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CONTACT GEOMETRY OF MULTIDIMENSIONAL
MONGE-AMPÈRE EQUATIONS: CHARACTERISTICS,

INTERMEDIATE INTEGRALS AND SOLUTIONS

by Dmitri V. ALEKSEEVSKY, Ricardo ALONSO-BLANCO,
Gianni MANNO & Fabrizio PUGLIESE

Abstract. — We study the geometry of multidimensional scalar 2nd order
PDEs (i.e. PDEs with n independent variables), viewed as hypersurfaces E in the
Lagrangian Grassmann bundle M(1) over a (2n + 1)-dimensional contact manifold
(M, C). We develop the theory of characteristics of E in terms of contact geometry
and of the geometry of Lagrangian Grassmannian and study their relationship
with intermediate integrals of E. After specializing such results to general Monge-
Ampère equations (MAEs), we focus our attention to MAEs of type introduced by
Goursat in 1899:

det
∥∥∥ ∂2f

∂xi∂xj
− bij (x, f,∇f)

∥∥∥ = 0.

We show that any MAE of this class is associated with an n-dimensional sub-
distribution D of the contact distribution C, and viceversa. We characterize these
Goursat-type equations together with their intermediate integrals in terms of their
characteristics and give a criterion of local contact equivalence. Finally, we develop
a method to solve Cauchy problems for this kind of equations.

Keywords: Hypersurfaces of Lagrangian Grassmannians, contact geometry, subdistribu-
tions of a contact distribution, Monge-Ampère equations, characteristics, intermediate
integrals.
Math. classification: 53D10, 35A30, 58A30, 58A17.
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Résumé. — Nous étudions la géométrie des équations aux dérivées partielles
scalaires du deuxième ordre multidimensionnelles (c’est-à-dire, EDP avec n va-
riables indépendantes), considérées comme hypersurfaces E dans le fibré Grassman-
nien Lagrangien M(1) sur une variété de contact (2n + 1)-dimensionnelle (M, C).
Nous développons la théorie des caractéristiques de E en termes de la géométrie de
contact et de la géométrie du fibré Grassmannien Lagrangien et étudions leur rela-
tion avec les intégrales intermédiaires de E. Après avoir appliqué tels résultats aux
équations de Monge-Ampère générales (EMA), nous concentrons notre attention
sur les EMA du type introduit par Goursat en 1899 :

det
∥∥∥ ∂2f

∂xi∂xj
− bij (x, f,∇f)

∥∥∥ = 0.

Nous montrons que toutes les EMA de cette classe sont associées à une sous-
distribution n-dimensionnelle D de la distribution de contact C et vice-versa. Nous
caractérisons les équations du type de Goursat avec leurs intégrales intermédiaires
en fonction de leurs caractéristiques et donnons un critère d’équivalence locale
de contact. Enfin, nous développons une méthode pour résoudre les problèmes de
Cauchy pour ce genre d’équations.

Introduction

Characteristics of PDEs are a classic subject ([9, 10, 19, 21]), as they
are related to the local existence and uniqueness of solutions of Cauchy
problems. Consider the scalar second order partial differential equation
with one unknown function (2nd order PDE)

(0.1) F (x1, . . . , xn, z, p1, . . . , pn, p11, p12, . . . , pnn) = 0

where z = z(x1, . . . , xn), pi = ∂z/∂xi, pij = ∂2z/∂xi∂xj ; the Cauchy
problem consists in finding a solution z = f(x1, . . . , xn) of (0.1) such that

(0.2) f |(X1(t),...,Xn(t)) = Z(t), ∂f

∂xi

∣∣∣∣
(X1(t),...,Xn(t))

= Pi(t),

where

(0.3) Φ(t) = (X1(t), . . . , Xn(t), Z(t), P1(t), . . . , Pn(t)),
t = (t1, . . . , tn−1)

is a given (n−1)-dimensional manifold, i.e. a Cauchy datum (obviously, the
particular choice of the parametrization is irrelevant). If submanifold (0.3)
is non-characteristic, then, in the C∞ case, Cauchy problem (0.1)–(0.2)
admits a unique formal solution; if, moreover, F is real analytic, then such
solution is, in fact, an ordinary one, analytical and locally unique.
As a well known example, take n = 2. In this case, Φ(t) is a curve in the

space (x1, x2, z, p1, p2); given a point m = Φ(0) = (x1, x2, z, p1, p2) on this
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CONTACT GEOMETRY OF MULTIDIM. MONGE-AMPÈRE EQUATIONS 499

curve and a point m1 = (x1, x2, z, p1, p2, p11, p12, p22) satisfying (0.1), the
tangent vector v = Φ̇(0) is non-characteristic for (0.1) at m1 if

(0.4) ∂F

∂p11

∣∣∣∣
m1

(v2)2 − ∂F

∂p12

∣∣∣∣
m1

v1v2 + ∂F

∂p22

∣∣∣∣
m1

(v1)2 6= 0

where v = v1(∂x1 +p1∂z+p11∂p1 +p12∂p2)+v2(∂x2 +p2∂z+p12∂p1 +p22∂p2).
Vector v can be considered as an “infinitesimal Cauchy datum”. From equa-
tion (0.4) it is clear that one can associate with any pointm1 satisfying (0.1)
two (possibly imaginary) directions in the space (x1, x2, z, p1, p2), namely,
those annihilating (0.4) (“characteristic lines”); if we let m1 vary on (0.1)
keeping m fixed, these two directions form, in general, two distinct cones
at m. It is proved that the only PDEs for which these cones degenerate into
two 2-dimensional planes are classical Monge-Ampère equations (MAEs)
(see for instance [3, 2]).
One of the aims of this paper is to see whether a similar phenomenon

occurs also in the case of MAEs with an arbitrary number of independent
variables, which, of course, is considerably more complicated.

In fact, MAEs for n = 2 have been intensely studied since the second half
of XIX century by many géomètres, among them Darboux, Lie, Goursat
(a systematic account of such investigations can be found in [8] and [9]);
later, this classical approach was put aside in favor of more “hard analysis”
techniques. The last 40 years have witnessed a renewed interest in the
differential-geometric approach to MAEs, mainly due to Lychagin and his
school (see [12] and [13] for an exhaustive bibliography). However, such
results are focused on the classical case (n = 2).
Up to now, no serious effort has been made to extend the classical theory

to the general multidimensional case (only very special cases have been
studied). In fact, the main achievements so far obtained in this direction
are due to Boillat and Lychagin.

Boillat [4] noticed that MAEs with two independent variables are the
only 2nd order PDEs exceptional in the sense of Lax [14]. This property
was used in [20] to find the general form of a MAE in three independent
variables, and in [5] for the case of arbitrary independent variables. Such
general form is

(0.5) Mn +Mn−1 + · · ·+M0 = 0

whereMk is a linear combination (with functions of xi, z, pi as coefficients)
of all k × k minors of the Hessian matrix ‖zxixj‖.
Lychagin [15], by introducing a new approach based on contact geome-

try, defined multidimensional MAEs as the kernel of a differential operator
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500 D.V. Alekseevsky, R. Alonso-Blanco, G. Manno & F. Pugliese

associated with a class of n-differential forms on a contact manifold. Lo-
cally, such PDEs are described by (0.5). In the rest of the paper, when we
write “general MAEs” we mean “multidimensional MAEs in the sense of
Lychagin”. In [6, 7] an interpretation of MAEs with constant coefficients is
given in terms of Lagrangian Grassmannians.
As far as we know, the oldest paper about the multidimensional general-

ization of classical MAEs dates back to 1899. In [10] it was noticed that clas-
sical MAEs (n = 2) can be obtained by substituting dp1 = p11dx

1 +p12dx
2

and dp2 = p12dx
1 + p22dx

2 into the following pfaffian system{
dp1 − b11dx

1 − b12dx
2 = 0

dp2 − b21dx
1 − b22dx

2 = 0, bij = bij(x1, x2, z, p1, p2)

and by requiring the linear dependence of the obtained 1-forms. Obviously,
such a procedure can be extended to any number n of independent vari-
ables; namely, one can consider the system

dpi −
n∑
j=1

bijdx
j = 0, i = 1, . . . , n, bij = bij(x1, . . . , xn, z, p1, . . . , pn)

thus getting MAE

(0.6) det ||pij − bij || = 0.

