ANNALES

DE

L'INSTITUT FOURIER

Gerald W. SCHWARZ

Linear maps preserving orbits

Tome 62, $\mathrm{n}^{\circ} 2$ (2012), p. 667-706.
http://aif.cedram.org/item?id=AIF_2012__62_2_667_0

Abstract

© Association des Annales de l'institut Fourier, 2012, tous droits réservés.

L'accès aux articles de la revue «Annales de l'institut Fourier» (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

LINEAR MAPS PRESERVING ORBITS

by Gerald W. SCHWARZ

Abstract

Let $H \subset \mathrm{GL}(V)$ be a connected complex reductive group where V is a finite-dimensional complex vector space. Let $v \in V$ and let $G=\{g \in \operatorname{GL}(V) \mid$ $g H v=H v\}$. Following Rais we say that the orbit $H v$ is characteristic for H if the identity component of G is H. If H is semisimple, we say that $H v$ is semicharacteristic for H if the identity component of G is an extension of H by a torus. We classify the H-orbits which are not (semi)-characteristic in many cases.

Résumé. - Soit $H \subset \mathrm{GL}(V)$ un groupe complexe réductif connexe où V est un espace vectoriel complexe de dimension finie. Soient $v \in V$ et $G=\{g \in \mathrm{GL}(V) \mid$ $g H v=H v\}$. D'aprés Raïs nous disons que l'orbite $H v$ est caractéristique pour H si la composante connexe de l'identité de G est H. Si H est semi-simple, nous disons que $H v$ est semi-caractéristique pour H si la composante connexe de l'identité de G est une extension de H par un tore. Nous classifions les orbites de H qui ne sont pas (semi)-caractéristiques dans plusieurs cas.

1. Introduction

Let K be a field. Then $H:=\mathrm{PGL}_{n}(K)$ acts on $V:=M(n, K)$ via conjugation. There is a large literature on solving linear preserver problems, that is, on finding the subgroups of $\mathrm{GL}(V)$ which preserve a certain set F of H-orbits in V. See [13] for a survey. One method of solving such problems is to classify all possible subgroups of $\mathrm{GL}(V)$ containing H and then check to see if these subgroups preserve F. This idea goes back at least to Dynkin [3] and has been used in many papers, e.g., [5, 6, 7, 2, 1, 19]. We generalize the problem (but only in characteristic zero) by letting H be a reductive complex algebraic group, letting V be an arbitrary finite dimensional representation of H and letting F be an H-orbit $H v$. The question then becomes: What is the subgroup G of $\operatorname{GL}(V)$ which preserves

[^0]$H v$? The method of solution is often to look at the possible G and possible G_{v} such that $G=H G_{v}$ (which implies that $G v=H v$). We are able to answer the question in many circumstances. We are particularly interested in identifying those cases where G^{0} is the image of H, which, in the language of Raïs [20], means identifying those H-orbits which are characteristic.

Our base field is \mathbb{C}, the field of complex numbers. Let V be a finite dimensional H-module where H is a connected reductive group. Let $0 \neq v \in V$ and set $G:=\{g \in \mathrm{GL}(V) \mid g H v=H v\}$. Then G is a closed algebraic subgroup of GL (V) (see 2.1 below), We say that $H v$ is characteristic for H (or simply that v is characteristic for H or just that v is characteristic) if G^{0} is the image of H in $\mathrm{GL}(V)$. (From now on we will not distinguish H from its image in $\mathrm{GL}(V)$, so we will say that v is characteristic if $G^{0}=H$, even though this is not quite correct.) The definition that $H v$ is semi-characteristic is as above, except that we require only that G^{0} is an extension of H by a torus (so G has to be reductive). In general, G is not reductive (see Examples $6.12,6.13,7.8$ and 7.30). We say that v is almost characteristic if H is a Levi factor of G^{0} and that v is almost semicharacteristic if H contains the semisimple part of a Levi factor of G^{0}.

In § 2 we consider some elementary properties of our definitions. We see that one has a chance for $G^{0}=H$ only in the case that $v \in V$ is generic, which is equivalent to saying that $H v$ spans V. In $\S 3$ we consider what can happen to G if we add a trivial factor to V. We show that $H v$ is characteristic if H is a torus and $v \in V$ is generic. In $\S 4$ we consider the case that H is simple of rank at least 2 and V is irreducible. We recall some fundamental results of A. Onishchik which apply. We are then able to classify the irreducible H-modules V and $v \in V$ such that $H v$ is not semi-characteristic. We determine which orbits are semi-characteristic in the adjoint representation of a semisimple group. In $\S 5$ we consider the case that H is simple of rank at least 2 and V is reducible. We determine the possible semisimple G containing H such that $G v=H v$ for $v \in V$. In $\S 6$ we consider the case that H is semisimple and V is irreducible. In $\S 7$ we determine the structure of G when $H=\mathrm{SL}_{2}$. In an appendix we prove branching rules which we need to establish our results.

Our thanks go to M. Raïs for his questions and conjectures in [20] which led to this paper. We thank Peter Heinzner, Peter Littelmann, Ernest Vinberg and Arkady Onishchik for helpful remarks and Alfred Noël and Steven G. Jackson for help with calculations. We thank the University of Poitiers, the Ruhr-Universität Bochum and the Mathematisches Institut, Universität zu Köln for their warm hospitality while this paper was being written.

Finally, special thanks to the referee for a very meticulous reading of the manuscript and many helpful remarks. (S)he also found a serious error in our original version of the section on SL_{2}.

2. Elementary remarks

We consider when we can remove the prefixes "almost" and "semi." We also reduce to the case that $H v$ spans V. First we show that G is closed in $\mathrm{GL}(V)$.

Lemma 2.1. - Let V be a finite-dimensional H-module where H is algebraic. Let $G=\{g \in \mathrm{GL}(V) \mid g H v=H v\}$. Then G is a closed subgroup of $\mathrm{GL}(V)$.

Proof. - Let $G_{1}=\{g \in \mathrm{GL}(V) \mid g \overline{H v}=\overline{H v}\}$ and $G_{2}=\{g \in \mathrm{GL}(V) \mid$ $g(\overline{H v} \backslash H v)=(\overline{H v} \backslash H v)\}$. Then G_{1} and G_{2} are closed subgroups of GL (V) and $G=G_{1} \cap G_{2}$.

We now consider complexifications of compact group actions. Let C be a compact Lie group and W a real C-module. Let $w \in W$ and assume that $C w$ spans W.

Proposition 2.2. - Let C, W and w be as above. Let $L=\{g \in$ $\mathrm{GL}(W) \mid g C w=C w\}$. Then L is compact.

Proof. - Fix a basis w_{1}, \ldots, w_{n} of W lying in $C w$ and let $\|\cdot\|$ be a norm on W. Then for $g \in L$ and $1 \leqslant i \leqslant n,\left\|g w_{i}\right\|$ is bounded by a constant which is independent of g. Thus L is a closed bounded subset of GL (W), hence compact.

Corollary 2.3. - Let $H=C_{\mathbb{C}}$ be the complexification of C acting on $V=W \otimes_{\mathbb{R}} \mathbb{C}$. Let $G=\{g \in \mathrm{GL}(V) \mid g H w=H w\}$. Then G is the complexification of L, hence reductive.

Proof. - Since $C w$ is real algebraic [21, Lemma 4.3], it is defined by an ideal $I \subset \mathbb{R}[W]$, and clearly the complex zeroes of I are $H w$. Let I_{s} denote the subspace of I of elements of degree at most $s, s \in \mathbb{N}$. Then I is generated by some I_{s}. Let f_{1}, \ldots, f_{m} be a basis for I_{s}. Then $g \in \mathrm{GL}(W)$ lies in L if and only if $g^{*} f_{i} \in I_{s}$ for all i. This gives a set of real equations defining the compact Lie group L, and the complex solutions of these equations are $L_{\mathbb{C}}$. But the complex solutions of the equations are clearly G. Thus $G=L_{\mathbb{C}}$.

Recall ([11, 12, Ch. II Theorem 11]) that if $G \subset \mathrm{GL}(V)$ acts irreducibly on V, then G is reductive.

Corollary 2.4. - Let H be reductive, let V be an H-module and let $v \in V$. Suppose that v is almost semi-characteristic for H. Then v is semi-characteristic in the following two cases.
(1) V is an irreducible representation of H.
(2) There is a compact Lie group C and real C-module W such that $V=W \otimes_{\mathbb{R}} \mathbb{C}, v \in W$ and $H=C_{\mathbb{C}}$.

The following result characterizes when $H v$ is a cone.
Proposition 2.5. - Let $0 \neq v \in V$ where V is an H-module. Suppose that $H v$ is a cone. Then there is a 1-parameter subgroup $\sigma: \mathbb{C}^{*} \rightarrow H$ such that v is an eigenvector of σ with nonzero weight.

Proof. - Since $H v$ is a cone, $v \in T_{v}(H v)$ and there is an $X \in \mathfrak{h}$ such that $X(v)=v$. Applying an element of H we can assume that $X \in \mathfrak{b}$, a Borel subalgebra of \mathfrak{h}. Write $X=s+n$ (Jordan decomposition) where s is semisimple and n is nilpotent. Then s and n are in \mathfrak{b}. We can assume that $s \in \mathfrak{t} \subset \mathfrak{b}$ where \mathfrak{t} is the Lie algebra of T, a maximal torus of H. Write $v=\sum_{\lambda \in \Lambda} v_{\lambda}$ as a sum of nonzero weight vectors where Λ is the set of weights of V relative to T such that $v_{\lambda} \neq 0$. Let Φ be the set of positive roots. Then for $\lambda \in \Lambda$ we have $(s+n) v_{\lambda}=s v_{\lambda}$ modulo $\sum_{\mu>\lambda} V_{\mu}$ where $\mu>\lambda$ means that $\mu \in \lambda+\mathbb{N} \Phi$. Thus by an easy induction we get that $s v_{\lambda}=v_{\lambda}$ for all $\lambda \in \Lambda$ so that $s v=v$. Hence $S:=\left\{t \in T \mid t v \in \mathbb{C}^{*} v\right\}^{0}$ is a subtorus of T which acts nontrivially on v. It follows that there is a one-parameter subgroup $\sigma: \mathbb{C}^{*} \rightarrow S$ as desired.

Proposition 2.6. - Let $0 \neq v \in V$ where V is an irreducible H module. Suppose that $\mathbb{C}^{*} v \not \subset H v$. Then v is characteristic if it is semicharacteristic. In particular, this holds if v is not in the null cone of V.

Proof. - The group G is reductive and its center is contained in the scalar matrices. Under our hypotheses on v, the center must be finite.

Let $V=\bigoplus_{i=1}^{k} n_{i} V_{i}$ be the isotypic decomposition of an H-module where H is nontrivial reductive. Let $v \in V$. Then $v=\left(v_{i j}\right)$ where $v_{i j}$ belongs to the j th copy of $V_{i}, j=1, \ldots, n_{i}, i=1, \ldots, k$. Let S denote GL $(V)^{H}=$ $\mathrm{GL}\left(n_{1}\right) \times \cdots \times \mathrm{GL}\left(n_{k}\right)$. Let $U_{i} \subset V_{i}$ be the linear subspace of V_{i} generated by the $v_{i j}, j=1, \ldots, n_{i}$. If $\operatorname{dim} U_{i}=n_{i}$ for all i, then we say that v is generic.

Proposition 2.7. - Let H be reductive, let V be an H-module and let $v \in V$. Then the following are equivalent.
(1) The span of $H v$ is V.
(2) There is no nontrivial one parameter subgroup of $S=\mathrm{GL}(V)^{H}$ which fixes v.
(3) The vector v is generic.

Proof. - If $s \in S$, then v satisfies one of the conditions if and only if $s v$ does. Clearly, if (1) or (3) fails, we can find an s and an i such that $(s v)_{i 1}=0$. If W denotes the first copy of V_{i} in $n_{i} V_{i}$, we have that $\mathbb{C}^{*}=G L(W)^{H} \subset \mathrm{GL}(V)^{H}$ is a one-parameter subgroup fixing v, so (2) fails. Conversely, if (2) fails, the fixed point set of a "bad" one-parameter subgroup is a proper H-submodule of V containing v and (1) and (3) fail.

Corollary 2.8. - Let $v \in V$ and let G be a Levi component of $\{g \in$ $\mathrm{GL}(V) \mid g H v=H v\}$. Then v is generic for H if and only if it is generic for G.

If v is not generic, then G is in a rather trivial way larger than H. To avoid this case, we usually assume from now on that v is generic.

3. Trivial factors and tori

Let $v \in V$ and suppose that $V^{H}=(0)$. Consider $\tilde{v}=(v, 1) \in \tilde{V}:=V \oplus \mathbb{C}$. Let $\tilde{G}=\{g \in \operatorname{GL}(\tilde{V}) \mid g H \tilde{v}=H \tilde{v}\}$. We conjecture that $\tilde{G}=G$, where $G \subset \operatorname{GL}(\tilde{V})$ in the canonical way. Equivalently, we conjecture that the subgroup of the affine group $\operatorname{Aff}(V)$ preserving $H v$ lies in GL(V). Note that v generic implies that \tilde{v} is generic (we can add at most a one-dimensional fixed point set). The following example shows that the conjecture fails if H is not reductive.

Example 3.1. - Let $H=(\mathbb{C},+)$ act on \mathbb{C}^{2} by sending $(a, b) \in \mathbb{C}^{2}$ to $(a, t a+b), t \in H$. Let $\tilde{H}=H \times \mathbb{C}$ where $(t, s) \cdot(a, b)=(a, t a+s+b)$, $(t, s) \in \tilde{H},(a, b) \in \mathbb{C}^{2}$. Then for $a \neq 0$, the H and \tilde{H} orbits of (a, b) are the same, where $H \subset \mathrm{GL}\left(\mathbb{C}^{2}\right), \tilde{H} \subset \operatorname{Aff}\left(\mathbb{C}^{2}\right)$ and $\tilde{H} \not \subset \mathrm{GL}\left(\mathbb{C}^{2}\right)$.

For this section only G will denote the subgroup of $\operatorname{Aff}(V)$ preserving $H v$ (rather than the corresponding subgroup of $\mathrm{GL}(V)$). It is easy to see that we can always reduce to the case that $V^{H}=(0)$, which we assume holds for the rest of this section.

We have a homomorphism $\operatorname{Aff}(V) \rightarrow \mathrm{GL}(V)$ which sends an element $(g, c) \in G \subset \mathrm{GL}(V) \ltimes V$ to $g \in \mathrm{GL}(V)$. Let G^{\prime} denote the image of G in $\mathrm{GL}(V)$.

Lemma 3.2. - The homomorphism $G \rightarrow G^{\prime}$ is injective.
Proof. - The kernel K of $G \rightarrow G^{\prime}$ consists of the pure translations in G, i.e., the homomorphisms $x \mapsto x+c$ where $x, c \in V$. Clearly K is isomorphic to a closed subgroup of the additive group $(V,+)$ of V. Now $(V,+)$ has Lie algebra V (trivial bracket) and the exponential map is the identity. Thus \mathfrak{k} is a vector subspace W of V and K / K^{0} is isomorphic to a finite subgroup of $(V / W,+)$. Hence K is connected and $K=(W,+)$ where W must be H-stable. Let $\pi: V \rightarrow W$ be an H-equivariant projection (here we use that H is reductive). Then there are elements of G which translate v to v^{\prime} where $\pi\left(v^{\prime}\right)$ is arbitrary. Since H preserves W and $\operatorname{Ker} \pi$, this is not possible for elements of H, unless $W=0$. Hence K is the trivial group.

Note that injectivity fails in the case of Example 3.1.
Lemma 3.3. - Let M be a reductive subgroup of the affine group $\operatorname{Aff}(V)$. Then there is an $\alpha \in \operatorname{Aff}(V)$ such that $\alpha M \alpha^{-1} \subset \mathrm{GL}(V)$.

Proof. - We use transcendental methods. Choose a hermitian metric on V so that we have a unitary group $\mathrm{U}(V) \subset \mathrm{GL}(V)$. Let K be a maximal compact subgroup of M. Then M is the complexification $K_{\mathbb{C}}$ of K. Now any compact subgroup of $\operatorname{Aff}(V)$ is contained in a maximal compact subgroup of $\operatorname{Aff}(V)$ and all the maximal compact subgroups of $\operatorname{Aff}(V)$ are conjugate [9, Ch. XV Theorem 3.1]. But clearly $\mathrm{U}(V) \subset \operatorname{Aff}(V)$ is maximally compact. Thus K is conjugate to a subgroup of $\mathrm{U}(V)$, hence M is conjugate to a subgroup of $\mathrm{U}(V)_{\mathbb{C}}=\mathrm{GL}(V)$.

Proposition 3.4. - In the following cases $G \subset \mathrm{GL}(V)$.
(1) The image $G^{\prime} \subset \mathrm{GL}(V)$ is reductive.
(2) There is an $h^{\prime} \in H$ such that $h^{\prime} v=\lambda v, \lambda \in \mathbb{C}, \lambda \neq 1$.

Proof. - If (1) holds, then G is reductive and there is an element $\alpha \in$ $\operatorname{Aff}(V)$ such that $\alpha G \alpha^{-1} \subset \mathrm{GL}(V)$, hence $\alpha H \alpha^{-1} \subset \mathrm{GL}(V)$. But one easily sees that any affine transformation conjugating H into GL (V) must have translation part which is fixed by H. But V contains no nonzero H-fixed vectors. Hence $G \subset \mathrm{GL}(V)$.

Assume (2). Let $x \mapsto c+A(x)$ be an element of $\mathfrak{g}=\operatorname{Lie}(G)$ where $0 \neq c \in V$ and $A \in \mathfrak{g l}(V)$. Then the difference of $c+A(h v)$ and $c+A\left(h h^{\prime} v\right)$ is a nonzero multiple of $A(h v)$ and lies in $\mathfrak{h}(h v)$ for any $h \in H$. Thus A itself lies in \mathfrak{g} and \mathfrak{g} contains the linear and translation parts of its elements. But \mathfrak{g} cannot contain pure translations, as we saw above. Thus $\mathfrak{g} \subset \mathfrak{g l}(V)$ and $G \subset \mathrm{GL}(V)$.

Corollary 3.5. - We have that $G \subset \mathrm{GL}(V)$ in the following cases.
(1) V is an irreducible H-module.
(2) V is an SL_{2}-module whose irreducible components are all of even dimension, i.e., a module all of whose weights are odd.

Remark 3.6. - Suppose that $C, W, w \in W$ are as in Proposition 2.2 where $W^{C}=0$. Let L denote the subgroup of the real affine group of W stabilizing $C w$. Then one can show that L is compact, and as above one sees that $L \subset \mathrm{GL}(W)$. Complexifying, we see that the subgroup of the affine group of $V=W \otimes_{\mathbb{R}} \mathbb{C}$ preserving $H w$, where $H=C_{\mathbb{C}}$, is again just the complexification of L, a subgroup of $\mathrm{GL}(V)$.

Proposition 3.7. - Let $V=\oplus_{i} n_{i} V_{i}$ be the isotypic decomposition of V. Suppose that for no i and j do we have that V_{i} occurs in $\operatorname{Hom}\left(V_{j}, V_{i}\right)$. Then $G \subset \mathrm{GL}(V)$.

Proof. - Suppose that $G \not \subset \mathrm{GL}(V)$. Then we would have a subspace of \mathfrak{g} consisting of elements $A_{w}+w, w \in W$, where $W \simeq V_{i}$ is an irreducible submodule of $V, A_{w} \in \mathfrak{g l}(V)$ and $h A_{w} h^{-1}=A_{h w}$ for $h \in H$. Our hypotheses imply that A_{w} followed by projection to $n_{i} V_{i}$ is zero. Thus $\exp \left(A_{w}+w\right)(v)$ has the same projection to W as $v+w$. Hence we cannot have $H v=G v$.

Example 3.8. - Let $V:=\sum_{i=1}^{n} m_{i} \varphi_{i}$ and $H=\mathrm{A}_{n}, n \geqslant 1$, where φ_{i} is the i th fundamental representation of $H, i=1, \ldots, n$. Then $G \subset \operatorname{GL}(V)$.

Theorem 3.9. - Let H be a torus. Then
(1) $G \subset \mathrm{GL}(V)$.
(2) If $v \in V$ is generic, then $G^{0}=H$.

