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RSK BASES AND KAZHDAN-LUSZTIG CELLS

by K. N. RAGHAVAN,
Preena SAMUEL & K. V. SUBRAHMANYAM

Abstract. — From the combinatorial characterizations of the right, left, and
two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are con-
structed for certain quotients by two-sided ideals of the group ring and the Hecke
algebra. Applications to invariant theory, over various base rings, of the general lin-
ear group and representation theory, both ordinary and modular, of the symmetric
group are discussed.
Résumé. — À partir des caractérisations combinatoires des cellules de Kazhdan-

Lusztig du groupe symétrique, on construit des bases “RSK” pour certains quo-
tients du l’algèbre du groupe et de l’algèbre de Hecke. On étudie des applications à
la théorie des invariants du groupe linéaire général sur divers anneaux de base et à
la théorie des réprésentations, soit ordinaire ou modulaire, du groupe symétrique.

1. Introduction: summary and organization of results

The starting point of the work described in this paper is a question in
classical invariant theory (§1.1). It leads naturally to questions about rep-
resentations of the symmetric group over the complex numbers (§1.2, §1.3)
and over algebraically closed fields of positive characteristic (§1.5), and in
turn to the computation of the determinant of a certain matrix encoding
the multiplication of Kazhdan-Lusztig basis elements of the Hecke algebra
(§1.6), using which one can recover a well-known criterion for the irre-
ducibility of Specht modules over fields of positive characteristic (§1.7).

For the sake of readability, we have tried, to the extent possible, to keep
the proofs of our results independent of each other. So sections 4–6 can be
read without reference to one another.

RSK stands for Robinson-Schensted-Knuth.

Keywords: Symmetric group, Hecke algebra, Kazhdan-Lusztig basis, RSK
correspondence.
Math. classification: 05E10, 05E15, 20C08, 20C30.
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1.1. Motivation from invariant theory

We begin by recalling a basic theorem of classical invariant theory. Let k
be a commutative ring with identity and V a free k-module of finite rank
d. Let GL(V ) denote the group of k-automorphisms of V , and consider the
diagonal action of GL(V ) on V ⊗n. Let Sn denote the symmetric group
of bijections of the set {1, . . . , n} and kSn the group ring of Sn with
coefficients in k. There is a natural action of Sn on V ⊗n by permuting the
factors: more precisely, (v1⊗· · ·⊗vn)·σ := v1σ⊗· · ·⊗vnσ (all actions are on
the right by convention). This action commutes with the action of GL(V ),
and so the k-algebra map Θn : kSn → Endk V ⊗n defining the action of Sn

has image in the space EndGL(V ) V
⊗n of GL(V )-endomorphisms of V ⊗n.

We have the following result (see [4, Theorems 4.1, 4.2]):
Assume the following: if f(X) is an element of degree n of
the polynomial ring k[X] in one variable over k that van-
ishes as a function on k, then f(X) is identically zero. (This
holds for example when k is an infinite field, no matter
what n is.) Then the k-algebra homomorphism Θn maps
onto EndGL(V ) V

⊗n and its kernel is the two-sided ideal
J(n, d) defined as follows:
• J(n, d) := 0 if d > n;
• if d < n, then it is the two-sided ideal generated by
the element yd :=

∑
τ∈Sd+1

(sgn τ)τ , where Sd+1 is the
subgroup of Sn consisting of the permutations that fix
point-wise the elements d+2, . . . , n, and sgn τ denotes
the sign of τ .(1)

Thus kSn/J(n, d) gets identified with the algebra of GL(V )-endomorphisms
of V ⊗n (under the mild assumption on k mentioned above), and it is of
invariant theoretic interest to ask:

Is there a natural choice of a k-basis for kSn/J(n, d)?
Our answer:
Theorem 1. — Let k be any commutative ring with identity. Those

permutations σ of Sn such that the sequence 1σ, . . . , nσ has no decreasing
sub-sequence of length more than d form a basis for kSn/J(n, d).
The proof of the theorem will be given in §4. It involves the Hecke alge-

bra of the symmetric group and its Kazhdan-Lusztig basis. Some further
comments on the proof can be found in §1.4.
(1)The subgroup Sd+1 could be taken to be that consisting of the permutations that
fix point-wise any arbitrarily fixed set of n− d− 1 elements.

ANNALES DE L’INSTITUT FOURIER



RSK BASES AND KAZHDAN-LUSZTIG CELLS 527

The theorem enables us to:
• obtain a k-basis, closed under multiplication, for the subring of

GL(V )-invariants of the tensor algebra of V (§4.2).
• when k is a field of characteristic 0, to limit the permutations in the
well-known description ([27], [29]) of a spanning set for polynomial
GL(V )-invariants of several matrices (§4.2); or, more generally, to
limit the permutations in the description in [5] of a spanning set
by means of “picture invariants” for polynomial GL(V )-invariants
of several tensors (§4.3).

1.2. A question about tabloid representations

Let us take the base ring k in §1.1 to be the field C of complex numbers.
Then the ideal J(n, d) has a representation theoretic realization as we now
briefly recall (see §5.2 for the justification). Let λ(n, d) be the unique par-
tition of n with at most d parts that is smallest in the dominance order
(§2.2.1). Consider the linear representation of Sn on the free vector space
CTλ(n,d) generated by tabloids of shape λ(n, d) (§2.5). The ideal J(n, d)
is the kernel of the C-algebra map CSn → EndC CTλ(n,d) defining this
representation.
Replacing the special partition λ(n, d) above by an arbitrary one λ of n

(§2.1) and considering the C-algebra map ρλ : CSn → EndC CTλ defining
the linear representation of Sn on the space CTλ generated by tabloids of
shape λ, we ask:

Is there a natural set of permutations that form a C-basis
for the group ring CSn modulo the kernel of the map ρλ?
Equivalently, one could demand that the images of the per-
mutations under ρλ form a basis for the image.

Our answer:

Theorem 2. — Permutations of µ, as µ varies over partitions that dom-
inate λ, form a C-basis of CSn modulo the kernel of ρλ : CSn → EndCTλ.

The dominance order on partitions is the usual one (§2.2). The of a per-
mutation is defined in terms of the RSK-correspondence (§2.4). As follows
readily from the definitions, the shape of a permutation σ dominates the
partition λ(n, d) precisely when 1σ, . . . , nσ has no decreasing sub-sequence
of length exceeding d. Thus, in the case when the base ring is the complex
field, Theorem 1 follows from Theorem 2.

TOME 62 (2012), FASCICULE 2
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The proof of the theorem will be given in §5. Like that of Theorem 1, it
too involves the Hecke algebra of the symmetric group and its Kazhdan-
Lusztig basis. Some further comments on the proof can be found in §1.4.

The theorem holds also over the integers and over fields of characteristic 0
—as can be deduced easily from the complex case (see §5.3)— but it is not
true in general over a field of positive characteristic: see Example 11. A
Hecke analogue of the theorem also holds: see §1.4 below.
As pointed out by the referee, the recent paper [9] is concerned with

constructing a basis for the annihilator of CTλ (and of its Hecke analogue
Mλ whose definition is recalled below in §8.2). The answers are in terms
of “Murphy basis”, which like the Kazhdan-Lusztig basis are known to be
“cellular”.

1.3. A question regarding the irreducible representations of the
symmetric group

The question raised just above (in §1.2) can be modified to get one of
more intrinsic appeal. Given a partition λ of n, consider, instead of the ac-
tion of Sn on tabloids of shape λ, the right cell module R(λ)C in the sense
of Kazhdan-Lusztig (§3.5), or, equivalently (see §8.3), the Specht mod-
ule SλC (§2.6). The right cell modules are irreducible and every irreducible
CSn-module is isomorphic to R(µ)C for some µn (§6.2).
The irreducibility of R(λ)C implies, by a well-known result of Burnside

(see, e.g., [3, Chapter 8, §4, No. 3, Corollaire 1]), that the defining C-
algebra map CSn → EndCR(λ)C is surjective. The dimension of R(λ)C
(equivalently of SλC) equals the number d(λ) of standard tableaux of shape λ
(§2.3.1, §6.2). Thus there exist d(λ)2 elements of CSn, even of Sn itself,
whose images in EndCR(λ)C form a basis (for EndCR(λ)C). We ask:

Is there is a natural choice of such elements of CSn, even
of Sn?

Indeed there is, as the following theorem says. As pointed out to us by
Andrew Mathas, the theorem is a consequence of the cellularity in the sense
of [17] of the Kazhdan-Lusztig basis.

Theorem 3 (Consequence of cellularity of the Kazhdan-Lusztig ba-
sis [17]). — Consider the Kazhdan-Lusztig basis elements of the group
ring CSn indexed by permutations of λ. Their images under the defining
C-algebra map CSn → EndCR(λ)C form a basis for EndCR(λ)C.

ANNALES DE L’INSTITUT FOURIER
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By the Kazhdan-Lusztig basis elements of the group ring CSn, we mean
the images in CSn of the Kazhdan-Lusztig basis elements of the Hecke
algebra of Sn under the natural map setting the parameter value to 1 (§3).
The of a permutation is defined using the RSK-correspondence (§2.4).
The theorem is proved in §6. Some comments on the proof of the theorem

can be found in §1.4.
We do not know a natural choice of elements of the group Sn itself

whose images in EndCR(λ)C are a basis. Permutations of λ of course
suggest themselves, but they do not in general have the desired property
(Example 16).

1.4. Comments on the proofs of Theorems 1–3

Properties of the Kazhdan-Lusztig basis of the Hecke algebra associated
to the symmetric group are the key to the proofs, although the statements
of Theorems 1 and 2 do not involve the Hecke algebra at all. The rele-
vant properties are recalled in two instalments: the first, in §3, is the more
substantial; the second, in §4.1, consists of further facts needed more specif-
ically for the proof of Theorem 1.

Theorem 3 follows by combining the Wedderburn structure theory of
semisimple algebras, as recalled in §6.1, with the following observation im-
plicit in [15] and explicitly formulated in §3.6:

A Kazhdan-Lusztig C-basis element Cw kills the right cell
(or equivalently Specht) module corresponding to a shape λ
unless λ is dominated by the of the indexing permutation w.

The observation in turn follows easily from the combinatorial characteri-
zations of the left, right, and two-sided Kazhdan-Lusztig cells in terms of
the RSK-correspondence and the dominance order on partitions (§3.4.1,
§3.4.2). Our primary source for these characterizations, which are crucial
to our purpose, is [15].
As pointed out to the authors by the referee among others, special prop-

erties of the Kazhdan-Lusztig basis of the Hecke algebra of the symmetric
group, as the one in the observation above, have been noted and well stud-
ied. In fact, they have been axiomatized in [17], where any basis enjoying
these properties is termed cellular —see also [23, Chapter 2]. Sections 6
and 7.2 below are in effect working out some consequences of cellularity;
and 7.1 is in effect proving the cellularity of the Kazhdan-Lusztig basis us-
ing results of [15]. Note that establishing cellularity is difficult, there being
a reliance on [15] in our case.

TOME 62 (2012), FASCICULE 2
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Theorem 2 follows by combining the above observation with two well
known facts: the isomorphism of the right cell module with the Specht mod-
ule and the well-known decomposition into irreducibles of CTλ. A Hecke
analogue of Theorem 2 also holds: see Theorem 7 in the earlier version [28]
of the present paper. A proof of it parallel to the proof of Theorem 2 as
in here can be given using results of [8]. The proof in [28] is different and
more in keeping with the ideas developed here.
The main technical point in the proof of Theorem 1 is isolated as

Lemma 7, which is a two sided analogue of [24, Lemma 2.11] recalled below
as Proposition 6.