It turns out that the class of PDEs considered by Goursat is a subclass of
those considered by Lychagin.
The above analytical procedure has a natural geometrical meaning,

tightly connected with the fundamental notion of characteristics of a PDE.
Such a connection, which was already studied in [3, 2] for n = 2, will be
extended below to the case of any number of independent variables. As we
shall see, for n > 2 the complexity of the problem dramatically increases.
To this purpose, as a first step we develop a coordinate free setting of the
theory of characteristics of 2nd order PDEs (with n independent variables)
in terms of contact manifolds and Lagrangian Grassmannians. Then, we fo-
cus our attention to MAEs of type (0.5) and (0.6), describe them in terms
of their characteristics, study their intermediate integrals and the problem
of solutions for a given Cauchy datum.

Notations and conventions

In the rest of the paper we work in the C∞ case: the term “smooth”
means C∞. Latin indices will run from 1 to n, unless otherwise specified.
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CONTACT GEOMETRY OF MULTIDIM. MONGE-AMPÈRE EQUATIONS 501

We will use Einstein convention. We denote by X · % the Lie derivative of
the differential form % along the vector field X and by ∨ the symmetric
tensor product, i.e. A ∨ B = 1

2 (A ⊗ B + B ⊗ A); S2(V ) is the symmetric
square of V . The annihilator of a vector subspace U will be denoted by U0.
We denote by 〈vi〉 the linear span of vectors v1, . . . , vn.

1. Preliminaries and description of the main results

Let (M, C) be a (2n + 1)-dimensional contact manifold, i.e. C is a com-
pletely non-integrable distribution on M of codimension 1. Locally, C is
the kernel of a 1-form θ, determined up to a non vanishing factor, with
θ ∧ dθ ∧ n· · · ∧ dθ 6= 0 . The restriction ω := dθ|C defines on each hyperplane
Cm, m ∈M , a conformal symplectic structure. Lagrangian planes of Cm are
tangent to maximal integral submanifolds of C; for this reason, such sub-
manifolds are called Lagrangian (or also Legendrian). We denote by L(Cm)
the Grassmannian of Lagrangian planes of Cm and by

π : M (1) =
⋃
m∈M

L(Cm)→M

the bundle of Lagrangian planes. Since points of M (1) are Lagrangian
planes, throughout the paper we will consider the identification m1 ≡
Lm1 ∈M (1), so that the tautological bundle T (M (1)) :=

⋃
m1∈M(1) Lm1 →

M (1) is well defined.
A scalar 1st order PDE with one unknown function and n independent

variables (1st order PDE) is a hypersurface F of M and its solutions are
integral manifolds of C contained in F . A scalar 2nd order PDE with one un-
known function and n independent variables (2nd order PDE) is a hypersur-
face E of M (1) and its solutions are Lagrangian submanifolds Σ ⊂M such
that TΣ ⊂ E . A Cauchy datum for E is defined as an (n−1)-dimensional
integral submanifold of C. The restriction to E of fibre bundle π is a bundle
over M whose fibre at m is the hypersurface of L(Cm)

Em := E ∩ L(Cm).

A characteristic subspace for E at m1 is a hyperplane U ⊂ Lm1 such that
the curve U (1) ⊂ L(Cm) of Lagrangian planes containing U is tangent to Em
at m1. The tangent space Tm1U (1) is called a characteristic direction for E
at m1. When U (1) ⊂ Em, hyperplane U is said to be strongly characteristic.

By means of previous geometric concepts, we are able to give an intrinsic
definition of MAEs of form (0.5) and (0.6). Of these, the former describes,
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502 D.V. Alekseevsky, R. Alonso-Blanco, G. Manno & F. Pugliese

locally, hypersurfaces EΩ of M (1) formed by Lagrangian planes which an-
nihilate an n-form Ω on M (to avoid trivial equations, this form can be
chosen in Λn(M)rI(θ), where I(θ) ⊂ Λ∗(M) denotes the differential ideal
generated by a contact form θ):

(1.1) EΩ =
{
m1 ∈M (1) ∣∣ Ω|Lm1 = 0

}
.

As to (0.6), it locally describes hypersurfaces ED of M (1) whose points
are Lagrangian planes which non trivially intersect an n-dimensional sub-
distribution D of C:

(1.2) ED =
{
m1 ∈M (1) ∣∣ Lm1 ∩ Dπ(m1) 6= 0

}
.

One of the main geometric objects associated with a 2nd order PDE E
is its conformal metric gE , which is defined by means of the canonical
isomorphism gm1 : T ∗m1L(Cm) ∼→ Lm1 ∨ Lm1 , ρ 7→ gρ, where m1 ∈ M (1)

(see Section 2 for details), and defining gE as (gE)m1 = [g(dF )m1 ], where
E = {F = 0}.

Now, we are in the position to formulate the main result of the paper.

Theorem 1.1. — Let E ⊂M (1) be a 2nd order PDE. Then E is locally
of the form ED for some n-dimensional distribution D ⊂ C iff the following
properties are satisfied:

(1) Its conformal metric is decomposable: (gE)m1 = `m1 ∨ `′m1 , where
`m1 , `′m1 ⊂ Lm1 are lines;

(2) if we let vary the point m1 along the fibre Em, the lines `m1 , `′m1 fill
two n-dimensional spaces D1m, D2m of Cm.

Furthermore, D1 and D2 are mutually orthogonal w.r.t. ω = dθ and E =
ED1 = ED2 .

Essentially, we find necessary and sufficient conditions for a scalar 2nd
order PDE to be of ED type. In [10] the author found sufficient conditions
in terms of the existence of a suitable number of intermediate integrals: we
give a geometrical interpretation of this result in Corollary 6.6. Also, we
would like to underline that the above theorem is the natural generaliza-
tion of a well known result for n = 2: a 2nd order PDE E ⊂ M (1) with
two independent variables is a non-elliptic MAE iff the characteristic lines
fill two 2-dimensional subdistributions D1, D2 ⊂ C which turn out to be
mutually orthogonal w.r.t. ω = dθ. The equation is parabolic if D1 = D2
and hyperbolic otherwise.
Then, we describe some procedures for integrating equations ED, based

on the existence of classical or nonholonomic intermediate integrals (this
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notion is a generalization of the ordinary one, see Section 6.4). For this kind
of equations, we get an easy generalization of the Monge method stated
in Theorem 6.12. As an application, in Section 7.1 we prove that MAEs
of type ED (possibly, with no ordinary intermediate integral) admitting
a special nonholonomic intermediate integral have (smooth) solutions. In
Section 7.2 we prove that when a MAE of type ED admits a suitable number
of independent intermediate integrals the Cauchy problem can be solved.
In Section 7.2.1 we work out all details and computations for an explicit
equation by using our results, including main Theorem 1.1.

2. Geometry of the tangent and cotangent bundle of the
Lagrangian Grassmannian L(V )

Lagrangian Grassmannian L(V ) and its tautological bundle
T (L(V )). Let (V, ω) be a symplectic 2n-dimensional vector space. A La-
grangian plane is an isotropic subspace L ⊂ V of maximal dimension (i.e.
ω|L = 0 and dimL = n). We shall denote by L(V ) the Grassmannian of La-
grangian planes in V and by T (L(V )) its tautological bundle, i.e. the fiber
at point L ∈ L(V ) is L. Fixed a symplectic basis {ei, ei} (i.e. ω(ei, ej) = δji ),
each n-plane L ∈ L(V ) transversal to 〈e1, . . . , en〉 is uniquely determined
by a symmetric real matrix P = ‖pij‖: L = LP = 〈ei + pije

j〉. If U is a
subspace of V , we shall denote by U⊥ the orthogonal complement of U
w.r.t. ω.
The Plücker embedding ι : L = 〈v1, v2, . . . , vn〉 ∈ L(V ) 7→ [volL] ∈

PΛn(V ), where volL := v1 ∧ v2 ∧ · · · ∧ vn ∈
∧n(V ), allows to identify

L(V ) with its image into the projective space PΛn(V ). A straight line of
PΛn(V ) which is included in ι(L(V )) is called a line of L(V ). We will denote
by `(L, L̇) the line of PΛn(V ) passing at L with direction L̇ ∈ TLL(V ).

