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LINEAR MAPS PRESERVING ORBITS

by Gerald W. SCHWARZ

Abstract. — Let H ⊂ GL(V ) be a connected complex reductive group where
V is a finite-dimensional complex vector space. Let v ∈ V and let G = {g ∈ GL(V ) |
gHv = Hv}. Following Raïs we say that the orbit Hv is characteristic for H if
the identity component of G is H. If H is semisimple, we say that Hv is semi-
characteristic for H if the identity component of G is an extension of H by a torus.
We classify the H-orbits which are not (semi)-characteristic in many cases.
Résumé. — Soit H ⊂ GL(V ) un groupe complexe réductif connexe où V est un

espace vectoriel complexe de dimension finie. Soient v ∈ V et G = {g ∈ GL(V ) |
gHv = Hv}. D’aprés Raïs nous disons que l’orbite Hv est caractéristique pour H si
la composante connexe de l’identité de G est H. Si H est semi-simple, nous disons
que Hv est semi-caractéristique pour H si la composante connexe de l’identité de
G est une extension de H par un tore. Nous classifions les orbites de H qui ne sont
pas (semi)-caractéristiques dans plusieurs cas.

1. Introduction

Let K be a field. Then H := PGLn(K) acts on V := M(n,K) via
conjugation. There is a large literature on solving linear preserver problems,
that is, on finding the subgroups of GL(V ) which preserve a certain set
F of H-orbits in V . See [13] for a survey. One method of solving such
problems is to classify all possible subgroups of GL(V ) containing H and
then check to see if these subgroups preserve F . This idea goes back at least
to Dynkin [3] and has been used in many papers, e.g., [5, 6, 7, 2, 1, 19].
We generalize the problem (but only in characteristic zero) by letting H
be a reductive complex algebraic group, letting V be an arbitrary finite
dimensional representation of H and letting F be an H-orbit Hv. The
question then becomes: What is the subgroup G of GL(V ) which preserves

Keywords: Characteristic orbits, linear preserver problems.
Math. classification: 20G20, 22E46.



668 Gerald W. SCHWARZ

Hv? The method of solution is often to look at the possible G and possible
Gv such that G = HGv (which implies that Gv = Hv). We are able to
answer the question in many circumstances. We are particularly interested
in identifying those cases whereG0 is the image ofH, which, in the language
of Raïs [20], means identifying those H-orbits which are characteristic.

Our base field is C, the field of complex numbers. Let V be a finite dimen-
sional H-module where H is a connected reductive group. Let 0 6= v ∈ V
and set G := {g ∈ GL(V ) | gHv = Hv}. Then G is a closed algebraic
subgroup of GL(V ) (see 2.1 below), We say that Hv is characteristic for
H (or simply that v is characteristic for H or just that v is characteris-
tic) if G0 is the image of H in GL(V ). (From now on we will not distin-
guish H from its image in GL(V ), so we will say that v is characteristic
if G0 = H, even though this is not quite correct.) The definition that Hv
is semi-characteristic is as above, except that we require only that G0 is
an extension of H by a torus (so G has to be reductive). In general, G
is not reductive (see Examples 6.12, 6.13, 7.8 and 7.30). We say that v is
almost characteristic if H is a Levi factor of G0 and that v is almost semi-
characteristic if H contains the semisimple part of a Levi factor of G0.

In § 2 we consider some elementary properties of our definitions. We
see that one has a chance for G0 = H only in the case that v ∈ V is
generic, which is equivalent to saying that Hv spans V . In § 3 we consider
what can happen to G if we add a trivial factor to V . We show that Hv
is characteristic if H is a torus and v ∈ V is generic. In § 4 we consider
the case that H is simple of rank at least 2 and V is irreducible. We recall
some fundamental results of A. Onishchik which apply. We are then able
to classify the irreducible H-modules V and v ∈ V such that Hv is not
semi-characteristic. We determine which orbits are semi-characteristic in
the adjoint representation of a semisimple group. In § 5 we consider the
case that H is simple of rank at least 2 and V is reducible. We determine
the possible semisimple G containing H such that Gv = Hv for v ∈ V . In
§ 6 we consider the case that H is semisimple and V is irreducible. In § 7
we determine the structure of G when H = SL2. In an appendix we prove
branching rules which we need to establish our results.
Our thanks go to M. Raïs for his questions and conjectures in [20] which

led to this paper. We thank Peter Heinzner, Peter Littelmann, Ernest Vin-
berg and Arkady Onishchik for helpful remarks and Alfred Noël and Steven
G. Jackson for help with calculations. We thank the University of Poitiers,
the Ruhr-Universität Bochum and the Mathematisches Institut, Univer-
sität zu Köln for their warm hospitality while this paper was being written.
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LINEAR MAPS PRESERVING ORBITS 669

Finally, special thanks to the referee for a very meticulous reading of the
manuscript and many helpful remarks. (S)he also found a serious error in
our original version of the section on SL2.

