (i) The space time resonant sets are either empty, or of
the form

Rk,`,mε0,ε1,ε2
= ∪J

k,`,m
ε0,ε1,ε2
j=1 {|η| = Rk,`,mε0,ε1,ε2,j

, ξ = λk,`,mε0,ε1,ε2,j
η} ,

where Jk,`,mε0,ε1,ε2
is an integer, and Rk,`,mε0,ε1,ε2,j

and λk,`,mε0,ε1,ε2,j
are real numbers.
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(ii) The intersection of Sk,`,mε0,ε1,ε2
and T k,`,mε0,ε1,ε2

is of finite order. This means
that there exists an integer n such that (dropping indices for clarity)

as ε→ 0, dist([∂Bε(R)] ∩ S , [∂Bε(R)] ∩ T ) & εn.

Thus space-time resonances are separated if, for any set of indices,

λk,`,mε0,ε1,ε2,j
Rk,`,mε0,ε1,ε2,j

6= Rk
′,`′,m′

ε′0,ε
′
1,ε
′
2,j
′

and ∣∣∣λk,`,mε0,ε1,ε2,j
− 1
∣∣∣Rk,`,mε0,ε1,ε2,j

6= λk
′,`′,m′

ε′0,ε
′
1,ε
′
2,j
′R

k′,`′,m′

ε′0,ε
′
1,ε
′
2,j
′ .

3.3. The cut-off functions

3.3.1. Definition of θ

First pick M such that all the space time resonant sets are contained in
the ball of radius M/2: ∪Rk,`,mε0,ε1,ε2,j

⊂ B(0,M/2).
It will be necessary in the proof to distinguish between high and low

frequencies. To this end, we introduce the cut off function θ(ξ, η), which is
such that

(3.3) θ ∈ C∞0 , θ = 1 on B(0,M) and θ = 0 on B(0,M + 1)c.

3.3.2. Definition of χO, χ̃O

Define the union of all frequencies which are the outcome of a space-time
resonance

O def= ∪ε0,ε1,ε2,k,`,m,j

{
ξ such that there exists η with (ξ, η) ∈ Rk,`,m,jε0,ε1,ε2

}
.

Since space-time resonances are separated, it is possible to find δ0 such
that no frequency in B10δ0(O) (a 10δ0-neighbourhood of O) is a source of
a space-time resonance. Define χO a smooth cut-off function such that

χO = 1 on Bδ0/2(O)
χO = 0 outside of Bδ0(O)

and then let χ̃O satisfy
χO + χ̃O = 1.
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3.3.3. Definition of χρR, χ
ρ
S and χρT

We are now about to intoduce a partition of unity given by χρR, χ
ρ
S and

χρT . The following lemma, which will be proved in the Appendix, describes
its properties precisely.
Before stating it, let us explain informally the characteristics of this

partition of unity. First, χρR localizes to a distance ρ of R. Both χρS and
χρT vanish within a distance ρ of R; furthermore, χρS (respectively χρT )
localizes away from T (respectively away from S). In order to get bounds
for the corresponding pseudo-product operators, it is important to estimate
precisely how the smoothness of these cut-off functions degrades as ρ→ 0.
It is clear that it depends on the degree of tangency of S and T at their
intersection; roughly speaking, the finite order intersection property enables
us to get a polynomial bound: α derivatives of our cut-off functions can be
bounded by ρ−n|α|, for some integer n. Finally, due to the integration by
parts which we want to perform, we will actually need to estimate functions
of the type χρS

φ and χρT ∂ηφ

|∂ηφ|2 .

Lemma 3.2. — For each set of indices ε0, ε1, ε2, k, `,m, j, it is possible
to find cut-off functions

χρ
T k,`,m
ε0,ε1,ε2,j

(ξ, η) , χρ
Sk,`,m
ε0,ε1,ε2,j

(ξ, η) , χρ
Rk,`,m
ε0,ε1,ε2,j

(ξ, η).

such that (in the following, we drop the indices ε0, ε1, ε2, k, `,m, j for sim-
plicity)

• χρR, χ
ρ
S and χρT are smooth.

• Their sum equals one: χρT + χρS + χρR = 1.
• Outside of B2δ0(R), χρS and χρT are independent of ρ.
• The cut-off function χρR has the following form:

χρR =
∑
j

χ

(
|η| −Rj

ρ

)
χ

(
ξ − λjη

ρ

)
,

where χ is a smooth, compactly supported function.
• The derivatives of χ

ρ
S
φ and χρT ∂ηφ

|∂ηφ|2 satisfy if |(ξ, η)| 6M :

(3.4) If |α| 6 20,
∣∣∣∣∂αξ,η χρSφ

∣∣∣∣ , ∣∣∣∣∂αξ,η χρT ∂ηφ|∂ηφ|2

∣∣∣∣ . 1
[ρ+ dist ((ξ, η),R)]n

for an integer n.
• And for |(ξ, η)| >M ,

(3.5) If |α| 6 20,
∣∣∣∣∂αξ,η χρSφ

∣∣∣∣ , ∣∣∣∣∂αξ,η χρT ∂ηφ|∂ηφ|2

∣∣∣∣ . |ξ, η|n
for an integer n.
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3.4. Bounds on the associated pseudo-product operators

The following proposition examines the boundedness properties, between
Lebesgue, or weighted Lebesgue spaces, of pseudo-product operators with
symbols of the type χρR,

χρS
φ , or χρT ∂ηφ

|∂ηφ|2 ; these operators will result naturally
from the integration by parts which we will perform.

Proposition 3.3. — (i) If p, q and r satisfy 1
r = 1

p + 1
q , then uniformly

in ρ ∥∥∥Tχ( ξ−ληρ )(f, g)
∥∥∥
r
. ‖f‖p‖g‖q.

(recall that χ was defined in the statement of Lemma 3.2).

(ii) If 0 6 s < 3
2 , ∥∥∥∥χ( |D| −Rρ

)
f

∥∥∥∥
2
. ρs/3‖|x|sf‖2.

(iii) There exists a constant A such that if

m(ξ, η) = θ(ξ, η)χ
ρ
S
φ
Z(ξ, η) or θ(ξ, η)χ

ρ
T ∂ηφ

|∂ηφ|2
Z(ξ, η),

with Z smooth, then

‖Tm(f, g)‖r .
1
ρA
‖f‖p‖g‖q if 1

p + 1
q = 1

r .

(iv) There exists a constant, which we also denote A, such that if T > 1
and

m(ξ, η) =
[
θ

(
(ξ, η)
T

)
− θ(ξ, η)

]
χρT or

[
θ

(
(ξ, η)
T

)
− θ(ξ, η)

]
χρS ,

then

‖Tm(f, g)‖r . T
A‖f‖p‖g‖q if 1

p + 1
q = 1

r .
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(v) There exists a constant, which we still denote A, such that if T > 1
and

m(ξ, η) = χ̃O(ξ)χS(ξ, η)θ
(

(ξ, η)
T

)
1
φ

or χ̃O(ξ)χT (ξ, η)θ
(

(ξ, η)
T

)
∂ηφ

|∂ηφ|2

or χ̃O(ξ)
〈η〉〈ξ − η〉

θ

(
(ξ, η)
T

)
then, for 0 6 s 6 1 and 1

p + 1
q = 1

r ,

‖|x|sTm(f, g)‖r . T
A‖〈x〉sf‖p‖g‖q

and
‖|x|sTm(f, g)‖r . T

A‖f‖p‖〈x〉sg‖q.

Proof. — (i) follows from Proposition 6.4; (iii) and (iv) from Lemma 3.2
and Corollary 6.3 (notice that ρ does not appear in the estimate in (iv)
for the following reason: χρT (ξ, η) and χρS(ξ, η) depends on ρ only for (ξ, η)
close to R, but multiplying by

[
θ
(

(ξ,η)
T

)
− θ(ξ, η)

]
cuts off this region). (v)

results from the interpolation between the cases s = 0 and s = 1, which
are simple. Finally, (ii) is a particular case of the general inequality

‖m(D)f‖2 . ‖m‖3/s ‖|x|sf‖2 ,

which is a consequence of the Plancherel and Sobolev embedding theorems:

‖m(D)f‖2 =
∥∥∥m(ξ)f̂(ξ)

∥∥∥
2
6 ‖m‖3/s ‖f̂‖( 1

2−
s
3 )−1

. ‖m‖3/s ‖|D|
sf̂‖2 = ‖m‖3/s ‖|x|

sf‖2 .

