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ON NON-ABELIAN STARK-TYPE CONJECTURES

by Andreas NICKEL (*)

Abstract. — We introduce non-abelian generalizations of Brumer’s conjec-
ture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached
to a Galois CM-extension of number fields. Moreover, we discuss how they are re-
lated to the equivariant Tamagawa number conjecture, the strong Stark conjecture
and a non-abelian generalization of Rubin’s conjecture due to D. Burns.
Résumé. — Nous présentons des généralisations non abéliennes de la conjecture

de Brumer, de la conjecture de Brumer-Stark et de la propriété forte de Brumer-
Stark, qui sont associées à une CM-extension galoisienne de corps de nombres. De
plus, nous étudions les liens avec la conjecture équivariante sur les nombres de
Tamagawa, la conjecture forte de Stark et la généralisation non abélienne d’une
conjecture de Rubin due à D. Burns.

Let L/K be a finite Galois CM-extension of number fields with Galois
group G. To each finite set S of places of K which contains all the infinite
places, one can associate a so-called “Stickelberger element” θS(L/K) in
the center of the group ring algebra CG. This Stickelberger element is
defined via L-values at zero of S-truncated Artin L-functions attached to
the (complex) characters of G. Let us denote the roots of unity of L by µL
and the class group of L by clL. Assume that S contains the set Sram of all
finite primes of K which ramify in L/K. Then it was independently shown
in [8], [13] and [1] that for abelian G one has

(0.1) AnnZG(µL)θS(L/K) ⊂ ZG.

Now Brumer’s conjecture asserts that AnnZG(µL)θS(L/K) annihilates clL.
There is a large body of evidence in support of Brumer’s conjecture (cf.
the expository article [14]); in particular, C. Greither [15] has shown that
the appropriate special case of the equivariant Tamagawa number conjec-
ture (ETNC) as formulated by Burns and Flach [6] implies the p-part of
Brumer’s conjecture for an odd prime p if the p-part of µL is a c.t. (short

Keywords: Stark conjectures, L-values, class groups.
Math. classification: 11R42, 11R29.
(*) I acknowledge financial support provided by the DFG.



2578 Andreas NICKEL

for cohomologically trivial) G-module. A similar result for arbitrary G was
recently proven by the author [19], improving an unconditional annihila-
tion result due to D. Burns and H. Johnston [7]. Note that the assumptions
made in loc.cit. are adapted to ensure the validity of the strong Stark con-
jecture. These two results will provide some evidence for our conjecture.
Moreover, we will introduce a non-abelian generalization of the Brumer-

Stark conjecture and of the strong Brumer-Stark property. The extension
L/K fulfills the latter if certain Stickelberger elements are contained in the
(non-commutative) Fitting invariants of corresponding ray class groups;
but it does not hold in general, even if G is abelian, as follows from the
results in [16]. But if this property happens to be true, this also implies
the validity of the (non-abelian) Brumer-Stark conjecture and Brumer’s
conjecture. We will show that the p-part of this property is implied by the
ETNC if the ramification above the odd prime p is at most tame.
D. Burns [3] has introduced a non-abelian analogue of a conjecture formu-

lated by Rubin ([25], Conj. B). It is shown in loc.cit. that this conjecture
is implied by the strong Stark conjecture, and we will show that Burns’
conjecture implies slightly weaker annihilation results as predicted by the
(non-abelian) Brumer-Stark resp. Brumer’s conjecture.

1. Preliminaries

1.0.1. K-theory

Let Λ be a left noetherian ring with 1 and PMod(Λ) the category of all
finitely generated projective Λ-modules. We write K0(Λ) for the Grothen-
dieck group of PMod(Λ), and K1(Λ) for the Whitehead group of Λ which
is the abelianized infinite general linear group. If S is a multiplicatively
closed subset of the center of Λ which contains no zero divisors, 1 ∈ S,
0 6∈ S, we denote the Grothendieck group of the category of all finitely
generated S-torsion Λ-modules of finite projective dimension by K0S(Λ).
Writing ΛS for the ring of quotients of Λ with denominators in S, we have
the following Localization Sequence (cf. [12], p. 65)

(1.1) K1(Λ)→ K1(ΛS) ∂−→ K0S(Λ)→ K0(Λ)→ K0(ΛS).

In the special case where Λ is an o-order over a commutative ring o and
S is the set of all nonzerodivisors of o, we also write K0T (Λ) instead of
K0S(Λ). Moreover, we denote the relative K-group corresponding to a ring
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STARK-TYPE CONJECTURES 2579

homomorphism Λ→ Λ′ byK0(Λ,Λ′) (cf. [26]). Then we have a Localization
Sequence (cf. [12], p. 72)

K1(Λ)→ K1(Λ′)
∂Λ,Λ′−→ K0(Λ,Λ′)→ K0(Λ)→ K0(Λ′).

It is also shown in [26] that there is an isomorphism K0(Λ,ΛS) ' K0S(Λ).
For any ring Λ we write ζ(Λ) for the subring of all elements which are
central in Λ. Let L be a subfield of either C or Cp for some prime p and
let G be a finite group. In the case where Λ′ is the group ring LG the
reduced norm map nrLG : K1(LG) → ζ(LG)× is always injective. If in
addition L = R, there exists a canonical map ∂̂G : ζ(RG)× → K0(ZG,RG)
such that the restriction of ∂̂G to the image of the reduced norm equals
∂ZG,RG ◦ nr−1

RG. This map is called the extended boundary homomorphism
and was introduced by Burns and Flach [6].

1.0.2. χ-twists

We largely adopt the treatment of [3], § 1. Let G be a finite group and
denote the set of all irreducible characters with values in C resp. Cp by
Irr(G) resp. Irrp(G). Fix an irreducible character χ ∈ Irr(G) resp. χ ∈
Irrp(G) and let Eχ be the minimal subfield of C resp. Cp over which χ can
be realized and which is both, Galois and of finite degree over Q resp. Qp.
We put

prχ :=
∑
g∈G

χ(g−1)g, eχ := χ(1)
|G|

prχ .

Hence eχ is a central primitive idempotent of EχG and prχ is the associated
projector. We write oχ for the ring of integers of Eχ and choose a maximal
oχ-order M in EχG which contains oχG. We fix an indecomposable idem-
potent fχ of eχM and define an oχ-torsionfree right oχG-module by setting
Tχ := fχM. Note that this slightly differs from the definition in [3], but
follows the notation of [7] and [19]. Tχ is (locally) free of rank χ(1) over oχ
and the associated right EχG-module Vχ := Eχ⊗oχ Tχ has character χ. For
any left G-module M we set M [χ] := Tχ ⊗Z M resp. M [χ] := Tχ ⊗Zp M ,
upon which G acts on the left by t⊗m 7→ tg−1 ⊗ g(m) for t ∈ Tχ, m ∈M
and g ∈ G. For any integer i we write Hi(G,M) for the Tate cohomology in
degree i of M with respect to G. Moreover, we write MG resp. MG for the
maximal submodule resp. the maximal quotient module of M upon which
G acts trivially. We obtain a left exact functor M 7→Mχ and a right exact
functor M 7→ Mχ from the category of left G-modules to the category of
oχ-modules by setting Mχ := M [χ]G and Mχ := M [χ]G. The action of
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2580 Andreas NICKEL

NG :=
∑
g∈G g induces a homomorphism t(M,χ) : Mχ → Mχ with kernel

H−1(G,M [χ]) and cokernel H0(G,M [χ]). Thus Mχ ' Mχ whenever M
and hence also M [χ] is a c.t. G-module.

1.0.3. Non-commutative Fitting invariants

For the following we refer the reader to [19]. We denote the set of all
m × n matrices with entries in a ring R by Mm×n(R) and in the case
m = n the group of all invertible elements of Mn×n(R) by Gln(R). Let A
be a separable K-algebra and Λ be an o-order in A, finitely generated as
o-module, where o is a complete commutative noetherian local ring with
field of quotients K. Moreover, we will assume that the integral closure of
o in K is finitely generated as o-module. The group ring ZpG will serve
as a standard example. Let N and M be two ζ(Λ)-submodules of an o-
torsionfree ζ(Λ)-module. ThenN andM are called nr(Λ)-equivalent if there
exists an integer n and a matrix U ∈ Gln(Λ) such thatN = nr(U)·M , where
nr : A→ ζ(A) denotes the reduced norm map which extends to matrix rings
over A in the obvious way. We denote the corresponding equivalence class
by [N ]nr(Λ). We say that N is nr(Λ)-contained in M (and write [N ]nr(Λ) ⊂
[M ]nr(Λ)) if for all N ′ ∈ [N ]nr(Λ) there exists M ′ ∈ [M ]nr(Λ) such that
N ′ ⊂M ′. Note that it suffices to check this property for one N0 ∈ [N ]nr(Λ).
Moreover, we write [N ]nr(Λ) ⊂ M if N ′ ⊂ M for all N ′ ∈ [N ]nr(Λ). We
will say that x is contained in [N ]nr(Λ) (and write x ∈ [N ]nr(Λ)) if there is
N0 ∈ [N ]nr(Λ) such that x ∈ N0.