Metrics associated with tangent and cotangent vectors of L(V ).
It is well known that there is a canonical isomorphism

(2.1) g : TLL(V ) ∼−→ S2(L∗), L̇ 7−→ gL̇.

In this way, a vector field X on L(V ) defines a section gX of
S2(T ∗(L(V ))

)
which we will call a metric on T (L(V )) (note that it can be

degenerate). By duality, we also get a canonical isomorphism g : T ∗LL(V ) ∼→
S2(L), ρ 7→ gρ (the use of super and subscripts eliminates the ambiguity
on maps “g”).

TOME 62 (2012), FASCICULE 2



504 D.V. Alekseevsky, R. Alonso-Blanco, G. Manno & F. Pugliese

In terms of coordinates, the metric gL̇ on L = 〈wi := ei+pijej〉 associated
with L̇ ∼ ||ṗij || is given by

gL̇ = ṗij e
i ⊗ ej .

In the same way, the metric gρ on L∗ associated with 1-form ρ = ρijdpij
is gρ = ρij wi ⊗ wj , In particular, a function F ∈ C∞(L(V )) defines a
metric on L∗:

(2.2) g(dF )L =
∑
i6j

∂F

∂pij
wi ∨ wj .

Rank of tangent vectors of L(V ). Isomorphism (2.1) allows to define
the rank of a tangent vector L̇ ∈ TLL(V ) as that of the corresponding
symmetric bilinear form gL̇ ∈ S2(L∗). We call the set T 1L(V ) of vectors
of rank 1 the characteristic cone or Segre variety (see [1]). If L̇ ∈ T 1

LL(V ),
then, up to a sign,

(2.3) L̇ ' gL̇ = η ⊗ η, for some η ∈ L∗.

From now on, we identify L̇ with gL̇.

Proposition 2.1. — The straight line `(L, L̇) of PΛn(V ) is a line of
L(V ) iff rank(L̇) = 1.

Proof. — Assume that L̇ ∈ T 1
LL(V ). Take coordinates P = ||pij || with

P (L) = 0 and P (L̇) = diag(1, 0, . . . , 0). Then,

`(L, L̇) = [(e1 +te1)∧e2 · · ·∧en] = [e1∧· · ·∧en+te1∧e2∧· · ·∧en] ⊂ L(V ).

The converse is derived from the following property: if a, a′ ∈ Λk(W )
are two k-vectors such that ta+ sa′ is decomposable for any t, s ∈ R, then
there exists a decomposable (k − 1)-vector b ∈ Λk−1(W ) and vectors v, v′
such that a = v∧ b and a′ = v′ ∧ b. Indeed, a k-vector c is decomposable iff
it satisfies the Plücker relation (γ y c) ∧ c = 0 for any γ ∈ Λk−1(W ∗) (see,
for example [11]). By hypothesis, these relations hold for c = a, c = a′ and
c = a+ a′. Then we get

0 = (γ y a) ∧ a′ + (γ y a′) ∧ a, ∀ γ ∈ Λk−1(W ∗).

We choose γ such that v′ := γ y a 6= 0 and v := −γ y a′ 6= 0. Then v′ ∧ a =
v ∧ a′, so that a = v ∧ b, a′ = v′ ∧ b for some b ∈ Λk−1(W ). �
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3. Hypersurfaces of the Lagrangian Grassmannian

3.1. Characteristic cone and characteristic subspaces of a
hypersurface E of L(V ) and its conformal metric gE

Let E = {F = 0} with F ∈ C∞(L(V )) such that dF 6= 0 be a hyper-
surface of L(V ). We denote by gE := [gdF |E] the conformal class of the
restriction of gdF to E; we call it the conformal metric on E. It is indepen-
dent of the choice of F and its local expression is given by (2.2).

Definition 3.1. — The set ChL(E) = TLE∩T 1
LL(V ) of rank 1 tangent

vectors to E at point L is called the characteristic cone of E at L and its ele-
ments are called characteristic vectors for E at L. The 1-dimensional vector
space generated by a characteristic vector is called a characteristic direc-
tion. A characteristic vector L̇ for E at L is called strongly characteristic
if the line `(L, L̇) is contained in E.

Lemma 3.2. — Characteristic vectors L̇ ∈ ChL(E) are, up to sign, the
tensor square L̇ = η ⊗ η of gE-isotropic covectors η ∈ L∗.

Proof. — By definition, L̇ is characteristic for E = {F = 0} if, besides
being of the form ±η ⊗ η (rank 1), it is tangent to E; in other words, if L̇
kills (dF )L. So,

0 = 〈L̇, (dF )L〉 = 〈gL̇, g(dF )L〉 = 〈±η ⊗ η, g(dF )L〉 = ±g(dF )L(η, η)

and the result follows because (gE)L = g(dF )L . �

We define the prolongation U (1) ⊂ L(V ) of a subspace U ⊂ V by:

(3.1) U (1) :=
{
L ∈ L(V ) | L ⊇ U, if dim(U) 6 n
L ∈ L(V ) | L ⊆ U, if dim(U) > n.

Since L = L⊥, then U ⊂ W =⇒ U (1) ⊃ W (1) and also U (1) =
(
U⊥
)(1). If

U is isotropic, then

(3.2) U (1) ' U ⊕ L(W ) :=
{
U ⊕ L′ |L′ ∈ L(W )

}
,

whereW := (U⊕U ′)⊥ with U ′ satisfying dimU ′ = dimU and ω|U⊕U ′ non-
degenerate. In coordinates, let {ei} be a basis of L such that U = 〈ea〉16a6k;
let also {ei, ei} be its extension to a symplectic basis of V and consider
U ′ := {ea}16a6k. So,

U (1) =
{
L = 〈ea, ei + pije

j〉
∣∣ 1 6 a 6 k , ||pij || ∈ S2(Rn−k)

}
,

TOME 62 (2012), FASCICULE 2
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and its tangent space at L is given by

(3.3) TLU
(1) =

〈
ei ∨ ej , i, j = k + 1, . . . , n

〉
' S2(U0) ⊂ S2(L∗),

where U0 ⊂ L∗ denotes the annihilator of U .

Definition 3.3. — An isotropic subspace U is called characteristic for
a covector ρ ∈ T ∗LL(V ) if U ⊂ L and ρ|TLU(1) = 0. It is called characteristic
for a hypersurface E = {F = 0} of L(V ) at a point L ∈ E if it is character-
istic for the covector (dF )L. It is called strongly characteristic if U (1) ⊂ E.
A covector η ∈ L∗ is called characteristic for ρ if the hyperplane Ker(η) is
characteristic for ρ.

This definition extends Definition 3.1 in the following sense. Let η ∈ L∗
and U := Ker(η) ⊂ L be its associated hyperplane; equation (3.3) gives
TLU

(1) = 〈η⊗ η〉, so that U is characteristic for (dF )L in the sense of Def-
inition 3.3 iff the (one-dimensional) tangent direction to U (1) is generated
by one characteristic vector for (dF )L in the sense of Definition 3.1.

By using again identification (3.3), and by arguing as in the proof of
Lemma 3.2, we can determine the “characteristicness” of a subspace in
terms of the conformal metric: this is the content of the following

Lemma 3.4. — Let U ⊂ L ∈ L(V ) and ρ ∈ T ∗LL(V ). Then U is charac-
teristic for ρ iff its annihilator U0 ⊂ L∗ is gρ-isotropic.