�

4. Proof of the main theorem

4.1. The a priori estimate

The proof of the theorem will essentially consist in the following global a
priori estimate (δ1 and N are constants whose precise values will be fixed
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in the following):∥∥uk±∥∥HN . 1 (regularity in L2)(4.1a) ∥∥uk±∥∥
L( 1

3−δ1)−1 .
1

〈t〉 1
2 +3δ1

(decay slighlty above L3)(4.1b)

∥∥χ̃O(D)uk±
∥∥
L( 1

6 +δ1)−1 .
1

〈t〉1−3δ1
(4.1c)

(decay below L6 for “non-outcome” frequencies)∥∥|x|fk±∥∥2 .
√
〈t〉 (localization in L2)(4.1d) ∥∥∥|x|1/8χ̃O(D)fk±
∥∥∥

2
. 1(4.1e)

(localization in L2 for “non-outcome” frequencies).

Observe that interpolating between (4.1a) and (4.1b) gives

(4.2) ‖u‖3 .
1√
〈t〉
.

Define the associated norm

‖u‖X =
∑
ε=±

∑
k=1,c

sup
t

[
‖ukε ‖HN + 〈t〉 1

2 +3δ1
∥∥ukε∥∥

L( 1
3−δ1)−1

+ 〈t〉1−3δ1
∥∥χ̃O(D)ukε

∥∥
L( 1

6 +δ1)−1 + 1√
〈t〉
∥∥|x|fkε ∥∥2 +

∥∥∥|x|1/8χ̃Of
k
±

∥∥∥
2

]
.

The a priori estimate which we will prove is that under the assumptions
of Theorem 2.3, ‖u‖X . ε.

4.2. From the a priori estimate ‖u‖X . ε to the theorem

Once we know that ‖u‖X . ε, the proof of the theorem follows in a
straightforward way. Indeed, local existence is easily obtained given the
available regularity; it is extended to a global result by the a priori estimate.
Finally, scattering follows easily, by applying the same kind of estimate as
in Subsection 5.3.

4.3. Reduction to a quadratic estimate

We start from Duhamel’s formula (3.1). When manipulating this expres-
sion, we will not distinguish between all the possible phases, but simply
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use the lemmas 3.1 and 3.2, which hold for all of them. Thus in the fol-
lowing, we drop all the indices k, `,m, ε0, ε1, ε2. Similarly, when using the
cut-off functions of Lemma 3.2, we will of course choose the ones which
are adapted to the phase at hand, but we will not keep track of the in-
dices k, `,m, ε0, ε1, ε2 which they carry. We also drop inessential constants,
and forget about the summation in (3.1) for simplicity. Finally, we choose
ε0 = +, which is of course harmless.
Duhamel’s formula now reads

(4.3) u(t) = eit〈D〉u0 +
∫ t

0
ei(t−s)〈D〉u(s)

〈D〉
u(s)
〈D〉

ds,

or equivalently, for the profile f in Fourier space,

f̂(t, ξ) = f̂0(ξ) + F̂ (ξ, t)

where we set

F̂ (ξ, t) =
∫ t

0

∫
eisφ(ξ,η) f̂(s, η)

〈η〉
f̂(s, ξ − η)
〈ξ − η〉

dη ds.

In order to control the linear part of (4.3), we will use the following lemma.

Lemma 4.1. — There holds∥∥∥eit〈D〉u0

∥∥∥
X
. ‖u0‖HN + ‖〈x〉u0‖H2 .

Proof. — The control of the HN and weighted L2 parts of the norm X is
easy to obtain. Let us for instance show the decay in L( 1

6 +δ1)−1
: for t 6 1,∥∥∥eit〈D〉u0

∥∥∥
( 1

6 +δ1)−1 . ‖u0‖HN ,

while for t > 1,∥∥∥eit〈D〉u0

∥∥∥
( 1

6 +δ1)−1 . t
3δ1−1‖u0‖

W
2,( 5

6−δ1)−1 . t3δ1−1 ‖〈x〉u0‖H2 .

�

The hypotheses of the main theorem, combined with the above lemma,
give ∥∥∥eit〈D〉u0

∥∥∥
X
. ε.

Suppose we can prove the a priori estimate

(4.4)
∥∥∥eit〈D〉F∥∥∥

X
. ‖u‖2

X .

It implies the inequality

‖u‖X . ε+ ‖u‖2
X ,

which gives, after choosing ε small enough, the desired inequality ‖u‖X . ε.
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We will actually prove (in Section 5) the a priori estimate

‖eit〈D〉G‖X . ‖u‖2
X ,

where G is defined for t > 1 by

Ĝ(t, ξ) =
∫ t

1

∫
eisφ(ξ,η) f̂(s, η)

〈η〉
f̂(s, ξ − η)
〈ξ − η〉

dη ds.

It will spare a lot of cumbersome notations to work on G rather than on
F , and furthermore it is simple to see how the estimate on F follows from
the one on G.

5. Proof of the a priori estimate ‖eit〈D〉G‖X . ‖u‖2X

5.1. Choosing the small constants δ1, δ2, δ3 and the large
constant N

Two constants which appear in the definition of the X space, namely δ1
and N , have not been defined yet. We will soon introduce two more: δ2 and
δ3. The former will give the rate at which R is cut off: namely the cut-off
functions around R shall be of the form χt

−δ2
R , χt−δ2

S , and χt−δ2
T . The latter

will give the rate at which high frequencies are cut off: the high/low cut-off
will be θ

( ·
tδ3

)
.

We choose these constants so that

1 >> δ2 >> δ1 >> δ3 > 0 and Nδ3 >> 1.

This choice of the constants will ensure that the inequalities (5.6) (5.8) (5.9)
(5.10) (5.13) (5.15) (5.16) (5.18) (5.20) (5.22) (5.23) (5.25) hold, which will
enable us to close the estimates.

5.2. Estimates on eit〈D〉∂tf

Since eit〈D〉∂tf can be written as a sum of terms of the form u2,∥∥∥eit〈D〉∂tf∥∥∥( 2
3−2δ1)−1 . ‖u‖

2
( 1

3−δ1)−1 . ‖u‖2
X

1
〈t〉1+6δ1

.

Similarly, ∥∥∥eit〈D〉∂tf∥∥∥
3/2
. ‖u‖2

X

1
〈t〉
.
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5.3. Estimate for G in the norm supt
∥∥eit〈D〉G∥∥

HN

Using the Strichatz estimate (6.4) and the product law of Lemma 6.5
gives

∥∥∥∥∫ t

1

∫
eis〈D〉

u(s)
〈D〉

u(s)
〈D〉

ds

∥∥∥∥
HN
.

∥∥∥∥ u

〈D〉
u

〈D〉

∥∥∥∥
L( 1

2 + 3
2 δ1)−1

W
N+ 5

6 ,( 5
6−δ1)−1

.

∥∥∥∥‖u‖HN ‖u‖
L( 1

3−δ1)−1

∥∥∥∥
L( 1

2 + 3
2 δ1)−1

.
∥∥∥t−( 1

2 +3δ1)
∥∥∥
L( 1

2 + 3
2 δ1)−1 ‖u‖2

X . ‖u‖2
X .

5.4. Estimate for G in the norm supt 1√
t
‖|x|G‖2

By Plancherel theorem, estimating xG in L2 is equivalent to estimating
∂ξĜ(ξ) in L2. Thus we want to bound

∂ξĜ(t, ξ) =
∫ t

1

∫
eisφs∂ξφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.1a)

+
∫ t

1

∫
eisφ

f̂(s, η)
〈η〉

x̂f(s, ξ − η)
〈ξ − η〉

dη ds(5.1b)

+ {easier term},(5.1c)

where the “easier term” correspond to the case where ∂ξ hits 1
〈ξ−η〉 . In

order to estimate (5.1b) use successively the Strichartz estimates (6.4), the
product law Lemma 6.5 and the estimates (4.1d) and (4.2) to obtain

‖(5.1b)‖2 =
∥∥∥∥∫ t

1
eis〈D〉

u(s)
〈D〉

eis〈D〉xf(s)
〈D〉

ds

∥∥∥∥
2

.

∥∥∥∥ u

〈D〉
eis〈D〉xf

〈D〉

∥∥∥∥
L2([1,t],W 11/12,6/5)

. ‖‖u‖3 ‖xf‖2‖L2([1,t])

. ‖u‖2
X‖1‖L2([1,t]) .