Now let M be a finitely presented (left) Λ-module and let

(1.2) Λa h−→ Λb �M

be a finite presentation of M . We identify the homomorphism h with the
corresponding matrix in Ma×b(Λ) and define S(h) = Sb(h) to be the set of
all b×b submatrices of h if a > b. In the case a = b we call (1.2) a quadratic
presentation. The Fitting invariant of h over Λ is defined to be

FittΛ(h) =
{

[0]nr(Λ) if a < b[
〈nr(H)|H ∈ S(h)〉ζ(Λ)

]
nr(Λ) if a > b.

We call FittΛ(h) a Fitting invariant of M over Λ. One defines Fittmax
Λ (M)

to be the unique Fitting invariant ofM over Λ which is maximal among all
Fitting invariants of M with respect to the partial order “⊂”. If M admits
a quadratic presentation h, one also puts FittΛ(M) := FittΛ(h) which is
independent of the chosen quadratic presentation (cf. also [22]). Finally, we
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STARK-TYPE CONJECTURES 2581

denote by I = I(Λ) the ζ(Λ)-submodule of ζ(A) generated by the elements
nr(H), H ∈Mb×b(Λ), b ∈ N.
For any ZpG-moduleM we denote the Pontryagin dual Hom(M,Qp/Zp)

of M by M∨ which is equipped with the natural G-action (gf)(m) =
f(g−1m) for f ∈M∨, g ∈ G and m ∈M . If M is finite, we have

(1.3) AnnZpG(M∨) = AnnZpG(M)],

where we denote by ] : QpG → QpG the involution induced by g 7→ g−1.
We will frequently make use of the following proposition.

Proposition 1.1. — Let M , M ′ and M ′′ be finitely presented Λ-mo-
dules. Then it holds:

(1) If M �M ′ is an epimorphism, then Fittmax
Λ (M) ⊂ Fittmax

Λ (M ′).
(2) If M ′ →M �M ′′ is an exact sequence of Λ-modules, then

Fittmax
Λ (M ′) · Fittmax

Λ (M ′′) ⊂ Fittmax
Λ (M).

(3) If θ ∈ Fittmax
Λ (M) and λ ∈ I, then also λ · θ ∈ Fittmax

Λ (M).
(4) IfM admits a quadratic presentation, then Fittmax

Λ (M)=I·FittΛ(M).
(5) If Λ = ZpG and M � C → C ′ �M ′ is an exact sequence of finite

Λ-modules, where C and C ′ are c.t., then we have an equality

Fittmax
Λ (M∨)] · FittΛ(C ′) = Fittmax

Λ (M ′) · FittΛ(C).

Proof. — For (1), (2) and (5) see [19], Prop. 3.5 (i), (iii) and Prop. 5.3
(ii). For (3) let h be a finite presentation of M such that FittΛ(h) =
Fittmax

Λ (M). Then θ =
∑
H zH nr(H), zH ∈ ζ(Λ), where the sum runs

through all the submatrices H ∈ Sb(h). Hence it suffices to show that
λ·nr(H) ∈ Fittmax

Λ (M) for anyH ∈ Sb(h). We may assume that λ = nr(H ′)
with H ′ ∈Mb′×b′(Λ), and by adding an appropriate identity matrix on H ′
resp. h we may also assume that b = b′. Consider the diagram

Λb
H◦H′ //

H′

��

Λb // // cok(H ◦H ′)

����
Λb

H // Λb // // cok(H).

Now (1) implies nr(H) nr(H ′) ∈ Fittmax
Λ (cok(H ◦H ′)) ⊂ Fittmax

Λ (cok(H)),
and since there is an epimorphism cok(H) � M , also Fittmax

Λ (cok(H)) ⊂
Fittmax

Λ (M). This shows (3) and the inclusion I · FittΛ(M) ⊂ Fittmax
Λ (M)

of (4). Now let ψ be a quadratic presentation and h be an arbitrary pre-
sentation of M . Then it follows from [19], Th. 3.2 resp. its proof that we
may assume that h = (ψ|0) ◦X, where X ∈ Gla(Λ) for some a ∈ N. Since
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ψ is quadratic, each H ∈ S(h) is the product ψ ◦ X̃ for some submatrix X̃
of X and thus nr(H) = nr(X̃) · nr(ψ) ∈ I · FittΛ(M). �

Assume now that o is an integrally closed commutative noetherian ring,
but not necessarily complete or local. We choose a maximal order Λ′ con-
taining Λ. We may decompose the separable K-algebra A into its simple
components

A = A1 ⊕ · · · ⊕At,
i.e., each Ai is a simple K-algebra and Ai = Aei = eiA with central
primitive idempotents ei, 1 6 i 6 t. For any matrix H ∈ Mb×b(Λ) there
is a unique matrix H∗ ∈Mb×b(Λ′) such that H∗H = HH∗ = nr(H) · 1b×b
and H∗ei = 0 whenever nr(H)ei = 0 (cf. [19], Lemma 4.1; the additional
assumption on o to be complete local is not necessary). If H̃ ∈Mb×b(Λ) is
a second matrix, then (HH̃)∗ = H̃∗H∗. We define

H = H(Λ) := {x ∈ ζ(Λ)|xH∗ ∈Mb×b(Λ)∀b ∈ N ∀H ∈Mb×b(Λ)} .

Since x · nr(H) = xH∗H, we have in particular

(1.4) H · I = H ⊂ ζ(Λ),

where I is defined as before even if o is not complete and local. The impor-
tance of the ζ(Λ)-module H will become clear by means of the following
result which is [19], Th. 4.2.

Theorem 1.2. — If o is an integrally closed complete commutative noe-
therian local ring and M is a finitely presented Λ-module, then

H · Fittmax
Λ (M) ⊂ AnnΛ(M).

Now we specialize to Λ = oG, where o is either Z or Zp. As before, let
Λ′ be a maximal order containing Λ. The central conductor of Λ′ over Λ
is defined to be F = F(Λ) := {x ∈ ζ(Λ′) : xΛ′ ⊂ Λ} and is explicitly given
by (cf. [11], Th. 27.13)

(1.5) F =
⊕
χ

|G|
χ(1) D

−1(K(χ)/K),

where D−1(K(χ)/K) denotes the inverse different of the extensionK(χ) :=
K(χ(g) : g ∈ G) over K = Quot(o) and the sum runs through all the
irreducible characters with values in C resp. Cp modulo Galois action.

Lemma 1.3. — Let Λ = oG, where o is Z or Zp. Then it holds:
(1) F ⊂ H.
(2) If G is abelian or if Λ = ZpG and p - |G|, then H = ζ(Λ).
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Proof. — (1) and the case p - |G| of (2) are clear from the observations
above. If G is abelian, we may choose H∗ to be the adjoined matrix of H
and we get (2). �

In the sequel we will use the following notation: F(G) = F(ZG), Fp(G) =
F(ZpG) and similarly for H and I. We denote the normalized valuation
at a prime P by vP and for x =

∑
g∈G xgg ∈ ZG resp. x ∈ ZpG we put

vp(x) := ming∈G vp(xg).

Lemma 1.4. — Let p be a prime and let G be a finite group. Then H(G)
is dense in Hp(G) with respect to the p-adic topology.

Proof. — Let x ∈ Hp(G) and choose x′ ∈ ζ(ZG) close to x. Then for any
H ∈Mn×n(ZpG) we have

x′H∗ = xH∗ + (x′ − x)H∗ ∈Mn×n(ZpG)

if vp(x′ − x) > n, where |G| = m · pn with p - m. Thus x′ ∈ Hp(G). Now
let N ∈ N be large; since p does not divide m, we can choose a multiple
m′ of m such that m′ ≡ 1 mod pN . Then m′x′ is also close to x, since
vp(x −m′x′) > min{vp(x − x′), vp((1 −m′)x′)}. But since m|m′, we have
m′x′ ∈ Hq(G) for all primes q. Now let H ∈Mn×n(ZG). Then

m′x′H∗ ∈
⋂
q

Mn×n(ZqG) ∩Mn×n(QG) = Mn×n(ZG)

and hence m′x′ ∈ H(G). �

1.0.4. Equivariant L-values

Let us fix a finite Galois extension L/K of number fields with Galois
group G. For any prime p of K we fix a prime P of L above p and write
GP resp. IP for the decomposition group resp. inertia subgroup of L/K
at P. Moreover, we denote the residual group at P by GP = GP/IP and
choose a lift φP ∈ GP of the Frobenius automorphism at P.
If S is a finite set of places ofK containing the set S∞ of all infinite places

of K, and χ is a (complex) character of G, we denote the S-truncated Artin
L-function attached to χ and S by LS(s, χ) and define L∗S(0, χ) to be the
leading coefficient of the Taylor expansion of LS(s, χ) at s = 0. Recall
that there is a canonical isomorphism ζ(CG) =

∏
χ∈Irr(G) C. We define the

equivariant Artin L-function to be the meromorphic ζ(CG)-valued function

LS(s) := (LS(s, χ))χ∈Irr(G).

We put L∗S(0) = (L∗S(0, χ))χ∈Irr(G) and abbreviate LS∞(s) by L(s). If T is
a second finite set of places of K sucht that S ∩ T = ∅, we define δT (s) :=
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(δT (s, χ))χ∈Irr(G), where δT (s, χ) =
∏

p∈T det(1 − N(p)1−sφ−1
P |V

IP
χ ), and

put
ΘS,T (s) := δT (s) · LS(s)].