2. Elementary remarks

We consider when we can remove the prefixes “almost” and “semi.” We
also reduce to the case that Hv spans V . First we show that G is closed in
GL(V ).

Lemma 2.1. — Let V be a finite-dimensional H-module where H is
algebraic. Let G = {g ∈ GL(V ) | gHv = Hv}. Then G is a closed subgroup
of GL(V ).

Proof. — Let G1 = {g ∈ GL(V ) | gHv = Hv} and G2 = {g ∈ GL(V ) |
g(Hv \Hv) = (Hv \Hv)}. Then G1 and G2 are closed subgroups of GL(V )
and G = G1 ∩G2. �

We now consider complexifications of compact group actions. Let C be
a compact Lie group and W a real C-module. Let w ∈W and assume that
Cw spans W .

Proposition 2.2. — Let C, W and w be as above. Let L = {g ∈
GL(W ) | gCw = Cw}. Then L is compact.

Proof. — Fix a basis w1, . . . , wn ofW lying in Cw and let || · || be a norm
on W . Then for g ∈ L and 1 6 i 6 n, ||gwi|| is bounded by a constant
which is independent of g. Thus L is a closed bounded subset of GL(W ),
hence compact. �

Corollary 2.3. — Let H = CC be the complexification of C acting
on V = W ⊗R C. Let G = {g ∈ GL(V ) | gHw = Hw}. Then G is the
complexification of L, hence reductive.

Proof. — Since Cw is real algebraic [21, Lemma 4.3], it is defined by an
ideal I ⊂ R[W ], and clearly the complex zeroes of I are Hw. Let Is denote
the subspace of I of elements of degree at most s, s ∈ N. Then I is generated
by some Is. Let f1, . . . , fm be a basis for Is. Then g ∈ GL(W ) lies in L if
and only if g∗fi ∈ Is for all i. This gives a set of real equations defining
the compact Lie group L, and the complex solutions of these equations
are LC. But the complex solutions of the equations are clearly G. Thus
G = LC. �

TOME 62 (2012), FASCICULE 2



670 Gerald W. SCHWARZ

Recall ([11, 12, Ch. II Theorem 11]) that if G ⊂ GL(V ) acts irreducibly
on V , then G is reductive.

Corollary 2.4. — Let H be reductive, let V be an H-module and
let v ∈ V . Suppose that v is almost semi-characteristic for H. Then v is
semi-characteristic in the following two cases.

(1) V is an irreducible representation of H.
(2) There is a compact Lie group C and real C-module W such that

V = W ⊗R C, v ∈W and H = CC.

The following result characterizes when Hv is a cone.

Proposition 2.5. — Let 0 6= v ∈ V where V is an H-module. Suppose
that Hv is a cone. Then there is a 1-parameter subgroup σ : C∗ → H such
that v is an eigenvector of σ with nonzero weight.

Proof. — Since Hv is a cone, v ∈ Tv(Hv) and there is an X ∈ h such
that X(v) = v. Applying an element of H we can assume that X ∈ b, a
Borel subalgebra of h. Write X = s + n (Jordan decomposition) where s
is semisimple and n is nilpotent. Then s and n are in b. We can assume
that s ∈ t ⊂ b where t is the Lie algebra of T , a maximal torus of H. Write
v =

∑
λ∈Λ vλ as a sum of nonzero weight vectors where Λ is the set of

weights of V relative to T such that vλ 6= 0. Let Φ be the set of positive
roots. Then for λ ∈ Λ we have (s + n)vλ = svλ modulo

∑
µ>λ Vµ where

µ > λ means that µ ∈ λ + NΦ. Thus by an easy induction we get that
svλ = vλ for all λ ∈ Λ so that sv = v. Hence S := {t ∈ T | tv ∈ C∗v}0
is a subtorus of T which acts nontrivially on v. It follows that there is a
one-parameter subgroup σ : C∗ → S as desired. �

Proposition 2.6. — Let 0 6= v ∈ V where V is an irreducible H-
module. Suppose that C∗v 6⊂ Hv. Then v is characteristic if it is semi-
characteristic. In particular, this holds if v is not in the null cone of V .