√
t‖u‖2

X .
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Next we focus on (5.1a). This term will be treated by splitting the fre-
quency space. Writing u = χO(D)u+ χ̃O(D)u gives

(5.1a) =
∫ t

1

∫
eisφs∂ξφ

χO(η)f̂(s, η)
〈η〉

χO(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.2a)

+
∫ t

1

∫
eisφs∂ξφ

χ̃O(η)f̂(s, η)
〈η〉

χO(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.2b)

+ {symmetric and easier terms}.(5.2c)

(in particular, the interaction of χ̃O(D)u with itself is easier since the esti-
mates on χ̃O(D)u are stronger). In order to estimate (5.2b), observe that
∂ξφ is a harmless sum of bounded Fourier multipliers, thus

‖(5.2b)‖2 =
∥∥∥∥∫ t

1
seis〈D〉T∂ξφ

(
χ̃O(D)
〈D〉

u(s) , χO(D)
〈D〉

u(s)
)
ds

∥∥∥∥
2

.
∫ t

1
s

∥∥∥∥χO(D)
〈D〉

u

∥∥∥∥
L( 1

3−δ1)−1

∥∥∥∥ χ̃O(D)
〈D〉

u

∥∥∥∥
L( 1

6 +δ1)−1 ds

. ‖u‖2
X

∫ t

1
s

1
s

1
2 +3δ1

1
s1−3δ1

ds .
√
t‖u‖2

X .

We are left with (5.2a). We use here that resonances are separated, or
more precisely the way we constructed χρR: (ξ, η) stays outside a fixed
neighborhood of R, and χρR is supported inside such a fixed neighborhood.
In other words, by point 3 of Lemma 3.2, we can split the integration

domain of (5.2a) by adding the cut-off functions χT and χS , which do not
depend on time.

(5.2a) =
∫ t

1

∫
χT (ξ, η)eisφs∂ξφ

χO(η)f̂(s, η)
〈η〉

χO(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.3a)

+
∫ t

1

∫
χS(ξ, η)eisφs∂ξφ

χO(η)f̂(s, η)
〈η〉

χO(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds.(5.3b)

Estimating (5.3a) is simple: using that ∂ηφ does not vanish on its in-
tegration domain, we integrate by parts with the help of the formula
∂ηφ

is|∂ηφ|2 · ∂ηe
isφ = eisφ and obtain a term which is very similar to (5.1b),

and can be estimated in an identical way.
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In order to estimate (5.3b), using that φ does not vanish on its integration
domain, integrate by parts via the formula 1

iφ∂se
isφ = eisφ. This gives

(5.3b) =
∫
χS(ξ, η)∂ξφ

iφ
eitφt

χO(η)f̂(t, η)
〈η〉

χO(ξ − η)f̂(t, ξ − η)
〈ξ − η〉

dη

(5.4a)

−
∫ t

1

∫
χS(ξ, η)∂ξφ

iφ
eisφs

χO(η)∂sf̂(s, η)
< η >

χO(ξ − η)f̂(s, ξ − η)
< ξ − η >

dη ds(5.4b)

+ {symmetric and easier terms}(5.4c)

(where the terms which are not explicitly written are the boundary term
at s = 1, and the terms where ∂s hits the second f , or s). Proceed in a
straightforward fashion to estimate (5.4a): by Bernstein’s inequality (6.2)
and Proposition 6.2,

‖(5.4a)‖2 = t

∥∥∥∥TχS (ξ,η)∂ξφχO(η)χO(ξ−η)
iφ〈η〉〈ξ−η〉

(u, u)
∥∥∥∥

2

. t

∥∥∥∥TχS (ξ,η)∂ξφχO(η)χO(ξ−η)
iφ〈η〉〈ξ−η〉

(u, u)
∥∥∥∥

3/2

. t‖u‖2
3 . ‖u‖2

X .

As for (5.4b), by Bernstein’s inequality (6.2), Proposition 6.2, and Sec-
tion 5.2,

‖(5.4b)‖2 =
∥∥∥∥∫ t

1
seis〈D〉TχS (ξ,η)∂ξφχO(η)χO(ξ−η)

iφ〈η〉〈ξ−η〉

(
e±is〈D〉∂sf(s), u(s)

)
ds

∥∥∥∥
2

.
∫ t

1
s

∥∥∥∥TχS (ξ,η)∂ξφχO(η)χO(ξ−η)
iφ〈η〉〈ξ−η〉

(
e±is〈D〉∂sf(s), u(s)

)∥∥∥∥
1
ds

.
∫ t

1
s‖u‖3

∥∥∥e±is〈D〉∂sf∥∥∥
3/2

ds

. ‖u‖3
X

∫ t

1
s

1
s3/2 ds . ‖u‖

3
X

√
t.

5.5. Estimate for G in the norm supt t1−3δ1
∥∥χ̃O(D)eit〈D〉G

∥∥
( 1

6 +δ1)−1

Notice first that, since resonances are separated, the localization χ̃O ef-
fectively cuts off space-time resonances. Thus the frequency space (ξ, η) will
be split into three parts: large frequencies (larger than sδ3); small frequen-
cies away from T ; small frequencies away from S. More precisely, using θ
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defined in (3.3)

χ̃O(ξ)Ĝ(t, ξ) =
∫ t

1

∫
χ̃O(ξ)

[
1− θ

(
(ξ, η)
sδ3

)]
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.5a)

+
∫ t

1

∫
χ̃O(ξ)χS(ξ, η)θ

(
(ξ, η)
sδ3

)
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.5b)

+
∫ t

1

∫
χ̃O(ξ)χT (ξ, η)θ

(
(ξ, η)
sδ3

)
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.5c)

5.5.1. The high frequency term (5.5a).

It suffices in order to bound it to use the strong control on high frequen-
cies. This is done by using the Littlewood-Paley decomposition, which is
recalled in Section 6.1.

F−1(5.5a) =
∫ t

1
e±is〈D〉T

χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(u(s), u(s)) ds

=
∫ t

1

∑
2j>sδ3

e±is〈D〉P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s)) ds

+ {symmetric term}.

We now forget about the symmetric term, and use the fact that, by Propo-
sition 6.2, the elementary pseudo-product operators above are bounded for
exponents satisfying the Hölder relation. Using in addition the dispersive
estimate (6.3) and the inequality (6.1) gives∥∥∥∥∥∥
∫ t

1

∑
2j>sδ3

e±i(t−s)〈D〉P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s)) ds

∥∥∥∥∥∥
( 1

6 +δ1)−1

.
∫ t

1

∑
2j&sδ3

1
(t− s)1−3δ1

∥∥∥∥∥∥P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s))

∥∥∥∥∥∥
W

2,( 5
6−δ1)−1

ds

.
∫ t

1

∑
2j&sδ3

1
(t− s)1−3δ1

22j ‖Pju(s)‖2 ‖P<ju(s)‖( 1
3−δ1)−1 ds

.
∫ t

1

∑
2j&sδ3

1
(t− s)1−3δ1

22j2−jN ‖u(s)‖HN ‖u(s)‖( 1
3−δ1)−1 ds

.
∫ t

1

1
(t− s)1−3δ1

sδ3(2−N) 1
s

1
2 +3δ1

ds .
1

t1−3δ1
‖u‖2

X ,
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where the last inequality holds since

(5.6) δ3 (N − 2) + 1
2 + 3δ1 > 1.

5.5.2. The term away from T (5.5b).

In order to deal with this term, integrate by parts in time using the
identity 1

iφ∂se
isφ = eisφ. Thus

(5.5b) =
∫
χ̃O(ξ)χS(ξ, η)θ

(
(ξ, η)
tδ3

)
1
iφ
eitφ

f̂(t, η)
〈η〉

f̂(t, ξ − η)
〈ξ − η〉

dη

(5.7a)

−
∫ t

1

∫
χ̃O(ξ)χS(ξ, η)θ

(
(ξ, η)
sδ3

)
1
iφ
eisφ

∂sf̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.7b)

+ {symmetric and easier terms},(5.7c)

where the “symmetric and easier terms” correspond to the cases where
the partial derivative ∂s hits either the other f , or the cut-off function
θ
(

(ξ,η)
sδ3

)
; and to the boundary term at s = 1. Using successively Bernstein’s

inequality (6.2) and Proposition 3.3 gives∥∥∥eit〈D〉F−1(5.7a)
∥∥∥

( 1
6 +δ1)−1

=

∥∥∥∥∥∥T χ̃O(ξ)χS (ξ,η)θ
(

(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(u(t), u(t))

∥∥∥∥∥∥
( 1

6 +δ1)−1

. tδ3( 3
2−3δ1)