Proof. - We may assume that $V^{H}=(0)$. First consider (1) in the case that $H=\mathbb{C}^{*}$. Let W be the subspace of V spanned by $H \cdot v$. Then any $g \in G$ must preserve W, so we can replace V by W. Thus we can reduce to the case that $v \in V$ is generic. This implies that the weight spaces of H are one-dimensional. We have a weight basis v_{1}, \ldots, v_{n} of V such that $v=\left(v_{1}, \ldots, v_{n}\right)$ where the weight of v_{i} is $0 \neq a_{i} \in \mathbb{Z}$. Suppose that the orbit of v is preserved by a transformation (g, c) where $(g, c)(v)=\left(\sum_{j} a_{i j} v_{j}+c_{i}\right)$. Here the $a_{i j}$ and c_{i} are scalars. Then the i th component of $g(\lambda \cdot v)$ (where λ is a parameter in $H=\mathbb{C}^{*}$) is $\sum_{j} a_{i j} \lambda^{a_{j}} v_{j}+c_{i}$. Now the powers of λ that occur are distinct, hence the Laurent polynomial in λ that gives the i th component has some nonzero coefficient for a nonzero power of λ. If $c_{i} \neq 0$, then one can see that the polynomial takes on the value 0 for some $\lambda \neq 0$. But the \mathbb{C}^{*}-orbit of v is nonzero in the i th slot. Thus $c_{i}=0$ for all i and g lies in $\mathrm{GL}(V)$ so we have (1). The reasoning above also shows that for each i there is a unique j such that $a_{i j} \neq 0$. Thus a power g^{k} of g preserves the
weight spaces. Then $g^{k} v=h v$ for some $h \in H$, and it follows that $g^{k}=h$. Thus we have (2). Note that g normalizes $H=\mathbb{C}^{*}$, so that we actually have $g^{2} \in H$.

Now suppose that H is a torus. As before, to prove (1), we can assume that v is generic. Let $\left(g=\left(a_{i j}\right), c\right) \in G$. Choose a 1-parameter subgroup λ of H such that all the characters of V, restricted to λ, are distinct. It follows, as above, that $c=0$ and that a power of g lies in H.
3.10. - Let G_{0} denote a Levi component of G containing H. Then as we saw before, we must have that $G_{0} \subset \mathrm{GL}(V)$. We can write G^{\prime} as $G_{0} \ltimes G_{u}^{\prime}$ where G_{u}^{\prime} is the unipotent radical of G^{\prime}. Then we have the corresponding decompostion of \mathfrak{g}^{\prime} as $\mathfrak{g}_{0} \ltimes \mathfrak{g}_{u}^{\prime}$. As H-module, $\mathfrak{g}_{u}^{\prime}$ is completely reducible. Assuming that G is not contained in $\mathrm{GL}(V)$ we can choose an irreducible H-module $W \subset \mathfrak{g}_{u}^{\prime}$ whose inverse image in \mathfrak{g} is not contained in $\mathfrak{g l}(V)$. Then we have a copy of W in V and elements $A_{w} \in \mathfrak{g l}(V), w \in W$, such that $x \mapsto A_{w}(x)+w$ lies in \mathfrak{g} and $\left\{A_{w}\right\}_{w \in W}$ maps to our copy of W in $\mathfrak{g}_{u}^{\prime}$. For all $h \in H$ we have $h A_{w} h^{-1}=A_{h w}$.

Theorem 3.11. - Suppose that $v \in V$ is generic and in the null cone. Then $G \subset \mathrm{GL}(V)$.

Proof. - Suppose the contrary. Let $V=\oplus_{i} n_{i} V_{i}$ be the isotypic decomposition of V as H-module. Let $A_{w}+w \in \mathfrak{g}, w \in W$ be as above where we may assume that $W=V_{i}$ (first copy) for some i. Let $\pi: V \rightarrow W$ be an equivariant projection and set $v_{i}=\pi(v)$. Since v is generic, $v_{i} \neq 0$. The projection of $\exp \left(w+A_{w}\right)(v)$ to W has the form $v_{i}+w+p(v, w)$ where $p(v, w)$ is a polynomial which has no linear factors in w and such that the coefficients of the various monomials in w are polynomials in v without constant term. By applying elements $h \in H$ we can make the coefficients of $h w$ in $p(h v, h w)$ as small as we want. But there is no loss if we replace $h w$ by w since we are able to consider all possible w. Thus we can assume that the coefficients of the monomials in w in $p(v, w)$ are very small, in which case the inverse function theorem tells us that $w \mapsto w+p(v, w)$ covers a ball around $0 \in W$ whose radius we can choose to be independent of v (for v close to zero). Then we see that $w \mapsto v_{i}+w+p(v, w)$ takes on the value 0 . Thus $G v$ contains a point which projects to $0 \in W$, which is impossible. Hence $G \subset \mathrm{GL}(V)$.

Recall that V is called stable if it contains a nonempty Zariski open subset of closed orbits.

Corollary 3.12. - Let V be stable with a one-dimensional quotient. Then $G \subset \mathrm{GL}(V)$.

Proof. - We have that $\mathbb{C}[V]^{H}=\mathbb{C}[f]$ where f is homogeneous of degree $d>1$. Moreover, $f^{-1}(f(v))=H v=G v$ if $f(v) \neq 0$. Now the case that $f(v)=0$ follows from Theorem 3.11 and if $f(v) \neq 0$, then $G v \supset \Gamma v$ where $\Gamma \subset G$ is a finite subgroup isomorphic to $\mathbb{Z} / d \mathbb{Z} \subset \mathbb{C}^{*}$ acting via scalar multiplication on V. Then $G \subset \mathrm{GL}(V)$ by Proposition 3.4(2).

Remark 3.13. - A case by case check shows that H simple and $\operatorname{dim} / / V H$ $=1$ implies that $G \subset \mathrm{GL}(V)$.

Theorem 3.14. - If $H=\mathrm{SL}_{2}$, then $G \subset \mathrm{GL}(V)$.
We prove the theorem by contradiction, so assume that we have $A_{w}+w$ as in 3.10. Then the A_{w} lie in a Lie algebra of nilpotent matrices, and by Engel's theorem we can find a partial flag $0=V_{0} \subset V_{1} \subset \cdots \subset V_{k}=V$ such that V_{1} is the joint kernel of the $A_{w}, V_{2} / V_{1} \subset V / V_{1}$ is the joint kernel of the A_{w}, etc. Note that the V_{j} are H-stable.

Lemma 3.15. - We have $W \subset V_{k-1}$.
Proof. - Since $A_{w}(v) \in V_{k-1}$, we have that $\left(A_{w}+w\right)\left(v+V_{k-1}\right)=$ $w+V_{k-1}$. Thus $\exp \left(A_{w}+w\right)\left(v+V_{k-1}\right)=v+w+V_{k-1}$. Let π be the projection of V to V / V_{k-1} with kernel V_{k-1}. If $W \not \subset V_{k-1}$, then $\pi(G v)$ contains a nontrivial H-stable subspace of V / V_{k-1}. This is not possible for the H-orbit, hence $W \subset V_{k-1}$.

Lemma 3.16. - Suppose that for some $j \geqslant 1$ we have $W \subset V_{k-j}$ and $A_{w}(v) \in V_{k-j}$ for all $w \in W$. Then the stabilizer of $v+V_{k-j}$ in H is infinite.

Proof. - Suppose that $v+V_{k-j}$ has finite stabilizer. Since $A_{w}(v)+w$ projects to zero in V / V_{k-j}, we must have that $A_{w}(v)+w=0$, else the G orbit of v has dimension greater than $\operatorname{dim} H$. Now for $h \in H, A_{w}(h v)+w=$ $h\left(A_{h^{-1} w}+h^{-1} w\right)(v)=0$, so that the average of $A_{w}(h v)+w$ over a maximal compact subgroup K of H is zero. Since $V^{H}=0$ and A_{w} is linear, the average of $w+A_{w}(h v)$ over K is w. Thus $W=0$, a contradiction.

Lemma 3.17. - Suppose that $v+V_{k-j}$ is in the null cone of V / V_{k-j} for some $j \geqslant 1$. Then $W \subset V_{k-j-1}$.

Proof. - Assume that $W \not \subset V_{k-j-1}$. Our argument in 3.11 shows that the G-orbit of v projected to the image of W in V / V_{k-j-1} contains zero, which is not possible for the H-orbit. Hence $W \subset V_{k-j-1}$.

Lemma 3.18. - Suppose that for some $j \geqslant 1$ we have that $A_{w}(v) \in$ V_{k-j} for all $w \in W$ and that $W \subset V_{k-j}$. Then $v+V_{k-j}$ is in the null cone of V / V_{k-j}.

Proof. - Suppose not. Consider $V^{\prime}:=\mathbb{C} \cdot v+V_{k-j} \subset V$. Then for $z \in \mathbb{C}, z\left(A_{w}+w\right)$ exponentiates to an element $g(z)$ of $\operatorname{Aff}\left(V^{\prime}\right)$ which fixes $v^{\prime}:=v+V_{k-j} \in V / V_{k-j}$. By Lemma 3.16 we know that v^{\prime} has an infinite stabilizer S in H. Since v^{\prime} is not in the null cone, S has identity component $T \simeq \mathbb{C}^{*}$. For any $s \in S$ there is an $h_{z, s} \in H$ such that $h_{z, s} v=g(z) s v$. Then $h_{z, s} \in S$ since $g(z) s$ fixes v^{\prime} so that the $g(z)$ preserve the S-orbit of v. The group generated by T and the $g(z)$ is connected, so it preserves the T-orbit of v. By Theorem 3.9 we see that $w=0$, a contradiction.

Proof of Theorem 3.14. - We have that $A_{w}(v) \in V_{k-1}$ and $W \subset V_{k-1}$. Suppose that we have $A_{w}(v) \in V_{k-j}$ and $W \subset V_{k-j}$ for some $j \geqslant 1$. By Lemmas 3.16 and 3.18 and genericity of v we may assume that $v+V_{k-j}$ is a sum of highest weight vectors. By Lemma 3.17, $W \subset V_{k-j-1}$, so that if $A_{w}(v) \in V_{k-j-1}$ we can continue. We eventually arrive at a case where $A_{w}(v) \notin V_{k-j-1}$ (we cannot have a pure translation in \mathfrak{g}). Since $v+V_{k-j}$ is a sum of highest weight vectors there are unique elements $B_{w} \in \mathfrak{u}$ such that $A_{w}(v)+w+B_{w}(v) \in V_{k-j-1}$. Here \mathfrak{u} is the Lie algebra of the standard unipotent subgroup of H. Since $A_{w}(v)+w \notin V_{k-j-1}, B_{w}(v) \notin V_{k-j-1}$ and $v+V_{k-j-1}$ is not a sum of highest weight vectors. Since $v+V_{k-j}$ is a nonzero sum of highest weight vectors, the H-isotropy group of $v+V_{k-j-1}$, which is a subgroup of the H-isotropy group of $v+V_{k-j}$, is finite. Arguing as in Lemma 3.16 we obtain that $w^{\prime}:=A_{w}(v)+w+B_{w}(v)=0$ and that $W=0$, a contradiction. Hence $G \subset \mathrm{GL}(V)$.

From now on we will assume that $V^{H}=0$, even though we have only established our conjecture for SL_{2} or the case that V is irreducible.

4. The case H is simple and V is irreducible

Our goal in this section is to find the possible $G \subset \mathrm{GL}(V)$ preserving an orbit $H v$ where V is an irreducible H-module and H is simple of rank at least two. We will see that perforce G is simple. We begin by recalling some important results of Onishchik.

Let $H \subset G$ where G and H are linear algebraic groups. Let V be an H module. If $v \in V$ and $G v=H v$, then $G=H K$ where $K=G_{v}$. Conversely, $G=H K$ implies that $G v=H v$ for $v \in V^{K}$. There is a rather restricted class of possibilities for H and K when G is simple and H is semisimple, as follows from the work of Onishchik [16, 17].

If K is a connected complex linear algebraic group, let \mathfrak{k} denote its Lie algebra and let $L(K)$ denote a Levi subgroup of K. The next two theorems follow from [16] and [17] (see also [18] and [4]).

THEOREM 4.1. - Let H and K be connected algebraic subgroups of the connected reductive group G. Then the following are equivalent.
(1) $G=H K$.
(2) $G=\sigma(H) \tau(K)$ where σ and τ are any automorphisms of G.
(3) $G=L(H) L(K)$.
(4) $G_{0}=H_{0} K_{0}$ where H_{0} and K_{0} are maximal compact subgroups of H and K contained in a maximal compact subgroup G_{0} of G.
(5) $\mathfrak{g}=\mathfrak{h}+\mathfrak{k}$ (if H and K are reductive).

Corollary 4.2. - Suppose that $G=H K$ where all the groups are connected algebraic. Choose Levi factors $L(G) \supset L(H), L(K)$. Then $L(G)=$ $L(H) L(K)$.

Now assume that \mathfrak{h} and \mathfrak{k} are reductive subalgebras of the reductive Lie algebra \mathfrak{g}. Let \mathfrak{g}_{s} be the sum of the simple components of \mathfrak{g} of rank at least 2 (the strongly semisimple part of \mathfrak{g}). Let G_{s} be the corresponding subgroup of G. Let $r(\mathfrak{g})$ be the sum of the center and simple components of rank 1 of \mathfrak{g} so that $\mathfrak{g}=\mathfrak{g}_{s} \oplus r(\mathfrak{g})$.

Theorem 4.3. - Let \mathfrak{h} and \mathfrak{k} be reductive subalgebras of the reductive Lie algebra \mathfrak{g}. Then the following are equivalent.
(1) $\mathfrak{g}=\mathfrak{h}+\mathfrak{k}$.
(2) $\mathfrak{g}_{s}=\mathfrak{h}_{s}+\mathfrak{k}_{s}$ and $r(\mathfrak{g})$ is the sum of the projections of $r(\mathfrak{h})$ and $r(\mathfrak{k})$ to $r(\mathfrak{g})$.

Corollary 4.4. - Suppose that $v \in V$ is not semi-characteristic and that H contains a strongly semisimple subgroup. Then so does G_{v}.

From the above and [16] we have the following
Theorem 4.5. - Let G be connected, simple and simply connected of rank at least 2. Let H and K be connected semisimple subgroups of G such that $G=H K$. Then, up to switching the roles of H and K and replacing each of them by their image under an automorphism of G, all possibilities are listed in Table 1.

Table 1.

	G	H	$\varphi_{1}(G) \mid H$	K	$\varphi_{1}(G) \mid K$	$H \cap K$
1	$\mathrm{~A}_{2 n-1}$	C_{n}	φ_{1}	$\mathrm{~A}_{2 n-2}$	$\varphi_{1}+\theta_{1}$	C_{n-1}
2	D_{n+1}	$\mathrm{~B}_{n}$	$\varphi_{1}+\theta_{1}$	$\mathrm{~A}_{n}$	$\varphi_{1}+\varphi_{n}$	$\mathrm{~A}_{n-1}$
3.1	$\mathrm{D}_{2 n}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{1}+\theta_{1}$	C_{n}	$2 \varphi_{1}$	C_{n-1}
3.2	$\mathrm{D}_{2 n}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{1}+\theta_{1}$	$\mathrm{C}_{n} \times \mathrm{A}_{1}$	$\varphi_{1} \otimes \varphi_{1}$	$\mathrm{C}_{n-1} \times \mathrm{A}_{1}$
4.1	$\mathrm{~B}_{3}$	G_{2}	φ_{2}	$\mathrm{~B}_{2}$	$\varphi_{1}+\theta_{2}$	$\mathrm{~A}_{1}$
4.2	$\mathrm{~B}_{3}$	G_{2}	φ_{2}	D_{3}	$\varphi_{1}+\theta_{1}$	$\mathrm{~A}_{2}$
5.1	D_{4}	$\mathrm{~B}_{3}$	φ_{3}	$\mathrm{~B}_{2}$	$\varphi_{1}+\theta_{3}$	$\mathrm{~A}_{1}$
5.2	D_{4}	$\mathrm{~B}_{3}$	φ_{3}	$\mathrm{~B}_{2} \times \mathrm{A}_{1}$	$\varphi_{1}+\varphi_{1}^{2}$	$\mathrm{~A}_{1} \times \mathrm{A}_{1}$
5.3	D_{4}	$\mathrm{~B}_{3}$	φ_{3}	D_{3}	$\varphi_{1}+\theta_{2}$	$\mathrm{~A}_{2}$
5.4	D_{4}	$\mathrm{~B}_{3}$	φ_{3}	$\mathrm{~B}_{3}$	$\varphi_{1}+\theta_{1}$	G_{2}
6	D_{8}	$\mathrm{~B}_{7}$	$\varphi_{1}+\theta_{1}$	$\mathrm{~B}_{4}$	φ_{4}	$\mathrm{~B}_{3}$

In our tables, we always have $n>1$ and $k \geqslant 1$. We use θ_{k} to denote a trivial representation of dimension k. Corresponding to an ordering of the simple roots of G we have fundamental representations $\varphi_{i}=\varphi_{i}(G)$, $i=1, \ldots, \operatorname{rank} G$. We use the ordering of the roots of the simple groups of Dynkin [3]. Note that entries (5.1), (5.2) and (5.3) of Table 1 are special cases of (3.1), (3.2) and (2), but we have included them for completeness.

Corollary 4.6. - Let (G, H, K) be a triple in Table 1.
(1) If $L \subset G$ is a reductive subgroup commuting with H or K, then L has rank at most 1.
(2) We have $G=H_{s} K_{s}$ where K_{s} and H_{s} are simple.

Now that we know the possibilities for G, H and K, our task is to find the irreducible representations of G which remain irreducible when restricted to H. This can be read off from [3, Table 5]. However, given that one knows the possibilities for (G, H, K), it is relatively easy to see which irreducible representations of G are possible. Note that we can sometimes gain an irreducible representation by adding a group of rank 1 to H (Table 2 (3.5)).

THEOREM 4.7. - Let $G=G_{s}$ be simple and let H and $K=K_{s}$ be proper semisimple subgroups of G such that $G=H K$. Assume that V is an irreducible representation of G which is also irreducible when restricted to H. Then, up to automorphisms of G, all possibilities are listed in Table 2.

Table 2.