1.5. Analogue of Theorem 3 over fields of positive characteristic

The Hecke algebra and its Kazhdan-Lusztig basis make sense over an
arbitrary base (§3). The cell modules and Specht modules are also defined
and isomorphic over any base (§3.5, §2.6, §8.3). Thus we can ask for the
analogue of Theorem 3 over a field of arbitrary characteristic, keeping in
mind of course that the cell modules may not be irreducible any longer.
We prove:

Theorem 4. — Let k be a field of positive characteristic p. Let λ be
a partition of a positive integer n no part of which is repeated p or more
times. Suppose that the right cell module R(λ)k is irreducible. Consider
the Kazhdan-Lusztig basis elements of the group ring kSn indexed by
permutations of λ. Their images under the defining k-algebra map kSn →
Endk R(λ)k form a basis for Endk R(λ)k.

The theorem is a special case of Theorem 23 proved in §11. Like the
proof of Theorem 3, that of Theorem 23 too uses the observation formu-
lated in §3.6, but, the group ring kSn being not necessarily semisimple, we
cannot rely on Wedderburn structure theory any more. Instead we take a
more head-on approach:

Choosing a convenient basis of Endk R(λ)k, we express as
linear combinations of these basis elements the images in
Endk R(λ)k of the appropriate Kazhdan-Lusztig basis ele-
ments of kSn. Denoting by G(λ) the resulting square matrix
of coefficients, we give an explicit formula for its determi-
nant detG(λ)k.

In fact, we obtain a formula for detG(λ), where G(λ) is the analogous
matrix of coefficients over an arbitrary base and over the Hecke algebra
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(rather than the group ring): see §7 for details. We then need only specialize
to get detG(λ)k. Given the formula, it is a relatively easy matter to get a
criterion for detG(λ)k not to vanish, thereby proving Theorem 23.

1.6. A hook length formula for the determinant of G(λ)

To obtain the formula for detG(λ), we first show that G(λ) has a nice
form which enables us to reduce the computation to that of the determinant
of a matrix G(λ) of much smaller size. We discuss how this is done.
The basis of EndR(λ) with respect to which the matrix G(λ) is computed

suggests itself: R(λ) has a basis consisting of classes of Kazhdan-Lusztig
elements Cw, where w belongs to a right cell of shape λ of Sn (§3.5);
considering the endomorphisms which map one of these basis elements to
another (possibly the same) and kill the rest, we get the appropriate basis
for EndR(λ). This means that the matrix G(λ) encodes the multiplication
table for Kazhdan-Lusztig basis elements Cw indexed by permutations of λ,
modulo those indexed by permutations of lesser shape in the dominance
order.
The special (cellularity) properties of the Kazhdan-Lusztig elements now

imply that the matrix G(λ), which is of size d(λ)2 × d(λ)2 (where d(λ) is
the number of standard tableaux of shape λ), is a “block scalar” matrix,
i.e., when broken up into blocks of size d(λ)×d(λ), only the diagonal blocks
are non-zero, and all the diagonal blocks are equal. Denoting by G(λ) the
diagonal block, we are thus reduced to computing the determinant of G(λ).
The details of this reduction are worked out in §7.
The formula for the determinant of G(λ) is given in Theorem 18, the

main ingredients in the proof of which are formulas from [7] and [19]. The
relevance of those formulas to the present context is not clear at first sight.
They are about the determinant, denoted det(λ), of the matrix of a certain
bilinear form, the Dipper-James form, on the Specht module Sλ, com-
puted with respect to the “standard basis” of Sλ; while G(λ) has to do
with multiplication of Kazhdan-Lusztig basis elements. The connection be-
tween det(λ) and detG(λ) is established in §9 (see Equation (9.2)) using
results of [24].

1.7. On the irreducibility of Specht modules

Finally, we discuss another application of the formula for the determinant
of the matrix G(λ) introduced in §1.6. Suppose that the determinant did

TOME 62 (2012), FASCICULE 2
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not vanish when the Hecke algebra is specialized to group ring and the
scalars extended to a field k. Then, evidently, the images in Endk R(λ)k of
the Kazhdan-Lusztig basis elements Cw, as w varies over permutations of λ,
form a basis for Endk R(λ)k, which means in particular that the defining
map kSn → Endk R(λ)k is surjective, and so R(λ)k is irreducible.
In other words, the non-vanishing of detG(λ) in k gives a criterion for

the irreducibility of R(λ)k (equivalently, of Sλk ). The criterion thus obtained
matches precisely the one conjectured by Carter and proved in [18, 19]. We
thus obtain an independent proof of the Carter criterion. The details are
worked out in §11.

1.8. Acknowledgments
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2. Recall of some basic notions

We recall in this section the basic combinatorial and representation theo-
retic notions that we need. Note that our definition of the RSK-
correspondence (§2.4) differs from the standard (as e.g. in [13, Chapter 4])
by a flip.

Throughout n denotes a positive integer.

2.1. Partitions and shapes

By a partition λ of n, written λn, is meant a sequence λ1 > · · · > λr
of positive integers such that λ1 + · · · + λr = n. The integer r is the
number of parts in λ. We often write λ = (λ1, · · · , λr); sometimes even
λ = (λ1, λ2, · · · ). When the latter notation is used, it is to be understood
that λt = 0 for t > r.
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Partitions of n are in bijection with shapes of Young diagrams (or simply
shapes) with n boxes: the partition λ1 > · · · > λr corresponds to the
shape with λ1 boxes in the first row, λ2 in the second row, and so on, the
boxes being arranged left- and top-justified. Here for example is the shape
corresponding to the partition (4, 3, 1) of 8:

Partitions are thus identified with shapes and the two terms are used in-
terchangeably.

2.2. Dominance order on partitions

Given partitions µ = (µ1, µ2, . . .) and λ = (λ1, λ2, . . .) of n, we say µ

dominates λ, and write µ D λ, if

µ1 > λ1, µ1 + µ2 > λ1 + λ2, µ1 + µ2 + µ3 > λ1 + λ2 + λ3, · · · .

We write µ . λ if µ D λ and µ 6= λ. The partial order D on the set of
partitions (or shapes) of n will be referred to as the dominance order.

2.2.1. The partition λ(n, d)

Given integers n and d, there exists a unique partition λ(n, d)n that has
at most d parts and is smallest in the dominance order among those with
at most d parts. For example, λ(8, 3) = (3, 3, 2).

2.3. Tableaux and standard tableaux

A Young tableau, or just tableau, of shape λn is an arrangement of the
numbers 1, . . . , n in the boxes of shape λ. There are, evidently, n! tableaux
of shape λ. A tableau is row standard (respectively, column standard) if in
every row (respectively, column) the entries are increasing left to right (re-
spectively, top to bottom). A tableau is standard if it is both row standard
and column standard. An example of a standard tableau of shape (3, 3, 2):

1 3 5
2 6 8
4 7

TOME 62 (2012), FASCICULE 2
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2.3.1. The number of standard tableaux

The number of standard tableaux of a given shape λn is denoted d(λ).
There is a well-known “hook length formula” for it [12]: d(λ) = n!/

∏
β hβ ,

where β runs over all boxes of shape λ and hβ is the hook length of the
box β which is defined as one more than the sum of the number of boxes
to the right of β and the number of boxes below β.

The hook lengths for shapes (3, 3, 2) and (4, 3, 1) are shown below:

5 4 2
4 3 1
2 1

6 4 3 1
4 2 1
1

Thus d(3, 3, 2) = 8!/(5 · 4 · 2 · 4 · 3 · 1 · 2 · 1) = 42 and d(4, 3, 1) = 8!/6 · 4 · 3 ·
1 · 4 · 2 · 1 · 1 = 70.

2.4. The RSK-correspondence and the of a permutation

The Robinson-Schensted-Knuth correspondence (RSK correspondence
for short) is a well-known procedure that sets up a bijection between the
symmetric group Sn and ordered pairs of standard tableaux of the same
shape with n boxes. We do not recall here the procedure, referring the
reader instead to [13, Chapter 4]. It will be convenient for our purposes to
modify slightly the procedure described in [13].
Denoting by (A(w), B(w)) ↔ w the bijection of [13], what we mean by

RSK correspondence is the bijection (B(w), A(w)) ↔ w; since A(w) =
B(w−1) and A(w−1) = B(w) (see [13, Corollary on page 41]), we could
equally well define our RSK correspondence as (A(w), B(w))↔ w−1. The
of a permutation w is defined to be the shape of either of A(w), B(w).

2.4.1. An example

The permutation (1542)(36) (written as a product of disjoint cycles) has
(3, 2, 1). Indeed it is mapped under the RSK correspondence in our sense
to the ordered pair (A,B) of standard tableaux, where:

A =
1 3 5
2 4
6

B =
1 2 3
4 6
5

ANNALES DE L’INSTITUT FOURIER
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2.4.2. Remark

The justification for our modification of the standard definition of RSK-
correspondence is that it was the simplest way we could think up of rec-
onciling the notational conflict among the two sets of papers upon which
we rely: [6, 24] and [15]. Permutations act on the right in the former —a
convention which we too follow— but on the left in the latter. The direction
in which they act makes a difference to statements involving the RSK cor-
respondence: most importantly for us, to the characterization of one-sided
cells (see §3.4.1 below). This creates a problem: we cannot be quoting lit-
erally from both sets of sources without changing something. Altering the
definition of RSK correspondence as above is the path of least resistance,
and allows us to quote more or less verbatim from both sets.

2.5. Tabloids and tabloid representations

Let λ = (λ1, λ2, . . .)n. A tabloid of shape λ is a partition of the set [n] :=
{1, . . . , n} into an ordered r-tuple of subsets, the first consisting of λ1 el-
ements, the second of λ2 elements, and so on. Depicted below are two
tabloids of shape (3, 3, 2):

1 3 5
7 8 9
4 6

3 5 8
1 6
2 7

The members of the first subset are arranged in increasing order in the first
row, those of the second subset in the second row, and so on.
Given a tableau T of shape λ, it determines, in the obvious way, a tabloid

of shape λ denoted {T}: the first subset consists of the elements in the first
row, the second of those in the second row, and so on.
The defining action of Sn on [n] induces, in the obvious way, an ac-

tion on the set Tλ of tabloids of shape λ. The free Z-module ZTλ with Tλ
as a Z-basis provides therefore a linear representation of Sn over Z. By
base change we get such a representation over any commutative ring with
unity k: kTλ := ZTλ⊗Z k. We call it the tabloid representation correspond-
ing to the shape λ.

2.6. Specht modules

The Specht module corresponding to a partition λn is a certain Sn-
submodule of the tabloid representation ZTλ just defined. For a tableau T

TOME 62 (2012), FASCICULE 2
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of shape λ, define eT in ZTλ by

eT :=
∑

sgn(σ){Tσ}

where the sum is taken over permutations σ of Sn in the column stabiliser
of T , sgn(σ) denotes the sign of σ, and {Tσ} denotes the tabloid corre-
sponding to the tableau Tσ in the obvious way (see §2.5). The Specht
module Sλ is the linear span of the eT as T runs over all tableaux of shape
λ. It is an Sn-submodule of ZTλ with Z-basis eT , as T varies over standard
tableaux (see, for example, [13, §7.2]). By base change we get the Specht
module Sλk over any commutative ring with identity k: Sλk := Sλ⊗Z k. Evi-
dently, Sλk is a free k-module of rank the number d(λ) of standard tableaux
of shape λ (§2.3.1).

3. Set up: Hecke algebra and Kazhdan-Lusztig cells

Let n denote a fixed positive integer and Sn the symmetric group on n
letters. Let S be the subset consisting of the simple transpositions (1, 2),
(2, 3), . . . , (n−1, n) of the symmetric group Sn. Then (Sn, S) is a Coxeter
system in the sense of [3, Chapter 4]. Let A := Z[v, v−1], the Laurent
polynomial ring in the variable v over the integers.

3.1. The Hecke algebra and its T -basis

Let H be the Iwahori-Hecke algebra corresponding to (Sn, S), with no-
tation as in [15]. Recall that H is an A-algebra: it is a free A-module with
basis Tw, w ∈ Sn, the multiplication being defined by

TsTw =
{
Tsw if `(sw) = `(w) + 1
(v − v−1)Tw + Tsw if `(sw) = `(w)− 1

for s ∈ S and w ∈ Sn and ` is the length function. We put

ε(w) := (−1)`(w) and vw := v`(w) for w ∈ Sn.