The following proposition relates the decomposability of gρ with the be-
havior of the set of characteristic hyperplanes for ρ.

Proposition 3.5. — Let ρ ∈ T ∗LL(V ). Then gρ is decomposable iff
characteristic hyperplanes for ρ form two (n − 2)-parametric families H
and H′ such that

dim
⋂
U∈H

U = dim
⋂
U∈H′

U = 1.

Proof. — Let gρ = v∨w for some v, w ∈ L. By Lemma 3.4, a hyperplane
U = Ker(η) of L is characteristic iff gρ(η, η) = η(v)η(w) = 0. This means
that v ∈ U or w ∈ U . So we get two families of characteristic hyperplanes
H := {U ⊂ L | v ∈ U}, H′ := {U ⊂ L | w ∈ U} such that

⋂
U∈H U = 〈v〉

and
⋂
U∈H′ U = 〈w〉.

Viceversa, let H be a (n− 2)-parametric family of characteristic hyper-
planes for ρ which contain a common line 〈v〉. By dimensional reasons, the
set

⋃
U∈H U

0 = {η ∈ L∗ | η|U = 0 for some U ∈ H} contains a conic con-
vex open subset O of the annihilator v0 ⊂ L∗. So η, η′ ∈ O implies that
η+η′ ∈ O. Lemma 3.4 shows that gρ(η, η) = gρ(η′, η′) = gρ(η+η′, η+η′) = 0
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which implies gρ(η, η′) = 0, ∀η, η′ ∈ O. Since v0 is spanned by O, it is gρ-
isotropic. Thus, gρ = v ∨ w for some w ∈ L. �

3.2. Hypersurfaces of L(V ) associated with n-forms
and their characteristics

Any n-form Ω ∈ Λn(V ∗) defines the hypersurface

(3.4) EΩ =
{
L ∈ L(V ) | Ω|L = 0

}
.

For each σ ∈ Λn−2(V ∗), the n-form Ωσ := Ω + σ ∧ ω defines the same
hypersurface.

Definition 3.6. — Let Ω ∈ Λn(V ∗). A k-dimensional subspace U =
〈e1, · · · , ek〉 ⊂ V is called Ω-isotropic if (e1 ∧ · · · ∧ ek)yΩ = 0.

Theorem 3.7. — Let L ∈ EΩ and H be a hyperplane of L. Then the
following equivalences hold:

(1) H is characteristic for EΩ at L;
(2) H is strongly characteristic;
(3) H is Ωσ-isotropic for some σ ∈ Λn−2(V ∗).

Proof. — Implications 2⇒ 1 and 3⇒ 1 are trivial.

1 ⇒ 2. Below we will adopt the following notation: if W = 〈vi〉, then
volW := v1 ∧ v2 ∧ · · · ∧ vn. Let {ei, ei} be a symplectic basis of V such
that H = 〈e1, . . . , en−1〉 ⊂ 〈e1, . . . , en−1, en〉 = L, so that H(1) = {Lt =
〈e1, . . . , en−1, en+ten〉}. Any Lagrangian plane in a neighborhood of L = L0
is of the form L̃ = 〈ei+pijej〉. Let volt := volLt , so that volt = volL +t volL′
where L′ = 〈e1, . . . , en−1, e

n〉. In this way the tangent vector to H(1) at L
is defined by the derivative along volL′ . Also, let F (L̃) = vol

L̃
yΩ, so that

EΩ is locally described by {F = 0}. The derivative of F at L along volL′ is

lim
t→0

F (Lt)− F (L)
t

= lim
t→0

volt yΩ− volL yΩ
t

= lim
t→0

(volL +t volL′) yΩ− volL yΩ
t

= volL′ yΩ = F (L′)

which vanishes iff L′ belongs to EΩ. Hence, H(1) is included in EΩ.
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1⇒ 3. By using the above results, we have that

H is characteristic ⇐⇒ H(1) ⊂ EΩ

⇐⇒ volt yΩ = 0 ⇐⇒ Ωa(en) = Ωa(en) = 0

where Ωa := a yΩ, a = e1 ∧ · · · ∧ en−1. For any σ ∈ Λn−2(V ∗), we have
that

a yΩσ = Ωa +
n−1∑
j=1

(−1)jσ(e1, . . . , ej−1, ej+1, . . . , en−1)(ej yω).

Thus, (a yΩσ)|L′ = 0 and (a yΩσ)(ei) vanishes if σ(e1, . . . , ei−1, ei+1, . . . ,

en−1) = (−1)i+1Ωa(ei). For such a σ, a yΩσ = 0, i.e. H is isotropic for Ωσ.
�

3.3. Hypersurfaces ED associated with an n-plane D and their
characteristics

We associate with an n-dimensional subspaceD ⊂ V the following subset
of L(V ):

(3.5) ED = {L ∈ L(V ) | L ∩D 6= 0} .

If D = {%1 = %2 = · · · = %n = 0}, then

(3.6) ED = EΩD where ΩD := %1 ∧ · · · ∧ %n.

If D = 〈ei + bije
j〉 (for some symplectic basis {ei, ei}), then ED = {L =

LP | det(P − B) = 0}, where P = ||pij || and B = ||bij ||. In particular,
ED is an algebraic hypersurface of L(V ). Below we describe the conformal
metric gED in coordinates.

Proposition 3.8. — Let ED be the hypersurface of L(V ) associated
with n-plane D = 〈ei + bije

j〉 and L = LP = 〈wi = ei + pije
j〉 ∈ ED. Then

the conformal metric gED on L∗ is given by

(3.7) gED = Aij wi ∨ wj
where A = ||Aij || and Aij is the algebraic complement of the (i, j)-entry in
matrix (P −B). Moreover

(1) A = 0 if rank(P −B) < n−1;
(2) A = ||aibj || if rank(P − B) = n−1 where (P − B) · a = 0 and

(P −Bt) · b = 0. In particular
(a) gED = a ∨ b, a = aiwi, b = biwi;
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(b) matrix 1
2 (A+At) has rank equal to 1 if B = Bt and rank equal

to 2 if B 6= Bt.

Proof. — Since ∂
∂pij

(det(P − B)) equals Aii if i = j, and Aij + Aji if
i 6= j, then, for each η ∈ L∗,

gED (η, η) =
∑
i6j

∂

∂pij

(
det(P −B)

)
ηiηj

=
∑
i,j

Aijηiηj = 1
2
∑
i,j

(Aij +Aji)ηiηj ,

where ηi = η(wi). This proves (3.7). The second part of the lemma follows
from elementary properties of adjoint matrices. �

Definition 3.9. — A point L ∈ ED is called singular if dim(L∩D) > 2
and regular otherwise. The set of regular points of ED will be denoted by
Ereg
D .

Now we give a criterion to distinguish singular points.

Proposition 3.10. — A point LP ∈ ED is singular iff the differential
of det(P −B) at L vanishes, that is iff the metric gED vanishes at L.

Proof. — Since L∩D = Ker(P −B), we derive the equivalence dim(L∩
D) = k ⇐⇒ rank(P − B) = n − k. If k > 2, then rank(P − B) 6 n − 2,
which implies that its adjoint matrix vanishes. Then ∂

∂pij

(
det(P −B)

)
= 0

at the point L and (gED )L = 0. �

The following key proposition states that, given an n-dimensional sub-
space D ⊂ V , the only other subspace defining the same ED is the skew-
orthogonal complement D⊥.

Proposition 3.11. — Let (V, ω) be a 2n-dimensional symplectic vector
space. Let D and D̃ be n-dimensional planes of V . Then

E
D̃

= ED ⇐⇒ D̃ = D or D̃ = D⊥.

Proof. — One implication will be proved if dim(L ∩D) = dim(L ∩D⊥)
for any Lagrangian plane L. But this easily follows from identities

L ∩D⊥ = L⊥ ∩D⊥ = (L ∪D)⊥ = (L+D)⊥.