∥∥∥∥∥∥T χ̃O(ξ)χS (ξ,η)θ
(

(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(u(t), u(t))

∥∥∥∥∥∥
( 2

3−2δ1)−1

. tδ3( 3
2−3δ1)tAδ3‖u(t)‖2

( 1
3−δ1)−1

. tδ3( 3
2−3δ1)tAδ3

1
t1+6δ1

‖u‖2
X

.
1

t1−3δ1
‖u‖2

X ,

where the last inequality holds since

(5.8) 9δ1 > δ3

(
A+ 3

2 − 3δ1

)
.
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In order to estimate (5.7b), use successively the dispersive estimate (6.3),
the inequality (6.1), Bernstein’s inequality (6.2), and Proposition 3.3 to get
∥∥∥eit〈D〉F−1(5.7b)

∥∥∥
( 1

6 +δ1)−1

=

∥∥∥∥∥∥
∫ t

1
ei(t−s)〈D〉T

χ̃O(ξ)χS (ξ,η)θ
(

(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(
e±is〈D〉(∂sf(s)), u(s)

)
ds

∥∥∥∥∥∥
( 1

6 +δ1)−1

.
∫ t

1

1
(t− s)1−3δ1

s2δ3

∥∥∥∥∥∥T χ̃O(ξ)χS (ξ,η)θ
(

(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(
e±is〈D〉(∂sf(s)), u(s)

)∥∥∥∥∥∥
( 5

6−δ1)−1

ds

.
∫ t

1

1
(t− s)1−3δ1

s2δ3sδ3( 1
6−2δ1)

∥∥∥∥∥∥T χ̃O(ξ)χS (ξ,η)θ
(

(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(
e±is〈D〉(∂sf(s)), u(s)

)∥∥∥∥∥∥
(1−3δ1)−1

ds

.
∫ t

1

1
(t− s)1−3δ1

s2δ3sδ3( 1
6−2δ1)sAδ3

∥∥∥e±is〈D〉(∂sf(s))
∥∥∥

( 2
3−2δ1)−1 ‖u(s)‖( 1

3−δ1)−1 ds

.
∫ t

1

1
(t− s)1−3δ1

s2δ3sδ3( 1
6−2δ1)sAδ3

1
s1+6δ1

1
s

1
2 +3δ1

‖u‖2
X ds

. ‖u‖2
X

1
t1−3δ1

,

where the last inequality holds since

(5.9) 1
2 + 9δ1 > δ3

(
A+ 13

6 − 2δ1

)
.

5.5.3. The term away from S (5.5c)

First transform this term by an integration by parts using the identity
∂ηφ

is|∂ηφ|2 · ∂ηe
isφ = eisφ. This gives

(5.5c) =
∫ t

1

∫
χ̃O(ξ)χT (ξ, η)θ

(
(ξ, η)
sδ3

)
∂ηφ

is|∂ηφ|2
eisφ

∂η f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds

+ {symmetric and easier terms}.

or

eit〈D〉F−1(5.5c) =
∫ t

1
ei(t−s)〈D〉 1

s
T
χ̃O(ξ)χT (ξ,η)θ

(
(ξ,η)
sδ3

)
∂ηφ

|∂ηφ|2〈η〉〈ξ−η〉

(
e±is〈D〉(xf(s)), u(s)

)
ds

+ {symmetric and easier terms}.
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With the help of the dispersive estimate (6.3), the inequality (6.1) and the
Proposition 3.3, it can be estimated as follows:

∥∥∥∥∥∥
∫ t

1
ei(t−s)〈D〉 1

s
T
χ̃O(ξ)χT (ξ,η)θ

(
(ξ,η)
sδ3

)
∂ηφ

|∂ηφ|2〈η〉〈ξ−η〉

(
e±is〈D〉(xf(s)), u(s)

)
ds

∥∥∥∥∥∥
( 1

6 +δ1)−1

.
∫ t

1

1
(t− s)1−3δ1

1
s
s2δ3

∥∥∥∥∥∥T χ̃O(ξ)χT (ξ,η)θ
(

(ξ,η)
sδ3

)
∂ηφ

|∂ηφ|2〈η〉〈ξ−η〉

(
e±is〈D〉(xf(s)), u(s)

)∥∥∥∥∥∥
( 5

6−δ1)−1

ds

.
∫ t

1

1
(t− s)1−3δ1

1
s
s2δ3sAδ3 ‖xf(s)‖2 ‖u(s)‖( 1

3−δ1)−1 ds

.
∫ t

1

1
(t− s)1−3δ1

1
s
s2δ3sAδ3‖u‖2

X

√
s

1
s

1
2 +3δ1

ds

. ‖u‖2
X

1
t1−3δ1

,

where the last inequality is true since

(5.10) 3δ1 > δ3 (A+ 2) > 0.

5.6. Estimate for G in the norm supt t
1
2 +3δ1

∥∥eit〈D〉G∥∥( 1
3−δ1)−1

First cut off within a distance of order δ0 of the space-time resonant set
by writing

Ĝ(t, ξ) =
∫ t

0

∫
χ1
R(ξ, η)eisφ f̂(s, η)

〈η〉
f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.11a)

+
∫ t

0

∫ [
1− χ1

R(ξ, η)
]
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds.(5.11b)

The term (5.11b) corresponds to frequencies away from R; it can be dealt
with exactly as in Section 5.5, even yielding a stronger estimate than
needed. Thus it suffices to estimate (5.11a).
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Since resonances are separated, it is possible to add Fourier multipliers
χ̃O(D) to the arguments of (4.1b). Splitting furthermore the frequency
space (ξ, η), we get

(5.11a)=
∫ t

1

∫
χs
−δ2
R (ξ, η)eisφ χ̃O(η)f̂(s, η)

〈η〉
χ̃O(ξ − η)f̂(s, ξ − η)

〈ξ − η〉
dη ds

(5.12a)

+
∫ t

1

∫
χ1
R(ξ, η)χs

−δ2
S (ξ, η)θ

(
(ξ, η)
sδ3

)
eisφ

χ̃O(η)f̂(s, η)
〈η〉

χ̃O(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.12b)

+
∫ t

1

∫
χ1
R(ξ, η)χs

−δ2
T (ξ, η)eisφ χ̃O(η)f̂(s, η)

〈η〉
χ̃O(ξ − η)f̂(s, ξ − η)

〈ξ − η〉
dη ds.

(5.12c)

5.6.1. The term close to R (5.12a)

In order to estimate this term, recall first that (see Lemma 3.2),
χt
−δ2
R (ξ, η) is a sum of terms of the type χ

(
tδ2 (|η| −R)

)
χ
(
tδ2 (ξ − λη)

)
for different values of λ and R. For the sake of simplicity, we will consider
that

χt
−δ2
R (ξ, η) = χ

(
tδ2 (|η| −R)

)
χ
(
tδ2 (ξ − λη)

)
for some real constants λ and R. Thus, it follows with the help of the
dispersive estimate (6.3) and Proposition 3.3 that

∥∥∥eit〈D〉F−1(5.12a)
∥∥∥

( 1
3−δ1)−1

=

∥∥∥∥∥
∫ t

1
ei(t−s)〈D〉T

χ(sδ2 (ξ−λη))
〈η〉〈ξ−η〉

(
e±is〈D〉χ

(
sδ2 (|D| −R)

)
χ̃O(D)f(s), χ̃O(D)u(s)

)
ds

∥∥∥∥∥
( 1

3−δ1)−1

.
∫ t

1

1
(t− s) 1

2 +3δ1

∥∥χ̃O(D)χ
(
sδ2 (|D| −R)

)
f(s)

∥∥
2 ‖χ̃O(D)u(s)‖( 1

6 +δ1)−1 ds

.
∫ t

1

1
(t− s) 1

2 +3δ1

1
sδ2/24

∥∥∥|x|1/8χ̃O(D)f(s)
∥∥∥

2
‖u(s)‖X

1
s1−3δ1

ds

. ‖u‖2
X

∫ t

1

1
(t− s) 1

2 +3δ1

1
sδ2/24

1
s1−3δ1

ds

. ‖u‖2
X

1
t

1
2 +3δ1
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where the last inequality holds since

(5.13) δ2

24 > 3δ1.