An induction on length gives (in any case, see [6, Lemma 2.1 (iii)] for
(3.2)):

TwTw′ = Tww′ if `(w) + `(w′) = `(ww′)(3.1)

TuTu′ = Tuu′ +
∑
uu′<w

awTw for u, u′ in Sn.(3.2)

Here, as elsewhere, < denotes the Bruhat-Chevalley partial order on Sn. In
particular, the coefficient of T1 in TuTu′ is non-zero if and only if u′ = u−1

and equals 1 in that case.
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3.1.1. The relation between v and q

We follow the conventions of [15]. In particular, to pass from our nota-
tion to that of [20], [6], or [24], we need to replace v by q1/2 and Tw by
q−`(w)/2Tw.

3.1.2. Specializations of the Hecke algebra

Let k be a commutative ring with unity and a an invertible element
in k. There is a unique ring homomorphism A → k defined by v 7→ a.
We denote by Hk the k-algebra H⊗A k obtained by extending the scalars
to k via this homomorphism. We have a natural A-algebra homomorphism
H → Hk given by h 7→ h⊗ 1. By abuse of notation, we continue to use the
same symbols for the images in Hk of elements of H as for those elements
themselves. If M is a (right) H-module, M ⊗A k is naturally a (right)
Hk-module.

An important special case is when we take a to be the unit element 1
of k. We then have a natural identification of Hk with the group ring kSn,
under which Tw maps to the permutation w in kSn.

Regarding the semisimplicity of Hk, we have this result [7, Theorem 4.3]:
Assuming k to be a field, Hk is semi-simple except precisely
when
• either a2 = 1 and the characteristic of k is 6 n
• or a2 6= 1 is a primitive rth root of unity for some

2 6 r 6 n.

3.1.3. Two ring involutions and an A-antiautomorphism

We use the following two involutions on H both of which extend the ring
involution a 7→ a of A defined by v 7→ v := v−1:∑

awTw :=
∑

awT
−1
w−1 j

(∑
awTw

)
:=
∑

εwawTw (aw ∈ A).

These commute with each other and so their composition, denoted h 7→ h†,
is an A-algebra involution of H. The A-algebra anti-automorphism(∑

awTw

)∗
=
∑

awTw−1

allows passing back and forth between statements about left cells and orders
and those about right ones (§3.4.1).
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3.2. Kazhdan-Lusztig C ′- and C-basis

Two types of A-bases for H are introduced in [20], denoted {C ′w | w ∈
Sn} and {Cw | w ∈ Sn}. They are uniquely determined by the respective
conditions [21, Theorem 5.2]:

C ′w = C ′w and C ′w ≡ Tw mod H<0

Cw = Cw and Cw ≡ Tw mod H>0
(3.3)

where

H<0 :=
∑
w∈Sn

A<0Tw, A<0 := v−1Z[v−1]

H>0 :=
∑
w∈Sn

A>0Tw, A>0 := vZ[v].

The anti-automorphism h 7→ h∗ and the ring involution h 7→ h commute
with each other, so that, by the characterization (3.3):

(3.4) (Cx)∗ = Cx−1 (C ′x)∗ = C ′x−1 .

We have by [20, Theorem 1.1]:

(3.5) C ′w = Tw +
∑

y∈Sn,y<w

py,wTy Cw = Tw +
∑

y∈Sn,y<w

εyεwpy,wTy

where < denotes the Bruhat-Chevalley order on Sn, and py,w ∈ A<0 for
all y < w, from which it is clear that

(3.6) Cw = εwj(C ′w).

Combining (3.3) with (3.6), we obtain

(3.7) Cw = εw(C ′w)†

3.2.1. Notation

For a subset S of Sn, denote by 〈Cy | y ∈ S〉A the A-span in H of
{Cy | y ∈ S}. For an A-algebra k, denote by 〈Cy | y ∈ S〉k the k-span
in Hk of {Cy | y ∈ S}. Similar meanings are attached to 〈Ty | y ∈ S〉A and
〈Ty | y ∈ S〉k.
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3.2.2. A simple observation

From (3.5), we get Tw ≡ Cw mod 〈Tx | x < w〉A. From this in turn
we get, by induction on the Bruhat-Chevalley order, the following: for a
subset S ofSn, the (images of) elements Tw, w ∈ Sn\S, form a basis for the
A-module H/〈Cx | x ∈ S〉A. The same thing holds also in specializations
Hk of H (§3.1.2): the (images of) elements Tw, w ∈ Sn \ S, form a basis
for the k-module Hk/〈Cx | x ∈ S〉k.

3.3. Kazhdan-Lusztig orders and cells

Let y and w in Sn. Write y←L w if, for some element s in S, the coeffi-
cient of Cy is non-zero in the expression of CsCw as a A-linear combination
of the basis elements Cx. Replacing all occurrences of “C” by “C ′” in this
definition would make no difference. The Kazhdan-Lusztig left pre-order
is defined by: y6L w if there exists a chain y = y0←L · · ·←L yk = w; the
left equivalence relation by: y∼L w if y6L w and w6L y. Left equivalence
classes are called left cells. Note that

∑
x6L w

ACx is a left ideal containing
the left ideal HCw.

Right pre-order, equivalence, and cells are defined similarly. The two
sided pre-order is defined by: y6LR w if there exists a chain y = y0, . . . ,
yk = w such that, for 0 6 j < k, either yj 6L yj+1 or yj 6R yj+1. Two sided
equivalence classes are called two sided cells.

3.4. Cells and RSK Correspondence

We now recall the combinatorial characterizations of one and two sided
cells in terms of the RSK correspondence (§2.4) and the dominance order
on partitions (§2.2). These statements are the foundation on which this
paper rests. The ones in §3.4.2, 3.4.2 are used repeatedly, but the more
subtle one in §3.4.3 is used only once, namely in the proof of Theorem 1: it
is used in the proof of Lemma 7 which is the main ingredient in the proof
of that theorem.

Write (P (w), Q(w)) for the ordered pair of standard Young tableaux
associated to a permutation w by the RSK correspondence (in our sense
—see §2.4). Call P (w) the P -symbol and Q(w) the Q-symbol of w. It
will be convenient to use such notation as (P (w), Q(w)) for the permu-
tation w, C(P (w),Q(w)) or C(P (w), Q(w)) for the Kazhdan-Lusztig C-basis
element Cw.
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3.4.1. Cells in terms of symbols

Two permutations are left equivalent if and only if they have the same
Q-symbol; right equivalent if and only if the same P -symbol; two sided
equivalent if and only if the same . See [15, Corollary 5.6] (and comments
therein about [20, §5], [1]).

3.4.2. The 6LR relation in terms of dominance

We have y6LR w if and only if RSK-shape (y) E RSK-shape (w), where
E is the usual dominance order on partitions: λ E µ if λ1 6 µ1, λ1 +
λ2 6 µ1 +µ2, . . . . See [15, Theorem 5.1] (and comments therein about [10,
2.13.1]). We write λ / µ for λ E µ and λ 6= µ.

3.4.3. Unrelatedness of distinct one sided cells in the same two sided cell

If x6L y and x∼LR y, then x∼L y. See [15, Theorem 5.3] (and comments
therein about [22, Lemma 4.1]).

3.5. Cell modules

It follows from the definition of the pre-order 6L that the A-span 〈Cy |
y6L w〉A of {Cy | y6L w}, for w in Sn fixed, is a left ideal of H; so is
〈Cy | y <L w〉A. The quotient L(w) := 〈Cy | y6L w〉A/〈Cy | y <L w〉A is
called the left cell module associated to w. It is a left H-module. Right cell
modules R(w) and two sided cell modules are defined similarly. They are
right modules and bimodules respectively.
Let y and w be permutations of the same λ. The left cell modules L(y)

and L(w) are then H-isomorphic. In fact, the association C(P,Q(y)) ↔
C(P,Q(w)) gives an isomorphism: see [20, §5], [15, Corollary 5.8]. The right
cell modules R(y) and R(w) are similarly isomorphic, and we sometimes
write R(λ) for R(y) ' R(w).

When a homomorphism from A to a commutative ring k is specified,
such notation as R(w)k and R(λ)k make sense: see §3.1.2.

3.6. A key observation regarding images of C-basis elements in
endomorphisms of cell modules

The image of Cy in EndR(λ) vanishes unless λ E (y), for, if Cz occurs
with non-zero coefficient in CxCy (when expressed as an A-linear combi-
nations of the C-basis), where (x) = λ, and λ 6E (y), then z6L y (by defi-
nition), so (z) E y (§3.4.2), which means that (z) 6= λ, so z 6∼R x (§3.4.1).
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4. Applications to invariant theory

In §4.1, Theorem 1 stated in §1.1 is proved. In the later subsections,
applications of the theorem to rings of multilinear and polynomial invari-
ants are discussed. The base k is an arbitrary commutative ring with unity
in §4.1 but in the later subsections it is assumed to satisfy further hypoth-
esis.

4.1. Proof of Theorem 1

Our goal in this subsection is to prove Theorem 1 stated in §1.1. Let n
and d be positive integers, d < n. (The theorem clearly holds when d > n.)
The main ingredient of the proof is Lemma 7 below. Once the lemma is
proved, the theorem itself follows easily: see §4.1.2. For the lemma we need
some combinatorial preliminaries, beyond those recalled in §2.

4.1.1. Preliminaries to the proof

For λ a partition of n,
• λ′ denotes the transpose of λ. E.g., λ′ = (3, 2, 2, 1) for λ = (4, 3, 1).
• tλ denotes the standard tableau of shape λ in which the numbers

1, 2, . . . , n appear in order along successive rows; tλ is defined
similarly, with “columns” replacing “rows”. E.g., for λ = (4, 3, 1),
we have:

tλ =
1 2 3 4
5 6 7
8

tλ =
1 4 6 8
2 5 7
3

• Wλ denotes the row stabilizer of tλ. It is a parabolic subgroup ofSn.
E.g., for λ = (4, 3, 1),Wλ is isomorphic to the productS4×S3×S1.

• w0,λ denotes the longest element of Wλ. E.g., when n = 8 and
λ = (4, 3, 1), the sequence (1w0,λ, . . . , nw0,λ) is (4, 3, 2, 1, 7, 6, 5, 8).

• Dλ := {w ∈ Sn | tλw is row standard}. Clearly Dλ is a set of right
coset representatives of Wλ in Sn and wλ is an element of Dλ.

Proposition 5. — For λ a partition of n,
(1) `(wd) = `(w) + `(d), for w ∈Wλ and d ∈ Dλ.
(2) d ∈ Dλ is the unique element of minimal length in Wλd.
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(3) w0,λDλ = {w | w6R w0,λ}. Thus w6R w0,λ if and only if in every
row of tλw the entries are decreasing to the right.

(4) w0,λ is of shape λ′: it corresponds under RSK to (tλ′ , tλ′).

Proof. — (1) and (2) are elementary to see: in any case, see
[6, Lemma 1.1 (i), (ii)]. (4) is evident. For (3) see [24, §2.9]. �

Now, fix notation as in §3: A denotes the ring Z[v, v−1], H the Hecke
algebra, Cw the Kazhdan-Lusztig basis element corresponding to the per-
mutation w, etc.

Proposition 6. — ([24, Lemma 2.11]) The A-span 〈Cw | w6R w0,λ〉A
of the elements Cw, w6R w0,λ, equals the right ideal Cw0,λH. Similarly
〈Cw | w6L w0,λ〉A = HCw0,λ .

Proof. — It is enough to prove the first equality, the second being a
left analogue of the first. The inclusion ⊇ follows immediately from the
definition of 6R; the inclusion ⊆ from [24, Lemma 2.11]. �

Setting xλ :=
∑
w∈Wλ

vwTw and yλ :=
∑
w∈Wλ

εwv
−1
w Tw, we have, by [20,

Theorem 1.1, Lemma 2.6 (vi)]:

(4.1) xλ = vw0,λC
′
w0,λ

yλ = εw0,λv
−1
w0,λ

Cw0,λ .