Proof. — The group G is reductive and its center is contained in the
scalar matrices. Under our hypotheses on v, the center must be finite. �
Let V =

⊕k
i=1 niVi be the isotypic decomposition of an H-module where

H is nontrivial reductive. Let v ∈ V . Then v = (vij) where vij belongs to
the jth copy of Vi, j = 1, . . . , ni, i = 1, . . . , k. Let S denote GL(V )H =
GL(n1)× · · · ×GL(nk). Let Ui ⊂ Vi be the linear subspace of Vi generated
by the vij , j = 1, . . . , ni. If dimUi = ni for all i, then we say that v is
generic.

Proposition 2.7. — Let H be reductive, let V be an H-module and
let v ∈ V . Then the following are equivalent.

ANNALES DE L’INSTITUT FOURIER



LINEAR MAPS PRESERVING ORBITS 671

(1) The span of Hv is V .
(2) There is no nontrivial one parameter subgroup of S = GL(V )H

which fixes v.
(3) The vector v is generic.

Proof. — If s ∈ S, then v satisfies one of the conditions if and only
if sv does. Clearly, if (1) or (3) fails, we can find an s and an i such
that (sv)i1 = 0. If W denotes the first copy of Vi in niVi, we have that
C∗ = GL(W )H ⊂ GL(V )H is a one-parameter subgroup fixing v, so (2)
fails. Conversely, if (2) fails, the fixed point set of a “bad” one-parameter
subgroup is a proper H-submodule of V containing v and (1) and (3)
fail. �

Corollary 2.8. — Let v ∈ V and let G be a Levi component of {g ∈
GL(V ) | gHv = Hv}. Then v is generic for H if and only if it is generic
for G.

If v is not generic, then G is in a rather trivial way larger than H. To
avoid this case, we usually assume from now on that v is generic.

3. Trivial factors and tori

Let v ∈ V and suppose that V H = (0). Consider ṽ = (v, 1) ∈ Ṽ := V ⊕C.
Let G̃ = {g ∈ GL(Ṽ ) | gHṽ = Hṽ}. We conjecture that G̃ = G, where
G ⊂ GL(Ṽ ) in the canonical way. Equivalently, we conjecture that the
subgroup of the affine group Aff(V ) preserving Hv lies in GL(V ). Note that
v generic implies that ṽ is generic (we can add at most a one-dimensional
fixed point set). The following example shows that the conjecture fails if H
is not reductive.

Example 3.1. — Let H = (C,+) act on C2 by sending (a, b) ∈ C2 to
(a, ta + b), t ∈ H. Let H̃ = H × C where (t, s) · (a, b) = (a, ta + s + b),
(t, s) ∈ H̃, (a, b) ∈ C2. Then for a 6= 0, the H and H̃ orbits of (a, b) are the
same, where H ⊂ GL(C2), H̃ ⊂ Aff(C2) and H̃ 6⊂ GL(C2).

For this section only G will denote the subgroup of Aff(V ) preserving
Hv (rather than the corresponding subgroup of GL(V )). It is easy to see
that we can always reduce to the case that V H = (0), which we assume
holds for the rest of this section.
We have a homomorphism Aff(V ) → GL(V ) which sends an element

(g, c) ∈ G ⊂ GL(V ) n V to g ∈ GL(V ). Let G′ denote the image of G in
GL(V ).

TOME 62 (2012), FASCICULE 2



672 Gerald W. SCHWARZ

Lemma 3.2. — The homomorphism G→ G′ is injective.

Proof. — The kernel K of G→ G′ consists of the pure translations in G,
i.e., the homomorphisms x 7→ x+c where x, c ∈ V . Clearly K is isomorphic
to a closed subgroup of the additive group (V,+) of V . Now (V,+) has Lie
algebra V (trivial bracket) and the exponential map is the identity. Thus k
is a vector subspace W of V and K/K0 is isomorphic to a finite subgroup
of (V/W,+). Hence K is connected and K = (W,+) where W must be
H-stable. Let π : V →W be an H-equivariant projection (here we use that
H is reductive). Then there are elements of G which translate v to v′ where
π(v′) is arbitrary. Since H preserves W and Kerπ, this is not possible for
elements of H, unless W = 0. Hence K is the trivial group. �

Note that injectivity fails in the case of Example 3.1.

Lemma 3.3. — Let M be a reductive subgroup of the affine group
Aff(V ). Then there is an α ∈ Aff(V ) such that αMα−1 ⊂ GL(V ).