	G	V	H	$V \mid H$	K	$V \mid K$	V^{K}
1	$\mathrm{~A}_{2 n-1}$	φ_{1}^{k}	C_{n}	φ_{1}^{k}	$\mathrm{~A}_{2 n-2}$	$\varphi_{1}^{k}+\varphi_{1}^{k-1}+\cdots+\theta_{1}$	θ_{1}
2.1	$\mathrm{D}_{2 n+1}$	$\varphi_{2 n}^{k}$	$\mathrm{~B}_{2 n}$	$\varphi_{2 n}^{k}$	$\mathrm{~A}_{2 n}$	$\mathcal{S}^{k}\left(\varphi_{1}+\varphi_{3}+\cdots+\varphi_{2 n-1}+\theta_{1}\right)$	θ_{1}
2.2	$\mathrm{D}_{2 n+1}$	$\varphi_{2 n+1}^{k}$	$\mathrm{~B}_{2 n}$	$\varphi_{2 n}^{k}$	$\mathrm{~A}_{2 n}$	$\mathcal{S}^{k}\left(\varphi_{2}+\varphi_{4}+\cdots+\varphi_{2 n}+\theta_{1}\right)$	θ_{1}
3.1	$\mathrm{D}_{2 n}$	$\varphi_{2 n-1}^{k}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{2 n-1}^{k}$	$\mathrm{~A}_{2 n-1}$	$\mathcal{S}^{k}\left(\varphi_{2}+\varphi_{4}+\cdots+\varphi_{2 n-2}+\theta_{2}\right)$	$S^{k}\left(\mathbb{C}^{2}\right)$
3.2	$\mathrm{D}_{2 n}$	$\varphi_{2 n-1}^{k}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{2 n-1}^{k}$	C_{n}	$*$	$S^{k}\left(\mathbb{C}^{n+1}\right)$
3.3	$\mathrm{D}_{2 n}$	$\varphi_{2 n}^{k}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{2 n-1}^{k}$	$\mathrm{~A}_{2 n-1}$	$\mathcal{S}^{k}\left(\varphi_{1}+\varphi_{3}+\cdots+\varphi_{2 n-1}\right)$	(0)
3.4	$\mathrm{D}_{2 n}$	$\varphi_{2 n}^{k}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{2 n-1}^{k}$	C_{n}	$*$	(0)
3.5	$\mathrm{D}_{2 n}$	φ_{1}	$\mathrm{C}_{n} \times \mathrm{A}_{1}$	$\varphi_{1} \otimes \varphi_{1}$	$\mathrm{~B}_{2 n-1}$	$\varphi_{1}+\theta_{1}$	θ_{1}
4.1	$\mathrm{~B}_{3}$	φ_{1}^{k}	G_{2}	φ_{2}^{k}	$\mathrm{~B}_{2}$	$\mathcal{S}^{k}\left(\varphi_{1}+\theta_{2}\right)$	$S^{k}\left(\mathbb{C}^{2}\right)$
4.2	$\mathrm{~B}_{3}$	φ_{1}^{k}	G_{2}	φ_{2}^{k}	D_{3}	$\mathcal{S}^{k}\left(\varphi_{1}+\theta_{1}\right)$	\mathcal{S}_{1}
5.1	D_{4}	φ_{1}^{k}	$\mathrm{~B}_{3}$	φ_{3}^{k}	$\mathrm{~B}_{2}$	$\mathcal{S}^{k}\left(\varphi_{1}+\theta_{2}\right)$	$S^{k}\left(\mathbb{C}^{3}\right)$
5.2	D_{4}	φ_{1}^{k}	$\mathrm{~B}_{3}$	φ_{3}^{k}	D_{3}	$\mathcal{S}^{k}\left(\varphi_{1}+\theta_{1}\right)$	$S^{k}\left(\mathbb{C}^{2}\right)$
5.3	D_{4}	φ_{1}^{k}	$\mathrm{~B}_{3}$	φ_{3}^{k}	$\mathrm{~B}_{3}$	$\varphi_{1}+\theta_{1}$	θ_{1}
5.4	D_{4}	φ_{1}	$\mathrm{C}_{2} \times \mathrm{A}_{1}$	$\varphi_{1} \otimes \varphi_{1}$	$\mathrm{~B}_{3}$	$\varphi_{1}+\theta_{1}$	θ_{1}
6.1	D_{8}	φ_{1}	$\mathrm{~B}_{4}$	φ_{4}	$\mathrm{~B}_{7}$	φ_{7}	θ_{1}
6.2	D_{8}	φ_{7}	$\mathrm{~B}_{4}$	$\varphi_{1} \varphi_{4}$	$\mathrm{~B}_{7}$	$*$	(0)
6.3	D_{8}	φ_{7}^{k}	$\mathrm{~B}_{7}$	φ_{7}^{k}	$\mathrm{~B}_{4}$	$*$	$S\left(f_{4}\right)_{k}$
6.4	D_{8}	φ_{8}^{k}	$\mathrm{~B}_{7}$	φ_{7}^{k}	$\mathrm{~B}_{4}$	$S\left(f_{2}, f_{3}\right)_{k}$	

In Table 2, if V is a K-module, then $\mathcal{S}^{k}(V)$ denotes the K-subspace of $S^{k}(V)$ generated by $S^{k}\left(V^{U}\right)$ where U is a maximal unipotent subgroup of K. In other words, in $\mathcal{S}^{k}(V)$ we take only the Cartan components of products. In column V^{K} the notation $S\left(f_{2}, f_{3}\right)_{k}$ means the span of the monomials in f_{2} and f_{3} of degree k where f_{i} has degree $i, i=2,3$. Here the $f_{i} \in \mathbb{C}\left[\varphi_{8}\left(D_{8}\right)\right]^{B_{4}}$. A similar interpretation applies to $S\left(f_{4}\right)_{k}$ where $f_{4} \in \mathbb{C}\left[\varphi_{7}\left(D_{8}\right)\right]^{B_{4}}$ has degree 4. The justification of the entries $V \mid K$ and V^{K} can be found in the Appendix.

Remark 4.8. - In Table 2, we have chosen not to remove all redundancies due to automorphisms of groups of type D_{n}. In column $V \mid K$ we have omitted the decompositions in (3.2) and (3.4) which are obtained by restricting V to C_{n}. To determine this one needs the branching rule for restrictions of $\mathrm{SL}_{2 n}$-representations to C_{n}. As determined by Weyl [27], one proceeds as follows. Let $\omega \in \bigwedge^{2}\left(\left(\mathbb{C}^{2 n}\right)^{*}\right)$ be nonzero and C_{n}-invariant. Then from the exterior powers of ω we obtain invariants in the duals of $\varphi_{2}^{b_{2}} \ldots \varphi_{2 n-2}^{b_{2 n-2}}$ for nonnegative b_{j}. Then the restriction of an irreducible representation φ of $\mathrm{SL}_{2 n}$ to C_{n} is obtained by taking all possible complete contractions of the duals of our invariants in the $\varphi_{2}^{b_{2}} \ldots \varphi_{2 n-2}^{b_{2 n-2}}$ with φ. For example, $\varphi_{1} \varphi_{5}\left(\mathrm{SL}_{8}\right)$ contracted with ω gives rise to φ_{4} and $\varphi_{1} \varphi_{3}$ while contraction with $\omega \wedge \omega \in \wedge^{4}\left(\mathbb{C}^{8}\right)^{*}$ gives rise to φ_{1}^{2} and φ_{2}. Note that the only representations of $\mathrm{SL}_{2 n}$ which can give rise to the trivial representation of C_{n} are those of the form $\varphi_{2}^{a_{2}} \ldots \varphi_{2 n-2}^{a_{2 n-2}}$. Hence in Table 2 (3.4) the trivial C_{n}-representation does not occur in the column $V \mid K$ for any $k \geqslant 1$
and in (3.2) the occurrences of the trivial representation are the symmetric algebra in θ_{2} and the subspaces $\varphi_{2}^{\mathrm{C}_{n}}, \ldots, \varphi_{2 n-2}^{\mathrm{C}_{n}}$.

Remark 4.9. - We do not know what to put in the column $V \mid K$ in cases (6.3) and (6.4) of Table 2. However, in the Appendix we are able to compute V^{K}.

Suppose that $H \subset G$ where G and H are semisimple, and connected and V is a G-module which is irreducible as an H-module. Then the inclusion of H in G has a very special form, as shown by Dynkin [3, Theorem 2.2].

Theorem 4.10. - Let G_{1}, \ldots, G_{k} be the simple components of G. Then $H=H_{1} \cdots H_{k}$ where the H_{i} are nontrivial semisimple subgroups of the $G_{i}, i=1, \ldots, k$.

We are interested in the case that H is simple. Then Theorem 4.10 tells us that G has to be simple and from Table 2 we get the following theorem.

Theorem 4.11. - Let H be simple of rank at least two and let $\varphi: H \rightarrow$ $\mathrm{GL}(V)$ be an irreducible representation. Then every nonzero H-orbit $H v$ is semi-characteristic, except for the following cases (where $n \geqslant 2$ and $k \geqslant 1$).
(1) $H=\mathrm{C}_{n}, \varphi=\varphi_{1}^{k}$ and v is a highest weight vector. Equivalently, v is fixed by $\mathrm{A}_{2 n-2}$ where $\mathrm{A}_{2 n-2}, \mathrm{C}_{n}, \mathrm{~A}_{2 n-1}$ and V are as in Tables 1(1) and 2(1).
(2) $H=\mathrm{B}_{2 n}, \varphi=\varphi_{2 n}^{k}$ and v is a highest weight vector. Equivalently, v is fixed by $\mathrm{A}_{2 n}$ where $\mathrm{A}_{2 n}, \mathrm{~B}_{2 n}, \mathrm{D}_{2 n+1}$ and V are as in Tables 1(2) and 2(2.1) or 2(2.2).
(3) $H=\mathrm{B}_{2 n-1}, \varphi=\varphi_{2 n-1}^{k}$ and v is fixed by C_{n} where $\mathrm{C}_{n}, \mathrm{~B}_{2 n-1}, \mathrm{D}_{2 n}$ and V are as in Tables 1(3.1) and 2(3.2).
(4) $H=\mathrm{G}_{2}, \varphi=\varphi_{2}^{k}$ and v is fixed by B_{2} where $\mathrm{B}_{2}, \mathrm{G}_{2}, \mathrm{~B}_{3}$ and V are as in Tables 1(4.1) and 2(4.1).
(5) $H=\mathrm{B}_{4}, \varphi=\varphi_{4}$ and $H v$ is closed. Equivalently, v is fixed by B_{7} where $\mathrm{B}_{4}, \mathrm{~B}_{7}, \mathrm{D}_{8}$ and V are as in Tables 1(6) and 2(6.1).
(6) $H=\mathrm{B}_{7}, \varphi=\varphi_{7}^{k}$ and v is fixed by B_{4} where $\mathrm{B}_{4}, \mathrm{~B}_{7}, \mathrm{D}_{8}$ and V are as in Tables 1(6) and 2(6.3) or 2(6.4).

For special direct sums of representations we have the following result.
Proposition 4.12. - Let V_{i} be an irreducible H_{i}-module where the H_{i} are semisimple, $i=1, \ldots, k$. Let $V=V_{1} \oplus \cdots \oplus V_{k}$ be the corresponding $H=H_{1} \times \cdots \times H_{k}$-module. Suppose that $0 \neq v_{i} \in V_{i}$ such that v_{i} is (semi)-characteristic for H_{i} for each i. Then v is (semi)-characteristic for H where $v=\left(v_{1}, \ldots, v_{k}\right) \in V$.

Proof. - Let G be as usual. First suppose that V is an irreducible G^{0} module. Then, up to a cover and scalar matrices, $G^{0}=G_{1} \times \cdots \times G_{r}$ where the G_{j} are simple and $V \simeq U_{1} \otimes \cdots \otimes U_{r}$ where the U_{j} are irreducible G_{j}-modules. By Theorem 4.10 each simple factor of each H_{i} must project nontrivially to a single G_{j}. But given the structure of V as H-module, this implies that $k=1$, where the theorem is trivial.

We may now assume that there is a maximal flag $W_{1} \subset \cdots \subset W_{r} \subset$ $W_{r+1}=V$ of G^{0}-stable subspaces where $r \geqslant 1$. We may assume that, as H-module, $W_{r}=V_{1} \oplus \cdots \oplus V_{p}$ so that $V / W_{r} \simeq V_{p+1} \oplus \cdots \oplus V_{k}$. The image of G in $\operatorname{GL}\left(V / W_{r}\right)$ is reductive. Let G^{\prime} denote its semisimple part. Then for $g \in G^{\prime}$, we have $g\left(v_{p+1}, \ldots, v_{k}\right) \in\left(H_{p+1} \times \cdots \times H_{k}\right)\left(v_{p+1}, \ldots, v_{k}\right)$. By induction on $k, G^{\prime}=H_{p+1} \times \cdots \times H_{k}$. But by maximality of the flag, we must have that $p=k-1$, i.e., $V / W_{r} \simeq V_{k}$. If V_{k} is not G-stable, then \mathfrak{g} contains a nonzero linear map of V_{k} to W_{r}. Since \mathfrak{g} is stable under the action of H, we may assume that it contains $\operatorname{Hom}\left(V_{k}, V_{1}\right)$. Thus the G orbit of v contains a point $\left(0, v_{2}, \ldots, v_{k}\right)$. Such a point is not in $H v$, so we have a contradiction. Thus V_{k} is G-stable and we have a G-module direct sum decomposition $V=W_{r} \oplus V_{k}$. It follows by induction on k that $H v$ is (semi)-characteristic.

If one considers the adjoint representation \mathfrak{h} of a simple H, the only case that appears in Theorem 4.11 is $H=\mathrm{C}_{n}, n \geqslant 2$, where $\mathfrak{h}=\varphi_{1}^{2}$. Thus we have

Corollary 4.13. - Let $H=H_{1} \times \cdots \times H_{k}$ where the H_{i} are simple, and let $\varphi: H \rightarrow \operatorname{GL}(\mathfrak{h})$ be the adjoint representation. Let $v=\left(v_{1}, \ldots, v_{k}\right) \in$ $\oplus_{i} \mathfrak{h}_{i}$ where no v_{i} is zero. Then v is semi-characteristic if and only if for every simple component H_{i} of type $\mathrm{C}_{n}, n \geqslant 2, v_{i} \in \mathfrak{c}_{n}$ is not on the highest weight orbit.

5. The case H is simple

We now consider the case where H is simple of rank at least two and our H-module V may be reducible. We consider the possible semisimple G which can act on V such that $G v=H v$ where $v \in V$ is generic for the action of H.

Here are some examples to keep in mind.
Example 5.1. - Let H be simple and let V be an H-module. Let $G=$ $H \times H$ and let v be the identity in $V \otimes V^{*}$. Then $G v=H v$ where the diagonal copy of H in G plays the role of K.

Example 5.2. - Let (G, H, K) or (G, K, H) be an entry of Table 1. Let $V=\bigoplus_{i=1}^{n} m_{i} V_{i}$ be the isotypic decomposition of a G-module such that $\operatorname{dim} V_{i}^{K} \geqslant m_{i} \geqslant 1$ for all i. Let $v \in V^{K}$ be generic for the action of G. Then $G v=H v$.

Example 5.3. - Here $H \simeq \mathrm{~A}_{2 n-1}$. Let $\left(G_{1}, H_{1}, K_{1}\right)=\left(\mathrm{D}_{2 n}, \mathrm{~A}_{2 n-1}, \mathrm{~B}_{2 n-1}\right)$ and $\left(G_{2}, H_{2}, K_{2}\right)=\left(\mathrm{A}_{2 n-1}, \mathrm{~A}_{2 n-2}, \mathrm{C}_{n}\right)$. Let $G=G_{1} \times G_{2}$, let H denote the diagonal copy of $\mathrm{A}_{2 n-1}$ and let $K=K_{1} \times K_{2}$. Then $G=H K$. Let V be a representation of G which contains a generic vector $v \in V^{K}$. If V is irreducible, then $V=V_{1} \otimes V_{2}$ where V_{i} is an irreducible representation of $G_{i}, i=1,2$, and $v \in V_{1}^{K_{1}} \otimes V_{2}^{K_{2}}$. The only possibilities allowing nontrivial fixed points are $V_{1}=\varphi_{1}^{k}, k \geqslant 0$, and $V_{2}=\varphi_{2}^{a_{2}} \varphi_{4}^{a_{4}} \cdots \varphi_{2 n-2}^{a_{2 n-2}}$ where the $a_{2 i}$ are in \mathbb{Z}^{+}. In both cases, $\operatorname{dim} V_{i}^{K_{i}}=1$. Thus for v to be generic, V must be a sum of representations (each of multiplicity one) of the form $V_{1} \otimes V_{2}$ where $\operatorname{dim} V_{i}^{K_{i}}=1$ for all i. For V to be almost faithful the sum must contain a nontrivial V_{1} and a nontrivial V_{2}.

Example 5.4. - Here $H \simeq \mathrm{~A}_{3}$. Let $\left(G_{1}, H_{1}, K_{1}\right)=\left(\mathrm{B}_{3}, \mathrm{D}_{3}, \mathrm{G}_{2}\right)$ and $\left(G_{2}, H_{2}, K_{2}\right)=\left(\mathrm{A}_{3}, \mathrm{~A}_{2}, \mathrm{C}_{2}\right)$. Let $G=G_{1} \times G_{2}$, let H be the diagonal copy of $\mathrm{A}_{3}=\mathrm{D}_{3}$ and let $K=K_{1} \times K_{2}$. Then $G=H K$. If V_{i} is an irreducible representation of $G_{i}, i=1,2$, with $V_{1}^{K_{1}} \neq(0) \neq V_{2}^{K_{2}}$, then $V_{1}=\varphi_{3}^{k}, k \geqslant 0$ and $V_{2}=\varphi_{2}^{\ell}, \ell \geqslant 0$. Again, $\operatorname{dim} V_{i}^{K_{i}}=1, i=1,2$, and the conditions for v generic and V almost faithful are as in the case above.

Example 5.5. - Here $H \simeq \mathrm{~B}_{3}$. Let $\left(G_{1}, H_{1}, K_{1}\right)=\left(\mathrm{D}_{4}, \mathrm{~B}_{3}, \mathrm{~B}_{3}\right)$ and $\left(G_{2}, H_{2}, K_{2}\right)=\left(\mathrm{B}_{3}, \mathrm{G}_{2}, \mathrm{~B}_{2}\right.$ or $\left.\mathrm{D}_{3}\right)$. Let $G=G_{1} \times G_{2}$, let $H \subset H_{1} \times G_{2}$ be the diagonal copy of B_{3} and let $K=K_{1} \times K_{2}$. Then $G=H K$. The possibilities for the V_{i} having nontrivial K_{i}-fixed points are $V_{1}=\varphi_{1}^{k}, k \geqslant 0$ and $V_{2}=\varphi_{1}^{a} \varphi_{2}^{b}$ if $K_{2}=\mathrm{B}_{2}$ and $V_{2}=\varphi_{1}^{a}$ if $K_{2}=\mathrm{D}_{3}$ where a and b are nonnegative. While $V_{1}^{K_{1}}$ has dimension 1 , this is not true for $V_{2}^{K_{2}}$, in general, if $K_{2}=\mathrm{B}_{2}$. Let $v \in V$ be generic and K-fixed. Then irreducible G-modules which can occur in V are sums of tensor products of modules $V_{1} \otimes V_{2}$ where $\operatorname{dim} V_{i}^{K_{i}} \geqslant 1, i=1,2$.

Example 5.6. - Let $\left(G_{1}, H_{1}, K_{1}\right)$ be an entry of Table 1. Let $G=$ $G_{1} \times G_{1}$, let H be the diagonal copy of G_{1} and let $K=H_{1} \times K_{1} \subset G$. Then $G=H K$. It is usually easy to determine the almost faithful $V_{1} \otimes V_{2}$ with K-fixed points. For example, in the case of $\left(\mathrm{A}_{2 n-1}, \mathrm{C}_{n}, \mathrm{~A}_{2 n-2}\right), V_{1}$ has to be of the form $\varphi_{2}^{a_{2}} \cdots \varphi_{2 n-2}^{a_{2 n-2}}$ where the $a_{2 i}$ are nonnegative and V_{2} has to be of the form φ_{1}^{k} or $\varphi_{2 n-1}^{k}$ for $k \geqslant 0$. On the other hand, if we have $\left(\mathrm{D}_{8}, \mathrm{~B}_{7}, \mathrm{~B}_{4}\right)$, then V_{1} is of the form $\varphi_{1}^{k}, k \geqslant 0$, and we have been unable to pin down exactly which V_{2} have B_{4} fixed points.

Looking at Table 1 one easily sees the following.
Proposition 5.7. - Suppose that (G, H, K) and ($G^{\prime}, H^{\prime}, K^{\prime}$) appear in Table 1 where $H \cap K \simeq H^{\prime} \subset L \subset G^{\prime}$ or $H \cap K \simeq K^{\prime} \subset L \subset G^{\prime}$ and L is isomorphic to H or K. Then G^{\prime} is isomorphic to L.
5.8. - Let H be simple of rank at least 2 and let V be an almost faithful H-module. Let $v \in V$ be generic. Let $G=G_{1} \times \cdots \times G_{r}$ where the G_{i} are simple and simply connected and G acts almost faithfully on V such that $G v=H v$ where $H \subset G$. Let K denote a Levi factor of G_{v}. Then $G=H K$. Let $\mathrm{pr}_{i}: G \rightarrow G_{i}$ denote projection on the i th factor, $i=1, \ldots, r$. We may assume that $\operatorname{pr}_{i}(H) \neq\{e\}$ for $1 \leqslant i \leqslant s$ and $\operatorname{pr}_{i}(H)=\{e\}$ for $s<i \leqslant r$ where $s \geqslant 1$. Let $G^{\prime}=G_{1} \times \cdots \times G_{s}$ and $G^{\prime \prime}=G_{s+1} \times \cdots \times G_{r}$. For $r \geqslant j>s$ there is a unique simple component K_{j} of K such that $\operatorname{pr}_{j}\left(K_{j}\right)=G_{j}$ and clearly $K^{\prime \prime}:=K_{s+1} \times \cdots \times K_{r}$ covers $G^{\prime \prime}$. The kernel of $K^{\prime \prime} \rightarrow G^{\prime}$ commutes with H and fixes v. Since $H v$ spans v (Proposition 2.7), the kernel must be finite. Hence $K^{\prime \prime}$ covers its image in G^{\prime}. Let K^{\prime} denote the product of the simple components of K not in $K^{\prime \prime}$. Then $K^{\prime} \subset G^{\prime}$ and the projection of $K^{\prime \prime}$ to G^{\prime} centralizes K^{\prime}. We must have that $H K^{\prime}=G^{\prime}$.