Lemma 7. — Let ζ(d) denote the partition (d+1, 1, . . . , 1) of n. The two-
sided ideal generated by Cw0,ζ(d) is a free A-submodule of H with basis Cx,
(x) has more than d rows (or, equivalently, (x) E ζ(d)′).

Proof. — Since w0,ζ(d) has shape ζ(d)′ (see Proposition 5 (4)), it fol-
lows from the combinatorial description of 6LR in §3.4.2 that x6LR w0,ζ(d)
if and only if (x) E ζ(d)′. So it is clear from the definition of the re-
lation 6LR (§3.3) that the two-sided ideal HCw0,ζ(d)H is contained in
〈Cx | (x) E ζ(d)′〉A. To show the reverse containment, we first observe
that Cx belongs to the right ideal Cw0,ζ(d)H in case µ := (x) E ζ(d)′
and x = w0,µ′ , the longest element of its shape: it is enough, by Proposi-
tion 6, to show that x6R w0,ζ(d); on the other hand, by Proposition 5 (3),
x6R w0,ζ(d) is equivalent to x(1) > x(2) > · · · > x(d + 1), which clearly
holds for the elements x that we are considering.
Now suppose that x is a general element of µ E ζ(d)′. Proceed by induc-

tion on the domination order of µ. Let x ↔ (P,Q) under RSK. Then, on
the one hand, the association C(P,Q)↔ C(tµ, Q) gives an H-isomorphism
between the right cell modules R(x) and R(v), where v is the permutation
corresponding under RSK to (tµ, Q) (§3.5); on the other, since v ↔ (tµ, Q)
is right equivalent to w0,µ′ ↔ (tµ, tµ), there exists, by Proposition 6, an
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element h in H such that C(v) = Cw0,µ′h; so that, by the definition of right
cell modules,

Cx ≡ Cuh (mod 〈Cy | y�R u〉A)
where u↔ (P, tµ) under RSK. Now, y�R u implies, by §3.4.3, 3.4.2, (y) /
µ E ζ(d)′; and, by the induction hypothesis, Cy ∈
HCw0,ζ(d)H. As to C(P, tµ), being left equivalent to C(tµ, tµ), it belongs,
once again by Proposition 6, to the left ideal HCw0,µ′ , which as shown in
the previous paragraph is contained in HCw0,ζ(d)H. Thus Cx = C(P,Q) ∈
HCw0,ζ(d)H, and we are done. �

4.1.2. Proof of Theorem 1 given Lemma 7

As seen in §3.1.2, kSn is the specialization of the Hecke algebra H:
kSn ' Hk := H⊗A k, where k is an A-algebra via the natural ring homo-
morphism A → k defined by v 7→ 1. Under the map H → H ⊗A k given
by x 7→ x ⊗ 1, the image of Cw0,ζ(d) is Cw0,ζ(d) ⊗ 1 = yd, by Eq. (4.1).
Denoting by J̃ the two-sided ideal of H generated by Cw0,ζ(d) , we thus have
H/J̃ ⊗A k ' kSn/J(n, d).

On the other hand, combining Lemma 7 with the observation in §3.2.2,
we see that H/J̃ is a free A-module with basis Tx, as x varies over permu-
tations of whose s have at most d rows. The image of Tx in kSn/J(n, d)
being the residue class of the corresponding permutation x, the theorem is
proved. �

4.2. A “monomial” basis for the GL(V )-invariant sub-algebra of
the tensor algebra of EndV

Let k be a commutative ring with identity such that no non-zero poly-
nomial in one variable over k vanishes identically as a function on k. Let
V be a free module over k of finite rank d. Let T := T (EndV ) denote
the tensor algebra ⊕n>0(EndV )⊗n. The action of the group GL(V ) of
units in EndV on T preserves the algebra structure, so the ring TGL(V ) of
GL(V )-invariants is a sub-algebra. It also preserves degrees, so

TGL(V ) ' ⊕n>0((EndV )⊗n)GL(V ) = ⊕n>0 EndGL(V )(V ⊗n).

By the classical theorem quoted in §1.1 from [4], we have, for every n > 0,
an isomorphism of k-algebras

Θn : kSn/J(n, d) ' EndGL(V )(V ⊗n)
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where kSn is the group algebra of the symmetric group Sn, and J(n, d)
the two sided ideal as defined in the statement of the quoted theorem.
Now, Theorem 1 gives us a k-basis for kSn/J(n, d). Taking the image

under Θn gives a basis for EndGL(V )(V ⊗n). Taking the disjoint union over n
of these bases gives a basis —call it B— for TGL(V ), which has an inter-
esting property —see the theorem below— which explains the appearance
of term “monomial” in the title of this subsection.

Theorem 8. — The basis B of TGL(V ) defined above is closed under
products.

Proof. — In fact, we get a description of the k-algebra TGL(V ) as follows.
Consider the space S := ⊕n>0kSn with the following multiplication: for π
in Sm and σ in Sn, π · σ is the permutation in Sm+n that, as a self-map
of [m+ n], is given by

π · σ(i) :=
{
π(i) if i 6 m
σ(i−m) +m if i > m+ 1.

For each n, consider the subspace Pn of kSn spanned by permutations
that have no decreasing sub-sequence of length more than d. The direct
sum P := ⊕n>0Pn is a sub-algebra of S.
The restriction to Pn of the canonical map kSn → kSn/J(n, d) is a

vector space isomorphism (Theorem 1). Thus ⊕n>0Θn is a vector space
isomorphism of the algebra P onto TGL(V ). It is evidently also an algebra
isomorphism. �

4.3. Application to rings of polynomial invariants

In this subsection, k denotes a field of characteristic 0 and V a k-vector
space of finite dimension d. Consider the ring of GLk(V )-invariant polyno-
mial functions on (Endk V )×m. It is a direct sum of homogeneous invariant
functions, for the action preserves degrees. It is spanned, as a vector space,
by products of traces in words (see for example [27, §1], [29]). More pre-
cisely, for a fixed degree n, given a permutation σ of n elements and a map
ν of [n] to [m], consider the function f(σ, ν) defined as follows: writing σ
as a product (i1i2 · · · )(ik+1ik+2 · · · ) · · · (ip+1ip+2 · · · ) of disjoint cycles,

f(σ, ν) := Trace
(
Aν(i1)Aν(i2) · · ·

)
Trace

(
Aν(ik+1)Aν(ik+2) · · ·

)
· · ·

· · ·Trace
(
Aν(ip+1)Aν(ip+2) · · ·

)
.

As σ and ν vary, the f(σ, ν) span the space of invariants of degree n.
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This fact is proved by observing that every polynomial invariant arises
as the specialization of a multilinear invariant (by the restitution process).
Thus, thanks to Theorem 1, we can restrict the permutation σ to have no
decreasing sub-sequence of length more than d, and still the f(σ, ν) would
span. We state this formally:

Theorem 9. — The invariant functions f(σ, ν), as σ varies over permu-
tations that do not have any decreasing sub-sequence of length exceeding d,
form a k-linear spanning set for the ring of GLkV -invariant polynomial
functions on (Endk V )×n.

4.3.1. Picture invariants

Set V tb := V ∗⊗b ⊗ V ⊗t and consider the ring of polynomial GLk(V )-
invariant functions on the space V t1b1

× · · · × V tsbs of several tensors. In [5,
§3], the notion of a “picture invariant” is introduced, generalizing the func-
tions f(σ, ν) defined above. Picture invariants span the space of invariant
polynomial functions ([5, Proposition 7]). Just as in the special case of
(EndV )×n discussed above, thanks to Theorem 1, we have:

Theorem 10. — Only those picture invariants with underlying permu-
tations having no decreasing sub-sequences of length exceeding d suffice to
span as a k-vector space the ring of GLk(V )-invariant polynomial functions
on the space V t1b1

× · · · × V tsbs of several tensors.

5. Proof of Theorem 2

In this section, we first prove Theorem 2 (§1.2). We then show that it
holds also over the integers and fields of characteristic 0 (§5.3), but not in
general over a field of positive characteristic (Example 11). For comments
on its Hecke analogue, see §1.4.
As pointed out in §1.2, the results of the recent paper [9] are related to

Theorem 2 and its Hecke analogue.

5.1. Proof of Theorem 2

Let n be a positive integer, λ a partition of n, and ρλ : CSn → EndC CTλ
the map defining the representation of Sn on tabloids of shape λ (§2.5).
The proof follows by combining the observations in §3.6 and §3.2.2 with
the following two facts:
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(1) the decomposition into irreducibles of the representation CTλ is
given by CTλ = ⊕µDλ(SµC)m(µ), where SµC are the Specht modules
(§2.6), D is the domination relation on partitions (§2.2), and the
multiplicities m(µ) are positive.(2)

(2) the Specht module SµC is Sn-isomorphic to the right cell mod-
ule R(µ)C (defined in §3.5);

Both facts are well known. For (1), see for example [30, Theorem 2.11.2,
Corollary 2.4.7]. For (2), we could refer to [14] or [26]. But in fact we will
recall in some detail in §8.3 the following more general fact from [6, 24]:
Specht modules can be defined over the Hecke algebraH and are isomorphic
to the corresponding right cell modules.
Since the multiplicities m(µ) in (1) above are positive, the kernel of ρλ is

the same as that of the map ρ′λ : CSn → EndC(⊕µDλSµC). The image of ρ′λ
is clearly contained in ⊕µDλ EndC S

µ
C . Since the SµC are non-isomorphic

for distinct µ,(3) it follows from a density argument (see for example [2,
Chapter 8, §4, No. 3, Corollaire 2]) that ρ′λ maps onto ⊕µDλ EndC S

µ
C .

Since dimSµC = d(µ), where d(µ) is the number of standard tableaux of
shape µ, and the SµC as µ varies over all partitions of n are a complete set
of irreducible representations,(4) we obtain, by counting dimensions:

dim ker ρ′λ = dimCSn − dim (⊕µDλ EndC S
µ
C)

=
∑
µn

d(µ)2 −
∑
µDλ

d(µ)2

=
∑
µ6Dλ

d(µ)2.

Now consider CSn as the specialization of the Hecke algebraH as follows
(§3.1.2): CSn ' H ⊗A C, where C is an A-algebra via the map A → C
defined by v 7→ 1. By the observation §3.6, the images Cw⊗1 in H⊗AC '
CSn of the Kazhdan-Lusztig basis elements Cw of H (§3.2) belong to the
kernel of ρ′λ if RSK-shape(w) 6D λ. The number of such w being equal
to
∑
µ 6Dλ d(µ)2, which as observed above equals dim ker ρ′λ, we conclude

that

(5.1) ker ρλ = ker ρ′λ = 〈Cw ⊗ 1 | (w) 6D λ〉C.