Proof. — We use transcendental methods. Choose a hermitian metric on
V so that we have a unitary group U(V ) ⊂ GL(V ). Let K be a maximal
compact subgroup ofM . ThenM is the complexificationKC ofK. Now any
compact subgroup of Aff(V ) is contained in a maximal compact subgroup of
Aff(V ) and all the maximal compact subgroups of Aff(V ) are conjugate [9,
Ch. XV Theorem 3.1]. But clearly U(V ) ⊂ Aff(V ) is maximally compact.
Thus K is conjugate to a subgroup of U(V ), hence M is conjugate to a
subgroup of U(V )C = GL(V ). �

Proposition 3.4. — In the following cases G ⊂ GL(V ).
(1) The image G′ ⊂ GL(V ) is reductive.
(2) There is an h′ ∈ H such that h′v = λv, λ ∈ C, λ 6= 1.

Proof. — If (1) holds, then G is reductive and there is an element α ∈
Aff(V ) such that αGα−1 ⊂ GL(V ), hence αHα−1 ⊂ GL(V ). But one easily
sees that any affine transformation conjugating H into GL(V ) must have
translation part which is fixed by H. But V contains no nonzero H-fixed
vectors. Hence G ⊂ GL(V ).

Assume (2). Let x 7→ c + A(x) be an element of g = Lie(G) where
0 6= c ∈ V and A ∈ gl(V ). Then the difference of c+A(hv) and c+A(hh′v)
is a nonzero multiple of A(hv) and lies in h(hv) for any h ∈ H. Thus A
itself lies in g and g contains the linear and translation parts of its elements.
But g cannot contain pure translations, as we saw above. Thus g ⊂ gl(V )
and G ⊂ GL(V ). �

Corollary 3.5. — We have that G ⊂ GL(V ) in the following cases.

ANNALES DE L’INSTITUT FOURIER



LINEAR MAPS PRESERVING ORBITS 673

(1) V is an irreducible H-module.
(2) V is an SL2-module whose irreducible components are all of even

dimension, i.e., a module all of whose weights are odd.

Remark 3.6. — Suppose that C, W , w ∈ W are as in Proposition 2.2
where WC = 0. Let L denote the subgroup of the real affine group of W
stabilizing Cw. Then one can show that L is compact, and as above one
sees that L ⊂ GL(W ). Complexifying, we see that the subgroup of the
affine group of V = W ⊗R C preserving Hw, where H = CC, is again just
the complexification of L, a subgroup of GL(V ).

Proposition 3.7. — Let V = ⊕iniVi be the isotypic decomposition of
V . Suppose that for no i and j do we have that Vi occurs in Hom(Vj , Vi).
Then G ⊂ GL(V ).

Proof. — Suppose that G 6⊂ GL(V ). Then we would have a subspace of g
consisting of elements Aw+w, w ∈W , whereW ' Vi is an irreducible sub-
module of V , Aw ∈ gl(V ) and hAwh−1 = Ahw for h ∈ H. Our hypotheses
imply that Aw followed by projection to niVi is zero. Thus exp(Aw +w)(v)
has the same projection toW as v+w. Hence we cannot haveHv = Gv. �

Example 3.8. — Let V :=
∑n
i=1miϕi and H = An, n > 1, where ϕi is

the ith fundamental representation of H, i = 1, . . . , n. Then G ⊂ GL(V ).

Theorem 3.9. — Let H be a torus. Then
(1) G ⊂ GL(V ).
(2) If v ∈ V is generic, then G0 = H.

Proof. — We may assume that V H = (0). First consider (1) in the case
that H = C∗. Let W be the subspace of V spanned by H · v. Then any
g ∈ G must preserve W , so we can replace V by W . Thus we can reduce
to the case that v ∈ V is generic. This implies that the weight spaces of
H are one-dimensional. We have a weight basis v1, . . . , vn of V such that
v = (v1, . . . , vn) where the weight of vi is 0 6= ai ∈ Z. Suppose that the orbit
of v is preserved by a transformation (g, c) where (g, c)(v) = (

∑
j aijvj+ci).

Here the aij and ci are scalars. Then the ith component of g(λ · v) (where
λ is a parameter in H = C∗) is

∑
j aijλ

ajvj + ci. Now the powers of λ that
occur are distinct, hence the Laurent polynomial in λ that gives the ith
component has some nonzero coefficient for a nonzero power of λ. If ci 6= 0,
then one can see that the polynomial takes on the value 0 for some λ 6= 0.
But the C∗-orbit of v is nonzero in the ith slot. Thus ci = 0 for all i and g
lies in GL(V ) so we have (1). The reasoning above also shows that for each
i there is a unique j such that aij 6= 0. Thus a power gk of g preserves the

TOME 62 (2012), FASCICULE 2



674 Gerald W. SCHWARZ

weight spaces. Then gkv = hv for some h ∈ H, and it follows that gk = h.
Thus we have (2). Note that g normalizes H = C∗, so that we actually
have g2 ∈ H.