We may write $V=\bigoplus V_{i} \otimes W_{i}$ where the V_{i} are pairwise nonisomorphic irreducible representations of G^{\prime} and the W_{i} are representations of $G^{\prime \prime}$. Then the projection v_{i} of v to each $V_{i} \otimes W_{i}$ is a tensor of rank $\operatorname{dim} W_{i}$ since v is generic. Let U_{i} denote the smallest subspace of V_{i} such that $v_{i} \in U_{i} \otimes W_{i}$. Then $\operatorname{dim} U_{i}=\operatorname{dim} W_{i}$ and $v_{i} \in U_{i} \otimes W_{i}$ corresponds to a $K^{\prime \prime}$-equivariant isomorphism of W_{i}^{*} onto $U_{i} \subset V_{i}$. In the sense of the following definition, v_{i} corresponds to a subordination $\alpha_{i}:\left(W_{i}^{*}, G^{\prime \prime}\right) \rightarrow\left(V_{i}, G^{\prime}\right)$.

Definition 5.9. - Let Z_{i} be an L_{i}-module $i=1$, 2, where the L_{i} are reductive. We say that Z_{1} is subordinate to Z_{2} if there is a linear injection $\alpha: Z_{1} \rightarrow Z_{2}$ and a reductive subgroup $L \subset L_{1} \times L_{2}$ such that α is L-equivariant (for the L-module structures on Z_{1} and Z_{2}). Moreover, we require that $\mathrm{pr}_{1}: L \rightarrow L_{1}$ be a cover. We say that $\alpha: Z_{1} \rightarrow Z_{2}$ is a subordination of Z_{1} to Z_{2}. We sometimes use the notation $\alpha:\left(Z_{1}, L_{1}\right) \rightarrow$ $\left(Z_{2}, L_{2}\right)$ to specify the groups involved.

We now consider the possibilities for K^{\prime}.
Lemma 5.10. - Let H, etc. be as in (5.8). Then for $1 \leqslant i \leqslant s$ we have $\operatorname{pr}_{i}\left(K^{\prime}\right) \neq G_{i}$.

Proof. - Suppose that $\operatorname{pr}_{i}\left(K^{\prime}\right)=G_{i}$. Then there is a unique simple component K_{i} of K^{\prime} such that $\operatorname{pr}_{i}\left(K_{i}\right)=G_{i}$. If $\operatorname{pr}_{j}\left(K_{i}\right)=\{e\}$ for $j \neq i$, then G_{i} acts trivially on $G v$, which is not possible. Hence $\operatorname{pr}_{j}\left(K_{i}\right) \neq\{e\}$
for some $j \neq i, 1 \leqslant j \leqslant s$. Suppose that $\operatorname{pr}_{j}\left(K_{i}\right)=G_{j}$. Then no simple component of K^{\prime} other than K_{i} can project nontrivially to G_{i} and G_{j}. Consider the projections H^{\prime} of H and K_{i}^{\prime} of K_{i} to $G_{i} \times G_{j}$. Then $H^{\prime} K_{i}^{\prime}=$ $G_{i} \times G_{j}$, and by reason of dimension we must have that $\operatorname{pr}_{i}\left(H^{\prime}\right)=G_{i}$ and $\operatorname{pr}_{j}\left(H^{\prime}\right)=G_{j}$. On the level of Lie algebras this says that we have a simple Lie algebra \mathfrak{g} and two subalgebras \mathfrak{h}_{1} and \mathfrak{h}_{2} of $\mathfrak{g} \oplus \mathfrak{g}$ which project isomorphically to each \mathfrak{g} factor such that $\mathfrak{h}_{1}+\mathfrak{h}_{2}=\mathfrak{g} \oplus \mathfrak{g}$. But it follows from [10, Theorem 9] that $\mathfrak{h}_{1} \cap \mathfrak{h}_{2} \neq(0)$, a contradiction.

We may thus assume that $\operatorname{dim} \operatorname{pr}_{j}\left(K_{i}\right)<\operatorname{dim} G_{j}$, hence $\operatorname{dim} H<\operatorname{dim} G_{j}$ as well. By Corollary 4.6 we have that $\operatorname{pr}_{j}\left(K_{i}\right) \mathrm{pr}_{j}(H)=G_{j}$ and that $\operatorname{pr}_{j}\left(K^{\prime}\right)$ differs from $\operatorname{pr}_{j}\left(K_{i}\right)$ by at most a factor of rank 1. Hence, with H^{\prime} and K_{i}^{\prime} as above, we again have $H^{\prime} K_{i}^{\prime}=G_{i} \times G_{j}$ which is not possible by reason of dimension. Hence we have that $\operatorname{pr}_{i}\left(K^{\prime}\right) \neq G_{i}$ for $1 \leqslant i \leqslant s$.

Corollary 5.11. - Suppose that $1 \leqslant i \leqslant s$ and that $K_{i} \subset K^{\prime}$ is a simple factor of rank at least two such that $\operatorname{pr}_{i}\left(K_{i}\right) \neq\{e\}$. Then $\operatorname{pr}_{j}\left(K_{i}\right)=$ $\{e\}$ for $i \neq j, 1 \leqslant j \leqslant s$.

Proof. - Suppose that $\operatorname{pr}_{j}\left(K_{i}\right) \neq\{e\}$. If $\operatorname{dim} H<\operatorname{dim} G_{i}$ and $\operatorname{dim} H<$ $\operatorname{dim} G_{j}$, then Corollary 4.6 shows that $\operatorname{pr}_{i}\left(K_{i}\right)$ and $\mathrm{pr}_{j}\left(K_{i}\right)$ differ from $\operatorname{pr}_{i}\left(K^{\prime}\right)$ and $\mathrm{pr}_{j}\left(K^{\prime}\right)$ by at most groups of rank 1 , so that with H^{\prime} and K_{i}^{\prime} as above, we have $H^{\prime} K_{i}^{\prime}=G_{i} \times G_{j}$, which is not possible by reason of dimension. Thus $\operatorname{pr}_{i}(H)=G_{i}\left(\right.$ or $\left.\operatorname{pr}_{j}(H)=G_{j}\right)$ which forces $\operatorname{pr}_{j}\left(K_{i}\right)=G_{j}$ (or $\operatorname{pr}_{i}\left(K_{i}\right)=G_{i}$), contradicting the lemma above.

Theorem 5.12. - Let $H, s, r, V=\bigoplus_{i} V_{i} \otimes W_{i}$, etc. be as above. Then one of the following occurs.
(1) $s=1$ and $H=G_{1}$. Then $G^{\prime \prime}=G_{2} \times \cdots \times G_{r}$ and v corresponds to a subordination $\left(\bigoplus_{i} W_{i}^{*}, G^{\prime \prime}\right) \rightarrow\left(\bigoplus_{i} V_{i}, H\right)$ where W_{i}^{*} is sent to $V_{i}^{K^{\prime}}$ for each i.
(2) $s=1, H \neq G_{1}$ and $G_{1}=H K_{1}$ where $K_{1} \subset G_{1}$ is a simple component of K. If $r>1$, then $r=2, G_{2}=\mathrm{SL}_{2}$ (up to a cover) and $\left(G_{1}, H, K_{1} \times \mathrm{SL}_{2}\right)$ is case 3.2 of Table 1. We have a subordination $\left(\bigoplus W_{i}^{*}, \mathrm{SL}_{2}\right) \rightarrow\left(\bigoplus V_{i}, H\right)$ where the image of W_{i}^{*} is a subset of $V_{i}^{K_{1}}$ for each i.
(3) $s=2, \operatorname{pr}_{1}(H)=G_{1}, \operatorname{pr}_{2}(H)=G_{2}$ and there are subgroups $K_{1}^{\prime}, K_{2}^{\prime}$ of H such that $\left(H, K_{1}^{\prime}, K_{2}^{\prime}\right)$ occurs in Table 1. We have $K=K_{1} \times K_{2}$ where $K_{i}=\operatorname{pr}_{i}\left(K_{i}^{\prime}\right), i=1,2$ and $G=H K$ (Example 5.6). If $r>2$, then $r=3,\left(H, K_{1}^{\prime}, K_{2}^{\prime} \times \mathrm{SL}_{2}\right)$ or $\left(H, K_{2}^{\prime}, K_{1}^{\prime} \times \mathrm{SL}_{2}\right)$ is entry 3.2 of Table 1, $G^{\prime \prime}=\mathrm{SL}_{2}$ and v corresponds to a subordination
$\left(\bigoplus_{i} W_{i}^{*}, \mathrm{SL}_{2}\right) \rightarrow\left(\bigoplus_{i} V_{i}, H\right)$ where W_{i}^{*} has image in $V_{i}^{K_{1} \times K_{2}}$ for all i.
(4) $r=s=2$ where $\operatorname{pr}_{1}(H) \neq G_{1}$ and $\operatorname{pr}_{2}(H)=G_{2}$. Then we are in the case of Example 5.3, 5.4 or 5.5.

Proof. - The cases where $s=1$ are quite easy and we leave them to the reader. Now suppose that $s>1$. Suppose that $\operatorname{pr}_{1}(H) \neq G_{1}$ and that $\operatorname{pr}_{2}(H) \neq G_{2}$. Then there are strongly semisimple factors K_{i} of K^{\prime} such that $\operatorname{pr}_{i}\left(K_{i}\right) \operatorname{pr}_{i}(H)=G_{i}, i=1,2$. By Lemma 5.10 and Corollary 5.11 the $\operatorname{pr}_{i}\left(K_{i}\right)$ are proper subgroups of the G_{i} where $\operatorname{pr}_{2}\left(K_{1}\right)=\operatorname{pr}_{1}\left(K_{2}\right)=\{e\}$. Applying Proposition 5.7 we obtain that each of the G_{i} is isomorphic to H, a contradiction. Thus we may assume that $\operatorname{pr}_{1}(H)=G_{1}$.

Let $L^{\prime}\left(\right.$ resp. $\left.K_{1}\right)$ be the product of the strongly simple components of K^{\prime} which map trivially (resp. nontrivially) to G_{1}. Then $L^{\prime} \subset G_{2} \times \cdots \times G_{s}$. Since $G^{\prime}=H K^{\prime}$ and $\operatorname{pr}_{1}(H)=G_{1}$, we must have that $G_{2} \times \cdots \times G_{s}=H^{\prime} L^{\prime}$ where H^{\prime} is the inverse image of $\operatorname{pr}_{1}\left(K_{1}\right)$ in H projected to $G_{2} \times \cdots \times G_{s}$. Since H^{\prime} is a proper subgroup of $H, \operatorname{pr}_{i}\left(H^{\prime}\right) \neq G_{i}, i=2, \ldots, s$. Since $\operatorname{pr}_{2}\left(H^{\prime}\right) \operatorname{pr}_{2}\left(L^{\prime}\right)=G_{2}$, we must have that H^{\prime} is simple, by Table 1. By our argument above, we must have that $s=2$.

Now suppose that $\operatorname{pr}_{1}(H)=G_{1}$ and that $\mathrm{pr}_{2}(H)=G_{2}$. Then by Lemma 5.10 and Corollary 5.11 we have that $H \times H \simeq G_{1} \times G_{2}=H\left(K_{1} \times K_{2}\right)$ where the $K_{i} \subset G_{i}$ are images of simple subgroups K_{1}^{\prime} and K_{2}^{\prime} of K. Then $H=K_{1}^{\prime} K_{2}^{\prime}$ so that $\left(H, K_{1}^{\prime}, K_{2}^{\prime}\right)$ occurs in Table 1, as claimed. Suppose that $r>2$. Then for $j>2, K_{j} \subset G_{1} \times G_{2} \times G_{j}$ projects onto G_{j} and commutes with K_{1} and K_{2}. But the centralizer of $K_{1} \times K_{2}$ in $G_{1} \times G_{2}$ is trivial unless $\left(H, K_{1}^{\prime}, K_{2}^{\prime}\right)$ or $\left(H, K_{2}^{\prime}, K_{1}^{\prime}\right)$ is entry 3.1 of Table 1 , in which case the centralizer is SL_{2}. Thus $r=3$ and there is a subordination as claimed.

Finally, suppose that $s=2$ and that $\operatorname{pr}_{2}(H)=G_{2}$ and $\operatorname{pr}_{1}(H) \neq G_{1}$. Using Lemma 5.10 and Corollary 5.11 and the fact that $H K^{\prime}=G_{1} G_{2}$, we see that there are simple subgroups $K_{i} \subset G_{i}, i=1,2$, such that $H\left(K_{1} K_{2}\right)=$ $G_{1} G_{2}$. We have entries $\left(G_{1}, \operatorname{pr}_{1}(H), K_{1}\right)$ and $\left(\operatorname{pr}_{2}(H), \operatorname{pr}_{2}(L), K_{2}\right)$ in Table 1 where L is the preimage in H of $\operatorname{pr}_{1}(H) \cap K_{1}$. Then H must be B_{3} or of type $\mathrm{A}_{2 n-1}$. If $H=\mathrm{B}_{3}$, then one easily sees that we are in Example 5.5 and that we cannot have $r>2$. The remaining possibilities are that $H=\mathrm{A}_{2 n-1}$ and $G_{1}=\mathrm{D}_{2 n}$ or B_{3} giving Examples 5.3 and 5.4 where $r=2$ is forced.

The theorem above gives one the possibilities for the semisimple part of the Levi factor of $\{g \in \operatorname{GL}(V) \mid G v=H v\}$. Preferable would be a theorem which starts with a representation V of H and a generic $v \in V$ and tells you when v is almost semi-characteristic. In general, it is rather cumbersome
to give such a theorem (for SL_{2} see section 7). We content ourselves with working out the following example.

Example 5.13. - Let $H=\mathrm{D}_{2 n+1}, n \geqslant 2$. Let $V=\bigoplus_{i=1}^{k} n_{i} V_{i}$ be the isotypic decomposition of the H-module V. Let $v=\left(v_{1}, \ldots, v_{k}\right) \in V$ be generic. We find conditions which guarantee that v is almost semicharacteristic.

Each v_{i} is $\left(v_{i 1}, \ldots, v_{i, n_{i}}\right)$ where $v_{i j}$ lies in the j th copy of V_{i}, and the $v_{i j}$ span a subspace $U_{i} \subset V_{i}$ of dimension n_{i}. In order to avoid case (1) of Theorem 5.12 we have to assume that the intersection of the stabilizers of the subspaces U_{i} in H contains no nontrivial semisimple group. Cases (2) and (4) do not apply, so we are left with case (3), where we have $G=H \times H$, $K_{1}=\mathrm{B}_{2 n}$ and $K_{2}=\mathrm{A}_{2 n}$. But then there is a copy of $\mathrm{A}_{2 n-1}$ in $\mathrm{D}_{2 n+1}$ which fixes our point. We have already ruled this out.

6. Semisimple groups

We turn our attention to the case that $H \subset G$ where G and H are connected semisimple, V is an irreducible H-module, G acts almost faithfully on V and $G v=H v$ for some nonzero $v \in V$. Let G_{1}, \ldots, G_{k} be the simple components of G. Then Theorem 4.10 tells us that $H=H_{1} \cdots H_{k}$ where the H_{i} are semisimple and lie in $G_{i}, i=1, \ldots, k$. Note that no H_{i} is trivial, else G_{i} acts trivially on V. Thus if G_{i} has rank 1 , then $G_{i}=H_{i}$. We have $V=V_{1} \otimes \cdots \otimes V_{k}$ where V_{i} is an almost faithful irreducible representation of both G_{i} and $H_{i}, i=1, \ldots, k$.
6.1. - Suppose that $G=H K$ where K is semisimple and G, H and V are as above. (Think of $K \subset G_{v}$.) Let pr_{i} denote the projection of G to $G_{i}, i=1, \ldots, k$. Let K^{\prime} be a simple component of K and set $I^{\prime}:=\{i \mid$ $H_{i} \operatorname{pr}_{i}\left(K^{\prime}\right)=G_{i}$ and $\left.H_{i} \neq G_{i}\right\}$. We may assume that K contains no simple component of rank 1.

Proposition 6.2. - Let $G=H K$ as above. Let K^{\prime}, $K^{\prime \prime}$ be distinct simple components of K and let I^{\prime} and $I^{\prime \prime}$ be as above. Then
(1) $I^{\prime} \cap I^{\prime \prime}=\emptyset$.
(2) $\left|I^{\prime}\right| \leqslant 2$. If $\left|I^{\prime}\right|=2$, then $\operatorname{pr}_{i}\left(K^{\prime}\right)=G_{i}$ for some $i \in I^{\prime}$.

Proof. - For any $i \in I^{\prime} \cap I^{\prime \prime}$, the (nontrivial) images of K^{\prime} and $K^{\prime \prime}$ in G_{i} commute. This is clearly not possible if $\mathrm{pr}_{i}\left(K^{\prime}\right)$ is G_{i}. If not, then we are in one of the entries of Table 1, and commutativity is not possible if $\operatorname{pr}_{i}\left(K^{\prime}\right)$ is one of the groups occurring there. Hence (1) holds. Suppose
that $i, j \in I^{\prime}, i \neq j$ and $\operatorname{pr}_{i}\left(K^{\prime}\right) \neq G_{i}$ and $\operatorname{pr}_{j}\left(K^{\prime}\right) \neq G_{j}$. Then we must have that $H_{j} L=G_{j}$ where $L=\operatorname{pr}_{j}\left(\operatorname{pr}_{i}^{-1}\left(H_{i}\right) \cap K^{\prime}\right)$ is a proper subgroup of $\operatorname{pr}_{j}\left(K^{\prime}\right)$ as in the last column of Table 1. But then, by inspection, we cannot have $H_{j} L=G_{j}$. If i, j and k are distinct elements of I^{\prime}, then we can assume that $\operatorname{pr}_{i}\left(K^{\prime}\right)=G_{i}$, and we derive a contradiction as before by considering the non-surjective projections of $\mathrm{pr}_{i}^{-1}\left(H_{i}\right) \cap K^{\prime}$ to G_{j} and G_{k}. Thus we have (2).