These functions are the so-called (S, T )-modified G-equivariant L-functions
and we define Stickelberger elements

θTS := ΘS,T (0) ∈ ζ(CG).

If T is empty, we abbreviate θTS by θS . Note that the χ-part of θTS vanishes
for a non-trivial character χ if there is an (infinite) prime p ∈ S such that
V
GP
χ 6= 0. This is the main reason why we will assume henceforth that
L/K is a CM-extension, i.e., L is a CM-field, K is totally real and complex
conjugation induces an unique automorphism j of L which lies in the center
of G. If R is a subring of either C or Cp for a prime p such that 2 is invertible
over R, we put RG− := RG/(1 + j) which is a ring, since the idempotent
1−j

2 lies in RG. For any RG-moduleM we defineM− = RG−⊗RGM which
is an exact functor since 2 ∈ R×. If M is a ZG-module, we define M− to
be Z[ 1

2 ]G/(1+j)⊗ZGM . This notation is nonstandard, but practical, since
taking minus parts is again an exact functor. Now Stark’s conjecture (which
is a theorem for odd characters, see [28], Th. 1.2, p. 70) implies

(1.6) θTS ∈ ζ(QG−).

Note that we actually have to exclude the special case |S∞(L)| = 1 (cf. the
proof of [20], Prop. 3, where (1.6) is shown in the relevant case S = S∞ and
T = ∅), but in this situation the extension L/K is abelian. Let us fix an
embedding ι : C� Cp; then the image of θTS in ζ(QpG−) via the canonical
embedding

ζ(QG−)� ζ(QpG−) =
⊕

χ∈Irrp(G)/∼

χ odd

Qp(χ),

is given by
∑
χ(δT (0, χι−1) · LS(0, χ̌ι−1))ι. Here the sum runs over all Cp-

valued irreducible odd characters of G modulo Galois action. Note that we
will frequently drop ι and ι−1 from the notation.

1.0.5. Ray class groups

For any set S of places of K, we write S(L) for the set of places of L
which lie above those in S. Now let T and S be as above. We write clTL
for the ray class group of L to the ray MT :=

∏
P∈T (L) P and oS for the

ring of S(L)-integers of L. Let Sf be the set of all finite primes in S(L);
then there is a natural map ZSf → clTL which sends each prime P ∈ Sf

ANNALES DE L’INSTITUT FOURIER
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to the corresponding class [P] ∈ clTL. We denote the cokernel of this map
by clTS (L) =: clTS . Further, we denote the S(L)-units of L by ES and define
ETS := {x ∈ ES : x ≡ 1 mod MT }. All these modules are equipped with a
natural G-action and we have the following exact sequences of G-modules

(1.7) ETS∞ � ETS
v−→ ZSf → clTL � clTS ,

where v(x) =
∑

P∈Sf vP(x)P for x ∈ ETS , and

(1.8) ETS � ES → (oS/MT )× ν−→ clTS � clS ,

where the map ν lifts an element x ∈ (oS/MT )× to x ∈ oS and sends it to
the ideal class [(x)] ∈ clTS of the principal ideal (x). Note that the G-module
(oS/MT )× is c.t. if no prime in T ramifies in L/K. We define

ATS := (clTS )−.

If S = S∞, we also write ATL and ETL instead of ATS∞ and ETS∞ . Finally,
we suppress the superscript T from the notation if T is empty. If M is a
finitely generated Z-module and p is a prime, we put M(p) := Zp⊗ZM . In
particular, AL(p) is the p-part of the minus class group if p is odd.

2. Statement of the conjectures

Let L/K be a Galois CM-extension with Galois group G. Let S and T
be two finite sets of places of K such that

• S contains all the infinite places of K and all the places which
ramify in L/K, i.e., S ⊃ Sram ∪ S∞.

• S ∩ T = ∅.
• ETS is torsionfree.

We refer to the above hypotheses as Hyp(S, T ). We put Λ = ZG and choose
a maximal order Λ′ containing Λ. For a fixed set S we define AS to be the
ζ(Λ)-submodule of ζ(Λ′) generated by the elements δT (0), where T runs
through the finite sets of places of K such that Hyp(S, T ) is satisfied. The
following is a non-abelian generalization of Brumer’s conjecture.

Conjecture 2.1 (B(L/K, S)). — Let S be a finite set of places of K
containing Sram ∪ S∞. Then ASθS ⊂ I(G) and for each x ∈ H(G) we have

x · ASθS ⊂ AnnΛ(clL).

Before we make some clarifying remarks, we state the following lemma.

TOME 61 (2011), FASCICULE 6
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Lemma 2.2. — Let S be a finite set of places of K containing Sram∪S∞.
Then the elements φP−N(p), where p runs through all the finite places ofK
such that the sets S and Tp = {p} satisfy Hyp(S, Tp), generate AnnZG(µL).
Moreover, if we restrict to the primes p such that φP = 1, the greatest
common divisor of the integers 1−N(p) is |µL|.

Proof. — The proof of [28], Lemma 1.1, p. 82 (where G is assumed to be
abelian) remains unchanged. �

Remark 2.3. — (1) Since AS is generated by the elements δT (0)
such that Hyp(S, T ) holds, Conjecture 2.1 is equivalent to the as-
sertion that for all these sets T the Stickelberger element θTS lies in
I(G) and xθTS annihilates the class group for each x ∈ H(G). Note
that θTS ∈ I(G) implies xθTS ∈ ζ(Λ).

(2) Lemma 2.2 implies that in fact [AS(p)]nr(ZpG) is a Fitting invariant
of µL(p) over ZpG. Moreover, we have

Ip(G) · [AS(p)]nr(ZpG) ⊂ Fittmax
ZpG(µL(p))

by Proposition 1.1. So it is reasonable to ask if this inclusion might
be an equality (at least if S = Sram ∪ S∞).

(3) If G is abelian, Lemma 2.2 implies that the module AS equals
AnnZG(µL). In this case the inclusion ASθS ⊂ I(G) = Λ follows
from (0.1), and since H(G) = Λ by Lemma 1.3, Conjecture 2.1
recovers Brumer’s conjecture.

Since H(G) always contains the central conductor F(G), we can state
the following weaker form of Conjecture 2.1.

Conjecture 2.4 (Bw(L/K, S)). — Let S be a finite set of places of K
containing Sram ∪ S∞. Then ASθS ⊂ ζ(Λ′) and for each x ∈ F(G) we have

x · ASθS ⊂ AnnΛ(clL).

Lemma 2.5. — Let S be a finite set of places of K containing Sram∪S∞.
Then

B(L/K, S) =⇒ Bw(L/K, S).
If S ⊂ S′, then

B(L/K, S) =⇒ B(L/K, S′),
Bw(L/K, S) =⇒ Bw(L/K, S′).

Proof. — The first assertion is obvious. Now assume that B(L/K, S)
resp. Bw(L/K, S) holds. Since θS′ = nr(λ)θS , where λ =

∏
p∈S′rS(1 −

φ−1
P ) ∈ Λ, we see that also AS′θS′ ⊂ AS nr(λ)θS lies in I(G) resp. ζ(Λ′).
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Moreover x̃ := x · nr(λ) lies in H(G) resp. F(G) if x does. Hence we find
that xAS′θS′ ⊂ x̃ASθS annihilates clL. �

Replacing the class group clL by its p-parts clL(p) for each rational prime
p, Conjecture B(L/K, S) resp. Conjecture Bw(L/K, S) naturally decom-
poses into local conjectures B(L/K, S, p) resp. Bw(L/K, S, p). Note that
it is possible to replace H(G) by Hp(G) by means of Lemma 1.4. Taking
Lemma 1.3 into account, a similar proof shows the following lemma.

Lemma 2.6. — Let S be a finite set of places of K containing Sram ∪S∞
and let p be a prime. Then

B(L/K, S, p) =⇒ Bw(L/K, S, p).

If p - |G| then
B(L/K, S, p) ⇐⇒ Bw(L/K, S, p).

If S ⊂ S′, then
B(L/K, S, p) =⇒ B(L/K, S′, p),

Bw(L/K, S, p) =⇒ Bw(L/K, S′, p).

For α ∈ L× we define

Sα := {p finite prime of K : p|NL/K(α)}

and we call α an anti-unit if α1+j = 1. Let ωL := nr(|µL|). The following
is a non-abelian generalization of the Brumer-Stark conjecture.

Conjecture 2.7 (BS(L/K, S)). — Let S be a finite set of places of K
containing Sram ∪ S∞. Then ωL · θS ∈ I(G) and for each x ∈ H(G) and
each fractional ideal a of L, there is an anti-unit α = α(x, a, S) ∈ L× such
that

ax·ωL·θS = (α)
and for each finite set T of primes of K such that Hyp(S∪Sα, T ) is satisfied
there is an αT ∈ ETSα such that

(2.1) αz·δT (0) = αz·ωLT

for each z ∈ H(G).