Now suppose that H is a torus. As before, to prove (1), we can assume
that v is generic. Let (g = (aij), c) ∈ G. Choose a 1-parameter subgroup
λ of H such that all the characters of V , restricted to λ, are distinct. It
follows, as above, that c = 0 and that a power of g lies in H. �

3.10. — Let G0 denote a Levi component of G containing H. Then as
we saw before, we must have that G0 ⊂ GL(V ). We can write G′ as G0nG′u
where G′u is the unipotent radical of G′. Then we have the corresponding
decompostion of g′ as g0 n g′u. As H-module, g′u is completely reducible.
Assuming that G is not contained in GL(V ) we can choose an irreducible
H-module W ⊂ g′u whose inverse image in g is not contained in gl(V ).
Then we have a copy of W in V and elements Aw ∈ gl(V ), w ∈ W , such
that x 7→ Aw(x) +w lies in g and {Aw}w∈W maps to our copy of W in g′u.
For all h ∈ H we have hAwh−1 = Ahw.

Theorem 3.11. — Suppose that v ∈ V is generic and in the null cone.
Then G ⊂ GL(V ).

Proof. — Suppose the contrary. Let V = ⊕iniVi be the isotypic decom-
position of V as H-module. Let Aw + w ∈ g, w ∈ W be as above where
we may assume that W = Vi (first copy) for some i. Let π : V →W be an
equivariant projection and set vi = π(v). Since v is generic, vi 6= 0. The
projection of exp(w + Aw)(v) to W has the form vi + w + p(v, w) where
p(v, w) is a polynomial which has no linear factors in w and such that the
coefficients of the various monomials in w are polynomials in v without
constant term. By applying elements h ∈ H we can make the coefficients of
hw in p(hv, hw) as small as we want. But there is no loss if we replace hw
by w since we are able to consider all possible w. Thus we can assume that
the coefficients of the monomials in w in p(v, w) are very small, in which
case the inverse function theorem tells us that w 7→ w + p(v, w) covers a
ball around 0 ∈W whose radius we can choose to be independent of v (for
v close to zero). Then we see that w 7→ vi+w+p(v, w) takes on the value 0.
Thus Gv contains a point which projects to 0 ∈ W , which is impossible.
Hence G ⊂ GL(V ). �

Recall that V is called stable if it contains a nonempty Zariski open
subset of closed orbits.

Corollary 3.12. — Let V be stable with a one-dimensional quotient.
Then G ⊂ GL(V ).

ANNALES DE L’INSTITUT FOURIER
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Proof. — We have that C[V ]H = C[f ] where f is homogeneous of degree
d > 1. Moreover, f−1(f(v)) = Hv = Gv if f(v) 6= 0. Now the case that
f(v) = 0 follows from Theorem 3.11 and if f(v) 6= 0, then Gv ⊃ Γv where
Γ ⊂ G is a finite subgroup isomorphic to Z/dZ ⊂ C∗ acting via scalar
multiplication on V . Then G ⊂ GL(V ) by Proposition 3.4(2). �

Remark 3.13. — A case by case check shows thatH simple and dim//VH
= 1 implies that G ⊂ GL(V ).

Theorem 3.14. — If H = SL2, then G ⊂ GL(V ).

We prove the theorem by contradiction, so assume that we have Aw +w

as in 3.10. Then the Aw lie in a Lie algebra of nilpotent matrices, and by
Engel’s theorem we can find a partial flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

such that V1 is the joint kernel of the Aw, V2/V1 ⊂ V/V1 is the joint kernel
of the Aw, etc. Note that the Vj are H-stable.

Lemma 3.15. — We have W ⊂ Vk−1.

Proof. — Since Aw(v) ∈ Vk−1, we have that (Aw + w)(v + Vk−1) =
w + Vk−1. Thus exp(Aw + w)(v + Vk−1) = v + w + Vk−1. Let π be the
projection of V to V/Vk−1 with kernel Vk−1. If W 6⊂ Vk−1, then π(Gv)
contains a nontrivial H-stable subspace of V/Vk−1. This is not possible for
the H-orbit, hence W ⊂ Vk−1. �

Lemma 3.16. — Suppose that for some j > 1 we have W ⊂ Vk−j and
Aw(v) ∈ Vk−j for all w ∈W . Then the stabilizer of v+Vk−j in H is infinite.