Theorem 6.3. - Suppose that $k=2$ and that $H_{1} \neq G_{1}, H_{2} \neq G_{2}$ and $G v=H v$ for a nonzero $v \in V$. Then we are in one of the following cases.
(1) There are tuples $\left(G_{i}, V_{i}, H_{i}, K_{i}\right)$ in Table 2, $i=1,2$, and $v \in$ $V_{1}^{K_{1}} \otimes V_{2}^{K_{2}}$.
(2) The tuple $\left(G_{1}, V_{1}, H_{1}, K_{1}\right)$ is entry (1) of Table 2, $\left(G_{2}, V_{2}, H_{2}, K_{2}\right)$ is entry (3.3) (with the same k) and v generates the one-dimensional space of $\mathrm{A}_{2 n-1}$ fixed vectors in $V_{1} \otimes\left(V_{2} \mid \mathrm{A}_{2 n-1}\right)$.
(3) The tuple $\left(G_{1}, V_{1}, H_{1}, K_{1}\right)$ is entry (6.2) of Table 2, $\left(G_{2}, V_{2}, H_{2}, K_{2}\right)$ is entry (6.3) (with $k=1$) and v generates the one-dimensional space of D_{8} fixed points in $V_{1} \otimes V_{2}$.
Proof. - Let K_{1} denote a maximal strongly semisimple subgroup of G_{v}. Suppose that $K_{1} \subset G_{1}$. Then Table 1 implies that $H_{1} K_{1}=G_{1}$. Let K_{2} be a strongly semisimple subgroup of G_{v} such that $\mathrm{pr}_{2}\left(K_{2}\right) H_{2}=G_{2}$. Then we must have $\operatorname{pr}_{1}\left(K_{2}\right)=\{e\}$ (again by Table 1), hence $K_{2} \subset G_{2}$ and we are in case (1). Thus we may suppose that any maximal strongly semisimple subgroup L of G_{v} lies diagonally in $G_{1} \times G_{2}$. Since we are not in case (1), pr_{2} restricted to L is almost faithful (and so is pr_{1}). By Table 1, L must be simple. It follows from Proposition 6.2 that we have two cases:
Case 1: $\operatorname{pr}_{1}(L)=G_{1}$ and $\operatorname{pr}_{2}(L)=K_{2}$ where $\left(G_{2}, H_{2}, K_{2}\right)$ is in Table 1. Moreover, $\left(G_{2}, H_{2}, K_{2}^{\prime}\right)$ is in Table 1, where $K_{2}^{\prime}=\operatorname{pr}_{2}\left(\operatorname{pr}_{1}^{-1}\left(H_{1}\right) \cap L\right)$. Thus we are in the case $\left(G_{2}, H_{2}, K_{2}\right)=\left(\mathrm{D}_{2 n}, \mathrm{~B}_{2 n-1}, \mathrm{~A}_{2 n-1}\right)$ and $\left(G_{2}, H_{2}, K_{2}^{\prime}\right)=$ $\left(\mathrm{D}_{2 n}, \mathrm{~B}_{2 n-1}, \mathrm{C}_{n}\right), n \geqslant 2$, where $H_{1} \simeq \mathrm{C}_{n}$. Then from Table 2 we see that $V_{1} \simeq \varphi_{1}^{k}\left(\mathrm{~A}_{2 n-1}\right)$ (or its dual). From Table 2(3.3) we get possibility (2) of our theorem. From (3.1) we get nothing since $\mathrm{A}_{2 n-1}$ has no fixed vectors in $V_{1} \otimes V_{2}$. The possibilities (4.2) and (5.2) fail for the same reason. Hence we only get (2).
Case 2: Here we have that $\operatorname{pr}_{1}(L)=G_{1}$ and $\operatorname{pr}_{2}(L)=G_{2}$. Then $L=H_{1}^{\prime} H_{2}^{\prime}$ where $H_{i}^{\prime}=\operatorname{pr}_{i}^{-1}\left(H_{i}\right) \cap L, i=1,2$. Moreover, there are irreducible representations V_{i} of L whose restrictions to H_{i}^{\prime} are irreducible, $i=1,2$. Table 2 tells us that we may have possibilities from entry (5.3) (and isomorphic entries), but then there are no D_{4}-fixed points in $V_{1} \otimes V_{2}$. Finally, from (6.2) and (6.3) we get possibility (3) above.
6.4. - Let $H \subset \operatorname{GL}(V)$ where H is semisimple connected and V is an irreducible H-module. Suppose that $v \in V$ is a nonzero orbit such that the connected semisimple part G of $\{g \in \mathrm{GL}(V) \mid g H v=H v\}$ is strictly larger than H. Let K denote the strongly semisimple part of G_{v}. We are then in the situation of 6.1. For each simple component K_{j} of K, let $I_{j} \subset\{1, \ldots, k\}$ be as in 6.1. Set $I^{\prime}=\cup_{j} I_{j}, V^{\prime}=\otimes_{i \in I^{\prime}} V_{i}$ and $V^{\prime \prime}=\otimes_{i \notin I^{\prime}} V_{i}$. Define G^{\prime} and $G^{\prime \prime}$ analogously. Then $G^{\prime \prime}=H^{\prime \prime}=\Pi_{i \notin I^{\prime}} H_{i}$. Let K^{\prime} be the product of the K_{j} such that $K_{j} \subset G^{\prime}$ and let $K^{\prime \prime}$ be the product of the other simple factors of K so we have $K=K^{\prime} K^{\prime \prime}$. Via the projections to G^{\prime} and $H^{\prime \prime}$ we have $K^{\prime \prime}$-module structures on V^{\prime} and $V^{\prime \prime}$. Let $W^{\prime} \subset V^{\prime}$ be the minimal subspace such that $v \in W^{\prime} \otimes V^{\prime \prime}$. Then $W^{\prime} \subset\left(V^{\prime}\right)^{K^{\prime}}$ and v is $K^{\prime \prime}$-fixed.

Remark 6.5. - It follows from Theorem 6.3 that each simple component of K^{\prime} arises from an entry of Table 2 as in Theorem 6.3(1), is a group $\mathrm{A}_{2 n-1}$ as in Theorem 6.3(2) or is the group D_{8} in Theorem 6.3(3).

We restate the discussion in (6.4) as follows.
THEOREM 6.6. - Let $v \in V$. If $H v$ is not semi-characteristic, then there are $K^{\prime}, K^{\prime \prime}$, etc. as in (6.4) and a minimal $K^{\prime \prime}$-stable subspace $W^{\prime} \subset$ $\left(V^{\prime}\right)^{K^{\prime}}$ such that $v \in W^{\prime} \otimes V^{\prime \prime}$. If $K^{\prime \prime} \neq\{e\}$, then there is a subordination $\alpha:\left(\left(W^{\prime}\right)^{*}, K^{\prime \prime}\right) \rightarrow\left(V^{\prime \prime}, H^{\prime \prime}\right)$.

Now we would like to find some simple sufficient criteria for all generic v to be semi-characteristic. For this, we only need to avoid the case that $G v=$ $H v$ where G_{i} differs from H_{i} for only one i. Then after renumbering we have that $G_{1} \neq H_{1}$ and $G_{i}=H_{i}$ for $i>1$. We have that $V^{\prime \prime}=V_{2} \otimes \cdots \otimes V_{k}$ and $H^{\prime \prime}=H_{2} \times \cdots \times H_{k}$. Note that H_{1} may be any semisimple subgroup of H.

Proposition 6.7. - Let $G_{1} \supset H_{1}$ be as above. Then one of the following occurs.
(1) There is a subordination $\alpha:\left(V_{1}^{*}, G_{1}\right) \rightarrow\left(V^{\prime \prime}, H^{\prime \prime}\right)$ where $K^{\prime \prime}$ projects onto G_{1}.
(2) The tuple ($V_{1}, G_{1}, H_{1}, K_{1}$) occurs in Table 2 where K_{1} is the projection of $K^{\prime \prime}$ to G_{1}, and we have a subordination $\left(W_{1}^{*}, K_{1}\right) \rightarrow$ $\left(V^{\prime \prime}, H^{\prime \prime}\right)$ where W_{1} is minimal such that $v \in W_{1} \otimes V^{\prime \prime}$.
(3) The group $K^{\prime \prime}$ projects trivially to G_{1} and the tuple $\left(V_{1}, G_{1}, H_{1}, K_{1}\right)$ occurs in Table 2 for some K_{1} where $V_{1}^{K_{1}} \neq(0)$.

Proof. - If $\operatorname{pr}_{1}\left(K^{\prime \prime}\right)=\{e\}$, then we are in case (3). Suppose that $\operatorname{pr}_{1}\left(K^{\prime \prime}\right)$ is nontrivial. Then it follows from Table 1 that $K^{\prime}=\{e\}$. If the projection of $K^{\prime \prime}$ to G_{1} is G_{1}, then v corresponds to a subordination of V_{1}^{*} to $V^{\prime \prime}$ and
we are in case (1). The only other possibility is that the projection of $K^{\prime \prime}$ is K_{1} where ($V_{1}, G_{1}, H_{1}, K_{1}$) occurs in Table 2 and we are in case (2).

Example 6.8. - Suppose that $k=2, \operatorname{dim} V_{2} \geqslant \operatorname{dim} V_{1}$ and that $H_{2}=$ $\mathrm{SL}\left(V_{2}\right)$. Let $v \in V_{1} \otimes V_{2}$ have maximal rank. Then case (1) applies. If ($V_{1}, G_{1}, H_{1}, K_{1}$) occurs in Table 2, let W_{1} be any nontrivial K_{1}-subspace of V_{1} and let $v \in W_{1} \otimes V_{2}$ have maximal rank. Then case (2) applies.

From Proposition 6.7 we get the following criterion for all nonzero orbits $H v$ to be semi-characteristic.

Corollary 6.9. - Let V be an irreducible H-module where H is semisimple. Write $H=H_{1} \times \cdots \times H_{k}$ where the H_{i} are simple for $i>1$, and let $V=V_{1} \otimes \cdots \otimes V_{k}$ be the corresponding decomposition of V. Let $V^{\prime \prime}$ denote $V_{2} \otimes \cdots \otimes V_{k}$ and set $H^{\prime \prime}=H_{2} \cdots H_{k}$. Suppose that none of the following occurs for any decomposition $H=H_{1} \times \cdots \times H_{k}$.
(1) There is a subordination $\left(V_{1}^{*}, H_{1}\right) \rightarrow\left(V^{\prime \prime}, H^{\prime \prime}\right)$ where $H_{1} \neq \mathrm{SL}\left(V_{1}\right)$.
(2) There is a tuple $\left(V_{1}, G_{1}, H_{1}, K_{1}\right)$ in Table 2 and a subordination $\left(W^{*}, K_{1}\right) \rightarrow\left(V^{\prime \prime}, H^{\prime \prime}\right)$ where $W \subset V_{1}$ is K_{1}-stable.
(3) There is a tuple $\left(V_{1}, G_{1}, H_{1}, K_{1}\right)$ in Table 2 where $V_{1}^{K_{1}} \neq(0)$.

Then every nonzero $v \in V$ is semi-characteristic.
Admittedly, the corollary is a little unwieldy, but in any concrete case it is quite easy to apply. We see what we can say in the case of isotropy representations of symmetric spaces.

Example 6.10. - Let $H=\mathrm{A}_{5} \times \mathrm{A}_{1}$ acting on $V=\varphi_{3} \otimes \varphi_{1}$. This corresponds to the symmetric space of type EII (see [8, Ch. X, Table V]). Let $0 \neq v \in V$ and let G be as usual with semisimple part G_{s}. If G_{s} contains H, then G_{s} cannot be simple (by Table 2), and if it is of the form $G_{1} \times G_{2}$ where $G_{1} \supset \mathrm{~A}_{5}$ and $G_{1}=\mathrm{SL}_{2}$, then it follows from Corollary 6.9 or Proposition 6.7 that $G_{1}=\mathrm{A}_{5}$. Hence v is semi-characteristic.

Example 6.11. - Let $p \geqslant q \in \mathbb{N}$ where $p>1$. Let $H=\operatorname{Sp}_{2 p} \times \mathrm{Sp}_{2 q}$ act in the natural way on $V=\mathbb{C}^{2 p} \otimes \mathbb{C}^{2 q}$. This corresponds to the symmetric space of type CII. Let $0 \neq v \in V$. Then one easily sees that the only possibility for a semisimple G_{s} containing H stabilizing $H v$ occurs in the case that v has rank 1 , in which case $G_{s}=\mathrm{SL}_{2 p} \times \mathrm{SL}_{2 q}$. For $q>1$ this corresponds to Theorem 6.3(1). If rank $v>1$, then v is semi-characteristic.

Example 6.12. - Let $p \geqslant q \geqslant 1$. Let H be the intersection of the block diagonal copy of $\mathrm{GL}_{p} \times \mathrm{GL}_{q}$ in GL_{p+q} with SL_{p+q}. Then H acts naturally on $V \oplus V^{*}$ where $V=\operatorname{Hom}\left(\mathbb{C}^{p}, \mathbb{C}^{q}\right)$. This is an isotropy representation
corresponding to the symmetric space of type AIII. First suppose that $q \geqslant 2$. Let $v=\left(x, x^{*}\right)$ where $x \in V$ and $x^{*} \in V^{*}$ are nonzero. Let $G=$ $\left\{g \in \mathrm{GL}\left(V \oplus V^{*}\right) \mid g H v=H v\right\}^{0}$. Suppose that v is not semi-characteristic. Then \mathfrak{g} is an H-stable Lie subalgebra of $\operatorname{Hom}\left(V \oplus V^{*}, V \oplus V^{*}\right)$ which properly contains \mathfrak{h}. If \mathfrak{g} projected to $\operatorname{Hom}(V, V)$ or $\operatorname{Hom}\left(V^{*}, V^{*}\right)$ is more than a central extension of \mathfrak{h}, then \mathfrak{g} has to contain $\mathfrak{s l}_{p+q}$. But there is no corresponding entry in Table 2. Thus we can suppose that \mathfrak{g} projects nontrivially to one of the irreducible components of
$\left.\operatorname{Hom}\left(V, V^{*}\right) \simeq V^{*} \otimes V^{*} \simeq\left(S^{2}\left(\mathbb{C}^{p}\right)+\wedge^{2}\left(\mathbb{C}^{p}\right)\right) \otimes\left(S^{2}\left(\left(\mathbb{C}^{q}\right)^{*}\right)+\wedge^{2}\left(\left(\mathbb{C}^{q}\right)^{*}\right)\right)\right)$.
Let us consider the case that \mathfrak{g} contains $\mathfrak{g}^{\prime}:=\wedge^{2}\left(\mathbb{C}^{p}\right) \otimes \wedge^{2}\left(\left(\mathbb{C}^{q}\right)^{*}\right)$. Now x has normal form $\sum_{i=1}^{k} e_{i}^{*} \otimes f_{i}$ where e_{1}, \ldots, e_{p} is a basis of $\mathbb{C}^{p}, f_{1}, \ldots, f_{q}$ is a basis of \mathbb{C}^{q} and $e_{1}^{*}, \ldots, e_{p}^{*}, f_{1}^{*}, \ldots, f_{q}^{*}$ denote the elements of the dual bases. Then $e_{1} \wedge e_{2} \otimes f_{1}^{*} \wedge f_{2}^{*}$ lies in \mathfrak{g}^{\prime} and applied to x gives us $y^{*}=e_{1} \otimes f_{1}^{*}+e_{2} \otimes f_{2}^{*}$ if $k \geqslant 2$. The contraction of x and y^{*} (an H-invariant of $V \oplus V^{*}$) is not zero. Thus $\left(x, x^{*}+y^{*}\right)$ cannot be in the H-orbit of v, a contradiction. If $k=1$, then acting by the reductive part of H_{x} we can bring x^{*} to the normal form

$$
c e_{1} \otimes f_{1}^{*}+e_{1} \otimes f^{*}+e \otimes f_{1}^{*}+\sum_{i=2}^{\ell} e_{i} \otimes f_{i}^{*}
$$

where $c \in \mathbb{C}, f^{*} \in \operatorname{span}\left\{f_{2}^{*}, \ldots, f_{q}^{*}\right\}$ and $e \in \operatorname{span}\left\{e_{2}, \ldots, e_{p}\right\}$. If $c \neq 0$, then acting by unipotent elements of H_{x} we can arrange that e and f^{*} are zero. Then $\ell+1$ is an invariant of x^{*} (its rank) under the action of H_{x}. But we can change ℓ by adding elements of \mathfrak{g}^{\prime} applied to x, again giving a contradiction. If $c=0$ and $q>2$, then one similarly sees that we can change the rank of x^{*}. If $c=0, q=2$ and e or $f^{*} \neq 0$, however, the G^{\prime}-orbit of v is contained in the H_{x}-orbit of v and v is not semi-characteristic. The other three possible components of \mathfrak{g} give nothing new. Thus v is possibly not semi-characteristic only when $q=2, v$ is in the null cone and one of x and x^{*} has rank 1 .

If $p=1$ and $q=1$ we have a torus action in which case $G=H$. If $q=1$ and $p \geqslant 2$ we have the action of GL_{p} on $\mathbb{C}^{p} \oplus\left(\mathbb{C}^{p}\right)^{*}$. If $H v$ is not closed, then v is semi-characteristic. If $H v$ is closed, then $G \simeq \mathrm{SO}_{2 p}$ and v is not semi-characteristic.

Example 6.13. - In general, one has a good chance to have points v which are not semi-characteristic in case your representation is reducible. One can calculate that this actually occurs for the following isotropy representations of symmetric spaces.
(1) $(V, H)=\left(\mathbb{C}^{p} \otimes \mathbb{C}^{2}, \mathrm{SO}_{p} \times \mathrm{SO}_{2}\right), p \geqslant 3$. This is of type BDI and of type CI for $p=3$.
(2) $(V, H)=\left(\wedge^{2}\left(\mathbb{C}^{n}\right) \oplus \wedge^{2}\left(\left(\mathbb{C}^{n}\right)^{*}\right), \mathrm{GL}_{n}\right), 3 \leqslant n \leqslant 5$. This is of type DIII.
(3) $(V, H)=\left(\varphi_{4} \otimes \nu_{1}+\varphi_{5} \otimes \nu_{-1}, \mathrm{D}_{5} \times \mathbb{C}^{*}\right)$. This is of type EIII. Here ν_{j} denotes the one-dimensional representation of \mathbb{C}^{*} of weight j.
(4) $(V, H)=\left(\varphi_{1} \otimes \nu_{1}+\varphi_{5} \otimes \nu_{-1}, \mathrm{E}_{6} \times \mathbb{C}^{*}\right)$. This is of type EVII.

Our discussion above establishes
Proposition 6.14. - Let (V, H) be the isotropy representation of an irreducible symmetric space. Then, with the exception of the adjoint representation of $\mathrm{C}_{n}, n \geqslant 2$ and the exceptions noted in Examples 6.11, 6.12 and 6.13 , every orbit $H v, v$ generic, is semi-characteristic.

The proposition applies to some of the questions of Raïs in [20].

7. Representations of $\mathbf{S L}_{2}$

We consider the case of H-modules V where $H:=\mathrm{SL}_{2}$ and $V^{H}=0$. We have a generic $v \in V$ and $G:=\{g \in \mathrm{GL}(V) \mid g H v=H v\}^{0}$ is not equal to H. We denote by R_{n} the H-module of binary forms of degree n. Then $R_{n} \simeq S^{n}\left(\mathbb{C}^{2}\right)$ has basis $x^{n}, x^{n-1} y, \ldots, y^{n}$ where x, y are the usual basis of \mathbb{C}^{2} and x^{n} is a highest weight vector. Let $N_{G}(H)$ denote the connected normalizer of H in G.

To determine G, we show that it suffices to determine $N_{G}(H)$ and \mathfrak{g}_{u}. We determine $N_{G}(H)$ in Theorem 7.4 below. We show that \mathfrak{g}_{u} is abelian and a multiplicity free H-module (Proposition 7.15). We give necessary and sufficient conditions for \mathfrak{g}_{u} to contain a copy of $R_{p}, p>0$ (Theorem 7.27). We then find some simple conditions that guarantee that \mathfrak{g}_{u} is zero or the trivial H-module for every generic $v \in V$ (Corollary 7.29).

Lemma 7.1. - Let \tilde{G} be a Levi component of G containing H. Then $\tilde{G} \subset N_{G}(H)$.

Proof. - It follows from Theorem 4.3 that \tilde{G}_{v} contains the simple components of \tilde{G} of rank at least 2 . These components are normalized by H so they fix the whole orbit $H v$ which spans V. Thus all the components of \tilde{G} have rank at most 1 and $\tilde{G} \subset N_{G}(H)$.

Corollary 7.2. - We have $\mathfrak{g} \simeq \tilde{\mathfrak{g}} \ltimes \mathfrak{g}_{u}$. Hence $G \neq N_{G}(H)$ if and only if \mathfrak{g}_{u}, as H-module, contains R_{p} for some $p>0$. To determine G it suffices to determine $N_{G}(H)$ and \mathfrak{g}_{u}.

We now consider the possibilities for $N_{G}(H)$.
Examples 7.3.
(1) Let \bar{H} be another copy of SL_{2} and let $V_{k}=R_{k} \otimes \bar{R}_{k}, k \geqslant 1$, where \bar{R}_{k} is the \bar{H}-module of binary forms of degree k. Let $v_{k} \in V_{k}$ be a nonzero fixed vector of $\{(h, h)\} \subset H \times \bar{H}$. Then $H v_{k}=(H \times$ $\bar{H}) v_{k}$ and v_{k} is generic. We can also take $V=V_{k_{1}} \oplus \cdots \oplus V_{k_{\ell}}$ and $v=\left(v_{k_{1}}, \ldots, v_{k_{\ell}}\right)$ where $k_{1}<\cdots<k_{\ell}$. Then v is generic and $N_{G}(H) \supset H \bar{H}$.
(2) Let $V=\bigoplus_{k \in F} m_{k} R_{k}$ where $1 \leqslant m_{k} \leqslant k+1$ for all k and F is a nonempty finite subset of \mathbb{N}. Let B and \bar{B} be the standard Borel subgroups of H and \bar{H}, respectively. Let v_{k} be the highest weight vector of the copy of $R_{2 k+2-2 m_{k}}$ in $V_{k}=R_{k} \otimes \bar{R}_{k}$ for the diagonal H-action. Then v_{k} lies in R_{k} tensored with the span of the weight vectors of \bar{R}_{k} of weight at least $k-2 m_{k}+2$. Now v_{k} is an eigenvector for the diagonal copy of B, with weight $2 k+2-2 m_{k}$. For $\bar{b} \in \bar{B}$, let $\chi(\bar{b})$ denote its upper left hand entry. Let \bar{b} act on \bar{R}_{k} as the tensor product of the usual action and the scalar action $\bar{b} \mapsto \chi(\bar{b})^{2 m_{k}-2 k-2}$. Then v_{k} is fixed by the diagonal in $B \times \bar{B}$. Assume that $m_{k} \geqslant 2$ for some k so that \bar{B} acts effectively. Set $v=\bigoplus_{k \in F} v_{k}$. Then v is generic and $N_{G}(H) \supset H \bar{B}$.
(3) Let $V=\bigoplus_{k \in F} m_{k} R_{k}$ as above. Let $v \in V$ be a generic vector whose projection $v_{k, j}$ to the j th copy of R_{k} is a weight vector. If the weight is not zero, then there is an obvious \mathbb{C}^{*}-action on this copy of R_{k} such that $v_{k, j}$ is fixed by the product of the standard torus in H and our external copy of \mathbb{C}^{*}. If v is not a sum of zero weight vectors we have $N_{G}(H) \supset H \mathbb{C}^{*}$.