(2) In fact, m(µ) is the number of “semi-standard tableaux of shape µ and content λ”.
(3) This is well-known. It also follows from the isomorphism in (2) and the corresponding
fact for cell modules proved in §6.2.
(4)Same comment as in footnote 3 applies to both assertions.
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By observation §3.2.2, the images of Tw ⊗ 1, (w) D λ, form a basis for
H ⊗A C/〈Cx ⊗ 1 | (w) 6D λ〉C ' CSn/ ker ρ′λ. But the image in CSn of
Tw ⊗ 1 is the permutation w. This completes the proof of Theorem 2. �

5.2. J(n, d) in CSn equals ker ρλ(n,d)

We now justify the claim made in §1.2 that the ideal J(n, d) in CSn

equals ker ρλ(n,d). On the one hand, as is easily seen, the generator yd of the
two sided ideal J(n, d) belongs to ker ρλ(n,d). Indeed, given a tabloid {T} of
shape λ(n, d), there evidently exist integers a and b, with 1 6 a, b 6 d+ 1,
that appear in the same row of T . This implies that the transposition (a, b)
fixes {T}. Writing Sd+1 as a disjoint union S∪S(a, b) (for a suitable choice
of a subset S), we have yd{T} =

∑
σ∈Sd+1

sgn(σ)σ{T} =
∑
σ∈S sgn(σ)(σ−

σ(a, b)){T} = 0.
On the other hand, as computed in the proof of Theorem 2 above,

ker ρλ(n,d) as a C-vector space has dimension
∑
µ6Dλ(n,d) d(µ)2. It suffices

therefore to show that J(n, d) too has this same dimension. It follows from
Lemma 7 that J(n, d) has dimension

∑
µEζ(d)′ d(µ)2, where ζ(d) is the par-

tition of (d+ 1, 1, . . . , 1) of n and ζ(d)′ denotes its transpose (§4.1.1). But
µ 6D λ(n, d) if and only if µ has more than d rows if and only if µ E ζ(d)′.�

5.3. Theorem 2 holds over the integers and fields of
characteristic 0

We first argue that Theorem 2 holds with Z coefficients in place of C
coefficients. Let ρλ,Z be the map ZSn → EndZ ZTλ defining the tabloid
representation. We claim that Eq. (5.1) holds over Z:

(5.2) ker ρλ,Z = 〈Cw ⊗ 1 | (w) 6D λ〉Z.

Once this is proved, the rest of the argument is the same as in the complex
case: namely, use observation §3.2.2.
We first show the containment⊇. We have (Cw⊗1)CTλ = (Cw⊗1)ZTλ⊗Z

C (by flatness of C over Z). Since (Cw ⊗ 1)ZTλ is a submodule of the free
module ZTλ, it is free. By Eq. (5.1), (Cw ⊗ 1)CTλ = 0 if (w) 6D λ, so ⊇
holds.
To show the other containment, set m = 〈Cw ⊗ 1 | (w) 6D λ〉Z, and

consider ker ρλ,Z/m. Since ZSn/m is free, so is its submodule ker ρλ,Z/m,
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and we have
ker ρλ,Z

m
⊗Z C = ker ρλ,Z ⊗Z C

m⊗Z C
= ker ρλ,Z ⊗Z C
〈Cw ⊗ 1 | (w) 6D λ〉C

.

By the flatness of C over Z, we have ker ρλ,Z ⊗Z C = ker ρλ. The last term
in the above display vanishes by Eq. (5.1), and so ⊆ holds (since ker ρλ,Z/m
is free). The proof of Theorem 2 over Z is complete.

Let now k be a field of characteristic 0 and ρλ,k the map kSn →
Endk kTλ defining the representation on tabloids of shape λ. The analogue
of Eqs. (5.1) and (5.2) holds over k, since, by the flatness of k over Z, we
have ker ρλ,k = ker ρλ,Z ⊗Z k. Now use observation §3.2.2 as in the earlier
cases to finish the proof of Theorem 2 over k. �

Example 11. — Theorem 2 does not hold in general over a field k of
positive characteristic. We give an example of a non-trivial linear combi-
nation of permutations of dominating λ that acts trivially on the tabloid
representation space kTλ. Let k be a field of characteristic 2. Let n = 4 and
λ = (2, 2). Let us denote a permutation in S4 by writing down in sequence
the images under it of 1 through 4: e.g., 1243 denotes the permutation σ
defined by 1σ = 1, 2σ = 2, 3σ = 4, and 4σ = 3. It is readily seen that
the eight permutations in the display below are all of shape (3, 1) and that
their sum acts trivially on kTλ.

2134, 2341, 2314, 1342, 3124, 1243, 4123, 1423.

6. Proof of Theorem 3

In this section, k denotes a field, a an invertible element of k, and notation
is fixed as in §3. It is assumed throughout this section (but not in the later
ones) that Hk is semisimple (see §3.1.2). Combining the structure theory
of semisimple algebras with the results in §3.4–3.6, we derive Theorem 14
as a consequence. Theorem 3 of §1 is the special case of this theorem when
k is the complex field and a = 1. As mentioned in §1.4, the proof in effect
says that Theorem 14 is a consequence of the cellularity in the sense of [17]
of the Kazhdan-Lusztig basis.
But first, we need to recall the structure theory, which we do in §6.1 in

a form suited to our context, and then the proof of irreducibility of the
(right) cell modules, which we do in §6.2 following the argument in [20,
§5].
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6.1. A recap of the structure theory of semisimple algebras

The facts recalled here are all well known: see, e.g., [2], [16, page 218].
Let V be a simple (right) module for a semisimple algebra A of finite di-
mension over k. Then the endomorphism ring EndA V is a division algebra
(Schur’s Lemma), say EV . Being a subalgebra of Endk V , it is finite dimen-
sional as a vector space over k, and V is a finite dimensional vector space
over it. Set nV := dimEV V . The ring EndEV V of endomorphisms of V
as a EV -vector space can be identified (non-canonically, depending upon
a choice of basis) with the ring MnV (DV ) of matrices of size nV × nV
with entries in the opposite algebra DV of EV . The natural ring homomor-
phism A→ EndEV V is a surjection (density theorem).
There is an isomorphism of algebras (Wedderburn’s structure theorem):

(6.1) A '
∏
V

EndEV V '
∏
V

MnV (DV ),

where the product is taken over all (isomorphism classes of) simple mod-
ules. There is a single isomorphism class of simple modules for the simple
algebra EndEV V , namely that of V itself, and its multiplicity is nV in a
direct sum decomposition into simples of the right regular representation
of EndEV V . Thus nV is also the multiplicity of V in the right regular
representation of A. And of course

(6.2) dimk V = nV (dimk EV ) > nV .

The hypothesis of the following proposition admittedly appears contrived
at first sight, but it will soon be apparent (in §3.2) that it is tailor-made
for our situation.

Proposition 12. — Let W1, . . . , Ws be A-modules of respective di-
mensions d1, . . . , ds over k. Suppose that the right regular representation
of A has a filtration in which the quotients are precisely W⊕d1

1 , . . . , W⊕dss .
Then

(1) EndAWi = k and Wi is absolutely irreducible, ∀ i, 1 6 i 6 s.
(2) Wi is not isomorphic to Wj for i 6= j.
(3) Wi, 1 6 i 6 s, are a complete set of simple A-modules.
(4) A '

∏s
i=1 EndkWi.

Proof. — Let V be a simple submodule of Wi. Then dimk V 6 di. The
hypothesis about the filtration implies that the multiplicity of V in the
right regular representation is at least di. From Eq. (6.2), we conclude that
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di = nV and dimk EV = 1. So V = Wi is simple and EV = k. If k denotes
an algebraic closure of k, then

EndA⊗kk(V ⊗k k) = (EndA V )⊗k k = k ⊗k k = k.

So V is absolutely irreducible and (1) is proved.
If Wi ' Wj for i 6= j, then the multiplicity of Wi in the right regular

representation would exceed di contradicting Eq. (6.2). This proves (2).
Since every simple module has positive multiplicity in the right regular
representation, (3) is clear. Finally, (4) follows from (1) and Eq. (6.1). �

6.2. Irreducibility and other properties of the cell modules

The proof of Theorem 13 below follows [20, §5]. We give it in detail here
for the proof in [20] seems sketchy.

Theorem 13. — ([20, §5]) Assume that Hk := H ⊗A k is semisimple.
Then

(1) EndHk R(λ)k = k and R(λ)k is absolutely irreducible, for all λn.
(2) R(λ)k 6' R(µ)k for partitions λ 6= µ of n.
(3) R(λ)k, λn, are a complete set of simple Hk-modules.
(4) Hk '

∏
λn Endk R(λ)k.

Proof. — By Proposition 12, it is enough to exhibit a filtration of the
right regular representation of Hk in which the quotients are precisely
R(λ)⊕d(λ)

k , λn, each occurring once. We will in fact exhibit a decreasing
filtration F = {Fi} by right ideals (in fact, two sided ideals) of H in which
the quotients Fi/Fi+1 are precisely R(λ)⊕d(λ), λn, each occurring once.
Since R(λ) are free A-modules, it will follow that F ⊗A k is a filtration
of Hk whose quotients are R(λ)⊕d(λ)

k , and the proof will be done.
Let � be a total order on partitions of n that refines the dominance

partial order D. Let λ1 � λ2 � · · · be the full list of partitions arranged
in decreasing order with respect to �. Set Fi := 〈Cw | (w) � λi〉A. It is
enough to prove the following:

(1) The Fi are right ideals in H (they are in fact two sided ideals).
(2) Fi/Fi+1 ' R(λi)⊕d(λi).
It follows from the definition in §3.3 of the relation6LR that, for any fixed

permutation w, 〈Cx | x6LR w〉A is a two sided ideal of H. But x6LR w

if and only if RSK-shape (x) E RSK-shape (w), by the characterization
in §3.4.2. Thus, 〈Cx | RSK-shape (x) E λ〉A is a two sided ideal, and Fi

ANNALES DE L’INSTITUT FOURIER



RSK BASES AND KAZHDAN-LUSZTIG CELLS 551

being equal to the sum
∑
j>i〈Cx | RSK-shape (x) E λj〉A of two sided

ideals is a two sided ideal. This proves (1).
To prove (2), let S1, S2, . . . be the distinct right cells contained in the

two sided cell corresponding to shape λi. It follows from the assertions
in §3.4.1 that there are d(λi) of them and the cardinality of each is d(λi).
Fix a permutation w of shape λi. Consider the right cell module R(w),
which by definition is the quotient of the right ideal 〈Cx | x6R w〉A by
the right ideal 〈Cx | x�R w〉A. If x6R w then evidently x6LR w and (by
§3.4.2) RSK-shape (x) E λi, so RSK-shape (x) � λi. Thus we have a map
induced by the inclusion: 〈Cx | x6R w〉A → Fi/Fi+1.
We claim that the above map descends to an injective map from the

quotient R(λi). It descends because x�R w implies x�LR w: if x∼LR w,
then x∼R w by §3.4.3. To prove that the map from R(λi) is an injec-
tion, let

∑
x6LR w

axCx belong to Fi+1 with ax ∈ A. Suppose that ax 6=
0 for some fixed x. Then, since the Cy form an A-basis of H, we con-
clude that RSK-shape (x) � λi+1, so RSK-shape (x) 6= λi, and (by §3.4.2)
x�LR w. But this means x 6∼Rw, so x�R w, and thus the image in R(λi)
of
∑
x6LR w

axCx vanishes.
The image of R(w) in Fi/Fi+1 is spanned by the classes Cx, x∼R w.

Choosing w1 in S1, w2 in S2, . . . we see that the images of R(w1), R(w2),
. . . in Fi/Fi+1 form a direct sum (for the Cx are an A-basis of H). The
R(wj) are all isomorphic to R(λ) (see §3.5). This completes the proof of
(2) and also of the theorem. �
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6.3. Kazhdan-Lusztig basis in endomorphisms of modules

Theorem 14. — Assume that Hk := H ⊗A k is semisimple. For λ a
partition of n, the images in EndR(λ)k of the Kazhdan-Lusztig basis ele-
ments Cx, (x) = λ, form a basis (for EndR(λ)k).

Proof. — By Theorem 13 (4), Hk ' ⊕λ`n EndR(λ)k. The projections to
EndR(ν)k of Cx, (x) E λ, vanish if ν 6E λ (§3.6). Therefore the projections
of the same elements to ⊕µEλ EndR(µ)k form a basis: note that the number
of such elements equals

∑
µEλ dim EndR(µ)k . Again by §3.6, the projections

of Cx, (x)/λ, vanish in EndR(λ)k. This implies that the projections of Cx,
RSK-shape (x) = λ, in EndR(λ)k form a spanning set. Since the number
of such Cx equals dim EndR(λ)k, the theorem follows. �

Theorem 15. — Assume that Hk := H ⊗A k is semisimple. Let U be
a finite dimensional representation of Hk and S the subset of partitions λ
of n such that R(λ)k appears in a decomposition of U into irreducibles.
Then the images in EndU of Cx, x ∈ Sn such that (x) ∈ S, form a basis
for the image of Hk (under the map Hk → EndU defining U).