5.6.2. The term away from T (5.12b)

Integrate this term by parts via the identity 1
iφ∂se

isφ = eisφ to get

(5.12b)=
∫
χ1
R(ξ, η)χt

−δ2
S (ξ, η)eitφ 1

iφ

χ̃O(η)f̂(t, η)
〈η〉

χ̃O(ξ − η)f̂(t, ξ − η)
〈ξ − η〉

dη

(5.14a)

−
∫ t

1

∫
χ1
R(ξ, η)χs

−δ2
S (ξ, η)eisφ 1

iφ

χ̃O(η)∂sf̂(s, η)
〈η〉

χ̃O(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.14b)

+ {symmetric and easier terms }.
(5.14c)

The first term can be estimated with the help of Bernstein’s inequality (6.2)
and Proposition 3.3 (iii):

∥∥∥eit〈D〉F−1(5.14a)
∥∥∥

( 1
3−δ1)−1

=

∥∥∥∥∥Tχ1
R(ξ,η)χt

−δ2
S (ξ,η)

iφ〈η〉〈ξ−η〉

(χ̃O(D)u(t), χ̃O(D)u(t))

∥∥∥∥∥
( 1

3−δ1)−1

.

∥∥∥∥∥Tχ1
R(ξ,η)χt

−δ2
S (ξ,η)

iφ〈η〉〈ξ−η〉

(χ̃O(D)u(t), χ̃O(D)u(t))

∥∥∥∥∥
2

. tAδ2 ‖χ̃O(D)u(t)‖2
4

. ‖u‖2
Xt

Aδ2
1
t3/2 . ‖u‖

2
X

1
t

1
2 +3δ1

,

where the last inequality holds since

(5.15) 3δ1 +Aδ2 < 1.
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For the second term, use successively the dispersive estimate (6.3), Bern-
stein’s inequality (6.2) and Proposition 3.3 to get∥∥∥eit〈D〉F−1(5.14a)

∥∥∥
( 1

3−δ1)−1

=

∥∥∥∥∥
∫ t

1
ei(t−s)〈D〉T

χ1
R(ξ,η)χs

−δ2
S (ξ,η)

iφ〈η〉〈ξ−η〉

(χ̃O(D)e±is〈D〉∂sf(s), χ̃O(D)u(s)) ds

∥∥∥∥∥
( 1

3−δ1)−1

.
∫ t

1

1
(t− s) 1

2 +3δ1

∥∥∥∥∥Tχ1
R(ξ,η)χs

−δ2
S (ξ,η)

iφ〈η〉〈ξ−η〉

(χ̃O(D)e±is〈D〉∂sf(s), χ̃O(D)u(s))

∥∥∥∥∥
1

ds

.
∫ t

1

1
(t− s) 1

2 +3δ1
sAδ2

∥∥∥e±is〈D〉∂sf(s)
∥∥∥

3/2
‖u(s)‖3 ds

. ‖u‖3
X

∫ t

1

1
(t− s) 1

2 +3δ1
sAδ2

1
s

1√
s
ds . ‖u‖3

X

1
t

1
2 +3δ1

,

where the last inequality is justified since

(5.16) Aδ2 <
1
2 .

5.6.3. The term away from S (5.12c)

Integrate this term by parts via the identity ∂ηφ
is|∂ηφ|2 ·∂ηe

isφ = eisφ to get

(5.12c)
(5.17a)

= −
∫ t

1

∫
χ1
R(ξ, η)χs

−δ2
T (ξ, η) ∂ηφ

is|∂ηφ|2
eisφ

χ̃O(η)∂̂ηf(s, η)
〈η〉

χ̃O(ξ − η)f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.17b)

+ {symmetric and easier terms}.
(5.17c)

Next, using successively the dispersive estimate (6.3), inequality (6.1) and
Proposition 3.3 gives∥∥∥eit〈D〉F−1(5.17b)

∥∥∥
( 1

3−δ1)−1

=

∥∥∥∥∥∥
∫ t

1
ei(t−s)〈D〉 1

s
T
χ1
R(ξ,η)χs

−δ2
T (ξ,η)∂ηφ

i|∂ηφ|2〈η〉〈ξ−η〉

(
e±is〈D〉χ̃O(D)(xf(s)), χ̃O(D)u(s)

)
ds

∥∥∥∥∥∥
( 1

3−δ1)−1

.
∫ t

1

1
s

1
(t− s) 1

2 +3δ1

∥∥∥∥∥∥Tχ1
R(ξ,η)χs

−δ2
T (ξ,η)∂ηφ

i|∂ηφ|2〈η〉〈ξ−η〉

(
e±is〈D〉χ̃O(D)(xf(s)), χ̃O(D)u(s)

)∥∥∥∥∥∥
( 2

3 +δ1)−1

ds

.
∫ t

1

1
s

1
(t− s) 1

2 +3δ1
sAδ2 ‖xf(s)‖2 ‖χ̃O(D)u(s)‖( 1

6 +δ1)−1 ds

. ‖u‖2
X

∫ t

1

1
s

1
(t− s) 1

2 +3δ1
sAδ2
√
s

1
s1−3δ1

ds . ‖u‖2
X

1
t

1
2 +3δ1

,
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where the last inequality is valid since

(5.18) Aδ2 + 3δ1 < 1.

5.7. Estimate for G in the norm supt
∥∥|x|1/8χ̃OG

∥∥
2

First notice that this estimate is far from being optimal (it seems likely
that the best possible estimate is supt

∥∥|x|1/2−εG
∥∥

2 < ∞ for ε > 0). In
other words, we have a lot of room to our disposal, and we will perform
very crude estimates, which simplifies some technical points.
Also observe that interpolating between (4.1a) and (4.1d) gives

‖|x|1/8f‖2 . t
1/16.

As usual, we start by decomposing G as follows

χ̃O(ξ)Ĝ(t, ξ)=
∫ t

1

∫
χ̃O(ξ)

[
1− θ

(
(ξ, η)
sδ3

)]
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.19a)

+
∫ t

1

∫
χ̃O(ξ)χS(ξ, η)θ

(
(ξ, η)
sδ3

)
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.19b)

+
∫ t

1

∫
χ̃O(ξ)χT (ξ, η)θ

(
(ξ, η)
sδ3

)
eisφ

f̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds(5.19c)

5.7.1. The high frequency term (5.19a)

First use the Littlewood-Paley decomposition recalled in Section 6.1 to
write

F−1(5.19a) =
∫ t

1
e±is〈D〉T

χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(u(s), u(s)) ds

=
∫ t

1

∑
2j&sδ3

e±is〈D〉P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s)) ds

+ {symmetric term}.
Next, we forget about the symmetric term, and use Lemma 6.1 to get∥∥∥∥∥∥|x|1/8

∫ t

1

∑
2j&sδ3

e±is〈D〉P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s)) ds

∥∥∥∥∥∥
2

.
∫ t

1

∑
2j&sδ3

s1/8

∥∥∥∥∥∥〈x〉1/8P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s))

∥∥∥∥∥∥
2

ds
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At this point, we can view P<j+3T χ̃O(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s)) as

Tm(u(s), P<ju(s)), with the symbol m given by

m(ξ, η) = ψ

(
ξ

2j+3

)
ψ

(
ξ − η

2j

) χ̃O(ξ)
[
1− θ

(
(ξ,η)
sδ3

)]
〈η〉〈ξ − η〉

Following the lines of Proposition 3.3, it is easy to show the bound
‖〈x〉wTm(f, g)‖2 . ‖〈x〉wf‖2 ‖g‖∞ (independently of j > 0). Using this
estimate, Lemma 6.1 again and finally the inequality (6.1) gives now∥∥∥∥∥∥|x|1/8

∫ t

1

∑
2j&sδ3

e±is〈D〉P<j+3TχO(ξ)
[

1−θ
(

(ξ,η)
sδ3

)]
〈η〉〈ξ−η〉

(Pju(s), P<ju(s)) ds

∥∥∥∥∥∥
2

.
∫ t

1

∑
2j&sδ3

s1/8
∥∥∥〈x〉1/8u(s)

∥∥∥
2
‖Pju(s)‖∞ ds

.
∫ t

1

∑
2j&sδ3

s1/8s1/8
∥∥∥〈x〉1/8f(s)

∥∥∥
2

23j/22−jN‖u(s)‖HN ds

. ‖u‖2
X

∫ t

1
s1/8s1/8sδ3( 3

2−N)s1/16 ds

. ‖u‖2
X ,

where the last inequality holds true since

(5.20) δ3

(
N − 3

2

)
>

21
16 .