Theorem 7.4. - Let $V=\bigoplus_{k \in F} m_{k} R_{k}$ be a representation of $H=\mathrm{SL}_{2}$ where $V^{H}=0$. Let $v \in V$ be generic. If $N_{G}(H) \neq H$, then, up to the action of $\prod_{k \in F} \mathrm{GL}_{m_{k}}$, we are in one of the cases of Example 7.3. If $G \supset H \bar{H}$ as in Example 7.3(1), then $G=H \bar{H}$.

Proof. - We have $N_{G}(H)=H G^{\prime}$ where G^{\prime} is the identity component of the centralizer of H in G. The group G_{v}^{\prime} fixes $H v$, so it is trivial. Hence the Lie algebra of $G_{v}=\left\{h g^{\prime} \mid h g^{\prime} v=v\right\}$ projects onto \mathfrak{g}^{\prime} and into \mathfrak{h}, so that G^{\prime} is locally isomorphic to a quotient of a connected subgroup of H. Hence G^{\prime} is locally isomorphic to a connected subgroup of H.
Case 1: $G^{\prime}=\mathrm{SL}_{2}$ or SO_{3}. Going to a cover, we can assume that $G^{\prime}=\bar{H}$ so that G_{v} is isomorphic to the diagonal copy of H. Then V is a sum of representations $V_{k}=R_{k} \otimes S_{k}$ where S_{k} is a representation of \bar{H} of dimension
at most $k+1$ and the projection of v to V_{k} is a fixed point of the diagonal action of H. Thus $S_{k} \simeq \bar{R}_{k}$ and v is as in Example 7.3(1). Suppose that $\mathfrak{g}_{u} \neq 0$. Then, as $(H \times \bar{H})$-module, \mathfrak{g}_{u} cannot contain R_{0} or \bar{R}_{0} since the connected centralizer of H is \bar{H} and vice versa. Thus \mathfrak{g}_{u} contains a term $R_{a} \otimes \bar{R}_{b}$ where $a b \neq 0$. Hence, as H-module, \mathfrak{g}_{u} is not multiplicity free. But this contradicts Proposition 7.15 below. Hence $\mathfrak{g}_{u}=0$ and $G=H \bar{H}$.
Case 2: $G^{\prime}=\mathbb{C}^{*}$. Then $G_{v} \subset H \times \mathbb{C}^{*}$ is a diagonal torus and the fixed subspace of G_{v} on each isotypic component $m_{k} R_{k}$ of V is a sum of m_{k} distinct weight spaces of H. Thus we are in Example 7.3(3).
Case 3: $G^{\prime} \supset \bar{U}$ and $G^{\prime} \not \supset \bar{H}$ where $\bar{U} \subset \bar{H}$ is the standard maximal unipotent subgroup of our second copy \bar{H} of SL_{2}. We have $V=\bigoplus_{k \in F} R_{k} \otimes$ S_{k} where S_{k} is a representation of \bar{U}. The isotropy group of v in $H \times \bar{U}$ can be taken to be the diagonal copy of U in $U \times \bar{U}$. Then v corresponds to a subordination $S_{k}^{*} \rightarrow R_{k}$, hence the image of S_{k}^{*} is a U-stable subspace of R_{k} and S_{k} is a \bar{B}-stable subspace of \bar{R}_{k}. In fact, it is the span of x^{k}, $x^{k-1} y, \ldots, x^{k-m_{k}+1} y^{m_{k}-1}$, and acting by elements of the various $\operatorname{GL}\left(m_{k}\right)$ we can arrange that v is as in Example 7.3(2). Hence $N_{G}(H) \simeq H \bar{B}$.

Corollary 7.5. - Let V be as above and $v \in V$ generic. Suppose that Example 7.3(1) does not apply so that $N_{G}(H) \neq H \bar{H}$. Then v is almost semi-characteristic.

We now turn to the determination of \mathfrak{g}_{u} when it is not zero or a trivial H-module.

Proposition 7.6. - Let $v \in V$ be generic. Suppose that there is a copy of R_{p} in $\mathfrak{g l}(V), p>0$, which is a Lie subalgebra and acts nilpotently on V. Further suppose that $R_{p}(v) \subset \mathfrak{h}(v)$. Then $R_{p} \subset \mathfrak{g}_{u}$.

Proof. - Consider the action $\sigma: R_{p} \otimes V \rightarrow V$. Then for $h \in H$,

$$
\sigma\left(R_{p} \otimes h(v)\right)=h \sigma\left(R_{p} \otimes v\right) \subset h \mathfrak{h}(v)=\mathfrak{h}(h v) .
$$

Hence $H v$ is open in $G_{p} v$ where G_{p} is the connected group with Lie algebra $\mathfrak{h} \ltimes R_{p}$. Thus $G_{p} \subset G$ and $R_{p} \subset \mathfrak{g}$. The projection of R_{p} to $\operatorname{Lie}\left(N_{G}(H)\right)$ is trivial (by our classification of $N_{G}(H)$ and the fact that R_{p} is nilpotent). Hence $R_{p} \subset \mathfrak{g}_{u}$.

Remark 7.7. - The proposition remains true if $p=0$ as long as $G \neq$ $H \bar{H}$ as in Example 7.3(1).

Example 7.8. - Let $p, l>0$. Let $v_{l+p}=x^{l+p}$ and let $v_{l}=a_{0} x^{l}+$ $a_{1} x^{l-1} y, a_{1} \neq 0$. Set $V=R_{l+p}+R_{l}$. Consider a nonzero equivariant map $\sigma: R_{p} \otimes R_{l+p} \rightarrow R_{l}$. Then $\sigma\left(x^{i} y^{p-i} \otimes v_{l+p}\right)$ vanishes for $i>0$ and $\sigma\left(y^{p} \otimes\right.$
$\left.v_{l+p}\right)$ is a nonzero multiple of x^{l}. Thus we may arrange that $\sigma\left(y^{p} \otimes x^{l+p}\right)=$ $a_{1} x^{l}$. If $A \in \mathfrak{s l}_{2}$ is $x \partial / \partial y$, then $\sigma\left(y^{p} \otimes v_{l+p}\right)=A\left(v_{l}\right)$. We may consider σ as an equivariant mapping of R_{p} to $\operatorname{Hom}\left(R_{l+p}, R_{l}\right)$. Then R_{p} applied to $v:=v_{l+p}+v_{l}$ is the same as $\mathfrak{u}(v)$ where $\mathfrak{u}=\mathbb{C} \cdot A$. By Proposition 7.6, $R_{p} \subset \mathfrak{g}_{u}$. We can also have a copy of R_{q} in $\mathfrak{g}_{u}, q \neq p$, by adding R_{l+q} to V and adding v_{l+q} to v, where $v_{l+q}=x^{l+q}$.

We now try to pin down the structure of V and v. The situation can be quite complicated. First we need a lemma.

Lemma 7.9. - Let $\varphi: R_{p} \otimes R_{n} \rightarrow R_{p+n-2 i}$ be equivariant and nonzero where $0 \leqslant i \leqslant \min \{p, n\}$. Then $\varphi\left(x^{p-j} y^{j} \otimes x^{n}\right) \neq 0$ for $i \leqslant j \leqslant p$.

Proof. - If $\varphi\left(x^{p-j} y^{j} \otimes x^{n}\right)=0$, then the $\mathfrak{s l}_{2}$-submodule W of $R_{p} \otimes R_{n}$ generated by $x^{p-j} y^{j} \otimes x^{n}$ lies in the kernel of φ. Applying $x \partial / \partial y \in \mathfrak{s l}_{2}$ repeatedly we may reduce to the case that $\varphi\left(x^{p-i} y^{i} \otimes x^{n}\right)=0$. Suppose by induction that $x^{p-k} y^{k} \otimes x^{n-l} y^{l}$ lies in W for $k+l=i$ and $l \leqslant s$. Then applying $y \partial / \partial x$ followed by $x \partial / \partial y$ to $x^{p-k} y^{k} \otimes x^{n-s} y^{s}$ we obtain elements in W as well as $k(n-s) x^{p-k+1} y^{k-1} \otimes x^{n-s-1} y^{s+1}$. Thus W contains all the weight vectors of $R_{p} \otimes R_{n}$ of weight $p+n-2 i$. This implies that $R_{p+n-2 i} \subset W$, a contradiction. Thus $\varphi\left(x^{p-j} y^{j} \otimes x^{n}\right) \neq 0$.

Remark 7.10. - Reversing the roles of x and y we have $\varphi\left(x^{j} y^{p-j} \otimes y^{n}\right) \neq$ 0 for $i \leqslant j \leqslant p$.

Corollary 7.11. - Let φ, etc. be as above where $p+n-2 i \neq 0$. Let $w=x^{n} \in R_{n}$. Then $\operatorname{dim} \varphi\left(R_{p} \otimes w\right) \geqslant 2$ unless $i=p<n$ so that $\varphi\left(y^{p} \otimes w\right)$ is a highest weight vector of R_{n-p}.

Set $W_{0}=V$ and for $j>0$ set $W_{j}=\mathfrak{g}_{u}\left(W_{j-1}\right)$. Then W_{j} is a proper H-stable subspace of W_{j-1} for $j>0$. Let k be the greatest integer j such that $W_{j} \neq 0$. Since \mathfrak{g}_{u} acts nontrivially on V, we must have $k>0$. Let V_{j} be an H-complement to W_{j+1} in W_{j} for $0 \leqslant j \leqslant k$. Then $V=\oplus_{j} V_{j}$. Write $v=v_{0}+v_{1}+w_{2}$ where $v_{i} \in V_{i}, i=1,2$, and $w_{2} \in W_{2}$. As before, let A denote $x \partial / \partial y \in \mathfrak{h}$.

Lemma 7.12. - Perhaps replacing v by $h v$ for some $h \in H$ we have the following.
(1) The vector v_{0} is a sum of highest weight vectors.
(2) The dimension of $\mathfrak{g}_{u}(v)$ is one with basis $A(v)$.
(3) Suppose that $R_{p} \subset \mathfrak{g}_{u}$ where $p>0$. Then for $p \geqslant i>0, x^{i} y^{p-i} \in R_{p}$ annihilates v.

Proof. - Since \mathfrak{g}_{u} acts nontrivially on V and v is generic, there has to be a $C \in \mathfrak{g}_{u}$ such that $C(v) \in W_{1}$ and $C(v) \notin W_{2}$. Then there must be a $D \in \mathfrak{h}$ such that $D\left(v_{0}+v_{1}\right)=C(v)$ modulo W_{2}. Since D preserves V_{0} and V_{1}, we must have that $D\left(v_{1}\right)=C\left(v_{0}\right)$ modulo W_{2} and that D annihilates v_{0}. Up to the action of H, we may thus assume that v_{0} is a sum of highest weight vectors or a sum of zero weight vectors. We assume the latter and derive a contradiction. Since \mathfrak{g}_{u} is H-stable, we may assume that C is a weight vector for the action of $\mathbb{C}^{*} \subset H$. Note that D generates the Lie algebra of $\mathbb{C}^{*} \subset H$. If C has weight zero, then so does $C(v)+W_{2}=C\left(v_{0}\right)+W_{2}$ and we cannot have that $C(v)=D(v)$ modulo W_{2}. Thus C has weight j for some $j \neq 0$ so that $C\left(v_{0}\right)+W_{2}=D\left(v_{1}\right)+W_{2}$ also has weight j. Hence $v_{1}=v_{1}^{\prime}+v_{1}^{\prime \prime}$ where $v_{1}^{\prime}+W_{2}=C\left(v_{0}\right)+W_{2}$ and v_{1}^{\prime} has weight j while $v_{1}^{\prime \prime}$ has weight 0 . Now let Z be the two-dimensional vector space generated by v_{0} and v_{1}^{\prime}, all modulo W_{2}. The groups generated by $\exp (t D)$ and $\exp (t C)$, $t \in \mathbb{C}$, act on Z and the orbits of $\left(v_{0}, v_{1}^{\prime}\right)$ are the same. But $\exp (t C)\left(v_{0}, v_{1}^{\prime}\right)$ contains the point $\left(v_{0}, 0\right)$ while $\exp (t D)\left(v_{0}, v_{1}^{\prime}\right)$ clearly does not. Hence we have (1), i.e., v_{0} is a sum of highest weight vectors. Moreover, $\mathfrak{g}_{u}(v)+W_{2}$ is one-dimensional and generated by $A\left(v_{1}\right)+W_{2}$.

Let $C \in \mathfrak{g}_{u}$ as above. Then $C(v)=D(v)$ for some $D \in \mathfrak{h}_{v_{0}}$, where D is a multiple of A. Hence we have (2). Finally, suppose that $R_{p} \subset \mathfrak{g}_{u}$ where $p>0$. By Corollary 7.11, for $i>0, x^{i} y^{p-i}$ annihlates v, modulo W_{2}, while y^{p} sends v to a multiple of $A(v)$, modulo W_{2}. If $x^{i} y^{p-i}$ acts nontrivially on v it follows that $\operatorname{dim} \mathfrak{g}_{u}(v)>1$. Hence we have (3).

Let $\sigma: R_{p} \otimes V \rightarrow V$ be the action of some $R_{p} \subset \mathfrak{g}_{u}$ where $p \geqslant 0$. Let $\mu: V \rightarrow V$ be the action of y^{p} via σ. We may assume that $\mu(v)=A(v)$.

Corollary 7.13.
(1) For all $j \geqslant 1, \mu^{j}(v)=A^{j}(v)$.
(2) If $p>0$, then for all $1 \leqslant i \leqslant p, j \geqslant 0, \sigma\left(x^{i} y^{p-i} \otimes A^{j}(v)\right)=0$.

Proof. - Suppose that $p>0$. We prove (1) and (2) simultaneously by induction on j. Assume that $\mu^{j}(v)=A^{j}(v)$ for $1 \leqslant j \leqslant m$ and that $\sigma\left(x^{i} y^{p-i} \otimes A^{j} v\right)=0$ for $0 \leqslant j<m, i>0$. We certainly have the case that $m=1$. Apply A to the equation $\sigma\left(y^{p} \otimes A^{m-1}(v)\right)=A^{m}(v)$. Since σ is equivariant, one obtains that

$$
\sigma\left(p x y^{p-1} \otimes A^{m-1}(v)\right)+\sigma\left(y^{p} \otimes A^{m}(v)\right)=A^{m+1}(v)
$$

Since the first term above is zero, we have that $\mu\left(A^{m}(v)\right)=A^{m+1} v$ so that, by induction, we have $\mu^{m+1}(v)=A^{m+1}(v)$. Now apply A to the equation
$\sigma\left(x^{i} y^{p-i} \otimes A^{m-1}(v)\right)=0$. One obtains that

$$
\sigma\left((p-i) x^{i+1} y^{p-i-1} \otimes A^{m-1}(v)\right)+\sigma\left(x^{i} y^{p-i} \otimes A^{m}(v)\right)=0
$$

so that $\sigma\left(x^{i} y^{p-i} \otimes A^{m}(v)\right)=0$. This completes the induction. In case $p=0$, A commutes with the generator of R_{0}, so that (1) is immediate.

Remark 7.14. - Suppose that $p>0$ and that we have (1) above. Then applying A to the equations of (1) and using induction we obtain (2).

Proposition 7.15. - The Lie algebra \mathfrak{g}_{u} is abelian and as H-module is multiplicity free.

Proof. - Suppose that we have copies of R_{p} and R_{q} in \mathfrak{g}_{u} where we allow $p=q$ (in which case we have two copies of R_{p}). If $\left[R_{p} \cdot R_{q}\right] \neq 0$, then we have a copy of some R_{s} in \mathfrak{g}_{u} which maps V to W_{2}. Thus $R_{s}(v) \neq 0$ while $R_{s}(v) \in W_{2}$. This implies, as in the proof of Lemma 7.12, that $\mathfrak{g}_{u}(v)$ has dimension greater than one, a contradiction. Hence \mathfrak{g}_{u} is abelian. If R_{p} has multiplicity two or more, then it follows from Lemma 7.12 that there is a copy of R_{p} which sends v to 0 implying that this copy of R_{p} acts trivially on V, a contradiction. Hence \mathfrak{g}_{u} is multiplicity free.

Proposition 7.16. - For all $i \geqslant 0, A^{i}(v)$ is generic in W_{i}.
Proof. - Since v is generic in V and \mathfrak{g}_{u} is H-stable, W_{1} is generated by the H-orbit of $\mathfrak{g}_{u}(v)$. Hence $A v$ is generic in W_{1}. Then the same argument shows that the H-orbit of $A^{2}(v)$ spans W_{2}, etc.

We say that a vector $w \in R_{l}$ has height k if $w=a_{0} x^{l}+\cdots+a_{k} x^{l-k} y^{k}$ where $a_{k} \neq 0$. A vector in $Z:=\sum_{i} m_{i} R_{i}$ has height at least k (resp. height at most k) if it is generic in Z and when written as a sum $\sum_{i} v_{i, 1}+\cdots+v_{i, m_{i}}$ where $v_{i, j}$ is in the j th copy of R_{i}, each $v_{i, j}$ has height at least k (resp. at most k).

Proposition 7.17. - The H-modules V_{i} are multiplicity free.
Proof. - The vector $A^{j} v$ is generic in $W_{j}, j \geqslant 0$, and the projection of $A^{j} v$ to any R_{l} in W_{j} cannot be zero. Thus the projection of v to any $R_{l} \subset W_{j}$ has height at least j. We have $v+W_{j}=v_{0}+v_{1}+\cdots+v_{j-1}+W_{j}$ where $A^{j} v \in W_{j}$. It follows that $A^{j} v_{i}=0$ for $i<j$, hence any v_{i} is a sum of vectors of height at most i. Since $v_{j} \in W_{j}$ it is a sum of vectors of height at least j. Thus $A^{j} v_{j}$ is a sum of highest weight vectors and it is generic in W_{j}. Hence any R_{l} can occur in W_{j} with multiplicity at most one.

Write $v=v_{0}+\cdots+v_{k}$ where $v_{i} \in V_{i}$. Then each v_{i} is a sum $\sum_{l \in F_{i}} v_{i, l}$ where $F_{i} \subset \mathbb{N}$ and $v_{i, l}$ lies in the copy of $R_{l} \subset V_{i}$.

Corollary 7.18. - Each vector $v_{i, l}$ has height i.
Lemma 7.19. - Let $\varphi: R_{p} \otimes R_{m} \rightarrow R_{l}$ be equivariant and nonzero.
(1) Necessarily $m=l+p-2 i$ for some i with $0 \leqslant i \leqslant \min \{l, p\}$.
(2) Suppose that $w \in R_{m}$ has height $n \leqslant l-i$. Then $\varphi\left(y^{p} \otimes w\right)$ has height $n+i$.

Proof. - Since representations of H are self-dual, R_{l} appears in $R_{p} \otimes R_{m}$ if and only if R_{m} appears in $R_{p} \otimes R_{l}$. Then Clebsch-Gordan implies (1). Now consider $z:=\varphi\left(y^{p} \otimes x^{m-n} y^{n}\right)$ where $m=l+p-2 i$. Then Remark 7.10 shows that $z \neq 0$ if the weight of $y^{p} \otimes x^{m-n} y^{n}$ is at least $-l$. This is equivalent to $n \leqslant l-i$, hence we have (2).