As to the inverse implication, we must prove that for any e ∈ V \ (D∪D⊥)
there exists a Lagrangian subspace L 3 e such that L ∩ D = 0, so that
L /∈ ED; in this way, if e ∈ D̃, then E

D̃
6= ED. In order to get such an L, let

us consider the (n−1)-dimensional subspace D ∩ e⊥ and the quotient map
Π: e⊥ → e⊥/〈e〉 (symplectic reduction). The projection Π(D∩e⊥) is a half
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dimensional space in the symplectic space e⊥/〈e〉 and it is elementary the
existence of a Lagrangian subspace L̃ ⊂ e⊥/〈e〉 such that Π(D∩e⊥)∩L̃ = 0.
Then, L := Π−1(L̃) is a Lagrangian subspace of V with e ∈ L and L∩D = 0,
as required. �

If we translate previous proposition in terms of n-forms, we get the fol-
lowing

Corollary 3.12. — Up to a factor, at most two different decomposable
n-forms give equation EΩ.

The proposition below describes characteristic hyperplanes for hypersur-
faces ED.

Proposition 3.13. — Let D and ΩD be as in (3.6). Let also H ⊂ V

be an (n−1)-dimensional isotropic subspace and H(1) = {Lt}. Then the
following conditions are equivalent:

(1) H ⊂ L0 is characteristic for ED at L0 ∈ ED;
(2) H(1) ⊂ ED;
(3) 〈ΩD, volt〉 = 0, where volt denotes an arbitrary element in

∧n(Lt)
different from zero;

(4) Lt ∩D 6= 0 for all t;
(5) H has non trivial intersection with D or D⊥.

Proof. — Equivalence 1 ⇔ 2 is Theorem 3.7, taking into account (3.6).
Properties 3 and 4 are, by definition, alternative ways to write property 2.
Let us passe to equivalence 2 ⇔ 5. Let H be characteristic for ED at

L, (so, it is also strongly characteristic and, hence, any Lagrangian plane
containing H intersects D non trivially). We want to prove that H has a
non trivial intersection with either D or D⊥. Let H∩D = 0. Let {ei, ei} be
a symplectic basis such that H = 〈e1, . . . , en−1〉 and L = 〈e1, . . . , en−1, en〉.
By assumption, L∩D 6= 0, so that the unique possibility is that L∩D is gen-
erated by a vector en +

∑n−1
i=1 αiei. Up to a change of basis, we can assume

such generator to be en (in particular, en ∈ D). Now, the Lagrangian planes
Lt := 〈e1, . . . , en−1, en+ ten〉 have non trivial intersections with D. In fact,
by the same reasoning as above, Lt∩D, t 6= 0, is generated by a vector of the
form en+ten+

∑n−1
i=1 αi(t)ei = en+t

(
en +

∑n−1
i=1 t

−1αi(t)ei
)
. Taking into

account that en ∈ D, we get vn := en +
∑n−1
i=1 t

−1αi(t) ei ∈ D. If we take
two different values t, t we have that

∑n−1
i=1

(
t−1αi(t)− ( t )−1

αi(t)
)
ei ∈

D ∩ H = 0 which implies that vn is independent of t. A new change of
basis allows to take en = vn, so that Lt ∩ D = 〈en + ten〉; in particular,
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D ⊃ 〈en, en〉 and D⊥ ⊂ 〈en, en〉⊥. Also, H ⊂ 〈en, en〉⊥ and a computation
gives us

dimD⊥∩H = dimD⊥+dimH−dim(D⊥+H) > n+(n−1)−(2n−2) = 1,

because D⊥ + H ⊂ 〈en, en〉⊥. As a consequence, H ∩ D⊥ 6= 0, as we
wanted. �

Remark 3.14. — Claims 1, 2, 3 of the above theorem remain equivalent
also for hypersurfaces EΩ.

Bringing together Propositions 3.5, 3.8, 3.11, 3.13, in the theorem below
we summarize the main results regarding the hypersurfaces of type ED by
pointing out how to describe them in terms of their characteristics.

Theorem 3.15. — Let Ereg
D be the set of regular points of ED. Then

• A hyperplane H of L ∈ Ereg
D is characteristic for ED at L iff it

contains one of the following straight lines:

`L := L ∩D or `′L := L ∩D⊥.

Then, if `L 6= `′L, there are two (n−2)-parametric familiesH(t1, . . . ,
tn−2) and H ′(t1, . . . , tn−2) of characteristic hyperplanes in L: one
contains `L =

⋂
t1,...,tn−2

H(t1, . . . , tn−2) and another contains `′L =⋂
t1,...,tn−2

H ′(t1, . . . , tn−2). If `L = `′L, these two families coincide.
• The conformal metric of Ereg

D is decomposable and is given by
(gEreg

D
)L = `L ∨ `′L.

• For any line ` ⊂ D there exists L ∈ Ereg
D such that ` = `L = L∩D.

Hence D =
⋃
L∈ED `L and D⊥ =

⋃
L∈ED `

′
L.

4. Local description of PDEs and MAEs

In this section we refer to definitions given in Section 1. From now on,
for simplicity, we will assume that the contact form θ is globally defined.
A diffeomorphism of M which preserves C is called a contact transfor-
mation. There exist coordinates (xi, z, pi) on M , i = 1, . . . , n, such that
θ = dz − pidxi. Such coordinates are called contact (or Darboux) coordi-
nates. Locally defined vector fields

∂̂xi := ∂xi + pi∂z, ∂pi , i = 1, . . . , n,

span distribution C. A system of contact coordinates (xi, z, pi) on M in-
duces coordinates (xi, z, pi, pij = pji, 1 6 i, j 6 n) on M (1) as follows:
a point m1 ≡ Lm1 ∈ M (1) has these coordinates iff π(m1) = (xi, z, pi)
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and the corresponding Lagrangian plane is given by Lm1 = LP := 〈∂̂xi +
pij∂pj 〉 ⊂ Cπ(m1).

A 1st order PDE is locally described as zero level setMf := {f(xi, z, pi) =
0} of a function f ∈ C∞(M), whereas a 2nd order PDE E is locally de-
scribed by E = {F (xi, z, pi, pij) = 0}, with F ∈ C∞(M (1)).

MAEs of type EΩ are, taking into account the beginning of Section 3.2,
the zero locus of the following n-form on the tautological bundle
T (M (1)) : m1 7→ Ω|Lm1 . It is straightforward to check that, locally, such
MAEs are described by (0.5). For a given n-dimensional subdistribution D
of C, we have

ED = EΩD , with ΩD := Y1 · θ ∧ · · · ∧ Yn · θ,

(see also [16]) where Yi are vector fields generating the orthogonal distribu-
tion D⊥ (w.r.t. ω = dθ). Indeed the distribution D is defined by the system
of equations {θ = 0, Yi · θ = 0}, so that the result follows from (3.6). On
the other hand, it is always possible to choose a contact chart (xi, z, pi)
such that

D = 〈X1, X2, . . . , Xn〉, Xi = ∂̂xi + bij∂pj ,

for some functions bij (it is sufficient that D ∩ 〈∂p1 , . . . , ∂pn〉 = 0). In this
case,

ED =
{
LP = 〈∂̂xi + pij∂pj 〉

∣∣ det ‖pij − bij‖ = 0
}
.

Remark 4.1. — Even if D⊥ and D define the same equation, they are
not necessarily contactomorphic.

5. Characteristics of PDEs, of MAEs
and proof of Theorem 1.1

We define the prolongation N (1) ⊂M (1) of a submanifold N of a contact
manifold M as follows (see (3.1)):

N (1) :=
{
m1 ∈M (1) | Lm1 ⊇ TmN ∩ Cm, if dim(N) 6 n
m1 ∈M (1) | Lm1 ⊆ TmN ∩ Cm, if dim(N) > n.