Proof. — Suppose that v + Vk−j has finite stabilizer. Since Aw(v) + w

projects to zero in V/Vk−j , we must have that Aw(v) + w = 0, else the G-
orbit of v has dimension greater than dimH. Now for h ∈ H, Aw(hv)+w =
h(Ah−1w+h−1w)(v) = 0, so that the average of Aw(hv)+w over a maximal
compact subgroup K of H is zero. Since V H = 0 and Aw is linear, the
average of w +Aw(hv) over K is w. Thus W = 0, a contradiction. �

Lemma 3.17. — Suppose that v + Vk−j is in the null cone of V/Vk−j
for some j > 1. Then W ⊂ Vk−j−1.

Proof. — Assume that W 6⊂ Vk−j−1. Our argument in 3.11 shows that
the G-orbit of v projected to the image of W in V/Vk−j−1 contains zero,
which is not possible for the H-orbit. Hence W ⊂ Vk−j−1. �

Lemma 3.18. — Suppose that for some j > 1 we have that Aw(v) ∈
Vk−j for all w ∈W and that W ⊂ Vk−j . Then v + Vk−j is in the null cone
of V/Vk−j .

TOME 62 (2012), FASCICULE 2
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Proof. — Suppose not. Consider V ′ := C · v + Vk−j ⊂ V . Then for
z ∈ C, z(Aw + w) exponentiates to an element g(z) of Aff(V ′) which fixes
v′ := v + Vk−j ∈ V/Vk−j . By Lemma 3.16 we know that v′ has an infinite
stabilizer S in H. Since v′ is not in the null cone, S has identity component
T ' C∗. For any s ∈ S there is an hz,s ∈ H such that hz,sv = g(z)sv. Then
hz,s ∈ S since g(z)s fixes v′ so that the g(z) preserve the S-orbit of v. The
group generated by T and the g(z) is connected, so it preserves the T -orbit
of v. By Theorem 3.9 we see that w = 0, a contradiction. �

Proof of Theorem 3.14. — We have that Aw(v) ∈ Vk−1 and W ⊂ Vk−1.
Suppose that we have Aw(v) ∈ Vk−j and W ⊂ Vk−j for some j > 1. By
Lemmas 3.16 and 3.18 and genericity of v we may assume that v + Vk−j
is a sum of highest weight vectors. By Lemma 3.17, W ⊂ Vk−j−1, so that
if Aw(v) ∈ Vk−j−1 we can continue. We eventually arrive at a case where
Aw(v) 6∈ Vk−j−1 (we cannot have a pure translation in g). Since v + Vk−j
is a sum of highest weight vectors there are unique elements Bw ∈ u such
that Aw(v)+w+Bw(v) ∈ Vk−j−1. Here u is the Lie algebra of the standard
unipotent subgroup of H. Since Aw(v) +w 6∈ Vk−j−1, Bw(v) 6∈ Vk−j−1 and
v + Vk−j−1 is not a sum of highest weight vectors. Since v + Vk−j is a
nonzero sum of highest weight vectors, the H-isotropy group of v+Vk−j−1,
which is a subgroup of the H-isotropy group of v+ Vk−j , is finite. Arguing
as in Lemma 3.16 we obtain that w′ := Aw(v) + w + Bw(v) = 0 and that
W = 0, a contradiction. Hence G ⊂ GL(V ). �

From now on we will assume that V H = 0, even though we have only
established our conjecture for SL2 or the case that V is irreducible.

4. The case H is simple and V is irreducible

Our goal in this section is to find the possible G ⊂ GL(V ) preserving
an orbit Hv where V is an irreducible H-module and H is simple of rank
at least two. We will see that perforce G is simple. We begin by recalling
some important results of Onishchik.
Let H ⊂ G where G and H are linear algebraic groups. Let V be an H-

module. If v ∈ V and Gv = Hv, then G = HK where K = Gv. Conversely,
G = HK implies that Gv = Hv for v ∈ V K . There is a rather restricted
class of possibilities for H and K when G is simple and H is semisimple,
as follows from the work of Onishchik [16, 17].
If K is a connected complex linear algebraic group, let k denote its Lie

algebra and let L(K) denote a Levi subgroup of K. The next two theorems
follow from [16] and [17] (see also [18] and [4]).
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Theorem 4.1. — Let H and K be connected algebraic subgroups of
the connected reductive group G. Then the following are equivalent.

(1) G = HK.
(2) G = σ(H)τ(K) where σ and τ are any automorphisms of G.
(3) G = L(H)L(K).
(4) G0 = H0K0 where H0 and K0 are maximal compact subgroups of

H and K contained in a maximal compact subgroup G0 of G.
(5) g = h + k (if H and K are reductive).

Corollary 4.2. — Suppose that G = HK where all the groups are
connected algebraic. Choose Levi factors L(G)⊃L(H), L(K). Then L(G) =
L(H)L(K).