5.7.2. The term away from T (5.19b)

Integrating by parts with the help of the identity 1
iφ∂se

isφ = eisφ gives

(5.19b) =
∫
χ̃O(ξ)χS(ξ, η)θ

(
(ξ, η)
tδ3

)
1
iφ
eitφ

f̂(t, η)
〈η〉

f̂(t, ξ − η)
〈ξ − η〉

dη

(5.21a)

−
∫ t

1

∫
χ̃O(ξ)χS(ξ, η)θ

(
(ξ, η)
sδ3

)
1
iφ
eisφ

∂sf̂(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.21b)

+ {symmetric and easier terms}.
(5.21c)

In order to treat (5.21a), observe that the arguments of the pseudo-product
have frequency of order less than tδ3 . Thus it is possible to add to them a
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Fourier multiplier P<δ3 log t+C for a constant C (see Section 6.1 for the defi-
nition of the projections P ). Using successively Lemma 6.1, Proposition 3.3,
Bernstein’s inequality (6.2) and Lemma 6.1 again yields the desired bound
for (5.21a):∥∥∥|x|1/8F−1(5.21a)

∥∥∥
2

=

∥∥∥∥∥∥|x|1/8eit〈D〉T
χ̃O(ξ)χS (ξ,η)θ

(
(ξ,η)
tδ3

)
iφ〈η〉〈ξ−η〉

(u(t), P<δ3 log t+Cu(t))

∥∥∥∥∥∥
2

. t1/8

∥∥∥∥∥∥〈x〉1/8T
χ̃O(ξ)χS (ξ,η)θ

(
(ξ,η)
tδ3

)
iφ〈η〉〈ξ−η〉

(u(t), P<δ3 log t+Cu(t))

∥∥∥∥∥∥
2

. t1/8tAδ3
∥∥∥〈x〉1/8u(t)

∥∥∥
2
‖P<δ3 log t+Cu(t)‖∞

. t1/8tAδ3t1/8
∥∥∥〈x〉1/8f(t)

∥∥∥
2
tδ3 ‖u(t)‖3

. ‖u‖2
Xt

1/8tAδ3t1/8t1/16tδ3
1√
t
. ‖u‖2

X ,

where the last inequality holds since

(5.22) δ3(A+ 1) < 3
16 .

As far as (5.21b) is concerned, it is still possible to add a Fourier multiplier
P<δ3 log t+C to the arguments of the pseudo-product. Using successively
Lemma 6.1 (iii), Proposition 3.3, Bernstein’s inequality (6.2), once again
Lemma 6.1 and finally Section 5.2 gives∥∥∥|x|1/8F−1(5.21b)

∥∥∥
2

=

∥∥∥∥∥∥|x|1/8
∫ t

1
eis〈D〉T

χ̃O(ξ)χS (ξ,η)θ
(

(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(
P<δ3 log s+Ce

±is〈D〉∂sf(s), u(s)
)
ds

∥∥∥∥∥∥
2

.

∥∥∥∥∥∥sδ3 [〈x〉+ s]1/8
T
χ̃O(ξ)χS (ξ,η)θ

(
(ξ,η)
sδ3

)
iφ〈η〉〈ξ−η〉

(
P<δ3 log s+Ce

±is〈D〉∂sf(s), u(s)
)∥∥∥∥∥∥

L2([1,t],L6/5)

.

∥∥∥∥sδ3s1/8sAδ3
∥∥∥P<δ3 log s+Ce

±is〈D〉∂sf(s)
∥∥∥
L3
x

‖〈x〉1/8u(s)‖L2
x

∥∥∥∥
L2([1,t])

.
∥∥∥sδ3s1/8sAδ3sδ3‖e±is〈D〉∂sf(s)‖

L
3/2
x
s1/8‖〈x〉1/8f(s)‖L2

x

∥∥∥
L2([1,t])

. ‖u‖3
X

∥∥∥∥sδ3s1/8sAδ3sδ3
1
s
s1/8s1/16

∥∥∥∥
L2([1,t])

. ‖u‖3
X ,
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where the last inequality is valid since

(5.23) (A+ 2)δ3 <
3
16 .

5.7.3. The term away from S (5.19c)

Integrating by parts with the help of the identity ∂ηφ
is|∂ηφ|2 · ∂ηe

isφ = eisφ

gives

(5.19c)
(5.24a)

= −
∫ t

1

∫
χ̃O(ξ)χT (ξ, η)θ

(
(ξ, η)
sδ3

)
∂ηφ

is|∂ηφ|2
eisφ

∂̂ηf(s, η)
〈η〉

f̂(s, ξ − η)
〈ξ − η〉

dη ds

(5.24b)

+ {symmetric and easier terms}.
(5.24c)

As above, observe that the arguments of the pseudo-product have frequency
of order less than sδ3 , thus it is possible to add to them a Fourier multiplier
P<δ3 log s+C for a constant C. Applying successively Lemma 6.1, Proposi-
tion 3.3, Bernstein’s inequality (6.2), and once again Lemma 6.1 gives∥∥∥|x|1/8F−1(5.24b)

∥∥∥
2

=

∥∥∥∥∥∥|x|1/8
∫ t

1
eis〈D〉

1
s
T
χ̃O(ξ)χT (ξ,η)∂ηφθ

(
(ξ,η)
sδ3

)
i|∂ηφ|2〈η〉〈ξ−η〉

(u(s), P<δ3 log s+Cu(s)) ds

∥∥∥∥∥∥
2

.
∫ t

1

1
s
s1/8

∥∥∥∥∥∥〈x〉1/8T
χ̃O(ξ)χT (ξ,η)∂ηφθ

(
(ξ,η)
sδ3

)
i|∂ηφ|2〈η〉〈ξ−η〉

(u(s), P<δ3 log s+Cu(s))

∥∥∥∥∥∥
2

ds

.
∫ t

1

1
s
s1/8sAδ3

∥∥∥〈x〉1/8u(s)
∥∥∥

2
‖P<δ3 log s+Cu(s)‖∞ ds

.
∫ t

1

1
s
s1/8sAδ3

∥∥∥〈x〉1/8u(s)
∥∥∥

2
sδ3 ‖u(s)‖3 ds

.
∫ t

1

1
s
s1/8sδ3sAδ3s1/8

∥∥∥〈x〉1/8f(s)
∥∥∥

2
‖u(s)‖3 ds

. ‖u‖2
X

∫ t

1

1
s
s1/8sδ3sAδ3s1/8s1/16 1√

s
ds . ‖u‖2

X ,

where the last inequality holds since

(5.25) δ3(A+ 1) < 3
16 .
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6. Auxiliary tools

We will review or prove below a few estimates used in the proof of our
main theorem.

6.1. Littlewood-Paley decomposition

Consider ψ a function supported in the annulus C(0, 3
4 ,

8
3 ) such that

for ξ 6= 0,
∑
j∈Z

ψ

(
ξ

2j

)
= 1.

Define first

Φ(ξ) def=
∑
j<0

ψ

(
ξ

2j

)
and then the Fourier multipliers

Pj
def= ψ

(
D

2j

)
P<j = Φ

(
D

2j

)
.

This gives a homogeneous and an inhomogeneous decomposition of the
identity (for instance, in L2)∑

j∈Z
Pj = Id and P<0 +

∑
j>0

Pj = Id .

All these operators are bounded on Lp spaces:

if 1 < p <∞, ‖Pjf‖p . ‖f‖p , ‖P<jf‖p . ‖f‖p.

It is easy to see that
(6.1)
if j > 0, ‖Pjf‖W s,p ∼ 2js‖Pjf‖p and if s > 0 ‖P<jf‖W s,p . 2js‖f‖p.

Also recall Bernstein’s lemma: if 1 6 q 6 p 6∞,
(6.2)
‖Pjf‖p 6 23j( 1

q−
1
p ) ‖Pjf‖q and ‖P<jf‖p 6 23j( 1

q−
1
p ) ‖P<jf‖q .
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6.2. Estimates for the linear Klein-Gordon equation

We will consider here the linear Klein-Gordon equation for c = 1, but of
course the results presented in this section remain unchanged if c > 0.
The lack of homogeneity of the Klein-Gordon dispersion relation gives

rise to a wide range of dispersive or Strichartz estimates; roughly speaking,
it admits “wave like” estimates, but also “Schrödinger like” estimates with
a loss of derivatives.

Thus we do not attempt to give complete references, but simply bor-
row from Ginibre and Velo [8] for dispersive estimates and from Ibrahim,
Masmoudi and Nakanishi [11] for Strichartz estimates.

The dispersive estimates we will need read

(6.3)
∥∥∥eit〈D〉f∥∥∥

p
. t

3
p−

3
2 ‖f‖

W
4( 1

2−
1
p )+ε,p′ if 2 6 p 6∞ and ε > 0.