If N is an integral submanifold of the contact manifold (M, C), then the
natural projection πN : N (1) → N is a fibre bundle whose typical fibre is
U ⊕ L(W ) ' L(R2n−2k) where U and W are as in the identification (3.2),
with U = TmN and V = Cm.
Definitions given in Section 3.1 can be immediately reformulated in the

language of PDEs by replacing V with Cm and E with Em. In particular, a
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direction in Tm1Em is called characteristic for E if it is generated by a rank
1 tangent vector (in Tm1L(Cm)). In the same way, a subspace U ⊂ TmM

is said to be characteristic for the equation E at m1 if U (1) is tangent to
E at m1. If in addition U (1) ⊂ E , U is said to be strongly characteristic.
Also, we can introduce a conformal metric (gE)m1 = gEπ(m1)

∈ S2(L∗m1) at
each point m1 ≡ Lm1 ∈ E and Lemma 3.4 is still valid mutatis mutandis.
In coordinates, a tangent vector to Em at m1 having Ṗ = ||ṗij || as matrix
of coordinates is of rank 1 iff ṗij = ηiηj up to a sign (see also (2.3)).
Furthermore, it is characteristics for E = {F = 0} if it satisfies

(5.1)
∑
i6j

∂F

∂pij
ṗij =

∑
i6j

∂F

∂pij
ηiηj = 0

i.e. covector η is isotropic for gE . In view of Proposition 3.5, (gE)m1 is
decomposable iff characteristic hyperplanes of Lm1 are divided in two (n−
2)-parametric families Hm1 and H′m1 such that

dim
⋂

U∈Hm1

U = dim
⋂

U∈H′
m1

U = 1.

All results of Section 3.2 can be applied to fibers EΩm just by replacing Ω
with Ωm and EΩm with EΩ, m ∈M . In fact, in view of (1.1) and (3.4), we
have that EΩ =

⋃
m∈M EΩm . For the sake of completeness, we reformulate

the results of Theorem 3.7 in the language of MAEs:

Theorem 5.1. — Let m1 ∈ EΩ. Then a hyperplane of Lm1 is charac-
teristic for EΩ iff it is strongly characteristic. Moreover, characteristic hy-
perplanes are those hyperplanes which are isotropic with respect to some
n-form Ωσ := Ω + σ ∧ dθ, where σ ∈ Λn−2(M).

Furthermore, all results of Section 3.3 can be applied to fibers EDm just
by replacing Dm with D and EDm with ED, m ∈ M . In fact, in view of
(1.2) and (3.5), we have that ED =

⋃
m∈M EDm . The following statement

is a reformulation of Theorem 3.15.

Theorem 5.2. — Let m1 ∈ EDm be a regular point. Then (gED )m1 =
`m1 ∨ `′m1 , where `m1 = Lm1 ∩ Dm and `′m1 = Lm1 ∩ D⊥m are lines. Thus
there exist only two (n − 2)-parametric families of characteristic hyper-
planes of Lm1 : one rotates around `m1 , the other around `′m1 . Moreover,
Chm1(ED) = {±η ⊗ η, η ∈ `0m1 ∪ `′ 0m1} where `0m1 , `′ 0m1 ⊂ L∗m1 are, respec-
tively, the annihilators of `m1 and `′m1 . Covectors η ∈ L∗m1 corresponding
to characteristic directions and belonging to `0m1 (resp., `′ 0m1) define hyper-
planes {η = 0} which contain `m1 (resp., `′m1). If one let the point m1 vary
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on EDm, the line `m1 (resp., `′m1) fills the n-dimensional space Dm (resp.
D⊥m).

Conversely, let us assume that the PDE E ⊂ M (1) has the following
property: there exists a subdistribution D such that Lm1 ∩ Dm 6= 0 for all
m1 ∈ E 7→ m ∈ M . Obviously, in this situation we have that E ⊆ ED.
As dim E = dim ED, these submanifolds, locally, coincide. But, in order to
have a converse of Theorem 5.2, one must find D (if possible) by following
the steps indicated in the statement of the above theorem; in this way,
Theorem 1.1 is proved.

Example 5.3. — Consider the PDE E : {p12 = f}, f ∈ C∞(M). Equa-
tion of characteristics (5.1) of E is η1η2 = 0, so that the conformal metric
of E at a point m1 is equal to (gE)m1 = `m1 ∨ `′m1 where

`m1 =
〈
∂̂x1 + p11∂p1 + f∂p2 + p13∂p3

〉
,

`′m1 =
〈
∂̂x2 + f∂p1 + p22∂p2 + p23∂p3

〉
If we let vary the point m1 on the fibre Em, m = π(m1), lines `m1 and `′m1

fill, respectively, the following mutually orthogonal 3-dimensional planes
at m

Dm =
〈
∂̂x1 + f∂p2 , ∂p1 , ∂p3

〉
, D⊥m =

〈
∂̂x2 + f∂p1 , ∂p2 , ∂p3

〉
,

so that we obtain distributions D and D⊥ onM . Thus, in view of Theorem
1.1, E = ED.

6. Intermediate integrals of MAEs and Monge method

We prove that the existence of an intermediate integral of a 2nd order
PDE is equivalent to the existence of a special vector field (Hamiltonian
vector field) whose directions are strongly characteristic (Theorem 6.5). By
applying this result to MAEs of type ED, we see that their intermediate
integrals coincide with the first integrals of the distribution D or D⊥ (The-
orem 6.7), which will be useful, among other things, to prove Theorem 6.12.

6.1. Cartan and Hamiltonian vector fields

Definition 6.1. — Sections of the contact distribution C are called
Cartan vector fields. The type of a Cartan field Y is defined as the rank of
the sequence θ, Y · θ, Y · (Y · θ),. . .
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Any 1-form α ∈ Λ1(M) determines a Cartan vector field Yα ∈ C by the
relation

Yα · θ = Yαydθ = α− α(Z)θ
where Z is the Reeb vector field (associated with θ) defined by conditions
θ(Z) = 1, Z y dθ = 0. In particular Y = Y(Y ·θ) for any Cartan field Y .
Although Yα depends on the choice of θ, its direction does not change.

Definition 6.2. — A vector field Yf := Ydf is called a Hamiltonian
vector field.

It is easy to check that Yf is of type 2 (the minimum possible).
In addition, Yf is a characteristic symmetry of the distribution {θ =

0, df = 0}. In other words, Yf coincides with the classical characteristic
vector field of the 1st order PDE f(xi, z, pi) = 0.
Two functions f and g onM are said to be in involution if ω(Yf , Yg) = 0.

This condition is equivalent to the integrability of the distribution 〈Yf , Yg〉.
By using this fact, it can be proved the following theorem which we ex-
tracted from [18] and comes from Jacobi.

Theorem 6.3. — Any set (f1, . . . , fk) of k 6 n independent functions
on the contact manifold M which are in involution can be extended to a
contact chart.

6.2. Intermediate integrals of 2nd order PDEs

Recall that Mf = {m ∈ M | f(m) = 0} denotes the zero level set of a
function f ∈ C∞(M).

Definition 6.4. — Let E ⊂ M (1) be a 2nd order PDE. A function
f ∈ C∞(M) is called an intermediate integral of E if all solutions of the
family {Mf−c}c∈R of 1st order PDEs, are also solutions of E .

Theorem 6.5. — The following conditions are equivalent:
(1) A function f ∈ C∞(M) is an intermediate integral of E ;
(2) M (1)

f−c ⊂ E , ∀ c ∈ R;
(3) Integral curves of Yf are strongly characteristic for E .

Proof.
1⇒ 2. Assume that f is an intermediate integral. Letm1 ≡ Lm1 ∈M (1)

f−c
for some c ∈ R. The plane Lm1 is always tangent to some solution Σ of
PDE f = c which, by hypothesis, is also a solution of E . This means that
m1 ∈ Σ(1) ⊂ E .
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2⇒ 1. We have just to use that Σ ⊂M is solution of the 1st order PDE
f = c iff Σ(1) ⊂M (1)

f−c.
2⇔ 3. Recall that Yf = Ydf = Yf−c. Also, 〈(Yf )m〉⊥ = Cm∩TmMf−f(m).