Now assume that h and k are reductive subalgebras of the reductive Lie
algebra g. Let gs be the sum of the simple components of g of rank at
least 2 (the strongly semisimple part of g). Let Gs be the corresponding
subgroup of G. Let r(g) be the sum of the center and simple components
of rank 1 of g so that g = gs ⊕ r(g).

Theorem 4.3. — Let h and k be reductive subalgebras of the reductive
Lie algebra g. Then the following are equivalent.

(1) g = h + k.
(2) gs = hs + ks and r(g) is the sum of the projections of r(h) and r(k)

to r(g).

Corollary 4.4. — Suppose that v ∈ V is not semi-characteristic and
that H contains a strongly semisimple subgroup. Then so does Gv.

From the above and [16] we have the following

Theorem 4.5. — Let G be connected, simple and simply connected of
rank at least 2. Let H and K be connected semisimple subgroups of G such
that G = HK. Then, up to switching the roles of H and K and replacing
each of them by their image under an automorphism of G, all possibilities
are listed in Table 1.
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Table 1.
G H ϕ1(G)|H K ϕ1(G)|K H ∩K

1 A2n−1 Cn ϕ1 A2n−2 ϕ1 + θ1 Cn−1
2 Dn+1 Bn ϕ1 + θ1 An ϕ1 + ϕn An−1
3.1 D2n B2n−1 ϕ1 + θ1 Cn 2ϕ1 Cn−1
3.2 D2n B2n−1 ϕ1 + θ1 Cn × A1 ϕ1 ⊗ ϕ1 Cn−1 × A1
4.1 B3 G2 ϕ2 B2 ϕ1 + θ2 A1
4.2 B3 G2 ϕ2 D3 ϕ1 + θ1 A2
5.1 D4 B3 ϕ3 B2 ϕ1 + θ3 A1
5.2 D4 B3 ϕ3 B2 × A1 ϕ1 + ϕ2

1 A1 × A1
5.3 D4 B3 ϕ3 D3 ϕ1 + θ2 A2
5.4 D4 B3 ϕ3 B3 ϕ1 + θ1 G2
6 D8 B7 ϕ1 + θ1 B4 ϕ4 B3

In our tables, we always have n > 1 and k > 1. We use θk to denote
a trivial representation of dimension k. Corresponding to an ordering of
the simple roots of G we have fundamental representations ϕi = ϕi(G),
i = 1, . . . , rankG. We use the ordering of the roots of the simple groups of
Dynkin [3]. Note that entries (5.1), (5.2) and (5.3) of Table 1 are special
cases of (3.1), (3.2) and (2), but we have included them for completeness.

Corollary 4.6. — Let (G,H,K) be a triple in Table 1.
(1) If L ⊂ G is a reductive subgroup commuting with H or K, then L

has rank at most 1.
(2) We have G = HsKs where Ks and Hs are simple.

Now that we know the possibilities for G,H andK, our task is to find the
irreducible representations of G which remain irreducible when restricted
to H. This can be read off from [3, Table 5]. However, given that one knows
the possibilities for (G,H,K), it is relatively easy to see which irreducible
representations of G are possible. Note that we can sometimes gain an
irreducible representation by adding a group of rank 1 to H (Table 2 (3.5)).

Theorem 4.7. — Let G = Gs be simple and let H and K = Ks be
proper semisimple subgroups of G such that G = HK. Assume that V is
an irreducible representation of G which is also irreducible when restricted
toH. Then, up to automorphisms of G, all possibilities are listed in Table 2.
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Table 2.
G V H V |H K V |K V K

1 A2n−1 ϕk
1 Cn ϕk

1 A2n−2 ϕk
1 + ϕk−1

1 + · · ·+ θ1 θ1
2.1 D2n+1 ϕk

2n B2n ϕk
2n A2n Sk(ϕ1 + ϕ3 + · · ·+ ϕ2n−1 + θ1) θ1

2.2 D2n+1 ϕk
2n+1 B2n ϕk

2n A2n Sk(ϕ2 + ϕ4 + · · ·+ ϕ2n + θ1) θ1

3.1 D2n ϕk
2n−1 B2n−1 ϕk

2n−1 A2n−1 Sk(ϕ2 + ϕ4 + · · ·+ ϕ2n−2 + θ2) Sk(C2)
3.2 D2n ϕk

2n−1 B2n−1 ϕk
2n−1 Cn ∗ Sk(Cn+1)