Remark 2.8. — If G is abelian, we have I(G) = H(G) = ZG and ωL =
|µL|. Hence it suffices to treat the case x = z = 1. Then [28], Prop. 1.2,
p. 83 states that the condition (2.1) on the anti-unit α is equivalent to the
assertion that the extension L(α1/ωL)/K is abelian.

As above we can state the following weaker conjecture.
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Conjecture 2.9 (BSw(L/K, S)). — Let S be a finite set of places of
K containing Sram ∪ S∞. Then ωL · θS ∈ ζ(Λ′) and for each x ∈ F(G) and
each fractional ideal a of L, there is an anti-unit α = α(x, a, S) ∈ L× such
that

ax·ωL·θS = (α)

and for each finite set T of primes of K such that Hyp(S ∪ Sα, T ) holds
there is an αT ∈ ETSα such that

(2.2) αz·δT (0) = αz·ωLT

for each z ∈ F(G).

Remark 2.10. — (1) Since ETSα is torsionfree, we may replace the
equalities (2.1) and (2.2) by the equality αδT (0) = αωLT in Q⊗ETSα .

(2) If a and b are two fractional ideals of L for which Conjecture
BS(L/K, S) resp. BSw(L/K, S) holds, then it is easy to see that
this conjecture is also true for the product a · b. Since it is also true
for principal ideals, it suffices to verify these conjectures for totally
decomposed primes, as these primes generate the class group.

(3) If we restrict Conjecture BS(L/K, S) resp. BSw(L/K, S) to ideals
whose class in clL has p-power order, we get local conjectures
BS(L/K, S, p) resp. BSw(L/K, S, p).

(4) If the prime p is odd, we may omit the condition that the generator
α is an anti-unit by the following reason (cf. [17], remark preceding
Prop. 1.1): Let a be a fractional ideal whose class in clL has p-
power order. Since squaring is invertible on clL(p) we find b such
that a = (u)b2 for some u ∈ L×. Now let x ∈ H(G) resp. x ∈ F(G)
and assume that bx·ωLθS is generated by β ∈ L× such that (2.1)
holds (with α replaced by β). But since (1 − j)θS = 2θS , we have
ax·ωLθS = (ux·ωLθS )bx·ωL2θS = (ux·ωLθS · β1−j) and this generator
is an appropriate anti-unit.

(5) Burns [5] has meanwhile formulated a new conjecture which gener-
alizes many refined Stark conjectures to the non-abelian situation.
In particular, it implies our generalization of Brumer’s conjecture
(cf. loc.cit., Prop. 3.5.1). Since it also implies the Brumer-Stark con-
jecture (cf. loc.cit., Remark 3.5.2) in the abelian case, the author
expects that it also implies Conjecture BS(L/K, S). If this is true,
loc.cit., Th. 4.1.1 would give a different proof of Theorem 5.1 below.

We have the following implications which are either obvious or which are
proved by a similar argument as in Lemma 2.5.
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Lemma 2.11. — Let S be a finite set of places ofK containing Sram∪S∞
and let p be a prime. Then

BS(L/K, S) =⇒ BSw(L/K, S), BS(L/K, S, p) =⇒ BSw(L/K, S, p).

If p - |G|, then

BS(L/K, S, p) ⇐⇒ BSw(L/K, S, p).

If S ⊂ S′, then

BS(L/K, S) =⇒ BS(L/K, S′), BS(L/K, S, p) =⇒ BS(L/K, S′, p),

BSw(L/K, S) =⇒ BSw(L/K, S′), BSw(L/K, S, p) =⇒ BSw(L/K, S′, p).

We have the following relation to the non-abelian Brumer Conjectures:

Lemma 2.12. — Let S be a finite set of places ofK containing Sram∪S∞
and let p be a prime. Then

BS(L/K, S) =⇒ B(L/K, S), BS(L/K, S, p) =⇒ B(L/K, S, p),

BSw(L/K, S) =⇒ Bw(L/K, S), BSw(L/K, S, p) =⇒ Bw(L/K, S, p).

Proof. — Let a be a fractional ideal of L whose class in clL is assumed to
have p-power order if we are in the local case. Let x ∈ H(G) resp. x ∈ F(G).
Then ax·ωLθS = (α) and (α)z·δT (0) = (αT )z·ωL for all z ∈ F(G). Hence

(2.3) ax·z·ωL·θ
T
S = (α)z·δT (0) = (αT )z·ωL .

Since ωL ∈ ζ(QG)×, we find N ∈ N such that N · ω−1
L ∈ ζ(Λ). Moreover,

|G| · ζ(Λ) ⊂ F(G) such that we may choose z = |G| · N · ω−1
L . But the

group of fractional ideals has no Z-torsion such that equation (2.3) implies
ax·θ

T
S = (αT ). �

3. Burns’ Conjecture
and the strong Brumer-Stark property

We first recall a non-abelian generalization of the Rubin-Stark conjecture
due to D. Burns [3]. Note that our slightly different definition of χ-twist
will lead to some minor changes. Let L/K be an extension of number fields
with Galois group G and fix a non-trivial irreducible complex character χ
of G. For any finite non-empty set S of places of K we write YS for the
free abelian group on S(L) and XS for the kernel of the augmentation map
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YS → Z which sends each element of S(L) to 1. If S contains S∞, the
Dirichlet map

λS : R⊗Z ES → R⊗Z XS , ε 7→ −
∑

P∈S(L)

log |ε|pP

is an isomorphism of RG-modules. The Noether-Deuring Theorem com-
bines with the fact that XS is torsionfree to imply the existence of G-
invariant embeddings φ : XS � ES . For any such φ we set

RSφ(χ) := det(λS ◦ φ|C⊗Eχ (Vχ̌ ⊗ZG XS)) ∈ C×,

where χ̌ denotes the character contragredient to χ. Then Stark’s conjecture
(as interpreted in [28], Conj. 5.1,p. 27, but see [3], § 2) states that for each
α ∈ Aut(C) one has

L∗S(0, χα)
RSφ(χα)

= α

(
L∗S(0, χ)
RSφ(χ)

)
,

where χα := α ◦ χ. We put

rS = rS(χ) :=
∑
p∈S

dimEχ(V GP
χ ).

Then, since χ is non-trivial, one has

rS = dimEχ(Vχ̌ ⊗ZG XS) = dimEχ(Eχ ⊗oχ XS,χ̌)

and the function LS(s, χ) vanishes to order rS at s = 0 by [28], Prop. 3.4,
p. 24. Further, if we denote by

λ
(χ)
S : C⊗Eχ (∧rSEχ(Vχ̌ ⊗ZG ES)) ∼−→ C⊗Eχ (∧rSEχ(Vχ̌ ⊗ZG XS))

the isomorphism of C-spaces induced by λS , one finds that Stark’s conjec-
ture implies

(3.1) L∗S(0, χ) · ∧rSEχ(Vχ̌ ⊗ZG XS)) = λ
(χ)
S (∧rSEχ(Vχ̌ ⊗ZG ES)).

Let L∗S,T (0, χ) := δT (0, χ̌) · L∗S(0, χ) if S and T satisfy Hyp(S, T ). For any
G-module resp. oχ-module M we write Mtor for the Z-torsion submodule
of M and set M := M/Mtor which we identify as a submodule of Q⊗Z M

resp. Eχ ⊗oχ M in the natural way. Now Burns’ conjecture ([3], Conj. 2.1)
asserts the following refinement of (3.1):

Conjecture 3.1 (RS(L/K, S, T, χ) (Burns)). — Let S and T be two
finite sets of places of K such that Hyp(S, T ) is satisfied and let χ be a
non-trivial irreducible complex character. Then Stark’s conjecture holds for
χ and in C⊗Eχ (∧rSEχ(Vχ̌ ⊗ZG XS)) one has

|G|rSL∗S,T (0, χ) · ∧rSoχXS,χ̌ ⊂ Fittoχ(H−1(G,XS [χ̌])) · λ(χ)
S (∧rSoχE

T,χ̌
S ).
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Moreover, we will say that RS(L/K, S, χ) holds if RS(L/K, S, T, χ) holds
for all finite sets of places T such that Hyp(S, T ) is satisfied.

Remark 3.2. — It is reasonable to expect that the inclusion in Conjec-
ture 3.1 is an equality for sufficiently large S (cf. [3], Prop. 4.8).

If Stark’s conjecture holds, the quotient L∗S(0, χ)/RSφ(χ) belongs to Eχ.
The strong Stark conjecture as formulated by T. Chinburg ([9], Conj. 2.2)
further predicts that

(3.2) L∗S(0, χ)
RSφ(χ)

oχ = q(ψχ̌)−1,

where ψχ denotes the composite homomorphism of oχ-modules

XS,χ
φχ // ES,χ

t(ES ,χ)// EχS ,

and for each irreducible character χ we use the following general notion:
if f : M → N is a homomorphism of finitely generated oχ-modules with
finite kernel and finite cokernel, then q(f) denotes the frational oχ-ideal
Fittoχ(cok(f)) · Fittoχ(ker(f))−1.

Theorem 3.3 (([3], Th. 4.1)). — If the strong Stark conjecture (3.2)
holds for the character χ, then RS(L/K, S, χ) is valid for all admissible
sets S.

We will need the following result which is [3], Prop. 3.2. We set cS(χ) :=
Fittoχ(H−1(G,XS [χ̌])).