As above, we have $v_{i}=\sum_{l \in F_{i}} v_{i, l}$ where $v_{i, l} \in R_{l} \subset V_{i}$. For any $s \geqslant 0$, we have $W_{1}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s+1} \oplus W_{s+2}$, hence we have an H-equivariant projection of W_{1} to V_{s+1}. Let τ denote σ on $R_{p} \otimes\left(V_{0}+\cdots+V_{s}\right)$ followed by projection onto $R_{l} \subset V_{s+1}$. Since we have $\sigma\left(y^{p} \otimes A^{r}(v)\right)=A^{r+1}(v)$, $r \geqslant 0$, for every $v_{s+1, l} \in R_{l} \subset V_{s+1}, A^{r+1}\left(v_{s+1, l}\right)$ must be a multiple of $\tau\left(y^{p} \otimes A^{r}\left(v_{0}+\cdots+v_{s}\right)\right)$ for $r \geqslant 0$. Note that τ vanishes on $R_{p} \otimes v_{i, t}$ unless $t=l+p-2 j$ where $0 \leqslant j \leqslant \min \{p, s\}$.

Proposition 7.20. - Let s and l be as above. Let $R_{l+p-2 j} \subset V_{i}, j \leqslant$ $\min \{p, s\}$. If $i+j>s$, then $\tau\left(R_{p} \otimes R_{l+p-2 j}\right)=0$.

Proof. - Consider the pairs $\left(i^{\prime}, j^{\prime}\right)$ where $0 \leqslant i^{\prime} \leqslant s, 0 \leqslant j^{\prime} \leqslant \min \{p, s\}$, $i^{\prime}+j^{\prime}>s$ and $v_{i^{\prime}, l+p-2 j^{\prime}} \neq 0$. Assume that i is the maximal i^{\prime} that occurs and that j is the maximal j^{\prime} that occurs in a pair $\left(i, j^{\prime}\right)$. Consider $A^{i}\left(v_{i, l+p-2 j}\right)$. It is a highest weight vector of weight $l+p-2 j$. Suppose that $\tau\left(y^{p} \otimes A^{i}\left(v_{i, l+p-2 j}\right)\right)$ is nonzero. Then it has height $j>s-i$. Moreover, by the choice of i and $j, \tau\left(y^{p} \otimes A^{i}\left(v_{i, l+p-2 j}\right)\right)$ is the nonzero $\tau\left(y^{p} \otimes A^{i}\left(v_{i, l+p-2 j^{\prime}}\right)\right)$ of largest height (equivalently, of lowest weight). But $\tau\left(y^{p} \otimes A^{i}(v)\right)=A^{i+1}\left(v_{s+1, l}\right)$ where $A^{i+1}\left(v_{s+1, l}\right)$ has height $s-i$. Thus $\tau\left(y^{p} \otimes A^{i}\left(v_{i, l+p-2 j}\right)\right)$ must be zero. Now for $0<m \leqslant p$ we have that $\sigma\left(x^{m} y^{p-m} \otimes A^{i}(v)\right)=0$. Again, by height considerations, one sees that $\tau\left(x^{m} y^{p-m} \otimes A^{i}\left(v_{i, l+p-2 j}\right)\right)$ must vanish. Hence $\tau\left(R_{p} \otimes A^{i}\left(v_{i, l+p-2 j}\right)\right)=0$ which shows that $\tau\left(R_{p} \otimes R_{l+p-2 j}\right)=0$. Now the proof can be completed by downward induction on i and j.

For $0 \leqslant j \leqslant \min \{p, s\}$ and $R_{l+p-2 j} \subset V_{i}$, the restriction of τ to $R_{p} \otimes$ $R_{l+p-2 j}$ is a multiple $t_{i, s-j} \tau_{s-j}$ of τ_{s-j} where $\tau_{s-j}: R_{p} \otimes R_{l+p-2 j} \rightarrow R_{l}$ is equivariant and normalized so that $\tau_{s-j}\left(y^{p} \otimes x^{l+p-2 j}\right)=x^{l-j} y^{j}$. We have
that

$$
\begin{equation*}
\sum_{j=0}^{\min \{p, s\}} \sum_{i=0}^{s-j} t_{i, s-j} \tau_{s-j}\left(y^{p} \otimes A^{r}\left(v_{i, l+p-2 j}\right)\right)=A^{r+1}\left(v_{s+1, l}\right) \tag{7.1}
\end{equation*}
$$

for all $r \geqslant 0$ where we set $v_{i, q}=0$ if $q \notin F_{i}$.
Let a_{i} and $b_{i, m}^{s-j}$ be scalars such that $v_{s+1, l}=a_{0} x^{l}+\cdots+a_{s+1} x^{l-s-1} y^{s+1}$ and $v_{i, l+p-2 j}=b_{i, 0}^{s-j} x^{l+p-2 j}+\cdots+b_{i, i}^{s-j} x^{l+p-2 j-i} y^{i}$ whenever $l+p-2 j \in F_{i}$ and $0 \leqslant j \leqslant \min \{p, s\}$. We use t_{j} and b_{j} as shorthand for $t_{j, j}$ and $b_{j, j}^{j}$, respectively. For now assume that $l+p-2 j \in F_{s-j}, j=0, \ldots, \min \{p, s\}$.

Theorem 7.21. - For $m=0, \ldots, s$, consider the equation (7.1) with $r=m$ in weight $l-2 s+2 m$. This gives us $s+1$ equations in the unknowns $t_{s-j} b_{s-j}$ for $0 \leqslant j \leqslant \min \{p, s\}$. The unique solutions are

$$
t_{s-j} b_{s-j}=\frac{\binom{s}{j}\binom{p}{j}}{\binom{l+p-j+1}{j}}(s+1) a_{s+1}, 0 \leqslant j \leqslant \min \{p, s\} .
$$

Proof. - First assume that $p \geqslant s$. Since $\tau_{s-j}\left(y^{p} \otimes x^{l+p-2 j}\right)=x^{l-j} y^{j}$, it follows that

$$
\tau_{s-j}\left(y^{p} \otimes x^{l+p-2 j-k} y^{k}\right)=\frac{\binom{l-j}{k}}{\binom{l+p-2 j}{k}} x^{l-j-k} y^{j+k}, k \leqslant l-j .
$$

Now the 0th equation $(m=0)$ is

$$
t_{0} b_{0}+t_{1} b_{1} \frac{l-s+1}{l+p-2 s+2}+\cdots+t_{j} b_{j} \frac{\binom{l-s+j}{j}}{\binom{l+p-2 s+2 j}{j}}+\cdots+t_{s} b_{s} \frac{\binom{l}{s}}{\binom{l+p}{s}}=(s+1) a_{s+1}
$$

For $m=1$ the equation is
$t_{1} b_{1}+2 t_{2} b_{2} \frac{l-s+2}{l+p-2 s+4}+\cdots+j t_{j} b_{j} \frac{\binom{l-s+j}{j-1}}{\binom{l+p-2 s+2 j}{j-1}}+\cdots+s t_{s} b_{s} \frac{\binom{l}{s-1}}{\binom{l+p}{s-1}}=s(s+1) a_{s+1}$
and the m th equation is

$$
\begin{array}{r}
m!t_{m} b_{m}+\cdots+j!/(j-m)!t_{j} b_{j} \frac{\binom{l-s+j}{j-m}}{\binom{l+p-2 s+2 j}{j-m}}+\cdots+\frac{s!}{(s-m)!} t_{s} b_{s} \frac{\binom{l}{s-m}}{\binom{l+p}{s-m}} \\
=\frac{(s+1)!}{(s-m)!} a_{s+1}
\end{array}
$$

Thus our system of equations is equivalent to

$$
\begin{equation*}
\sum_{j=0}^{s}\binom{j}{m} c_{j} \frac{\binom{l-s+j}{j-m}}{\binom{l+p-2 s+2 j}{j-m}}=\binom{s}{m}, m=0, \ldots, s \tag{7.2}
\end{equation*}
$$

where $c_{j}=t_{j} b_{j} /\left((s+1) a_{s+1}\right)$. Since the equations are in triangular form, there is a unique solution. Now the theorem will be proved if we can show that a solution to (7.2) is

$$
c_{s-j}=\frac{\binom{s}{j}\binom{p}{j}}{\binom{l+p-j+1}{j}}
$$

But one can prove this using the WZ method [28]. (See [23] for a brief introduction.) We used the implementation of the WZ method in MAPLE.

Now suppose that $p<s$. We may still consider the system of equations (7.2). The solutions remain the same, but note that for $j>p$, the formula for c_{s-j} gives zero. Hence the theorem is true even when $p<s$.

Remark 7.22. - Let $0 \leqslant j \leqslant \min \{p, s\}$. We assumed that $R_{l+p-2 j}$ occurred in V_{s-j}. But the equations force $t_{s-j} b_{s-j}$ to be nonzero. Thus, in fact, $R_{l+p-2 j}$ must occur in V_{s-j} for there to be a solution of (7.1) for all $r \geqslant 0$.

Since we are guaranteed to have vectors $v_{s-j, l+p-2 j}$ in our solution of (7.1), what role do the vectors $v_{i, l+p-2 j}$ play for $i<s-j$? It is easy to see that the term involving $v_{i, l+p-2 j}$ may be eliminated if we change $v_{s-j, l+p-2 j}$ to $v_{s-j, l+p-2 j}+\frac{t_{i, s-j}}{t_{s-j}} v_{i, l+p-2 j}$. Let us say that $v^{\prime \prime}=\sum_{j} v_{s-j, l+p-2 j}^{\prime}$ is obtained from $v^{\prime}=\sum_{j} v_{s-j, l+p-2 j}$ by an admissible modification if each $v_{s-j, l+p-2 j}^{\prime}$ differs from $v_{s-j, l+p-2 j}$ by a linear combination of the $v_{i, l+p-2 j}$ for $i<s-j$. Thus we have the following

Remark 7.23. - We have a solution of (7.1) if and only if, up to an admissible modification of the $v_{s-j, l+p-2 j}$, we have a solution of

$$
\begin{equation*}
\sum_{j=0}^{\min \{p, s\}} t_{s-j} \tau_{s-j}\left(y^{p} \otimes A^{r}\left(v_{s-j, l+p-2 j}\right)\right)=A^{r+1}\left(v_{s+1, l}\right), r \geqslant 0 \tag{7.3}
\end{equation*}
$$

Proposition 7.24. - Let $v_{s+1, l} \in V_{s+1}$ and $v_{s-j, l+p-2 j} \in V_{s-j}$ have coefficients a_{j} and $b_{i, m}^{s-j}$ as above. Fix the $b_{s-j}, 0 \leqslant j \leqslant \min \{p, s\}$. Then there are unique values of the t_{s-j} and $b_{s-j, m}^{s-j}$ for $m<s-j$ such that there is a solution of (7.3).

Proof. - We know that the t_{s-j} are uniquely determined. We only need to show that the $b_{s-j, m}^{s-j}$ for $m<s-j$ are unique satisfying (7.3). This is easy because of the triangular form of the equations. For $r=0$, the equation in weight l reads $t_{s} b_{s, 0}^{s}=a_{1}$. For arbitrary $r \leqslant s$, the equation in weight l is $r!t_{s} b_{s, r}^{s}=(r+1)!a_{r+1}$. For $r=s$ this is one of the equations we considered in Theorem 7.21 and we have $b_{s, r}^{s}=\frac{r+1}{t_{s}} a_{r+1}$ for $r<s$. Now
suppose that we have determined the $b_{s-q, j}^{s-q}$ for $0 \leqslant q<m$. Consider (7.3) in weight $l-2 m$ with $r=0$. It gives an expression for $t_{s-m} b_{s-m, 0}^{s-m}$ in terms of the a_{i} and $b_{s^{\prime}, s^{\prime}-j^{\prime}}^{s^{\prime}}$ for $s^{\prime}>s-m$. Thus we may solve for $b_{s-m, 0}^{s-m}$. For $0<r \leqslant s-m$ we obtain an equation that we can solve for $b_{s-m, r}^{s-m}$. The equation that we get for b_{s-m} is one of the equations that we considered in Theorem 7.21. Hence given a_{1}, \ldots, a_{s+1} and the b_{s-j}, there are unique t_{s-j} and $b_{s-j, m}^{s-j}$ solving (7.3).

Remark 7.25. - Suppose that $l+p-2 j \in F_{i}$ for all $i+j \leqslant s, 0 \leqslant$ $j \leqslant \min \{p, s\}$. Then we may modify the $v_{s-j, l+p-2 j}$ admissibly so that the $b_{s-j, m}^{s-j}, m<s-j$, are arbitrary. Hence there are t_{s-j} giving solutions of (7.3) (after admissible modifications) and giving solutions of (7.1) (without changing any vectors).

Let us formulate the conditions that need to be satisfied to have $R_{p} \subset \mathfrak{g}_{u}$, $p>0$.

Definition 7.26. - Let $v \in V$ be generic. We say that v satisfies $\left(*_{p}\right)$ if
(1) We have a decomposition $V=\oplus_{i=0}^{k} V_{i}$ where the V_{i} are multiplicity free H-modules. Let $F_{i} \subset \mathbb{N}$ such that $V_{i}=\oplus_{l \in F_{i}} R_{l}$.
(2) Possibly replacing v by $h v$ for some $h \in H$, we have that $v=$ $\sum_{i} \sum_{l \in F_{i}} v_{i, l}$ where $v_{i, l} \in R_{l} \subset V_{i}$ has height i.
(3) For every $v_{s+1, l} \in V_{s+1}, s \geqslant 0$, we have that $l+p-2 j \in F_{s-j}$ for $0 \leqslant j \leqslant \min \{p, s\}$. Let the t_{s-j} be given by Theorem 7.21. Then the vectors $v_{s-j, l+p-2 j}$, perhaps after admissible modification, are solutions of (7.3).

Theorem 7.27. - Let $v \in V$ be generic. Then $R_{p} \subset \mathfrak{g}_{u}, p>0$, if and only if v satisfies $\left(*_{p}\right)$.

Proof. - We have shown that $R_{p} \subset \mathfrak{g}_{u}$ implies that $\left(*_{p}\right)$ holds. Conversely, if $\left(*_{p}\right)$ holds, then we have constants $t_{i, s-j}$ such that (7.1) is satisfied. Let τ denote the corresponding map

$$
R_{p} \otimes\left(\bigoplus_{j=0}^{\min \{p, s\}} \bigoplus_{i=0}^{s-j} \bigoplus_{l+p-2 j \in F_{i}} R_{l+p-2 j} \subset V_{i}\right) \rightarrow R_{l} \subset V_{s+1}
$$

The various mappings τ combine to give us an equivariant map $\sigma: R_{p} \otimes V \rightarrow$ V. It follows from Remark 7.14 that $\sigma\left(x^{i} y^{p-i} \otimes v\right)=0$ for $i>0$. By construction, $\sigma\left(R_{p} \otimes v\right)$ is one-dimensional and generated by $\sigma\left(y^{p} \otimes v\right)=A(v)$. If S denotes the copy of $R_{p} \subset \operatorname{End}(V)$ corresponding to σ, then $[S, S](v)=$

0 which implies that $[S, S]$ acts trivially on V, i.e., $[S, S]=0$. By construction, S consists of nilpotent transformations. Now by Proposition 7.6 we have $S \subset \mathfrak{g}_{u}$.

Corollary 7.28. - Suppose that there is a generic $v \in V$ such that \mathfrak{g}_{u} is not zero or the trivial H-module. Then there are subsets $F_{0}, \ldots, F_{k} \subset \mathbb{N}$ such that $V=\bigoplus_{i=0}^{k} \bigoplus_{l \in F_{i}} R_{l}$ and $p>0$ such that for every $l \in F_{s+1}$, $s \geqslant 0$ we have $l+p-2 j \in F_{s-j}$ for $0 \leqslant j \leqslant \min \{p, s\}$.

Corollary 7.29. - The group G normalizes H if V does not satisfy the condition of Corollary 7.28. In particular, G normalizes H in the following cases.
(1) V is an isotypic H-module.
(2) The multiplicity of R_{l} is at least two, where l is maximal such that $R_{l} \subset V$.

Proof. - Part (1) is clear. In case (2), there has to be a vector $v_{s+1, l}$ where $s \geqslant 0$. Thus we must have $R_{p+l} \subset V_{s}$, which obviously fails.

Using Remark 7.25 it is clear that one can have extremely complicated situations where $R_{p} \subset \mathfrak{g}_{u}$. Here is a modestly complicated case.

Example 7.30. - Let $V_{0}=R_{l+p-2} \oplus R_{l+2 p}, V_{1}=R_{l+p}$ and $V_{2}=R_{l}$, where $l>1, p>0$. Let $v=v_{0, l+p-2}+v_{0, l+2 p}+v_{1, l+p}+v_{2, l} \in V=$ $V_{0} \oplus V_{1} \oplus V_{2}$ where the $v_{r, s}$ are of height r in $R_{s} \subset V_{r}$. Then by Remark 7.25, \mathfrak{g}_{u} contains a copy of R_{p}. Here we have that $\sigma\left(y^{p} \otimes v_{0, l+2 p}\right)=A\left(v_{1, l+p}\right)$ and $\sigma\left(y^{p} \otimes A^{r}\left(v_{0, l+p-2}+v_{1, l+p}\right)\right)=A^{r+1}\left(v_{2, l}\right), r=0$, 1 . If we add a copy of R_{l} to V_{1} and a copy of R_{l} to V_{0} (assume $p \neq 2$) with corresponding components $v_{1, l}$ and $v_{0, l}$ in v, then we also have a copy of R_{0} in \mathfrak{g}_{u}. If $p=2$, we already have $R_{l} \subset V_{0}$ and we only have to add $R_{l} \subset V_{1}$ and $v_{1, l}$.

Example 7.31. - Suppose that $V=2 R_{l} \oplus R_{l-1} \oplus R_{l+1}$ where $l \geqslant 2$. Then it is possible to have a generic $v \in V$ such that $R_{1} \subset \mathfrak{g}_{u}$. However, one can check that this is not possible if we increase the multiplicity of R_{l} to 3 .

8. Appendix

Here we establish the branching rules which are used in Table 2 and the calculation of V^{K} in cases 6.3 and 6.4. Recall that if φ is a G-module, then $\mathcal{S}(\varphi)=\oplus_{k} \mathcal{S}^{k}(\varphi)$ where $\mathcal{S}^{k}(\varphi)$ denotes the subspace of $S^{k}(\varphi)$ obtained using Cartan multiplication of the irreducible subrepresentations of φ.

Let $n=2 m+1, m \geqslant 1$. Let X denote the cone in $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$ which is the closure of the orbit of a highest weight vector. Consider the action of $\mathrm{SL}_{n} \times \mathbb{C}^{*}$ on $\mathcal{O}(X)$ where $\varphi_{1}\left(\mathrm{D}_{n}\right)=\mathbb{C}^{2 n}=\varphi_{1}\left(\mathrm{SL}_{n}\right) \oplus \varphi_{n-1}\left(\mathrm{SL}_{n}\right)=$ $\mathbb{C}^{n} \oplus\left(\mathbb{C}^{n}\right)^{*}$. Here \mathbb{C}^{n} is the span of the positive weight vectors of D_{n}, \mathbb{C}^{*} acts on \mathbb{C}^{n} with weight 2 and on $\left(\mathbb{C}^{n}\right)^{*}$ with weight -2 . As $\mathrm{SL}_{n} \times \mathbb{C}^{*}$ representation, $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$ is $\nu_{n} \oplus \varphi_{n-2}\left(\mathrm{SL}_{n}\right) \otimes \nu_{n-4}+\varphi_{n-4}\left(\mathrm{SL}_{n}\right) \otimes \nu_{n-8}+$ $\cdots+\varphi_{1}\left(\mathrm{SL}_{n}\right) \otimes \nu_{-n+2}$ and $\varphi_{n}\left(\mathrm{D}_{n}\right)=\varphi_{n-1}\left(\mathrm{D}_{n}\right)^{*}=\varphi_{n-1}\left(\mathrm{SL}_{n}\right) \otimes \nu_{n-2}+$ $\cdots+\varphi_{2}\left(\mathrm{SL}_{n}\right) \otimes \nu_{-n+4}+\nu_{-n}$.

Theorem 8.1. - Let X be the closure of the highest weight orbit in $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$. Then, as $\left(\mathrm{SL}_{n} \times \mathbb{C}^{*}\right)$-module, $\mathcal{O}(X)=\mathcal{S}\left(\varphi_{n}\left(\mathrm{D}_{n}\right)\right)$.