As for the Strichartz estimates, we state them in a very particular case:

(6.4)
∥∥∥∥∫ t

0
eis〈D〉F (s) ds

∥∥∥∥
2
. ‖F‖

L( 1
2 + 3

2 δ)−1
W

5
6−

5
2 δ+ε,( 5

6−δ)−1

for ε > 0 and 0 6 δ 6 1
3 .

We now turn to weighted versions of the above:

Lemma 6.1. — (i) If w > 0,∥∥∥|x|weit〈D〉f∥∥∥
2
. tw‖f‖2 + ‖|x|wf‖2 . 〈t〉w ‖〈x〉wf‖2 .

(ii) If w, ε > 0, R > 1, and ϕ ∈ C∞0 ,∥∥∥∥|x|wϕ(DR
)∫ ∞

0
eis〈D〉F (s) ds

∥∥∥∥
2
. R

5
6 +ε ‖[〈s〉+ 〈x〉]w F‖L2L6/5 .

(iii) If w, ε > 0, and ϕ ∈ C∞0 ,∥∥∥∥|x|w ∫ ∞
1

ϕ

(
D

sα

)
eis〈D〉F (s) ds

∥∥∥∥
2
.
∥∥∥sα 5

6 +ε [〈s〉+ 〈x〉]w F (s)
∥∥∥
L2L6/5

.

Proof. — Assertion (i). It is well-known that the kernel E of eit〈D〉 is
smooth outside of the set {|x| = t} and rapidly decaying for |x| >> |t|:

(6.5) |E(y, t)| . 1
〈|y| − |t||〉N+

for any N

(see for instance Hörmander [10] for a closely related statement). In deriving
the desired estimate, we will use a smooth cut-off function χ, which is equal
to 1 in B(0, 10), and to 0 in B(0, 20)c. It gives the splitting

E(t) ∗ f =
[
χ
( ·
t

)
E(t)

]
∗ f +

[(
1− χ

( ·
t

))
E(t)

]
∗ f.
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In order to estimate the first term, observe that the operator with kernel
χ
( ·
t

)
E(t) is uniformly bounded on L2, and has support in B(0, 20t). It

follows easily (for instance, by decomposing R3 into coronas with radii of
order nt, with n ∈ N) that∥∥∥[χ( ·

t

)
E(t)

]
∗ f
∥∥∥
L2(〈x〉2w dx)

. tw ‖f‖2 .

As for the second term, notice that its norm in L2(〈x〉2w dx) equals the L2

norm of

h(x) =
∫
〈x〉w

〈y〉w

[
1− χ

(
x− y
t

)]
E(x− y, t)g(y) dy

where g = 〈x〉wf is in L2. Due to inequality (6.5), the kernel above can be
bounded by∣∣∣∣ 〈x〉w〈y〉w

[
1− χ

(
x− y
t

)]
E(x− y, t)

∣∣∣∣ . 1
〈|x− y|〉N−w

which is in L1 for N big enough. Therefore, ‖h‖2 . ‖g‖2, hence the desired
estimate.

Assertion (ii). It suffices to prove it for w = 0 and w = 1, and to interpolate.
The case w = 0 is (6.4); for the case w = 1, use the identity xeit〈D〉f =
eit〈D〉

[
t D〈D〉f + xf

]
to get

∥∥∥∥x ∫ ∞
0

eis〈D〉ϕ

(
D

R

)
F (s) ds

∥∥∥∥
2

=
∥∥∥∥∫ ∞

0
eis〈D〉

[
s
D

〈D〉
ϕ

(
D

R

)
F (s) + xϕ

(
D

R

)
F (s)

]
ds

∥∥∥∥
2

.

∥∥∥∥sϕ(DR
)
F (s)

∥∥∥∥
L2W

5
6 +ε,6/5

+
∥∥∥∥xϕ(DR

)
F (s)

∥∥∥∥
L2W

5
6 +ε,6/5

. R5/6+ε [‖sF (s)‖L2L6/5 + ‖〈x〉F (s)‖L2L6/5 ]

. R5/6+ε ‖[〈s〉+ 〈x〉]F‖L2L6/5

(the first inequality above follows from (6.4) and the boundedness of the
operator D

〈D〉 over Lp spaces; in the second, we use ‖〈x〉ϕ(D/T )w‖p .
‖〈x〉w‖p).
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Assertion (iii). Using the point (ii) that was just proved and the inequality
‖〈x〉ϕ(D/T )w‖p . ‖〈x〉w‖p gives, taking C0 large enough,∥∥∥∥|x|w ∫ ∞

1
ϕ

(
D

sα

)
eis〈D〉F (s)ds

∥∥∥∥
2

.
∑
j>0

∥∥∥∥∥|x|wP<αj+C0

∫ 2j+1

2j
eis〈D〉ϕ

(
D

sα

)
F (s)ds

∥∥∥∥∥
2

.
∑
j

2( 5
6 +ε)αj

∥∥∥∥[〈s〉+ 〈x〉]w ϕ
(
D

sα

)
F (s)

∥∥∥∥
L2([2j ,2j+1],L6/5)

.
∑
j

2( 5
6 +ε)αj ‖[〈s〉+ 〈x〉]w F (s)‖L2([2j ,2j+1],L6/5)

.
∥∥∥s 5

6α+(α+1)ε [〈s〉+ 〈x〉]w F (s)
∥∥∥
L2L6/5

.

�

6.3. Pseudo-product operators

Recall the definition (which was introduced by Coifman and Meyer [2])
of the pseudo-product operator with symbol m(ξ, η):

Tm(f, g) def= F−1
∫
m(ξ, η)f̂(η)f̂(ξ − η) dη.

The following proposition gives essentially the simplest framework for which
boundedness between Lebesgue spaces can be established.

Proposition 6.2. — (i) If the Lebesgue exponents p, q, r satisfy the
Hölder relation 1

p + 1
q = 1

r , then

‖Tm(f, g)‖r . ‖m̂‖1 ‖f‖p‖g‖q.

(where m̂ is the 6-dimensional Fourier transform of m).

(ii) Still assuming that 1
p + 1

q = 1
r , for w > 0,

‖|x|wTm(f, g)‖r . ‖|α|
wm̂(α, β)‖1 ‖f‖p‖g‖q + ‖m̂‖1‖f‖p ‖|x|wg(x)‖q .

Proof. — Assertion (i). Translating the definition of Tm in physical space
yields

Tm(f, g)(x) =
∫ ∫

µ(z − x, y − z)f(y)g(z) dy dz

with µ = m̂. The proposition follows from its dual version

|〈Tm(f, g) , h〉| . ‖µ‖1‖f‖p‖g‖q‖h‖r′ .
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It suffices of course to prove this under the assumption that 1 = ‖f‖p =
‖g‖q = ‖h‖r′ , which is done using Young’s inequality:
|〈Tm(f, g) , h〉|

=
∣∣∣∣∫ ∫ ∫ µ(z − x, y − z)f(y)g(z)h(x) dy dz dx

∣∣∣∣
.

∣∣∣∣∫ ∫ ∫ |µ(z − x, y − z)|
[
|f(y)|p + |g(z)|q + |h(x)|r

′
]
dx dy dz

∣∣∣∣
. ‖µ‖1.

Assertion (ii). Follows along the same lines from the inequality

|x|w
∣∣∣∣∫ ∫ µ(z − x, y − z)f(y)g(z) dy dz

∣∣∣∣
.
∫ ∫

|z − x|w|µ(z − x, y − z)||f(y)||g(z)| dy dz

+
∫ ∫

|µ(z − x, y − z)||f(y)||z|w|g(z)| dy dz.

�

Since the L1 norm of a function is controlled by the H 3
2 +ε norm of its

Fourier transform, one obtains the

Corollary 6.3. — If p, q, r satisfy 1
p + 1

q = 1
r , and if ε > 0 then

‖Tm(f, g)‖r . ‖m‖H 3
2 +ε ‖f‖p‖g‖q.

We also need estimates for pseudo-product operators of the following
particular kind:

Proposition 6.4. — Let m(ξ, η) = χ (ξ − λη). Then

‖Tm(f, g)‖r . ‖χ̂‖1‖f‖p‖g‖q if 1
p + 1

q = 1
r .

Proof. — The dual formulation for Tm can be written as

〈Tm(f, g) , h〉 =
∫ ∫

χ̂(t)f(y)g(−λt+ y)h(−(λ+ 1)t+ y) dt dy.