Proof. — It is enough to prove the assertion assuming U = ⊕λ∈SR(λ)k.
The image ofHk in EndU is ⊕λ∈S EndR(λ)k (Theorem 13 (1), density the-
orem, and [2, Corollaire 2, page 39]). Proceed by induction on the cardinal-
ity of S. It is enough to show that the relevant images in EndU are linearly
independent, for their number equals the dimension of ⊕λ∈S EndR(λ)k.
Suppose that a linear combination of the images vanishes. Choose λ ∈ S
such that there is no µ in S with λ / µ. Projections to EndR(λ)k of all
Cx, λ 6= (x) ∈ S, vanish (§3.6). So projecting the linear combination to
EndR(λ)k and using Theorem 14, we conclude that the coefficients of Cx,
(x) = λ, are all zero. The induction hypothesis applied to S \ {λ} now
finishes the proof. �

Example 16. — The purpose of this example is to show that images
in EndR(λ)C of permutations of λ do not in general form a basis of
EndR(λ)C. Let n = 4 and λ = (2, 2). Then R(λ)C is the unique 2 di-
mensional complex irreducible representation of S4. Consider the action
of S4 on partitions of {1, 2, 3, 4} into two sets of two elements each. There
being three such partitions, we get a map S4 → S3, which is surjective
and has kernel {identity, (12)(34), (13)(24), (14)(23)}. Pulling back the 2-
dimensional complex irreducible representation of S3 via the above map,
we get R(λ)C. The permutations of shape λ are (13)(24), (1342), (1243),
and (12)(34). The first and last of these act as identity on R(λ)C.
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7. The matrix G(λ) and a formula for its determinant

Let λ be a fixed partition of n. Our goal in this section is to study the
action of the elements Cw, (w) = λ, on the right cell module R(λ). More
specifically, it is to state Theorem 18. The motivation for this was already
indicated (see §1.5): it is to prove analogues of Theorem 3 over fields of
positive characteristic. As too was already indicated (in §1.5), there is a
bonus to be had: our study enables a different approach to questions about
irreducibility of Specht modules.
As we observe in §7.2, all information about the action can conveniently

be gathered together into a matrix G(λ) which breaks up nicely into blocks
of the same size (Proposition 17). The non-zero blocks all lie along the
diagonal and are all equal to a certain matrix G(λ) defined in §7.1. This
matrix encodes the multiplication table modulo lower cells of the Cw of λ.
Theorem 18 gives a formula for its determinant.
As remarked in §1.4, the argument in §7.1 is in effect deducing the cellu-

larity of the Kazhdan-Lusztig basis from results of [15] recalled in §3; and
the argument in §7.2 is in effect deducing Proposition 17 as a consequence
of cellularity.

7.1. On products of C-basis elements

Let P1, . . . , Pm be the complete list of standard tableaux of shape λ. We
claim:

(7.1) C(Pi, Pj) · C(Pk, Pl) = gkjC(Pi, Pl) mod
〈Cy | (y) / λ, y�L(Pk, Pl), y�R(Pi, Pj)〉A

the coefficient gkj being independent of i and l.
To prove the claim, consider the expression of the left hand side as a linear

combination of the C-basis elements. For any Cy occurring with non-zero
coefficient, we have y6R(Pi, Pj) and y6L(Pk, Pl), by the definition of the
pre-orders (§3.3). By §3.4.2, (y) E λ; and if (y) 6= λ, then y�R(Pi, Pj)
and y�L(Pk, Pl). If (y) = λ, then, by §3.4.1, y∼LR(Pk, Pl); by §3.4.3,
y∼L(Pk, Pl); by §3.4.1, the Q-symbol of y is Pl; and, analogously, the P -
symbol of y is Pi. That gkj doesn’t depend upon i and l follows from the
description of the H-isomorphisms between one sided cells of the same as
recalled in §3.5, and the claim is proved. We set

(7.2) G(λ) := (gkj )16j,k6m.
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7.2. Relating the matrix G(λ) to the action on R(λ)

Enumerate as P1, . . . , Pm all the standard Young tableaux of shape λ.
Let us write C(k, l) for the C-basis element C(Pk, Pl). Consider the or-
dered basis C(1, 1), C(1, 2), . . . , C(1,m) of R(λ). Denote by eji the element
of EndR(λ) that sends C(1, i) to C(1, j) and kills the other basis elements.
Any element of EndR(λ) can be written uniquely as

∑
αji e

j
i . Arrange the

coefficients as a row matrix like this:(
α1

1 α
1
2 · · · α1

m | α2
1 α

2
2 · · · α2

m | · · · | αm1 αm2 · · · αmm
)
.

Now consider such row matrices for ρλ(C(k, l)). Arrange them one below
the other, the first row corresponding to the value (1, 1) of (k, l), the second
to (2, 1), . . . , themth row to (m, 1), the (m+ 1)th row to (1, 2), . . . , and the
last to (m,m). We thus get a matrix —denote it G(λ)—of size d(λ)2×d(λ)2,
where d(λ) := dimR(λ).
Let us compute G(λ) in the light of (7.1). Setting

αji (k, l) := αji (ρλ(C(k, l))),

we have (mind the abuse of notation: this equation holds in R(λ), not inH):

C(1, i)C(k, l) =
∑
j

αji (k, l)C(1, j).

Applying (7.1) to the left hand side and reading the result as an equation
in R(λ), we see that it equals gki C(1, l). Thus

αji (k, l) =
{
gki if j = l

0 otherwise.
which means the following:

Proposition 17. — The matrix G(λ) (defined earlier in this section)
is of block diagonal form, with uniform block size d(λ) × d(λ), and each
diagonal block equal to the matrix G(λ) = (gki ) of §7.1, where the row
index is k and the column index i.

7.3. A formula for the determinant of G(λ)

Theorem 18 below gives a formula for the determinant of the matrix G(λ)
of (7.1). In order to state it, we need some notation. Set

• [λ]:= the set of nodes in the Young diagram of shape λ;
• hab:= hook length of the node (a, b) ∈ [λ] (see §2.3.1).
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• For a positive integer m,

[m]v := v1−m + v3−m + · · ·+ vm−3 + vm−1

[m]q := 1 + v2 + v4 + · · ·+ v2(m−1).

Assuming λ has r rows, we can associate to λ a decreasing sequence —called
the β-sequence— of positive integers, the hook lengths of the nodes in the
first column of λ. The shape can be recovered from the sequence, so the
association gives a bijection between shapes and decreasing sequences of
positive integers. Given such a sequence β1 > · · · > βr, write d(β1, . . . , βr)
for the number d(λ) of standard tableaux of shape λ (§2.3.1). Extend the
definition of d(β1, . . . , βr) to an arbitrary sequence of β1, . . . , βr of non-
negative integers at most one of which is zero as follows: if the integers are
not all distinct, then it is 0; if the integers are all distinct and positive, then
it is sgn(w) d(βw(1), . . . , βw(r)) where w is the permutation of the symmetric
group Sr such that βw(1) > · · · > βw(r); if the integers are distinct and one
of them —say βk— is zero, then it is d(β1− 1, β2− 1, . . . , βk−1− 1, βk+1−
1, . . . , βr − 1), which is defined by induction on r.

Theorem 18. — (Hook Formula) For a partition λ of n,

(7.3) detG(λ) = εd(λ)
wo,λ′

∏(
[hac]v
[hbc]v

)d(β1,...,βa+hbc,...,βb−hbc,...,βr)

with notation as above, where β1 > · · · > βr is the β-sequence of λ and the
product runs over {(a, b, c) | (a, c), (b, c) ∈ [λ] and a < b}.

The proof of the theorem will be given in §9 and §10. Some comments
about it may be found at the beginning of §9.

8. Preliminaries about permutation and Specht modules

We recall some notation and results about permutation modules and
Specht modules needed in the sequel. The isomorphism θ recalled from [24]
in §8.3 plays a fundamental role.
We keep the set up of §3. We will also use freely the notation and results

recalled in §4.1.1. We will be frequently referring to [20, 6, 24]. The reader
should be alert to the difference, pointed out in §3.1.1, between our notation
and of these papers.
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8.1. Some notation

Fix a partition λn. Let λ′, tλ, tλ, Wλ, w0,λ, Dλ, xλ, and yλ be as defined
in §4.1.1.

• wλ denotes the element of Dλ that takes tλ to tλ. By a prefix of wλ
we mean an element of the form si1 · · · sij for some j, 1 6 j 6 k,
where si1 · · · sik is some reduced expression of wλ.

• Set zλ := vwλxλTwλyλ′ .
It is elementary to see the following:

(8.1) wλw belongs to Dλ and `(wλw) = `(wλ) + `(w) for w ∈Wλ′ .

8.2. Permutation modules Mλ and Specht modules Sλ

Following [6] —see §3, 4 of that paper— we define the permutation mod-
ule Mλ to be the right ideal xλH, the Specht module Sλ to be the right
ideal zλH. They are H-analogues respectively of the Sn-representations on
tabloids of shape λ and its sub-representation the Specht module of shape λ
(defined respectively in §2.5 and §2.6): the corresponding Sn-modules are
recovered on setting v = 1 (see [24, Page 143]).

8.2.1. Bases for Mλ and Sλ

• [6, Lemma 3.2 (1)] {xλTd | d ∈ Dλ} is a basis for Mλ.
• [6, Theorem 5.6] The elements vdzλTd, d a prefix of wλ′ , form an
A-basis for the Specht module Sλ called the “standard basis”.

8.2.2. The bilinear form 〈 , 〉 on Mλ

As in [6, page 34], define a bilinear form 〈 , 〉 on Mλ by setting
〈xλTd, xλTe〉 equal to 1 or 0 accordingly as elements d, e of Dλ are equal
or not: as just recalled in §8.2.1, xλTd, d ∈ Dλ, form a basis for Mλ. The
form is evidently symmetric. We have, by [6, Lemma 4.4]:

(8.2) 〈m1h,m2〉 = 〈m1,m2h
∗〉 for m1, m2 in Mλ and h in H

where h 7→ h∗ is the A-anti-automorphism of H given by Tw 7→ Tw−1 .
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8.3. McDonough-Pallikaros isomorphism between right cell and
Specht modules

There is described in [24, Theorem 3.5] a map from the right H-ideal
〈Cw | w6R w0,λ〉A to Mλ′ : it is denoted θ, defined by m 7→ vwλ′xλ′Twλ′m,
and evidently a map ofH-modules.(5) Using Proposition 6 and (4.1), we can
determine the image of θ: vwλ′xλ′Twλ′Cw0,λH = xλ′Twλ′ yλH = Sλ

′ . As to
the kernel of θ, it equals 〈Cw | w<R w0,λ〉A as proved in [24, Theorem 3.5].
Thus θ gives an isomorphism from the right cell module R(w0,λ) to Sλ′ .
Since w0,λ is of shape λ′ (Proposition 5 (2)) we conclude that R(λ) ∼= Sλ.

9. The first part of the proof of Theorem 18: relating
detG(λ) to the Gram determinant det(λ)

Towards the proof of Theorem 18, we relate, using results from [6, 24],
the determinant of the matrix G(λ) (defined in (7.1)) to the Gram deter-
minant det(λ), namely, the determinant of the matrix of the restriction to
the Specht module Sλ of the bilinear form 〈 , 〉 on Mλ (defined in §8.2.2),
with respect to the “standard basis” as in the second item in §8.2.1. The
Gram determinant being well studied and results about it being readily
available in the literature, we are thus lead to conclusions about G(λ).