Proposition 3.4. — Assume that rS = 1 and |S| > 1. Let p1 be
the unique place in S with V

GP1
χ 6= 0 and set S1 := S∞ ∪ {p1}. If

RS(L/K, S, T, χ) is valid, then for any element d of cS(χ)−1D(Eχ/Q)−1

there exists an element u(d) ∈ ETS1
which at each place P of L satisfies

− log |u(d)|P =
{

0, if P - p1∑
γ∈Gal(Eχ/Q)

∑
h∈GP1

γ(d)χγ(gh)L∗S,T (0, χγ), if P = Pg1 , g ∈ G.

Theorem 3.5. — Let S be a finite set of places of K containing Sram ∪
S∞. If RS(L/K, S ∪ {q}, χ) is valid for all characters χ such that rS = 0
and all primes q which are totally split in L/K, then BSw(L/K, S) and
Bw(L/K, S) hold. In particular, if the strong Stark conjecture (3.2) holds
for these characters, then BSw(L/K, S) and Bw(L/K, S) hold for all ad-
missible sets S.

Proof. — By means of Lemma 2.12 and Theorem 3.3, it suffices to show
that the relevant case of Burns’ conjecture implies BSw(L/K, S). Since
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eχ · θTS = 0 if rS > 0, we only have to treat characters χ with rS = 0. Let T
be a finite set of primes of K such that Hyp(S, T ) is satisfied and let q be
a totally decomposed prime not in S ∪ T . We claim that 1

2 ∈ cS∪{q}(χ)−1.
Taking this for granted for the moment, let x ∈ F(G) and write

1
2 · x · θ

T
S =

∑
χ

∑
γ∈Gal(Q(χ)/Q)

γ
(1

2xχ
)
L∗S,T (0, χγ) · prχ̌γ ,

where the first sum runs over all irreducible characters with rS(χ) = 0
modulo Galois action, and where xχ ∈ D−1(Q(χ)/Q) according to the de-
scription (1.5) of the central conductor. Since L∗S,T (0, χ) = L∗S∪{q},T (0, χ)
and the trace maps D−1(Eχ/Q) onto D−1(Q(χ)/Q), we can apply Propo-
sition 3.4 to the set S ∪ {q} and obtain

Q
1
2xθ

T
S = (αT ),

where αT ∈ ETS∞∪{q} and Q is a prime in L above q. Since the ray class
group clTL is generated by totally decomposed primes, we have for any
fractional ideal a of L, coprime to the ideals in T that

(3.3) a
1
2xθ

T
S = (αT (a))

with αT (a) ∈ ETS(a), where S(a) contains all the primes of K below the
primes dividing a. Now let p be a prime and let a be a fractional ideal of
L such that its class [a] ∈ clL has p-power order . Then Lemma 2.2 implies
that there is a totally decomposed prime p0 such that |µL| = (1−N(p0)) ·c,
where c ∈ Q with vp(c) = 0. We may assume that p0 is coprime to a and
that Hyp(S, {p0}) is satisfied. The observations above imply that for any
x ∈ F(G) we have

axωLθS = a
1
2xωL2θS = a

1
2x nr(c)(1−j)θ{po}

S = (α′)(1−j) = (α)

for an appropriate α′ ∈ L× and an anti-unit α = α′(1−j). Note that there
is a natural number N with vp(N) = 0 such that N · x nr(c) ∈ F(G) and
raising to the N th power is a bijection on clL(p). Moreover, if T is a finite
set of primes such that Hyp(S ∪ Sα, T ) holds, then (3.3) implies that for
any z ∈ F(G) we have

(α)z·δT (0) = a(1−j)z· 12xωLθ
T
S = (α′T (a)(1−j))z·ωL ,

where α′T (a) ∈ ETSα and αT := α′T (a)(1−j) is an anti-unit. Hence αz·δT (0) =
uT · αz·ωLT , where uT is a unit and an anti-unit, thus a root of unity. But
uT is also congruent 1 modulo MT and therefore uT = 1.
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We are left with the proof of 1
2 ∈ cS∪{q}(χ)−1 (which was only needed for

the case p = 2). Since rS(χ) = 0, we have V GP
χ = 0 for any prime p ∈ S. Let

us fix an infinite p ∈ S. Since there is no unramified extension of the rational
numbers, there are at least two primes in S such that cS∪{q}(χ) is contained
in Fittoχ((Tχ)GP

) by [3], Rem. 2.3. But (Tχ)GP
= Tχ/(1− j)Tχ = Tχ/2Tχ

such that
cS∪{q}(χ) ⊂ Fittoχ((Tχ)GP

) = 2χ(1)oχ ⊂ 2oχ
and we have proven the claim. �

Now we discuss a non-abelian generalization of the strong Brumer-Stark
property.

Definition 3.6 (StBS(L/K, S, T, p)). — Let p be a prime and let S
and T be two finite sets of places of K such that Hyp(S, T ) is satis-
fied. The CM-extension L/K satisfies the strong Brumer-Stark property
StBS(L/K, S, T, p) if

θTS ∈ Fittmax
ZpG−(ATL(p)) = Fittmax

ZpG(clL(p))− if p 6= 2
1
2θ
T
S ∈ Fittmax

ZpG(clL(p)) if p = 2.

The above property does not hold in general as follows from the results
in [16]. But it is reasonable to state the following conjecture which is the
above property over the maximal order.

Conjecture 3.7 (StBSw(L/K, S, T, p)). — Let p be a prime and let
S and T be two finite sets of places of K such that Hyp(S, T ) is satisfied.
Choose a maximal order Λp containing ZpG. Then

θTS ∈Fitt(Λp)−((Λp)−⊗ZpG− A
T
L(p))=FittΛp(Λp ⊗ZpG clTL(p))− if p 6=2

1
2θ
T
S ∈FittΛp(Λp⊗ZpG clTL(p)) if p=2.

Moreover, we will say that StBS(L/K, S, p) resp. StBSw(L/K, S, p)
holds if StBS(L/K, S, T, p) resp. StBSw(L/K, S, T, p) holds for all finite
sets of places T such that Hyp(S, T ) is satisfied.

Lemma 3.8. — Let p be a prime and let S and T be two finite sets of
places of K such that Hyp(S, T ) is satisfied.

(1) If S ⊂ S′, then

StBS(L/K, S, T, p) =⇒ StBS(L/K, S′, T, p),

StBSw(L/K, S, T, p) =⇒ StBSw(L/K, S′, T, p).
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(2) If T ⊂ T ′, then

StBS(L/K, S, T, p) =⇒ StBS(L/K, S, T ′, p),

StBSw(L/K, S, T, p) =⇒ StBSw(L/K, S, T ′, p).

Proof. — The first assertion follows from Proposition 1.1 (4), as we ob-
serve that θTS′ =

∏
p∈S′rS nr(1 − φ−1

P ) · θTS . For (2) consider the following
special case of sequence (1.8):

ETL � EL → (oL/MT )× → clTL � clL .

Since we have a similar sequence with T replaced by T ′, we find that
the kernel of the natural projection clT

′

L � clTL equals ker((oL/MT ′)× �
(oL/MT )×) = (oL/MT ′rT )×. Now Proposition 1.1 (2) implies

Fittmax
ZpG−(AT

′

L (p)) ⊃ Fittmax
ZpG−(ATL(p)) · Fittmax

ZpG−((o/MT ′rT )×,−(p))

if p 6= 2, and the latter contains θTS ·
∏

p∈T ′rT nr(1 − N(p)φ−1
P ) = θT

′

S .
A similar argument applies for p = 2. Since tensoring with Λp is a right
exact functor, we also obtain the desired implication in the maximal order
case. �

Proposition 3.9. — Let p be a prime and let S be a finite set of places
of K containing Sram ∪ S∞. Then

StBS(L/K, S, p) =⇒ BS(L/K, S, p),

StBSw(L/K, S, p) =⇒ BSw(L/K, S, p).

Proof. — Assume that StBS(L/K, S, p) holds and p 6= 2. Let a be a
fractional ideal of L whose class in clL has p-power order. As before write
|µL| = (1−N(p0)) ·c, where p0 6∈ S is a totally decomposed prime, coprime
to a such that Hyp(S, {p0}) is satisfied, and vp(c) = 0. Then Theorem 1.2
implies that for any x ∈ H(G), there is an α ∈ L× such that

axωLθS = ax nr(c)θ{p0}
S = (α).

But also for any finite set of places T such that Hyp(S ∪Sα, T ) is satisfied,
there is an αT ∈ ETSα such that

ax·θ
T
S = (αT ).

As on earlier occasions we may assume that α and αT are anti-units such
that the equation of ideals

(α)zδT (0) = az·xωLθ
T
S = (αT )z·ωL

for all z ∈ H(G) actually implies αzδT (0) = αz·ωLT . For the modifications
for the prime p = 2 compare the proof of Theorem 3.5. For the implication

ANNALES DE L’INSTITUT FOURIER



STARK-TYPE CONJECTURES 2595

of the weaker conjectures, everything remains the same apart from some
obvious modifications and the following fact: If M is a finitely presented
ZpG-module, then (cf. [19], Prop. 5.1)

Fp(G) · FittΛp(Λp ⊗ZpGM) ⊂ AnnZpG(M)

and similarly on minus parts. �

By a similar argument we can prove a partial converse of Lemma 2.12
which is a non-abelian analogue of [17], Prop. 1.2.