Proceeding as in the proof of proposition 6.2, we get under the assumption
‖f‖p = ‖g‖q = ‖h‖r′ that

‖〈Tm(f, g) , h〉‖

.
∫
|χ̂(t)|

[
|f(y)|p + |g(−λt+ y)|p + |h(−(λ+ 1)t+ y)|r

′
]
dt dy

. ‖χ̂‖1.

�
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6.4. Product law

Lemma 6.5. — If 1
p + 1

q = 1
p̃

+ 1
q̃

= 1
r , s > 0, and ε > 0, then

‖fg‖W s,r . ‖f‖W s+ε,p‖g‖q + ‖f‖
q̃
‖g‖

W s+ε,̃p
.

The proof follows for instance from the paraproduct decomposition; it is
very classical, so it will not be included here.

Appendix A. Precise study of the resonances

In this section, we first present the proofs of the lemmas 3.1 and 3.2; then,
thanks to a numerical computation, we describe the space-time resonant
set if c = 5.

A.1. Preliminaries

Recall the definition of the phases:

φk,`,mε0,ε1,ε2
(ξ, η) def= ε0〈ξ〉k − ε1〈η〉` − ε2〈ξ − η〉m.

and that (dropping in the following line all indices)

T = {φ = 0} , S = {∂ηφ = 0} and R = S ∩ T .

In order to establish lemmas 3.1 and 3.2, one has to consider a lot of
particular cases; but they are all similar and elementary, so we do not
detail all of them, and instead only treat one.
Notice that it is actually possible to reduce the number of combinations

of the indices to be examined by observing that η and ξ−η play symmetric
roles; and that turning each of the εi to its opposite simply turns φ into
−φ.

A.2. Proof of Lemma 3.1

We explain it in the case where c > 1, and for the set Rc1c+−−, the other
possibilities being very similar.
The space-resonant set, Sc1c+−−, is given by the frequencies (ξ, η) such that

0 = ∂ηφ
c1c
+−−(ξ, η) = − η

〈η〉
− c2(η − ξ)
〈η − ξ〉c

.
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This implies that η and ξ − η are positively colinear, which can be written
(so as to be consistent with previous notations) ξ−η = (λ−1)η or ξ = λη,
for a real number λ > 1. A simple computation gives

λ(|η|) = 1 + 1√
(c4 − c2)|η|2 + c4

.

Therefore, setting, for (r, ω) ∈ R+ × S2,

p(r, ω) = (λ(r)rω , rω) ∈ R6,

Sc1c+−− can be parameterized by

Sc1c+−− = {p(r, ω) , with (r, ω) ∈ R+ × S2}.

A point of Sc1c+−−, parameterized as above, will belong to T c1c+−−, and thus
to Rc1c+−−, if

Z(r) def= φc1c+−−(p(r, ω)) = 〈λ(r)r〉c − 〈r〉 − 〈(λ(r)− 1)r〉c = 0.

The function of r on the above right-hand side is analytic and has, as can
easily be checked, a non zero limit as r goes to infinity. Therefore its zeroes
form a finite set, and each one is of finite order. Suppose that r0 is one of
them.
On the one hand, in a neighbourhood of the component of R correspond-

ing to r0,

(A.1) dist(p(r),R) ∼ |r − r0|.

On the other hand, r0 is a zero of Z of finite order, thus |Z(r)| ∼ |r− r0|m,
for some integer m. Since φ does not vanish to infinite order on T , this
implies

(A.2) dist(p(r), T ) ∼ |r − r0|n.

for an integer n. Combining (A.1) and (A.2) gives

(A.3) dist(p(r), T ) & dist(p(r),R)n

which is the finite order intersection property.

A.3. Proof of Lemma 3.2

A.3.1. Low frequencies

In this subsection, we ignore high frequencies and define χρR(ξ, η),
χρS(ξ, η) and χρT (ξ, η) for |(ξ, η)| 6M .
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It suffices to do so in the neighbourhood of one of the components of R;
it is of the type {ξ = λη , |η| = R} for real numbers λ,R. Define

χρR(ξ, η) def= χ1

(
|η| −R
ρ

)
χ1

(
ξ − λη
ρ

)
,

where χ1 is valued in [0, 1], compactly supported, smooth, and equal to 1
in a neighbourhood of zero. Next define

χρS(ξ, η) def= [1− χρR(ξ, η)]χ2

(
C0

dist((ξ, η), T )− dist((ξ, η),S)
dist((ξ, η),R)n

)
where χ2 is valued in [0, 1], equal to 0 on (−∞,−1) and 1 on (1,∞), n is
the constant appearing in (A.3), and C0 is chosen sufficiently big. Finally,

χρT (ξ, η) def= 1− χρR(ξ, η)− χρS(ξ, η).

Let us now check that the functions we built up have the desired properties.
The first four points of Lemma 3.2 are clearly satisfied. Since we only care
here about low frequencies, we only have to establish (3.4), which we will do
for χρS

φ , the other case being very similar. Denoting ε instead of d((ξ, η),R)
will make the notations lighter; we will assume that ε & ρ, for otherwise
χρS
φ (ξ, η) = 0.
Taking α derivatives of χ

ρ
S
φ , many configurations arise, but we shall only

consider the two extreme ones for the sake of simplicity. The desired bound
for ∂αχρS

φ is easily established; we therefore focus on χρS∂α 1
φ .

It is clear that ∣∣∣∣χρS∂α 1
φ

∣∣∣∣ . 1
|φ||α|+1

Thus, it suffices to prove a bound of the form

|φ| & εp,

for some exponent p. Since φ vanishes to finite order, we have

(A.4) |φ(ξ, η)| & d((ξ, η), T )q

for some exponent q. The finite order intersection property gives

max (d((ξ, η), T ) , d((ξ, η),S)) & εn.

On the other hand, on the support of χρS ,

d((ξ, η), T )− d((ξ, η),S) > − 1
C0
εn,

and C0 is picked very large. This leads to d((ξ, η), T ) & εn, which, combined
with (A.4), gives the desired estimate.
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A.3.2. High frequencies

In this subsection, we show how to define χρS(ξ, η) and χρT (ξ, η) for
|(ξ, η)| >M ; recall thatM is so large that no space-time resonances belong
to this range.
The problem we are facing occurs when (ξ, η)→∞ so it suffices to define

χρS(ξ, η) and χρT (ξ, η) for |(ξ, η)| very large; but then, the index ρ does not
have any importance, so we forget about it.
One has to consider all the possible combinations of indices ε0, ε1, ε2, k,

l,m. Since all these cases can be treated in a similar fashion, we only
illustrate here the example of φ11c

+−− when c > 1. As in Subsection A.2, we
find that

S11c
+−− = {p(r, ω) , with (r, ω) ∈ R+ × S2}

with p(r, ω) = (λ(r)rω , rω) and λ(r) = 1 + 1√
(c4−c2)r2+c4

. A simple limit
computation gives that, as r →∞,
(A.5)

p(r, ω)=
([
r+ 1√

c4−c2

]
ω, rω

)
+O

(
1
r2

)
and φ11c

+−−(p(r, ω)) = C0+O
(

1
r

)
for a certain constant C0. Define

χS(ξ, η) def= χ3

(
|ξ − η| − 1√

c4 − c2

)
,

where χ3 is smooth, supported on a sufficiently small neighbourhood of
0, and equal to 1 near 0. Since ∂ξ,ηφ is bounded, the property (A.5) im-
plies that, for (ξ, η) large, |φ| & 1 on the support of χS . This gives the
inequality (3.5) for χS

φ .
Finally, set

χT (ξ, η) def= 1− χS(ξ, η).
It can be easily seen that ∂ηφ & 1 on the support of χT . This gives the
inequality (3.5) for χT ∂ηφ

|∂ηφ|2 .

A.4. Numerical computation for c = 5

We computed numerically the space time resonances in case c = 5. The
main interest of this computation is to give a practical example where
space-time resonances occur, and are separated.
As showed in Subsection A.2, finding space-time resonances reduces to

finding the zeroes of an explicit real-valued function of a real variable; doing
this numerically is very simple.
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The results are as follows
• Space-time resonances only occur for the phases φc11

+−−, φcc1+−−, and
all the phases obtained from these two by the symmetries signaled
in Subsection A.1.

• Outcome frequencies of space-time resonances are the frequencies ξ
such that |ξ| = 0.3535533906 . . . or 0.3603654667 . . . .

• Source frequencies of space-time resonances are the frequencies ξ
such that |ξ| = 0.01314860997 . . . , 0.1767766953 . . . , or
0.3472168567 . . . .
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