Proof. - It is well-known that X is normal, and every point of X except the origin is smooth. For $x \in \nu_{n}, x \neq 0, x$ is a smooth point of X, x is a fixed point of SL_{n} and the slice representation of SL_{n} at x is $\theta_{1}+$ φ_{n-2}. Since φ_{n-2} has no invariants, $\mathcal{O}(X)^{\mathrm{SL}_{n}}$ is generated by a coordinate function z on ν_{n}. Then z is not a zero divisor in $\mathcal{O}(X)$, hence $\mathcal{O}(X)$ is a free $\mathbb{C}[z]$-module. By Luna's slice theorem [14], $\mathcal{O}(X)$ is a free $\mathbb{C}[z]$-module on $\mathcal{O}\left(\varphi_{n-2}\right)$. But $\mathcal{O}\left(\varphi_{n-2}\right)=S\left(\varphi_{2}\right)$ is just the sum of all representations of the form $\varphi_{2}^{a_{2}} \cdot \varphi_{4}^{a_{4}} \ldots \varphi_{n-1}^{a_{n-1}}$ each with multiplicity one. It follows that the products of the highest weight vectors of the restriction of $\varphi_{n-1}\left(D_{n}\right)^{*}$ to SL_{n} freely generate the highest weights of $\mathcal{O}(X)$ as an SL_{n}-module and as an $\left(\mathrm{SL}_{n} \times \mathbb{C}^{*}\right)$-module.

Now suppose the $n=2 m, m \geqslant 2$. Let X denote the closure of the orbit of a highest weight vector of $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$. Consider the action of $\mathrm{SL}_{n} \times \mathbb{C}^{*} \subset \mathrm{D}_{n}$ such that $\varphi_{1}\left(\mathrm{D}_{n}\right)$ becomes $\mathbb{C}^{n} \otimes \nu_{1} \oplus\left(\mathbb{C}^{n}\right)^{*} \otimes \nu_{-1}$. Effectively, we have the action of GL_{n}. Then $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$, as a GL_{n}-module, is $\nu_{m}+\varphi_{n-2} \otimes \nu_{m-2}+$ $\cdots+\nu_{-m}$.

Theorem 8.2. - Let $n=2 m, m \geqslant 2$ and let X be the closure of the highest weight orbit in $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$. Then, as GL_{n}-module, $\mathcal{O}(X)=$ $\mathcal{S}\left(\varphi_{n-1}\left(\mathrm{D}_{n}\right)\right)$.

Proof. - Let $z_{ \pm}$be coordinate functions on the copies of $\nu_{ \pm m}$ in $\varphi_{n-1}\left(\mathrm{D}_{n}\right)$. As above, one computes that there is a slice representation $\left(\varphi_{2 m-2}+\theta_{1}, \mathrm{SL}_{2 m}\right)$ for the action of $\mathrm{SL}_{2 m}$ on X. The slice representation has a quotient of dimension two and principal isotropy group C_{m}. It follows that the GL_{n}-invariants have dimension 1 , hence they must be generated by $z_{+} z_{-}$. Moreover, the only way that the trivial SL_{n}-representation can occur in $\mathbb{C}\left[\varphi_{n-2} \otimes \nu_{m-2}+\cdots+\varphi_{2} \otimes \nu_{-m+2}\right]$ is in products whose \mathbb{C}^{*}-weight is a multiple of $\pm m$ (just count boxes in Young diagrams). Since GL_{n} is spherical in D_{n}, each $\nu_{k m}, k \in \mathbb{Z}$, occurs once in the free $\mathbb{C}\left[z_{+} z_{-}\right]$-module
$\mathcal{O}(X)$. Thus the SL_{n}-invariants must be the polynomial ring $\mathbb{C}\left[z_{+}, z_{-}\right]$and $\mathcal{O}(X)$ is free over $\mathbb{C}\left[z_{+}, z_{-}\right]$. For the corresponding map $X \rightarrow \mathbb{C}^{2}$, the general fiber is $S L_{n} / \mathrm{C}_{m}$, which gives that the only SL_{n}-representations that occur are $\varphi_{2}^{a_{2}} \ldots \varphi_{n-2}^{a_{n-2}}$ for $a_{2}, \ldots, a_{n-2} \geqslant 0$, each with multiplicity one. It follows that $\mathcal{O}(X)=\mathcal{S}\left(\varphi_{n-1}\left(\mathrm{D}_{n}\right)\right)$.

Finally, we consider the case where X is the closure of the highest weight vector in $\varphi_{n}\left(\mathrm{D}_{n}\right), n=2 m \geqslant 4$. As GL n_{n}-module, we have $\varphi_{n}\left(\mathrm{D}_{n}\right)=\varphi_{n-1} \otimes$ $\nu_{m-1} \oplus \cdots \oplus \varphi_{1} \otimes \nu_{-m+1}$.

Theorem 8.3. - As GL_{n}-module, $\mathcal{O}(X)=\mathcal{S}\left(\varphi_{n}\left(\mathrm{D}_{n}\right)\right)$.
Proof. - There are no invariants in this case, so we have to proceed a little differently. We first find a general point of X. Let e_{1}, \ldots, e_{n} be the usual basis of \mathbb{C}^{n}. Let $\omega=e_{2} \wedge e_{3}+\cdots+e_{2 n-2} \wedge e_{2 n-1}$ considered as an element of the Lie algebra of D_{n}. Then the action of $\exp (\omega)$ on e_{1} sends it to the sum v of the elements $e_{1} \wedge \omega^{k} \in \varphi_{2 k+1}, k=0, \ldots, m-1$. The isotropy group H of SL_{n} acting on v is the semidirect product of C_{m-1} with $\operatorname{Hom}\left(\mathbb{C} \cdot e_{n}, \mathbb{C}^{n-1}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{n-2}, \mathbb{C} \cdot e_{1}\right)$ where \mathbb{C}^{n-2} here stands for the span of e_{2}, \ldots, e_{n-1} and \mathbb{C}^{n-1} stands for $\mathbb{C}^{n-2} \oplus \mathbb{C} \cdot e_{1}$. Note that our copy of C_{m-1} acts standardly on \mathbb{C}^{n-2}. Now $\operatorname{dim} S L_{n} / H=\operatorname{dim} X$, so that $\mathrm{SL}_{n} \cdot v$ is a dense orbit in X. Since X is factorial [26, Theorem 4], any divisor in the complement of the dense orbit must be defined by a semiinvariant of SL_{n}, hence by an invariant. Thus there are no such divisors, so that the complement of $\mathrm{SL}_{n} \cdot v$ has codimension 2. It follows that $\mathcal{O}(X) \simeq$ $\mathcal{O}\left(\mathrm{SL}_{n} / H\right)$. But the irreducibles of SL_{n} with an H-fixed vector are those of the form $\varphi_{1}^{a_{1}} \varphi_{3}^{a_{3}} \ldots \varphi_{n-1}^{a_{n-1}}$ where the a_{i} are nonnegative, and the fixed point set has dimension one. Thus $\mathcal{O}(X)$ is as claimed.

We now compute the ring of K-invariants in the cases (6.3) and (6.4) of Table 2.

Proposition 8.4. - Let X (resp. Y) be the closure of the orbit of the highest weight vector of $\varphi_{7}\left(\mathrm{D}_{8}\right)$ (resp. $\varphi_{8}\left(\mathrm{D}_{8}\right)$). Consider the action of B_{4} on X and Y where $\varphi_{1}\left(\mathrm{D}_{8}\right) \mid \mathrm{B}_{4}=\varphi_{4}\left(\mathrm{~B}_{4}\right)$. Then $\mathcal{O}(X)^{\mathrm{B}_{4}}=\mathbb{C}\left[f_{4}\right]$ and $\mathcal{O}(Y)^{\mathrm{B}_{4}}=\mathbb{C}\left[f_{2}, f_{3}\right]$ where $\operatorname{deg} f_{i}=i$.

Proof. - Using LiE [25, 24] one computes that the Poincaré series of $\mathcal{O}(X)^{\mathrm{B}_{4}}$ is $1+t^{4}+\ldots$ and that the Poincare series of $\mathcal{O}(Y)^{\mathrm{B}_{4}}$ is $1+t^{2}+$ $t^{3}+t^{4}+t^{5}+\ldots$ Recall that X and Y are normal, hence so are $\mathcal{O}(X)^{\mathrm{B}_{4}}$ and $\mathcal{O}(Y)^{\mathrm{B}_{4}}$. Thus $\operatorname{dim} \mathcal{O}(Y)^{\mathrm{B}_{4}} \geqslant 2$. The restriction of $\varphi_{7}\left(\mathrm{D}_{8}\right)$ (resp. $\left.\varphi_{8}\left(\mathrm{D}_{8}\right)\right)$ to B_{4} is $\varphi_{1} \varphi_{4}$ (resp. $\varphi_{1}^{2}+\varphi_{3}$). Let P (resp. Q) be the stabilizer of the highest weight line in $\varphi_{7}\left(\mathrm{D}_{8}\right)$ (resp. $\varphi_{8}\left(\mathrm{D}_{8}\right)$). Then the Levi components $L(P)$ and
$L(Q)$ of P and Q double cover representatives of the two SO_{16}-conjugacy classes of embeddings of GL_{8} in SO_{16}. We have $L(P) \simeq\left(\mathrm{SL}_{8} \times \mathbb{C}^{*}\right) /(\mathbb{Z} / 4 \mathbb{Z})$ and the same for $L(Q)$. Restricted to $L(P), \varphi_{7}\left(\mathrm{D}_{8}\right)$ becomes the representation $\nu_{4}+\wedge^{6}\left(\mathbb{C}^{8}\right) \otimes \nu_{2}+\wedge^{4}\left(\mathbb{C}^{8}\right)+\wedge^{2}\left(\mathbb{C}^{8}\right) \otimes \nu_{-2}+\nu_{-4}$. The highest weight space of $\varphi_{7}\left(\mathrm{D}_{8}\right)$ is ν_{4}. The tangent space to X at a nonzero point of ν_{4} is $\nu_{4}+\wedge^{6}\left(\mathbb{C}^{8}\right) \otimes \nu_{2}$ so that $\operatorname{dim} X=29$. The restriction of $\varphi_{7}\left(\mathrm{D}_{8}\right)$ to $L(Q)$ is $\wedge^{7}\left(\mathbb{C}^{8}\right) \otimes \nu_{3}+\wedge^{5}\left(\mathbb{C}^{8}\right) \otimes \nu_{1}+\wedge^{3}\left(\mathbb{C}^{8}\right) \otimes \nu_{-1}+\mathbb{C}^{8} \otimes \nu_{-3}$. For $\varphi_{8}\left(\mathrm{D}_{8}\right)$, the decompositions relative to $L(P)$ and $L(Q)$ are reversed, so $\operatorname{dim} Y=29$, also.

Consider the action of $H=\mathrm{Ad} \mathrm{SL}_{3}$ on \mathbb{C}^{9} as $\varphi_{1} \varphi_{2}+\theta_{1}$. Then $\varphi_{4}\left(\mathrm{~B}_{4}\right) \mid H=$ $2 \varphi_{1} \varphi_{2}$. Clearly the image of H in SO_{16} lies in a copy of GL8. Suppose that this copy of GL_{8} is double covered by a conjugate of $L(P)$. Then $X^{H} \neq(0)$, and the B_{4}-orbit of a nonzero fixed point is closed since the normalizer of H in B_{4} is a finite extension of H [15, 3.1 Corollary 1]. It is easy to check that the isotropy group of a nonzero point of X^{H} is at most a finite extension of H. Thus the dimension of the corresponding closed B_{4}-orbit is 28. Hence $\operatorname{dim} \mathcal{O}(X)^{\mathrm{B}_{4}} \leqslant 1$ and the Poincaré series information gives that $\mathcal{O}(X)^{\mathrm{B}_{4}}=\mathbb{C}\left[f_{4}\right]$ where $\operatorname{deg} f_{4}=4$. If our copy of GL_{8} were double covered by a conjugate of $L(Q)$, then we would see that $\operatorname{dim} \mathcal{O}(Y)^{\mathrm{B}_{4}} \leqslant 1$, which is a contradiction. Thus $\mathcal{O}(X)^{\mathrm{B}_{4}}$ is as claimed.

Now consider the group $K=\mathrm{SO}_{6} \times \mathrm{SO}_{3} \subset \mathrm{SO}_{9}$. Then the double cover \tilde{K} of K is $\left(\mathrm{SL}_{4} \times \mathrm{SL}_{2}\right) / \pm I$ and $\varphi_{4}\left(\mathrm{~B}_{4}\right)$, as \tilde{K}-representation, is $\mathbb{C}^{4} \otimes \mathbb{C}^{2}+$ $\left(\mathbb{C}^{4}\right)^{*} \otimes \mathbb{C}^{2}$. Thus \tilde{K} is a subgroup of a copy of GL_{8} in SO_{16}. If this GL_{8} is double covered by a conjugate of $L(P)$, then one sees that there are no nonzero fixed points of \tilde{K} (actually K) in $\varphi_{8}\left(\mathrm{D}_{8}\right)$. But $\varphi_{8}\left(\mathrm{D}_{8}\right) \mid \mathrm{B}_{4}=\varphi_{1}^{2}+\varphi_{3}$ has K-fixed points of dimension 2 . Hence our copy of GL_{8} is double covered by a conjugate of $L(Q)$ and the weight space ν_{4} of the restriction of $\varphi_{8}\left(\mathrm{D}_{8}\right)$ to $L(Q)$ lies in Y and is fixed by \tilde{K}. The group $N_{\mathrm{B}_{4}}(\tilde{K}) / \tilde{K} \simeq \mathbb{Z} / 2$ flips the highest and lowest weight spaces $\nu_{ \pm 4}$. Since \tilde{K} is a maximal connected reductive subgroup of B_{4}, the stabilizer of ν_{4} is \tilde{K} and any point of ν_{4} lies on a closed orbit. The slice representation of \tilde{K} is $S^{2}\left(\mathbb{C}^{4}\right)+\theta_{1}$ which shows that the principal isotropy group H of the action of B_{4} (actually SO_{9}) is $\mathrm{SO}_{3} \times \mathrm{SO}_{3} \times \mathrm{SO}_{3}$. It follows that $\operatorname{dim} Y / / \mathrm{B}_{4}=2$. Now $N_{\mathrm{SO}_{9}}(H) / H \simeq$ $W\left(\mathrm{D}_{3}\right)$, the Weyl group of D_{3}, where $V:=\varphi_{8}\left(\mathrm{D}_{8}\right)^{H}$ has dimension 5. One easily computes that the generators of $\mathcal{O}(V)^{W\left(\mathrm{D}_{3}\right)}$ are of degree at most 5 . Then by the Luna-Richardson theorem [15, 3.2 Corollary] it follows that the invariants of $\mathcal{O}(Y)^{\mathrm{SO}_{9}}$ have generators in degree at most 5 , and then from our information about the Poincaré series it follows that $\mathcal{O}(Y)^{\mathrm{SO}_{9}}=$ $\mathbb{C}\left[f_{2}, f_{3}\right]$ where $\operatorname{deg} f_{i}=i, i=2,3$.

Remark 8.5. - There is no representation of SO_{9} with principal isotropy group $H=\mathrm{SO}_{3} \times \mathrm{SO}_{3} \times \mathrm{SO}_{3}$ and slice representation $S^{2}\left(\mathbb{C}^{4}\right)+\theta_{1}$ of $K=$ $\mathrm{SO}_{6} \times \mathrm{SO}_{3}$ which has homogeneous invariants f_{2} and f_{3} of degrees 2 and 3 , respectively. The reason is that we would have a slice which is an open K-invariant subset of the linear subspace $V=\mathbb{C} \cdot v+S^{2}\left(\mathbb{C}^{4}\right)$ where K fixes v, and the restrictions of the f_{i} to V would have to be functions of $\mathbb{C} \cdot v$ alone since the invariant of $S^{2}\left(\mathbb{C}^{4}\right)$ is of degree 4 . Thus f_{2} and f_{3} would be algebraically dependent, a contradiction to normality.

Remark 8.6. - The generators f_{2} and f_{3} form a homogeneous regular sequence in $\mathcal{O}(Y)$, hence $\mathcal{O}(Y)$ is a free graded $\mathbb{C}\left[f_{2}, f_{3}\right]$-module [22, Lemma 3.3]. It follows that $\mathcal{O}(Y)$ is cofree, i.e., each module of covariants is free over $\mathbb{C}\left[f_{2}, f_{3}\right]$. Of course, we have the analogous result for $\mathcal{O}(X)$.

BIBLIOGRAPHY

[1] D. Ž. Doković \& C.-K. Li, "Overgroups of some classical linear groups with applications to linear preserver problems", Linear Algebra Appl. 197/198 (1994), p. 31-61, Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992).
[2] D. Ž. Doković \& V. P. Platonov, "Algebraic groups and linear preserver problems", C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 10, p. 925-930.
[3] E. B. Dynkin, "Maximal subgroups of the classical groups", Trudy Moskov. Mat. Obšč. 1 (1952), p. 39-166.
[4] V. V. Gorbatsevich \& A. L. Onishchik, "Lie transformation groups [see MR0950861 (89m:22010)]", in Lie groups and Lie algebras, I, Encyclopaedia Math. Sci., vol. 20, Springer, Berlin, 1993, p. 95-235.
[5] R. M. Guralnick, "Invertible preservers and algebraic groups", in Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), vol. 212/213, 1994, p. 249-257.
[6] ——, "Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of $\mathrm{PSL}_{n}(F)$ ", Linear and Multilinear Algebra 43 (1997), no. 1-3, p. 221-255.
[7] R. M. Guralnick \& C.-K. Li, "Invertible preservers and algebraic groups. III. Preservers of unitary similarity (congruence) invariants and overgroups of some unitary subgroups", Linear and Multilinear Algebra 43 (1997), no. 1-3, p. 257-282.
[8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978, xv+628 pages.
[9] G. Hochschild, The structure of Lie groups, Holden-Day Inc., San Francisco, 1965, ix +230 pages.
[10] N. Jacobson, "A note on automorphisms of Lie algebras", Pacific J. Math. 12 (1962), p. 303-315.
[11] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley \& Sons), New YorkLondon, 1962, ix +331 pages.
[12] -, Lie algebras, Dover Publications Inc., New York, 1979, Republication of the 1962 original, ix +331 pages.
[13] C.-K. Li \& S. Pierce, "Linear preserver problems", Amer. Math. Monthly 108 (2001), no. 7, p. 591-605.
[14] D. Luna, "Slices étales", in Sur les groupes algébriques, Soc. Math. France, Paris, 1973, p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33.
[15] -, "Adhérences d'orbite et invariants", Invent. Math. 29 (1975), no. 3, p. 231238.
[16] A. L. OniŠČIK, "Inclusion relations between transitive compact transformation groups", Trudy Moskov. Mat. Obšč. 11 (1962), p. 199-242.
[17] _ "Decompositions of reductive Lie groups", Mat. Sb. (N.S.) 80 (122) (1969), p. 553-599.
[18] , Topology of transitive transformation groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994, xvi+300 pages.
[19] V. P. Platonov \& D. Ž. Doković, "Linear preserver problems and algebraic groups", Math. Ann. 303 (1995), no. 1, p. 165-184.
[20] M. Raïs, "Notes sur la notion d'invariant caractéristique", 2007, arxiv.org/abs/0707.0782v1.
[21] G. W. Schwarz, "Algebraic quotients of compact group actions", J. Algebra 244 (2001), no. 2, p. 365-378.
[22] R. P. Stanley, "Invariants of finite groups and their applications to combinatorics", Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, p. 475-511.
[23] A. Tefera, "What is ... a Wilf-Zeilberger pair?", Notices Amer. Math. Soc. 57 (2010), no. 4, p. 508-509.
[24] M. A. A. van Leeuwen, "LiE, a software package for Lie group computations", Euromath Bull. 1 (1994), no. 2, p. 83-94.
[25] M. A. A. van Leeuwen, A. M. Cohen \& B. Lisser, A package for Lie group computations, Computer Algebra Nederland, Amsterdam, 1992.
[26] È. B. Vinberg \& V. L. Popov, "A certain class of quasihomogeneous affine varieties", Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), p. 749-764.
[27] H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939, xii+302 pages.
[28] H. S. Wilf \& D. Zeilberger, "Rational functions certify combinatorial identities", J. Amer. Math. Soc. 3 (1990), no. 1, p. 147-158.

Manuscrit reçu le 25 novembre 2009, révisé le 28 juin 2010, accepté le 15 octobre 2011.

Gerald W. SCHWARZ
Brandeis University
Department of Mathematics Waltham, MA 02454-9110 (USA)
schwarz@brandeis.edu

[^0]: Keywords: Characteristic orbits, linear preserver problems.
 Math. classification: 20G20, 22E46.