9.1. The Dipper-James bilinear form on R(λ) computed in
terms of its C-basis

Pulling back via the isomorphism θ of §8.3 the restriction to Sλ of the
bilinear form on Mλ defined in §8, we get a bilinear form on R(λ) (which
we continue to denote by 〈 , 〉). Let us compute the matrix of this form with
respect to the basis C(1, 1), . . . , C(1,m), where, as in §7.2, P1, . . . , Pm is
an enumeration of all standard tableaux of shape λ, and C(k, l) is short
hand notation for C(Pk, Pl). We further assume that P1 = tλ, so that the
right cell with P -symbol P1 is the one containing w0,λ′ (which under RSK

(5)The factor vwλ′ in the definition of θ appears only in deference to [24]. If it were omit-
ted: the resulting θ would still be a H-module map; the powers of vwλ in Equations (9.1)
and (9.2) (and in the calculations leading up to them) would have to be omitted; and
a suitable power of vwλ′ would have to be added to Equation (10.3); no other changes
would have to be made.
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corresponds to the pair (P1, P1) —see Proposition 5 (2)). The explanations
for the steps in the following calculation appear below:

〈C(1, i), C(1, j)〉 = 〈C(1, i)θ, C(1, j)θ〉
= 〈xλTwλvwλC(1, i), xλTwλvwλC(1, j)〉

= v2
wλ
〈xλTwλ , xλTwλC(1, j)C(1, i)∗〉

= v2
wλ
〈xλTwλ , xλTwλC(1, j)C(i, 1)〉

= v2
wλ
〈xλTwλ , xλTwλgijC(1, 1)〉

= v2
wλ
gij 〈xλTwλ , xλTwλεw0,λ′ vw0,λ′ yλ′〉

= εw0,λ′ vw0,λ′ v
2
wλ
gij

∑
w∈Wλ′

εwv
−1
w 〈xλTwλ , xλTwλTw〉

= εw0,λ′ vw0,λ′ v
2
wλ
gij .

The first equality follows from definition of the form on R(λ); the second
from the definition of θ; the third from (8.2); the fourth from (3.4). For the
fifth, substitute for C(1, j)C(i, 1) using (7.1) and observe that the “smaller
terms” on the right hand side belong to the kernel of θ (§8.3). The sixth
follows by substituting for C(1, 1) = Cw0,λ′ from (4.1); the seventh from the
definition of yλ′ ; and the final equality by combining the definition of the
form with (8.1) (observe that TwλTw = Twλw since `(wλ) + `(w) = `(wλw)
and that wλw belongs to Dλ).

In particular, the determinant of the matrix of the form 〈 , 〉 on R(λ)
with respect to the basis C(1, 1), . . . , C(1,m) equals

(9.1) εd(λ)
w0,λ′

vd(λ)
w0,λ′

v2d(λ)
wλ

detG(λ).

9.2. The “T -basis” of R(λ′) and its relationship to the C-basis

Following [24, §2], we define the “T -basis” of the right cell module R(λ′)
and show that it has a uni-triangular relationship with the C-basis. We
do this by means of the “C-basis” and “T -basis” of the right H-module
Cw0,λH, which are defined respectively by:

• Cw, w6R w0,λ
• Cw0,λTd, d ∈ Dλ.

That the “C-basis” is an A-basis follows from Proposition 6. That the “T -
basis” is an A-basis is item (2) in the following:
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Proposition 19.
(1) Cw0,λTy = ε(y)v−1

y Cw0,λ for y ∈Wλ.
(2) Cw0,λTd, d ∈ Dλ, form an A-basis for the right ideal Cw0,λH.
(3) w∼R w0,λ if and only if w = w0,λd for a prefix d of wλ. In particular,

prefixes of wλ belong to Dλ.

Proof. — (1) follows from [20, Equation (2.3.d)]; (2) from item (1), Pro-
position 5 (2), and (3.5) —see [24, Page 136]; (3) from [24, Lemma 3.3 (iv)].

�

The elements w6R w0,λ are precisely w0,λd, d ∈ Dλ (Proposition 5 (2)).
Let d1, . . . , dM be the elements of Dλ ordered so that i 6 j if di 6 dj in
the Bruhat order. By [24, Proposition 2.13] and its proof, the two bases
above are related by a uni-triangular matrix with respect to an ordering as
above (keeping in mind that Ty in the notation of [24] equals vyTy in ours): Cw0,λTd1

...
Cw0,λTdM

 =

 1 0
. . .

? 1


 Cw0,λd1

...
Cw0,λdM

 .

Let us now read this equation in the quotient R(λ′) of Cw0,λH. Let di1 ,
. . . , dim with 1 6 i1 < · · · < im 6M be such that they are all the prefixes
of wλ —see Proposition 19 (3)— so that w0,λdi1 , . . . , w0,λdim are all the
elements right equivalent to w0,λ. Writing e1, . . . , em in place of di1 , . . . ,
dim , and noting that Cw0,λdj vanishes in R(λ′) unless w0,λdj ∼R w0,λ, we
have:  Cw0,λTe1

...
Cw0,λTem

 =

 1 0
. . .

? 1


 Cw0,λe1

...
Cw0,λem

 .

We conclude that Cw0,λTe1 , . . . , Cw0,λTem form an A-basis for R(λ′). It
is called the T -basis and is in uni-triangular relationship with the C-basis
Cw0,λe1 , . . . , Cw0,λem . In particular, the determinants of the matrices of the
form 〈 , 〉 on R(λ′) (defined in §9.1) with respect to the T - and C-bases
are the same.

9.3. detG(λ) and the Gram determinant det(λ)

Continuing towards our goal of relating detG(λ) to the Gram determi-
nant det(λ), let us compute the image under the map θ of the T -basis
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elements of R(λ). Given a prefix e of wλ′ , we have

Cw0,λ′Teθ = vwλxλTwλCw0,λ′Te (by the definition of θ in §8.3)
= εw0,λ′ vw0,λ′ (vwλxλTwλyλ′)Te (by (4.1))
= εw0,λ′ vw0,λ′ zλTe (by the definition of zλ in §8.1)
= εw0,λ′ vw0,λ′ v

−1
e (vezλTe).

Noting that vezλTe is a standard basis element of Sλ (see §8.2.1), we
conclude that the determinant of the matrix of the bilinear form 〈 , 〉
on R(λ) with respect to the T -basis equals v2d(λ)

w0,λ′

(∏
e v
−1
e

)2 det(λ). Com-
bined with (9.1) and the conclusion of §9.2, this gives

(9.2) detG(λ) = (εw0,λ′ vw0,λ′ v
−2
wλ

)d(λ)(
∏
e

ve)−2 det(λ)

where the product is taken over all prefixes e of wλ′ .

10. Conclusion of the proof of Theorem 18

In this section, we complete the proof of Theorem 18 by using results
from [7, 19]. Both sides of Equation (7.3) are elements of A. To prove they
are equal, we may pass to the quotient field K := Q(v) of A. We do this
tacitly in the sequel. Observe that HK is semisimple (see 3.1.2).

10.1. Second half of the proof of Theorem 18

We set things up to be able to use a formula from [7] for the Gram
determinant det(λ). Let S1, . . . , Sm be an enumeration of all the standard
tableaux of shape λ. For i, u such that 1 6 i 6 m, 1 6 u 6 n, let Sui denote
the standard tableau obtained from Si by deleting all nodes with entries
exceeding u; set γui :=

∏a−1
j=1 [hjb]q/[hjb − 1]q where (a, b) is the position

of the node in Sui containing u, hjb is the hook length in Sui of the node in
position (j, b), and [s]q := 1+v2 +v4 + · · ·+v2(s−1) for a positive integer s.
By [7, Theorem 4.11], the Gram determinant det(λ) is given by

(10.1) det(λ) = v2r
m∏
i=1

n∏
u=1

γui for some integer r.

We now apply the equation in [19, Corollary 2.30, page 251]. Comput-
ing ∆µ(λ′) (in the notation of [19]) with µ = 1n, and re-indexing the
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product in the right side of that equation over nodes of λ rather than of λ′,
we get

(10.2)
m∏
i=1

n∏
u=1

γui =
∏(

[hac]q
[hbc]q

)d(β1,...,βa+hbc,...,βb−hbc,...,βr)

where the product on the right hand side runs over triples (a, b, c) as in the
statement of the theorem.
Combining Equations (9.2), (10.1), (10.2), and (10.4), we get

(10.3) εd(λ)
w0,λ′

vd(λ)
w0,λ′

detG(λ) =
∏(

[hac]q
[hbc]q

)d(β1,...,βa+hbc,...,βb−hbc,...,βr)
.

The left hand side is an element of A. As to the right hand side, it is
regular with value 1 at v = 0, since the same is true for [s]q for every
positive integer s. Thus both sides of the equation belong to 1 + vZ[v] and

detG(λ) = εd(λ)
w0,λ′

v−d(λ)
w0,λ′

+ higher degree terms.

The “bar-invariance” of the C-basis elements (§3.1) means that:

gkj = gkj for gkj as in (7.1) and so also detG(λ) = detG(λ).

Thus detG(λ) has the form:

εd(λ)
w0,λ′

v−d(λ)
w0,λ′

+ · · ·+ εd(λ)
w0,λ′

vd(λ)
w0,λ′

the terms represented by · · · being of v-degree strictly between
−d(λ)`(w0,λ′) and d(λ)`(w0,λ′). Equating the v-degrees on both sides
of (10.3) gives

d(λ)`(w0,λ′) =
∑

d(β1, . . . , βa + hbc, . . . , βb − hbc, . . . , βr) (hac − hbc) .

Using this and substituting vhac [hac]v, vhbc [hbc]v, respectively for [hac]q,
[hbc]q into (10.3), we arrive at the theorem.

�

Lemma 20. — The integer r in the exponent of v in Equation (10.1) is
given by

(10.4) r = d(λ) (`(wλ)− `(w0,λ′)) +
m∑
i=1

`(di)

where d1, . . . , dm are all the prefixes of wλ′ .

Proof. — We essentially work through the proof of [7, Theorem 4.11] to
calculate the exponent of v appearing in 10.1.

Let d1, . . . , dm be ordered so that i < j if `(di) < `(dj). Let ei and
fi, 1 6 i 6 m, be bases of Sλ as in [7]. The ei := vdizλTdi are just the
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standard basis (see §8.2.1). The fi are an orthogonal basis in uni-triangular
relationship with the ei [7, Theorem 4.7]. Thus det(λ) =

∏m
i=1〈fi, fi〉.

Let the enumeration S1, . . . , Sm of standard tableaux of shape λ be such
that Si = tλdi. Then, from [7, Lemma 4.10], 〈fi, fi〉 = v2ri

∏n
u=1 γui. We

claim:
(1) r1 = `(wλ)− `(w0,λ′)
(2) for i > 1, ri = rj + 1 where j < i such that ei = vejT(k−1,k).

The lemma being clear given the claim, it remains only to prove the claim.
Item (2) of the claim follows from the following two observations made

in the course of the proof of [7, Lemma 4.10]: 〈fi, fi〉 = cj〈fj , fj〉, and

γui =


γuj if u 6= k − 1, k
γkj if u = k − 1

v−2cjγk−1,j if u = k.

(The definition of cj is irrelevant for our purposes.)
To prove item (1) of the claim, we compute 〈f1, f1〉. We have f1 = e1 =

zλ. Substituting for zλ and in turn for yλ from their definitions in §8.1 and
§4.1.1, we get

〈f1, f1〉 = 〈zλ, zλ〉
= 〈vwλxλTwλyλ′ , vwλxλTwλyλ′〉
= v2

wλ

∑
u,u′∈Wλ′

εuεu′v
−1
u v−1

u′ 〈xλTwλTu, xλTwλTu′〉.

Using in order (8.2), (3.2), (8.1) and the definition of 〈 , 〉, we get:

〈xλTwλTu, xλTwλTu′〉 = 〈xλTwλ , xλTwλTu′Tu−1〉
= 〈xλTwλ , xλTwλ(Tu′u−1 +

∑
w∈Wλ′ ;w>u′u−1

cwTw)〉

= 〈xλTwλ , xλTwλu′u−1 +
∑

w∈Wλ′ ;w>u′u−1

cwTwλw〉

=
{

1 if u = u′

0 otherwise.

so that

〈f1, f1〉 = v2
wλ

∑
u∈Wλ′

v−2
u = v2

wλ
v−2
w0,λ′

∑
u∈Wλ′

v2
w0,λ′

v−2
u = v2

wλ
v−2
w0,λ′

∑
u∈Wλ′

v2
u.