Proposition 3.10. — Let p be an odd prime and let S be a finite set
of places of K containing Sram ∪ S∞. Assume that µL(p) is c.t. and

(3.4) Hp(G) FittZpG−(µL(p))θS ⊂ AnnZpG−(AL(p)).

Then for each x ∈ H(G)2 and each fractional ideal a of L whose class in
clL is of p-power order, there is an anti-unit α ∈ L× such that

ax·ωL·θS = (α)

and for each finite set T of primes of K such that Hyp(S ∪ Sα, T ) holds
there is an αT ∈ ETSα such that

αz·δT (0) = αz·ωLT

for each z ∈ H(G).

Proof. — Since the p-part of the roots of unity is c.t. and µL(p) is cyclic
as ZpG−-module, there is a nonzerodivisor λ ∈ ZpG− such that ξ := nr(λ)
generates FittZpG−(µL(p)). Let a be a fractional ideal of L whose class
[a] ∈ clL has p-power order and let x′ ∈ H(G). By assumption there is an
α ∈ L× such that

ax
′ξθS = (α).

Let T be a finite set of places such that Hyp(S ∪ Sα, T ) is satisfied. Since
p is odd, we may assume that [a] ∈ AL(p) and we can lift [a] to the class
[a]T ∈ ATL(p). Then [a]x

′ξθS
T lies in the kernel D(p) of the epimorphism

ATL(p)� AL(p). But D(p) is c.t. by means of the exact sequence

µL(p)� (oL/MT )×,−(p)� D(p)

and the Fitting invariant FittZpG−(D(p)) is generated by δT (0)ξ−1. Hence
for any x′′ ∈ H(G), we have

1 = [a]x
′′δT (0)ξ−1x′ξθS
T = [a]x

′x′′θTS
T .

Now we can proceed as in the proof of Proposition 3.9. �
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Remark 3.11. — (1) Since tensoring with the maximal order Λp is
exact on sequences of finite c.t. modules, we obtain a similar result
by replacing FittZpG−(µL(p)) by Fitt(Λp)−(Λp ⊗ µL) and H by F .

(2) If p - |G|, then µL(p) is c.t. and Hp(G)2 = Hp(G) by Lemma 1.3.
Then the above proof shows that we may replace x ∈ H(G)2 by
x ∈ H(G) such that (3.4) implies BS(L/K, S, p).

(3) If µL(p) = 1, then in fact

Fittmax
ZpG−(µL(p)) = [nr(ZpG−)]nr(ZpG−) = [AS(p)]nr(ZpG−).

In particular, BS(L/K, S, p) is equivalent to B(L/K, S, p) if in ad-
dition p - |G|.

4. The relation to the strong Stark conjecture

As before let L/K be a finite Galois CM-extension of number fields with
Galois group G. We denote the maximal real subfield of L by L+ and the
normal closure of L by Lc. For n ∈ N let ζn be a primitive complex nth
root of unity. The aim of this section is to prove the following result.

Theorem 4.1. — Let p be an odd prime and let S be a finite set of
places of K containing Sram ∪S∞. If the strong Stark conjecture at p holds
for all characters χ with rS(χ) = 0, then StBSw(L/K, S, p) is true.

Corollary 4.2. — Let p be an odd prime. Assume that no prime of L+

above p is split in L/L+ whenever Lc ⊂ (Lc)+(ζp). Then StBSw(L/K, S, p),
BSw(L/K, S, p) and Bw(L/K, S, p) are true for any set S of places of K
containing Sram ∪ S∞.

Proof. — Since the strong Stark conjecture at p holds in this case by
[20], Cor. 2, this follows immediately from Theorem 4.1, Proposition 3.9
and Lemma 2.12. �

Before we start with the proof of Theorem 4.1, we introduce some further
notation. We define central idempotents of QpGP by

ε′p := |IP|−1NIP , ε
′′
p = 1− ε′p,

and a ZpGP-module Up by

Up := 〈NIP , 1− ε′pφ−1
P 〉ZpGP

⊂ QpGP.

Note that Up = ZpGP if p is unramified in L/K. For each irreducible
Cp-valued character χ we define a fractional ideal of oχ by setting

Uχ :=
∏

p∈Sram

nreχEχG(eχMUp)oχ,
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where as before M is a maximal oχ-order in EχG containing oχG. For any
finite set S containing S∞, there is a Tate sequence (cf. [23])

(4.1) ES � AS → BS � ∇S ,

where AS is G-c.t., BS is ZG-projective and ∇S fits into an exact sequence

(4.2) clS � ∇S � ∇S ,

where∇S is a ZG-lattice. More precisely,∇S fits into a short exact sequence

∇S �
⊕

p∈Sram
p 6∈S

(indGGP
(W 0

P))� Z,

where W 0
P can be described as the cokernel of the map (cf. [15], §5)

ZGP −→ ZGP/(NGP
)× ZGP

1 7→ (NIP , 1− φ−1
P ).

Sequence (4.1) has a uniquely determined extension class τS∈Ext2
G(∇S ,ES)

which is Tate’s canonical class (cf. [27]) if S is sufficiently large. We set
∇ := ∇S∞ and ∇ := ∇S∞ .

Proof of Theorem 4.1. — We seek to compute the Fitting invariant of
ATL(p) over the maximal order (Λp)−. By [19], remark 7 this is equivalent
to the computation of the Fitting ideals Fittoχ(ATL(p)χ) for all Cp-valued
irreducible odd characters χ. Thus we have to show that for any finite set
T of places of K such that Hyp(S, T ) holds we have

θTS,χ ∈ Fittoχ(ATL(p)χ),

where θTS = (θTS,χ)χ∈Irrp(G) ∈ ζ(CpG). Let us fix an odd irreducible char-
acter χ; for any finitely generated ZG-module M and i ∈ Z we abbreviate
the Tate-cohomology groups Hi(G,M(p)[χ]) by Hi(M). For any finite ZG-
module M , the homomorphism t(M(p), χ) induces an equality

(4.3) Fittoχ(M(p)χ) Fittoχ(H0(M)) = Fittoχ(M(p)χ) Fittoχ(H−1(M)).

Consider the exact sequence of ZpG−-modules (cf. sequence (1.8))

(4.4) µL(p)� (oL/MT )×,−(p)→ ATL(p)� AL(p).

If we denote the kernel of the epimorphism ATL � AL by D, we get two
exact sequences of oχ-modules as follows:

(4.5) µL(p)χ� (oL/MT )×,−(p)χ → D(p)χ � H1(µL),

(4.6) J−2 � D(p)χ → ATL(p)χ � AL(p)χ,
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where J−2 denotes the image of the map H−2(ATL)→ H−2(AL). It follows
from the proof of the main result in [7] (cf. the end of §12 in loc. cit.) that

(4.7) LS∞(0, χ̌)Uχ Fittoχ(µL(p)χ) Fittoχ(H1(µL))−1 Fittoχ(H2(µL))
⊂ Fittoχ(AL(p)χ)

provided that the strong Stark conjecture at p holds for the character χ.
From this one can actually derive annihilation results in spirit of the non-
abelian Brumer conjecture (cf. loc. cit. Th. 1.2), but this inclusion is not
sufficient for our purposes such that we have to take care of the difference
of the above oχ-ideals. The only inclusion of the proof of (4.7) derives from
the two short exact sequences of finite Z[ 1

2 ]G−-modules

(4.8) AL�
∇−

δ(C)− �
∇−

δ(C)− ,
∇−

δ(C)− �
x−1δ(C)−

δ(C)− �
x−1δ(C)−

∇−
,

where C is a free ZG-module of rank |Sram | and the map δ : C → ∇ is
injective. By abuse of notation we also write δ for the induced map C → ∇
and note that this map is still injective. Moreover, x is a natural number
such that x∇− ⊂ δ(C)−. Following the notation of loc. cit. we put

M1 := ∇−

δ(C)− , M2 := x−1δ(C)−

δ(C)− , M3 := x−1δ(C)−

∇−

and in addition

M1 := ∇−

δ(C)− .

Since M2 is c.t. and Hi(M3) ' Hi+1(∇−), we obtain from (4.8) the fol-
lowing exact sequences of oχ-modules:

(4.9) AL(p)χ�M1(p)χ →M1(p)χ � J1,

(4.10) H−1(∇−)�M1(p)χ →M2(p)χ �M3(p)χ,

where J1 denotes the kernel of the map H1(AL) → H1(M1). Now we
observe that we have isomorphisms

Hi(M1) ' Hi(∇−) ' Hi+2(µL) ' Hi+1(D),

where the second isomorphism derives from the Tate sequence (4.1) for the
set S∞ whereas the last isomorphism is induced by the exact sequence

Z[ 1
2 ]⊗ µL� (oL/MT )×,− � D.