Then (Yf )(1)
m = (TmMf−f(m))(1) and the equivalence follows. �

As an application of previous results we are able to characterize 2nd order
PDEs which have a large number of intermediate integrals. Such PDEs are
described in the following corollary whose statement was known by Goursat
[10]. We give a simple and clear geometric proof of it.

Corollary 6.6. — Let E be a 2nd order PDE. If there exist n inde-
pendent functions f1, . . . , fn such that f = ϕ(f1, . . . , fn) is an intermediate
integral for any ϕ, then E = ED where D = 〈Yf1 , . . . , Yfn〉.

Proof. — For each f = ϕ(f1, . . . , fn) we have that Y (1)
f ⊂ E by Theo-

rem 6.5. Now let us define

Dm =
{

(Yf )m | f = ϕ(f1, . . . , fn) with ϕ arbitrary
}

;

it describes an n-dimensional subdistribution of C. In fact, if dimD < n,
then {Yf1 , . . . , Yfn} would be dependent, that would imply that the contact
form θ is dependent on {df1, . . . , dfn}, which is not possible as θ must
depend at least on the exterior differential of (n+1) independent functions.
By definition,

⋃
f=ϕ (Yf )(1)

m = EDm . Since
⋃
f=ϕ (Yf )(1)

m ⊆ Em, we conclude
that EDm ⊆ Em. �

6.3. Intermediate integrals of MAEs of type ED

Below we apply Theorem 6.5 to describe intermediate integrals of equa-
tions ED in terms of D. In the rest of the paper we denote by D′ the derived
distribution of D, i.e. the distribution spanned by vector fields of D and all
their commutators.

Theorem 6.7. — A function f ∈ C∞(M) is an intermediate integral of
ED iff the associated Hamiltonian field Yf belongs to D or D⊥. Equivalently,
the intermediate integrals are the first integrals of D or D⊥.

Proof. — According to Theorem 6.5, f is an intermediate integral of ED
iff Yf is strongly characteristic. By arguing as in the proof of Proposi-
tion 3.11, we obtain that for equations of type ED this means that Yf ∈ D
or Yf ∈ D⊥. �

Some consequences easily follow:
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Corollary 6.8. — If D (or D⊥) admits a first integral, or equivalently
its derived flag D ⊆ D′ ⊆ D′′ ⊆ · · · ⊆ Dk ⊆ · · · is such that Dk 6= TM for
any k, then ED admits a smooth solution.

Corollary 6.9. — The set of intermediate integrals of ED is the union
of two subrings R1 and R2 of C∞(M) which are in involution, in the sense
that if fi ∈ Ri, i = 1, 2, then {f1, f2} := ω(Yf1 , Yf2) = 0.

The following corollary characterizes the simplest equation of type ED.
Such characterization was known by Goursat [10]; we give a proof by using
Theorem 6.7 and elementary contact geometry.

Corollary 6.10. — The following conditions are equivalent:
(1) D is an n-dimensional integrable distribution of C;
(2) D is generated by n commuting Hamiltonian vector fields;
(3) ED is contact-equivalent to the equation det ||pij || = det ||zxixj || = 0;
(4) ED is contact-equivalent to the equation p11 = zx1x1 = 0;
(5) ED admits a ring of intermediate integrals generated by (n + 1)

independent functions.

Proof.
1⇒ 2. In fact, since D is integrable, we can find n+1 functions {fi}i=0...n

such that D is described by D = {df0 = df1 = · · · = dfn = 0}. Since D ⊂ C,
then (up to a factor) θ = df0 +

∑n
i=1 aidfi for some a1, ..., an ∈ C∞(M).

Hence xi = fi, z = f0, pi = −ai, are contact coordinates on M and D
can be written as D = {dx1 = 0, dx2 = 0, . . . , dxn = 0, dz = 0} =
〈∂p1 , . . . , ∂pn〉.

2⇒ 1. It is an easy application of Theorem 6.3.
1⇔ 3. In fact, we already proved that condition 1 implies that D is

contact-equivalent to 〈∂p1 , . . . , ∂pn〉. By using the Legendre transformation
x′i = pi, z

′ = z − pjxj , p′i = −xi, i = 1, . . . , n, we realize that D is also
contact-equivalent to 〈∂̂x1 , . . . , ∂̂xn〉, whose associated ED is det ||pij || = 0.

1⇔ 4. This equivalence goes as the previous one by using the partial
Legendre transformation z′ = z − p1x

1, x′1 = p1, p′1 = −x1, x′β = xβ ,
p′β = pβ , β = 2, . . . , n.

1⇒ 5. In fact, D is integrable iff there exist (n + 1) functions fi,
i = 0, . . . , n, such that D = {df0 = 0, . . . , dfn = 0}. This implies that
ϕ(f0, f1, . . . , fn) is a first integral of D for any function ϕ.

5⇒ 1. If 5 holds, either D or D⊥ has (n+ 1) independent first integrals.
This condition is equivalent to their, simultaneous, integrability. �
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6.4. Construction of solutions of ED by the
generalized Monge method

The concept of intermediate integral can be naturally extended (see [2])
as follows.

Definition 6.11. — A nonholonomic intermediate integral of ED is a
type 2 Cartan field X ∈ D.

Next theorem describes a method for constructing solutions of ED by
generalizing the Monge method of characteristics (see [9, 17]).

Theorem 6.12. — Let X be a nonholonomic intermediate integral of
ED. Let N ⊂ M be an (n−1)-dimensional integral submanifold of the
distribution of C transversal to X. Then Σ =

⋃
t ϕt(N) ⊂ M , where ϕt

is the local flow of X, is solution of the equation ED iff ω(TmN,Xm) =
0 ∀ m ∈ N.

Proof. — Let us recall that Σ is a solution of ED if it satisfies the following
two conditions: a) TmΣ ∩ Dm 6= 0, ∀m ∈ Σ , and b) TmΣ ⊂ Cm, ∀m ∈ Σ.
Condition a) is obviously satisfied. To check condition b) we choose coor-

dinates (t, yi) on Σ such that (yi) are local coordinates on N and X = ∂t.
Any vector field Y ∈ X (N) can be considered as vector field on Σ which
does not depend on t, hence commutes with X. It is sufficient to check that
the function F (t, yi) := θ(t,yi)(Y ) is identically zero. Due to the fact that
X is of type 2, the first two derivatives of F w.r.t. t are

Ḟ = (X · θ)(Y ) = ω(X,Y ),

F̈ = (X · (X · θ))Y = λθ(Y ) + µ(X · θ)(Y ) = λF + µ Ḟ ,

for some functions λ, µ. Hence, F satisfies a linear 2nd order ODE with the
initial conditions F (0, yi) = 0, Ḟ (0, yi) = ω(X,Y )|N = 0. This shows that
F ≡ 0. �

When X = Yf , the above theorem reduces to the method of characteris-
tics for integrating PDE f = 0.

7. Some applications

7.1. On the existence of smooth solutions of MAEs of type ED

Let us consider a Cartan field of the form

(7.1) X = Yf + λYg,
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where X(λ) = 0 and f , g are two functions in involution (in particular
X(f) = X(g) = 0). Then MAEs ED for which X ∈ D admit smooth
solutions.
Such a Cartan field is of type 2 and we can show the existence of a Cauchy

datum N such that TpN is orthogonal (w.r.t. ω = dθ) toXp andXp /∈ TpN ,
for all p ∈ N . In fact, by using Theorem 6.3, we can suppose f = p1 and
g = p2, so that X = ∂̂x1 + λ∂̂x2 . The (n−1)-dimensional submanifold N

defined by equations

x1 = 0, z = 0, pi = 0, i = 1, . . . , n,

satisfies θ|N = 0 and, if p ∈ N , TpN = 〈∂̂x2 |p, . . . , ∂̂xn |p〉. Now, by Theorem
6.12, it is possible to construct a smooth solution of ED by expanding the
Cauchy datum N using the flow of X.
We would like to underline that there exist MAEs of type ED without

intermediate integrals but such that D or D⊥ contains a vector field of type
(7.1). Let us consider, for instance, n = 3 and the distribution D = D⊥ =
〈X,Y, Z〉, where

X = ∂̂x1 + (p2 + p3)∂̂x2 , Y = ∂p2 − (p2 + p3)∂p1 , Z = ∂̂x3 + (x1 + p2)∂p3 .