Routine calculations show:∑
u∈Sn

v2
u = [n]!q and

∑
u∈Wλ′

v2
u = [λ′1]!q · · · [λ′r]!q
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where [n]!q := [n]q[n− 1]q · · · [1]q and λ′ = (λ′1, . . . , λ′r). Finally, a pleasant
verification, given the fact that S1 = tλ, shows:

[λ′1]!q · · · [λ′r]!q =
n∏
u=1

γu1.

The proof of the claim (and so also of the lemma) is complete. �

11. On the irreducibility of Specht modules

Let k be a field and a a non-zero element of k. Fix notation as in §3, and
consider k as an A-module via the map A→ k defined by v 7→ a.

The purpose of this section is to revisit the question of when the Specht
module Sλk := Sλ ⊗A k (which, by §8.3, is isomorphic to the right cell
module R(λ)⊗A k) is irreducible (as a module over Hk := H⊗A k). As we
will see, the results of §7–10 afford us a fresh approach to this question.
In addition, they allow us to prove generalizations of Theorems 14, 15 to
situations when Hk is not necessarily semisimple.
The form 〈 , 〉 defined onMλ by Dipper-James has been recalled in §8.2.2.

Let 〈 , 〉k denote the form on Mλ ⊗A k obtained by extension of scalars
and also its restriction to Sλk . Note that 〈 , 〉k is symmetric (since 〈 , 〉 on
Mλ is).

11.1. Preliminaries

We first establish some notation and make a few observations. Thus
equipped, we recall some results from [25] in a form that is convenient or
us.

For an automorphism ‡ of H and a (right) H-module M , we denote by
M‡ the (right) H-module whose underlying A-module is the same as that
of M —it is convenient to write m‡ for an element m of M thought of
in M‡— and with the action of H being given by m‡h‡ := (mh)‡.

• For a (right) H-ideal I, the symbol I‡ can be interpreted without
conflict as either the image of I under ‡ or the module M‡ defined
as above taking M to be I.

• If ‡ is an involution, then M ' (M‡)‡ naturally.
• For an anti-automorphism ‡ of H, M‡ defined similarly would nat-

urally be a left H-module: h‡m‡ := (mh)‡.
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Now consider the involution † onH defined in §3.1.3 and the permutation
moduleMλ defined in §8.2. From equations (3.3), (3.6), and (4.1), it follows
that (Cw0,λH)† = Mλ; from Proposition 6 that

(11.1) C ′w, w6R w0,λ, form an A-basis for Mλ.

Set Nλ := 〈C ′w | (w) E λ′〉A and N̂λ := 〈C ′w | (w) / λ′〉A. From §3.4.2
and Proposition 5 (4) it follows that Mλ ⊆ Nλ. Set S̃λ := Mλ/Mλ ∩ N̂λ.
From §§3.4.1–3.4.3 it follows that {w | w6R w0,λ and
(w) / λ′} = {w | w�R w0,λ}, so that Mλ ∩ N̂λ = 〈C ′w | w�R w0,λ〉A.
Thus the images in S̃λ of C ′w, w∼R w0,λ, form a basis for S̃λ. And we get

(11.2) R(λ′)† ' S̃λ R(λ) ' (S̃λ
′
)†.

For a (right) H-module M , the dual Mdual := HomA(M,A) is naturally
a left H-module: (m)(hφ) := (mh)φ, for φ ∈ Mdual, m ∈ M , and h ∈ H.
We use the anti-automorphism ∗ defined in §3.1.3 to switch between right
and left module structures: (Mdual)∗ becomes a right H-module.

• The process M 7→Mdual commutes with that of M 7→ M‡ defined
earlier in this section: in particular, (Mdual)∗ ' (M∗)dual naturally.

• If M is free as an A-module, then (Mdual)dual 'M naturally.

Proposition 21 ([25], Theorem 5.2). — We have an isomorphism
((Sλ)dual)∗ ' (Sλ′)†. In particular Sλk is irreducible if and only if Sλ′k is so.

Proof. — It is proved in [25, Theorem 5.2] that (S̃λ′)† ' ((S̃λ)dual)∗: a
perfect pairing ( , ) : S̃λ × (S̃λ′)† → A with the property that (m,nh) =
(mh∗, n) is given. Combining this statement with the isomorphisms (11.2)
and the isomorphism R(λ) ' Sλ of §8.3, the proposition follows. �

A shape λ is called e-regular if the number of rows in it of any given
length is less than e. Let now e be the smallest positive integer such that
1 + a2 + · · ·+ a2(e−1) = 0; if there is no such integer, then e =∞.

Proposition 22. — ([25, Theorem 6.9]) If λ is e-regular, the bilinear
form 〈 , 〉k on Sλk is non-zero.

Proof. — Consider the form 〈 , 〉λ onMλ defined in [25, page 114]. Using
(3.4), this can be expressed in our notation as follows in terms of the basis
(11.1) of Mλ: for w, x such that w6R w0,λ, x6R w0,λ, 〈C ′w, C ′x〉λ is the
coefficient of C ′w0,λ

in C ′wC ′x−1 . It follows readily from the definition in §3.3
of the relation 6R that if either w�R w0,λ or x�R w0,λ (which is equivalent
to x−1�L w

−1
0,λ = w0,λ), then 〈C ′w, C ′x〉λ = 0. Thus 〈 , 〉λ descends to S̃λ.

From [25, Theorem 6.9 —see also its proof] it follows that 〈 , 〉λ does
not vanish on S̃λ if λ′ is e-regular. This means that there exist w∼R w0,λ,
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x∼R w0,λ such that the coefficient of C ′w0,λ
in C ′wC ′x−1 is non-zero. Applying

the involution †, we conclude that the coefficient of Cw0,λ in CwCx−1 is non-
zero (see (3.7)).
Consider the ordered pairs of standard tableaux associated to w0,λ, w,

and x by the RSK-correspondence: w0,λ ↔ (tλ′ , tλ′) by Proposition 5 (4);
letQw andQx be the standard tableaux of shape λ′ such that w ↔ (tλ′ , Qw)
and x↔ (tλ′ , Qx) (see §3.4). Then x−1 ↔ (Qx, tλ′) (see §2.4) and, by (7.1),

CwCx−1 = C(tλ′ , Qw)C(Qx, tλ′) ≡ gxwC(tλ′ , tλ′) mod “lower terms”.

The conclusion of the last paragraph translated to this notation says that
the coefficient gxw is non-zero.
Consider the pull-back to R(λ′)k via the isomorphism θ of §8.3 of the

form 〈 , 〉k on Sλ′k . Denoting it too by 〈 , 〉k, the big display in §9.1 says
that 〈Cw, Cx〉k equals the coefficient gxw up to sign and a power of v. Thus
〈Cw, Cx〉k 6= 0, which means that the form 〈 , 〉k on Sλ′k is non-zero. �

11.2. Analogues of Theorems 14, 15 for not necessarily
semi-simple Hk

Theorem 23. — For an e-regular shape λ such that Sλk is irreducible,
the Kazhdan-Lusztig basis elements Cw, w of λ, thought of as operators
on Sλk form a basis for EndSλk .

Proof. — By (8.2), the radical of the form 〈 , 〉k on Sλk is aHk-submodule.
Since Sλk is assumed irreducible, the form is either identically zero or non-
degenerate. But, as shown in Proposition 22 above, it is non-zero under the
assumption of e-regularity of λ. Thus its matrix with respect to any basis
of Sλk has non-zero determinant. By (9.1), detG(λ)|v=a is such a determi-
nant (up to a sign and power of a), so it is non-zero. It now follows from
Proposition 17 that the operators Cw, w of λ, form a basis for EndSλk . �

Corollary 24. — Suppose that λ′ is e-regular and that Sλk is irre-
ducible. Then the elements C ′w, (w) = λ′, as operators on Sλk form a basis
for EndSλk .

Proof. — By Theorem 23, the Cw, (w) = λ′, as operators on Sλ
′

k form
a basis for EndSλ′k (Sλ′k is irreducible by Proposition 21). Since Sλ′k '
(((Sλk )dual)∗)† (Proposition 21 again), and Cw

† = εwC
′
w by (3.7), it fol-

lows that the C ′w, (w) = λ′, as operators on ((Sλk )dual)∗ form a basis for
End ((Sλk )dual)∗. Since (C ′w)∗ = C ′w−1 by (3.4) and the s of w and w−1 are
the same, the result follows. �
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Theorem 25. — Let S be the set of e-regular shapes λ such that the
Specht module Sλk is irreducible. Let U be a finite dimensional semisimple
Hk-module, every irreducible component of which is of the form Sλk , λ ∈ S.
Let T be the subset of S consisting of those shapes λ such that Sλk appears
as a component of U . Then the images in EndU of Cx, x ∈ Sn such that
(x) belongs to T , form a basis for the image of Hk in EndU (under the
map Hk → EndU defining U).

Proof. — The proof is similar to that of Theorem 15. �

11.3. A criterion for irreducibility of Sλk

We first observe that Proposition 17 gives us a criterion for irreducibility
of Specht modules (Theorem 26). We then deduce from this criterion a con-
jecture of Carter [18, Conjecture 1.2] about irreducibility of Specht modules
(Corollary 27). Of course the conjecture has long been proved [18, 19], but
our approach is new.

Theorem 26. — If detG(λ)|v=a does not vanish in k, then Sλk is irre-
ducible.

Proof. — Suppose that detG(λ)|v=a does not vanish in k. Then, by
Proposition 17, the matrix G is invertible (in k, after specializing to v = a).
Thus the elements Cw, w of λ, are linearly independent (and so form a ba-
sis) as operators on Sλk . In particular, Sλk is irreducible, and the assertion
is proved. �

11.3.1. A new proof of Carter’s conjecture

Let p denote the smallest positive integer such that p = 0 in k; if no
such integer exists, then p = ∞. For an integer h, define νp(h) as the
largest power of p (possibly 0) that divides h in case p is positive, and
as 0 otherwise. Recall that e denotes the smallest positive integer such that
1 + a2 + · · · + a2(e−1) = 0; if there is no such integer, then e = ∞. For an
integer h, define

νe,p(h) :=
{

0 if e =∞ or e - h
1 + νp(h/e) otherwise.

The (e, p)-power diagram of shape λ is the filling up of the nodes of the
shape λ by the νe,p’s of the respective hook lengths.

Observe that e = p if a = 1.
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Corollary 27. — [18, 19] If the (e, p)-power diagram of λ has either
no column or no row containing different numbers, then Sλk is irreducible.

Proof. — It is enough to do the case when no column of the (e, p)-power
diagram has different numbers: if the condition is met on rows and not on
columns, we can pass to λ′ and use the observation ([11, Corollary 3.3] or
Proposition 21 above) that Sλk is irreducible if and only if Sλ′k is.

So assume that in every column of the (e, p)-power diagram the numbers
are all the same. We claim that each of the factors [hac]v/[hbc]v on the
right hand side of (7.3) makes sense as an element of k and is non-zero.
Combining the claim with Theorems 18 and 26 yields the assertion.
To prove the claim, we need the following elementary observations, where

h denotes a positive integer:
• [h]v vanishes in k if and only if e is finite and divides h.
• if e is finite and divides h, then [h]v = ([h/e]v) |v=ve [e]v.
• a2e = 1 if e is finite.

If either e = ∞ or e does not divide any of the hook lengths in shape λ,
then the claim follows from the the first of the above observations. So now
suppose that e is finite and divides either hac or hbc. By our hypothesis, e
then divides both hac and hbc; moreover both hac/e and hbc/e are divisible
by p to the same extent. Using the second and third observations above,
we conclude that the image in k of [hac]v/[hbc]v is the same as that of the
rational number hac/hbc (written in reduced form), and so is non-zero. �
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