Now choose a finite set S′ of totally decomposed primes which generate the
ray class group clTL. The two exact sequences (cf. sequence (1.7) and (1.8))

(ETS′)−� (ZS′)− � ATL, (ETS′)−� E−S′ � (oL/MT )×,−
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imply the first two isomorphisms of

Hi+1(ATL) ' Hi+2(ET,−S′ ) ' Hi+2(E−S′) ' H
i(∇−) ' Hi(M1).

The last isomorphism is clear and the third is induced by a Tate sequence
for S′, since ∇S′ ' ∇⊕ZS′. The natural behavior of Tate sequences yields
a commutative diagram

EL
� � //

� _

ιS′

��

AS∞� _

��

// BS∞ // //
� _

��

∇

��

%% %%LLLLLLLLLL

∇kK

yyrrrrrrrrr

ES′
� � // AS′ // BS′ // // ∇S′

which implies that the squares

Hi(M1) ∼ //

Hi(π1)
��

Hi+2(µL)

Hi+2(ιS′ )
��

Hi(M1) ∼ // Hi+2(E−S′)

commute for all i ∈ Z, where π1 denotes the surjection M1 � M1. More-
over, the commutative diagram

ET,−S′
� � //

� _

��

(ZS′)− // // ATL

����
Z[ 1

2 ]⊗ µL � �
ι−
S′ // E−S′

//

����

(ZS′)− // // AL

Z[ 1
2 ]⊗ µL � � // (oL/MT )×,− // // D

3�

EE�����������������

implies that indeed the diagram

Hi(M1) ∼ //

Hi(π1)
��

Hi+2(µL)

Hi+2(ιS′ )
��

∼ // Hi+1(D)

Hi+1(ιD)
��

Hi(M1) ∼ // Hi+2(E−S′)
∼ // Hi+1(ATL)

commutes for all i ∈ Z, where ιD denotes the inclusion D � ATL. In
particular, we have J1 ' cok(H0(π1)) ' cok(H1(ιD)) and thus there is an

TOME 61 (2011), FASCICULE 6



2600 Andreas NICKEL

exact sequence
J−2 � H−1(D) → H−1(ATL) → H−1(AL) → H0(D)

→ H0(ATL) → H0(AL) → H1(D) → H1(ATL) � J1.

Taking this into account, we can use the sequences (4.5), (4.6), (4.9), (4.10)
and the equality (4.3) to calculate the desired Fitting ideal and end up with

Fittoχ(ATL(p)χ)

= Fittoχ((oL/MT )×,−(p)χ) Fittoχ(M1(p)χ) Fittoχ(M2(p)χ)−1

Fittoχ((M3(p)χ)) · Fittoχ(µL(p)χ)−1 Fittoχ(H1(µL)) Fittoχ(H2(µL))−1.

Now it follows from the proof of loc. cit., Prop. 9.1 and Th. 1.2 that the left
hand side of the inclusion (4.7) equals Fittoχ(M1(p)χ) Fittoχ(M2(p)χ)−1

Fittoχ((M3(p)χ)). Hence we obtain

Fittoχ(ATL(p)χ) = LS∞(0, χ̌) · Fittoχ((oL/MT )×,−(p)χ)Uχ
= LS∞(0, χ̌) · δT (0, χ)Uχ

which in particular contains (θTS )χ. �

5. The relation to the equivariant
Tamagawa number conjecture

In [2] the author defines the following element of K0(ZG,R):

TΩ(L/K, 0) := ψ∗G(χG,R(τS , λ−1
S ) + ∂̂G(L∗S(0)])).

Here, ψ∗G is a certain involution on K0(ZG,R) which is not important for
our purposes, since we will be only interested in the nullity of TΩ(L/K, 0).
Furthermore, τS ∈ Ext2

G(ES , XS) is Tate’s canonical class (cf. [27]). Finally,
χG,R(τS , λ−1

S ) is the refined Euler characteristic associated to the perfect 2-
extension AS → BS whose extension class is τS , metrised by λ−1

S . For more
precise definitions we refer the reader to [2]. By loc. cit., Th. 2.4.1 the ETNC
for the motive h0(L) with coefficients in ZG in this context asserts that the
element TΩ(L/K, 0) is zero. Note that this statement is also equivalent to
the Lifted Root Number Conjecture formulated by Gruenberg, Ritter and
Weiss [18] by [2], Th. 2.3.3.
It is also proven in [2] that TΩ(L/K, 0) lies in K0(ZG,Q) if and only

if Stark’s conjecture holds. In this case the ETNC decomposes into local
conjectures at each prime p by means of the isomorphism

K0(ZG,Q) '
⊕
p-∞

K0(ZpG,Qp).
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Since Stark’s conjecture holds for odd characters, TΩ(L/K, 0) has a well
defined image TΩ(L/K, 0)−p in K0(ZpG−,Qp).

Theorem 5.1. — Let p be an odd prime and assume that TΩ(L/K, 0)−p
= 0. If µL(p) is a c.t. G-module, then BS(L/K, S, p) holds for all finite sets
S of places of K containing Sram ∪ S∞.

Proof. — If TΩ(L/K, 0)−p = 0 and µL(p) is c.t., Proposition 1.1 (4) and
[19], Th. 7.1 imply that
(5.1)

Fittmax
ZpG−(µL(p)) · [L(0)]

∏
p∈Sram

nr(Up)]nr(ZpG−) ⊂ Fittmax
ZpG−(AL(p)∨)].

As in the last section, we consider sequence (4.4), where the kernel D(p) of
the surjection ATL(p)� AL(p) now is c.t. As the Pontryagin dual of µL(p)
is again µL(p), we obtain the following dual sequences:

D(p)∨� ((oL/MT )×,−(p))∨ � µL(p),

AL(p)∨� ATL(p)∨ � D(p)∨.
Since the Fitting invariant of ((oL/MT )×,−(p))∨ is generated by δT (0)],
Proposition 1.1 implies that

[δT (0) · L(0)]
∏

p∈Sram

nr(Up)]nr(ZpG−) ⊂ Fittmax
ZpG−(ATL(p)∨)].

Since the left hand side contains θTS if Hyp(S, T ) is satisfied, the group ring
elements x · θTS , x ∈ Hp(G) annihilate ATL(p) by (1.3). Now we can proceed
as in the proof of Proposition 3.9. �

In particular, the inclusion (5.1) shows the following result (cf. [19],
Cor. 7.2).

Corollary 5.2. — Let p be an odd prime and assume that TΩ(L/K, 0)−p
= 0. If µL(p) is a c.t.G-module and S is a finite set of places ofK containing
Sram ∪ S∞, then

Hp(G) Fittmax
ZpG−(µL(p))θS ⊂ AnnZpG−(AL(p)).

We also can derive the strong Brumer-Stark property from the ETNC if
the ramification above p is (almost) tame:

Theorem 5.3. — Let p be an odd prime and let S be a finite set of
places of K containing Sram ∪ S∞. Assume that TΩ(L/K, 0)−p = 0. Then
StBS(L/K, S, p) holds, whenever all primes p of K above p are at most
tamely ramified in L/K or j ∈ GP. In particular, BS(L/K, S, p) and
B(L/K, S, p) are true in this case.
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Remark 5.4. — Assume that all primes p of K above p are at most
tamely ramified in L/K or j ∈ GP. In [21] the author was meanwhile able
to deduce the vanishing of TΩ(L/K, 0)−p under some further restrictions
from the validity of the equivariant Iwasawa main conjecture which has
been proven by Ritter and Weiss [24] provided that Iwasawa’s µ-invariant
vanishes. For further connections of the work of Ritter and Weiss to the
ETNC we refer the reader to [4].

Proof of Theorem 5.3. — Let S and T be finite sets of places of K such
that Hyp(S, T ) is satisfied. We denote the set of places of K above p by Sp
and put

T ′ := T ∪ (Sram r (Sram ∩ Sp)).
If the set T consists of only one prime, then AT ′L (p) is G-c.t. by [20], Th. 1.
But if T ⊂ T0, the exact sequence

(oL/MT0rT )×,−(p)� A
T ′0
L (p)� AT

′

L (p)

implies that we may add or remove primes without changing the coho-
mology of AT ′L (p) and this module is hence c.t. for all admissible sets T .
Since the Fitting invariant of (oL/MT0rT )×,−(p) is generated by δT0rT (0),
loc. cit., Th. 2 implies that

(5.2) TΩ(L/K, 0)−p = 0 ⇐⇒ FittZpG−(AT
′

L (p)) = [〈θT
′

S1
〉]nr(ZpG−),

where S1 denotes the set of all primes of K which are wildly ramified in
L/K. Moreover, we have an exact sequence

(5.3) (oL/MT ′rT )×,−(p)� AT
′

L (p)� ATL(p).

Let p be a finite prime of K and choose a prime P in L above p. We denote
the kernel of the augmentation map ZGP � Z which sends each g ∈ GP

to 1 by ∆GP. Take an exact sequence

L×P� VP � ∆GP

whose extension class in Ext1
GP

(∆GP, L
×
P) ' H2(GP, L

×
P) is the local fun-

damental class of the extension LP/Kp. By [29], Th. 4 the inertial lattice

WP :=
{

(x, y) ∈ ∆GP × ZGP|x = (φP − 1)y
}

is the push-out of this sequence along the normalized valuation vP : L×P �
Z. We have two exact sequences

EP� VP �WP, E
1
P� EP � (oL/P)×,

where EP is the group of local units and E1
P denotes the local units which

are congruent 1 modulo P. We define TP to be the push-out of the first
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sequence along the projection of the second such that we obtain an exact
sequence

(5.4) (oL/P)×� TP �WP.