It is easy to check that D′ = C and, so, D′′ equals the complete module of
vector fields.

7.2. MAEs of type ED admitting n intermediate integrals

In the case in which a MAE of type ED admits n independent interme-
diate integrals which are first integrals of a family of characteristics (see
Theorem 6.7) we can solve the Cauchy problem for ED.
In fact, let N be a Cauchy datum and f1, . . . , fn be independent first

integrals of D (the same reasoning holds true if f1, . . . , fn are first integrals
of D⊥). Let us denote by gi the restriction of fi to N . Of course the func-
tions gi are dependent, so that there exists a non trivial functional relation
ψ(g1, . . . , gn) = 0. The function f = ψ(f1, . . . , fn) turns out to be an inter-
mediate integral which vanishes on N , so that a solution of ED with initial
condition N can be constructed.
Also, ED can be reconstructed from the set of its intermediate integrals.

More precisely we have that

ED = MI :=
⋃
φ

M
(1)
φ(f1,...,fn)
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where φ is an arbitrary function of n variables. In fact, on one hand MI ⊂
ED, since, if L ∈ MI , then L = TmΣ where Σ is a solution of a 1st order
PDE Mf for some first integral of the form f = ϕ(f1, . . . , fn). But Σ is
also a solution of ED, so that L ∈ ED. On the other hand MI ⊃ ED, since,
if L = Lm1 ∈ ED, then Lm1 ∩ Dπ(m1) contains a vector (Yf )π(m1) for an
appropriate first integral f of D. As a consequence, L ∈M (1)

f .

7.2.1. An example

All the examples of MAEs of type ED integrated in [10] have the following
property: both the distributions D and D⊥ are such that D′ and (D⊥)′ are
of dimension n + 1 and integrable. Of course, this twofold requirement is
quite restrictive: for instance, for the evolutionary equation p3 = p12 none
of the previous conditions is satisfied (to see this, it is sufficient to consider
Example 5.3 and put f = p3); whereas, for the equation (p1)2 = p12 only
one of them is true (again, consider Example 5.3 and put f = (p1)2). Our
method for solving Cauchy problems covers a more general type of equa-
tions. In what follows we completely study an example of a MAE of type
ED in three variables that does not fall into any of the types that Goursat
integrated in the cited work. To start with, we apply the criterion given by
Theorem 1.1 to show, by the algorithmic procedure indicated therein, that
it is an equation of type ED, which is not obvious a priori. Then, for better
illustrating our results, we will also solve an explicit Cauchy problem.
Let us consider the equation

E : p11 + (x1 + p2)p12 + x1p2p22 − p3p13 − x1p3p23 = 0,

where pi, pij , denote, as usual, the partial derivatives ∂z/∂xi, ∂2z/∂xi∂xj

of the unknown function z which depends on the independent variables x1,
x2, x3.

Computation of characteristics. A straightforward computation
shows that conformal metric gE is of rank 2 and decomposable. We have
that

(gE)m1 = `m1 ∨ `′m1 = (x1w2 + w1) ∨ (w1 + p2w2 − p3w3)

where w1 = ∂̂x1 −
(
(x1 +p2)p12 +x1p2p22−p3p13−x1p3p23

)
∂p1 +p12∂p2 +

p13∂p3 , w2 = ∂̂x2 + p12∂p1 + p22∂p2 + p23∂p3 , and w3 = ∂̂x3 + p13∂p1 +
p23∂p2 + p33∂p3 .
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Proof that E is of Goursat type: Application of criterion of
Theorem 1.1. By substituting the values of w1, w2 and w3 in `m1 we
obtain

`m1 = ∂̂x1 +x1∂̂x2 + (p13 +x1p23)(∂p3 + p3∂p1) + (p12 +x1p22)(∂p2 − p2∂p1)

If we let vary the point m1 along the fibre Em of the equation E , we obtain
the distribution

D = 〈X1, X2, X3〉, X1 = ∂̂x1 +x1∂̂x2 , X2 = ∂p3 +p3∂p1 , X3 = ∂p2−p2∂p1 .

Theorem 1.1 proves that E = ED. On the other hand, by taking the orthog-
onal complement of D or by performing the analogous calculation for `′m1

we get the distribution

D⊥ = 〈Y1, Y2, Y3〉, Y1 = ∂̂x1 + p2∂̂x2 − p3∂̂x3 , Y2 = ∂p2 −x1∂p1 , Y3 = ∂p3 .

Intermediate integrals. It is easy to check that D′ is of rank 4 and
integrable, and it is generated by ∂x1 + x1∂x2 , ∂p3 + p3∂p1 , ∂p2 − p2∂p1

and ∂z. It can be easily seen that (D⊥)′′ is of rank 5 and then the equation
is not of the type studied in [10].
In view of Theorem 6.7, a standard computation gives the following 3

independent intermediate integrals of ED:

λ1 := (x1)2 − 2x2, λ2 := (p3)2 − (p2)2 − 2p1, λ3 := x3.

A Cauchy problem. In view of Section 7.2, any Cauchy datum can be
extended to a solution as we found 3 first integrals of D. For this case, a
Cauchy datum N consists of a 2-dimensional integral submanifold of C. If
we suppose that this datum can be parameterized by x1 and x2, then we
can arbitrarily fix z, x3 and p3 as functions of x1 and x2 and then determine
p1 and p2 by the contact condition. Let us choose, for instance,

N : z = (x1)2 + x2, x3 = x1, p3 = 0.

Then, from the contact condition, one easily obtains that p1 = 2x1 and
p2 = 1, which completes the parametrization of N .
The restrictions of λ1, λ2 and λ3 toN are λ1 = (x1)2−2x2, λ2 = −1−4x1,

λ3 = x1. A first integral vanishing on N is f := λ2 + 4λ3 + 1, whose
associated Hamiltonian field is

Yf = 2p3Yp3 − 2p2Yp2 − 2Yp1 + 4Yx3 = 2
(
p3∂̂x3 − p2∂̂x2 − ∂̂x1 − 2∂p3

)
which has the following 6 independent first integrals
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µ1 := p1, µ2 := p2, µ3 := 1
2(p3)2 + 2x3, µ4 := p2x

1 − x2,

µ5 := x1 − 1
2p3, µ6 := 1

2((p2)2 + p1)p3 −
1
6(p3)3 − z.

In order to prolong the Cauchy datum N along the orbits of Yf , we re-
strict the above 6 first integrals on N (the bar denotes such a restriction):
µ1 = 2x1, µ2 = 1, µ3 = 2x1, µ4 = x1 − x2, µ5 = x1, µ6 = −((x1)2 + x2).
By eliminating parameters x1 and x2 we obtain 4 independent relations

(7.2) µ2 = 1, µ3−µ1 = 0, µ5−
1
2µ1 = 0, µ6 + 1

4(µ1)2 + 1
2µ1−µ4 = 0

for which the prolongation must hold. If we substitute the µ’s in (7.2) we
get

(7.3)


p2 = 1
1
2 (p3)2 + 2x3 − p1 = 0
x1 − 1

2p3 − 1
2p1 = 0

1
2 ((p2)2 + p1)p3 − 1

6 (p3)3 − z + 1
4 (p1)2 + 1

2p1 − p2x
1 + x2 = 0.

Finally, from the first three equations of system (7.3) we can obtain the p’s
in terms of the x’s and then, the fourth equation allows to express z as a
function of x1, x2, x3 which is the required solution:

z = 1
6 + x1 + (x1)2 + x2 − x3 ∓

√
1− 4x3 + 4x1

(
1
6 + 2

3x
1 − 2

3x
3
)
.
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