The following result is [20], Lemma 3 (i).

Lemma 5.5. — The G-module (indGGP
TP)(p) is c.t. for each finite prime

p - p of K and for each finite prime p of K which is at most tamely ramified
in L/K.

We write ep and fp for the ramification index and the degree of the
residue field extension at p, respectively. We observe that there is an iso-
morphism Qp ⊗WP ' QpGP and we specify a generator c′P ∈ WP(p) as
follows:

c′P := (|GP| −NGP
, NGP

+ ep(φP − 1)−1(fp −NGP
)),

where we write (φP−1)−1 = f−1
p

∑fp−1
i=0 iφiP in an intuitive notation. Note

that

(φP − 1)−1(fp −NGP
) =

fp−1∑
i=0

iφiP −
fp − 1

2 NGP

lies in ZpGP as p 6= 2. We pick a preimage t′P ∈ TP(p) of c′P. The maps
ZpGP → WP(p), 1 7→ c′P and ZpGP → TP(p), 1 7→ t′P are injective and
become isomorphisms after tensoring with Qp. Hence, the direct sum

T :=
⊕

p∈T ′rT
indGGP

(TP(p)/t′P)

is finite and c.t. by Lemma 5.5. Let W be the direct sum of the modules
indGGP

(WP(p)/c′P), p ∈ T ′ r T . Then the exact sequences (5.4) for these
primes induce an exact sequence of G-modules

(oL/MT ′rT )×,−(p)� T − �W−.

Now take any finite c.t. ZpG−-module P which maps onto (oL/MT ′rT)×,−(p)
(for example, choose P to be the direct sum of the modules (indGGP

ZpGP/

(N(P) − 1))−, p ∈ T ′ r T ) and denote the kernel by K. Then we obtain
two exact sequences

K� P → T − �W−, K� P → AT
′

L (p)� ATL(p),

where the second sequence derives from (5.3). Hence Proposition 1.1 (5)
implies that
(5.5)

Fittmax
ZpG−(ATL(p)) = FittZpG−(AT

′

L (p)) FittZpG−(T −)−1 Fittmax
ZpG−(W−).
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The first Fitting invariant on the right hand side is given by the ETNC
and we have to compute the other two. In fact [20], Prop. 6 (4) gives

(5.6) FittZpG−(T −) =
[ ∏
p∈T ′rT

nr(τp)
]

nr(ZpG−)
, where

τp := e−1
p (1−N(p))NGP

+
(
N(p)− φP

1− φP
ε′p + ε′′p

)
(|GP| −NGP

).

For the last Fitting invariant we prove the following lemma which is the
non-commutative analogue of [20], Lemma 8:

Lemma 5.6. — Let p 6∈ Sp be a finite prime of K. Then

Fittmax
ZpGP

(WP(p)/c′P) ⊃ [nr (Xp)]nr(ZpG−),

Xp := 〈NGP
− |GP|, NGP

+ ep(fpNIP −NGP
)(φP − 1)−1〉ZpGP

.

Before we prove the lemma, we observe that this lemma, (5.5), (5.6) and
(5.2) imply the following result:

Corollary 5.7. — Let p be an odd prime and assume that TΩ(L/K,0)−p
= 0. Moreover, assume that all primes p of K above p are at most tamely
ramified in L/K or j ∈ GP. Then for any finite set T of primes of K such
that Hyp(Sram , T ) is satisfied, we have

Fittmax
ZpG−(ATL(p)) ⊃

[
δT (0)L(0)]

∏
p∈Sram

nr(Up)
]

nr(ZpG−)
.

In particular, θTSram
and hence θTS is contained in Fittmax

ZpG−(ATL(p)). This
finishes the proof of the theorem. �

We are left with
Proof of Lemma 5.6. — Let l be the rational prime below p and let RP

denote the l-Sylow subgroup of IP. Since RP is normal in GP and l 6= p,
the central idempotents

r′p := |RP|−1NRP
, r′′p := 1− r′p

belong to the group ring ZpGP and there is an isomorphism r′′p (WP(p)) '
r′′pZpGP which maps r′′pc′P to r′′p (|GP| −NGP

). Hence we may assume that
p is tamely ramified in L/K.
Let us drop the subscripts p from the notation and simply write e for ep,

and f for fp. We keep the notation of [10], Lemma 6.2. So choose a generator
a of IP and let b−1 ∈ GP be a lift of the Frobenius automorphism which is
of maximal order |b| among all such elements. Then b−f = ac for a divisor
c of e and b−1ab = aq, where q = N(p). Define a map

π : ZpGPe1 ⊕ ZpGPe2 →WP(p)

ANNALES DE L’INSTITUT FOURIER



STARK-TYPE CONJECTURES 2605

by π(e1) = (b−1 − 1, 1) and π(e2) = (a − 1, 0). Now let (x, y) ∈ WP(p) be
arbitrary. Since ∆GP is generated by a−1 and b−1, there is an y′ ∈ ZpGP

such that (x, y′) ∈ im(π). Hence φP−1 annihilates y−y′ and there is z ∈ Zp
such that y − y′ = zNGP

. But

π
( f−1∑
i=0

b−ie1 −
c−1∑
i=0

aie2

)
= (b−f − 1− (ac − 1), NGP

)

= (0, NGP
)

such that π is an epimorphism. We claim that the kernel is generated by
NIPe2 and (aq − 1)e1 + (1− b−1)e2. For this, assume that

π(x1e1 + x2e2) = (x1(b−1 − 1) + x2(a− 1), x1) = 0.

Since aq is also a generator of IP, we have x1 = x′1(aq−1) for an appropriate
x′1 ∈ ZpGP by [10], Lemma 6.6. By the same Lemma we get x′1(b−1− 1) +
x2 = y · NIP with y ∈ ZpGP, since the left-hand side is annihilated by
(a− 1). Hence

x1e1 + x2e2 = x′1(aq − 1)e1 + x′1(1− b−1)e2 + (x′1(b−1 − 1) + x2)e2

= x′1((aq − 1)e1 + (1− b−1)e2) + yNIPe2

which proves the claim. Define two group ring elements

δ1 :=
f−1∑
i=0

b−i + (fNIP −NGP
)(b−1 − 1)−1 ∈ ZpGP,

δ2 :=
c−1∑
i=0

ai + f ·
e−1∑
i=1

i−1∑
j=0

aj ∈ ZpGP.

Now we compute

δ1(b−1 − 1)− δ2(a− 1) = b−f − 1 + fNIP −NGP
− (ac − 1 + f(NIP − e))

= |GP| −NGP

and thus π(δ1e1 − δ2e2) = c′P. Hence, the kernel of the epimorphism

ZpGPe1 ⊕ ZpGPe2 �WP(p)/c′P
induced by π is generated by the kernel of π and δ1e1 − δ2e2. The re-
duced norms of the following three matrices generate a Fitting invariant of
WP(p)/c′P:

A :=
(

0 aq − 1
NIP 1− b−1

)
, B :=

(
0 δ1

NIP −δ2

)
, C :=

(
aq − 1 δ1
1− b−1 −δ2

)
.

TOME 61 (2011), FASCICULE 6



2606 Andreas NICKEL

Since NIP(aq − 1) = 0, we have nr(A) = 0. For the matrix B we have
nr(B) = nr(−NIPδ1) and

NIPδ1 = NGP
+ e(fNIP −NGP

)(φP − 1)−1.

The reduced norm is defined component wise and we compute nr(C) in two
steps. Recall that ε′p = e−1NIP and ε′′p = 1− ε′p. Since ε′p(aq − 1) = 0, we
have on the one hand

nr(Cε′p) = nr((b−1 − 1)δ1ε′p)

= nr((b−f − 1)ε′p + (fe−NGP
)ε′p)

= nr((|GP| −NGP
)ε′p).

On the other hand, (aq − 1)ε′′p and likewise (a− 1)ε′′p are invertible and we
compute

nr(Cε′′p) = nr
((

aq − 1 δ1
0 δ1(aq − 1)−1(b−1 − 1)− δ2

)
ε′′p

)
= nr((aq − 1)(δ1(b−1 − 1)(a− 1)−1 − δ2)ε′′p)

= nr((aq − 1)((δ2(a− 1) + |GP| −NGP
)(a− 1)−1 − δ2)ε′′p)

= nr((aq − 1)(|GP| −NGP
)(a− 1)−1ε′′p)

= nr((|GP| −NGP
)ε′′p),

where the last equation holds, since b−1ab = aq and the reduced norm is
invariant under conjugation. We have shown that nr(C) = nr(|GP|−NGP

).
Now let x1, x2 ∈ ZpGP be arbitrary. Then also

nr
(

x2(aq − 1) δ1
x1NIP + x2(1− b−1) −δ2

)
= nr(−x1(NGP

+ e(fNIP −NGP
)(φP − 1)−1) + x2(|GP| −NGP

))

belongs to Fittmax
ZpG(WP(p)/c′P). �
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