3.3 D2n ϕk
2n B2n−1 ϕk

2n−1 A2n−1 Sk(ϕ1 + ϕ3 + · · ·+ ϕ2n−1) (0)
3.4 D2n ϕk

2n B2n−1 ϕk
2n−1 Cn ∗ (0)

3.5 D2n ϕ1 Cn × A1 ϕ1 ⊗ ϕ1 B2n−1 ϕ1 + θ1 θ1
4.1 B3 ϕk

1 G2 ϕk
2 B2 Sk(ϕ1 + θ2) Sk(C2)

4.2 B3 ϕk
1 G2 ϕk

2 D3 Sk(ϕ1 + θ1) θ1
5.1 D4 ϕk

1 B3 ϕk
3 B2 Sk(ϕ1 + θ3) Sk(C3)

5.2 D4 ϕk
1 B3 ϕk

3 D3 Sk(ϕ1 + θ2) Sk(C2)
5.3 D4 ϕk

1 B3 ϕk
3 B3 Sk(ϕ1 + θ1) θ1

5.4 D4 ϕ1 C2 × A1 ϕ1 ⊗ ϕ1 B3 ϕ1 + θ1 θ1
6.1 D8 ϕ1 B4 ϕ4 B7 ϕ1 + θ1 θ1
6.2 D8 ϕ7 B4 ϕ1ϕ4 B7 ϕ7 (0)
6.3 D8 ϕk

7 B7 ϕk
7 B4 ∗ S(f4)k

6.4 D8 ϕk
8 B7 ϕk

7 B4 ∗ S(f2, f3)k

In Table 2, if V is a K-module, then Sk(V ) denotes the K-subspace of
Sk(V ) generated by Sk(V U ) where U is a maximal unipotent subgroup
of K. In other words, in Sk(V ) we take only the Cartan components of
products. In column V K the notation S(f2, f3)k means the span of the
monomials in f2 and f3 of degree k where fi has degree i, i = 2, 3. Here
the fi ∈ C[ϕ8(D8)]B4 . A similar interpretation applies to S(f4)k where
f4 ∈ C[ϕ7(D8)]B4 has degree 4. The justification of the entries V |K and
V K can be found in the Appendix.

Remark 4.8. — In Table 2, we have chosen not to remove all redun-
dancies due to automorphisms of groups of type Dn. In column V |K we
have omitted the decompositions in (3.2) and (3.4) which are obtained by
restricting V to Cn. To determine this one needs the branching rule for
restrictions of SL2n-representations to Cn. As determined by Weyl [27],
one proceeds as follows. Let ω ∈

∧2((C2n)∗) be nonzero and Cn-invariant.
Then from the exterior powers of ω we obtain invariants in the duals of
ϕb2

2 . . . ϕ
b2n−2
2n−2 for nonnegative bj . Then the restriction of an irreducible rep-

resentation ϕ of SL2n to Cn is obtained by taking all possible complete
contractions of the duals of our invariants in the ϕb2

2 . . . ϕ
b2n−2
2n−2 with ϕ. For

example, ϕ1ϕ5(SL8) contracted with ω gives rise to ϕ4 and ϕ1ϕ3 while
contraction with ω ∧ ω ∈ ∧4(C8)∗ gives rise to ϕ2

1 and ϕ2. Note that the
only representations of SL2n which can give rise to the trivial representa-
tion of Cn are those of the form ϕa2

2 . . . ϕ
a2n−2
2n−2 . Hence in Table 2 (3.4) the

trivial Cn-representation does not occur in the column V |K for any k > 1
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and in (3.2) the occurrences of the trivial representation are the symmetric
algebra in θ2 and the subspaces ϕCn

2 , . . . , ϕCn
2n−2.

Remark 4.9. — We do not know what to put in the column V |K in
cases (6.3) and (6.4) of Table 2. However, in the Appendix we are able to
compute V K .

Suppose that H ⊂ G where G and H are semisimple, and connected and
V is a G-module which is irreducible as an H-module. Then the inclusion
of H in G has a very special form, as shown by Dynkin [3, Theorem 2.2].

Theorem 4.10. — Let G1, . . . , Gk be the simple components of G.
Then H = H1 · · ·Hk where the Hi are nontrivial semisimple subgroups
of the Gi, i = 1, . . . , k.

We are interested in the case that H is simple. Then Theorem 4.10 tells
us that G has to be simple and from Table 2 we get the following theorem.

Theorem 4.11. — LetH be simple of rank at least two and let ϕ : H →
GL(V ) be an irreducible representation. Then every nonzero H-orbit Hv is
semi-characteristic, except for the following cases (where n > 2 and k > 1).

(1) H = Cn, ϕ = ϕk1 and v is a highest weight vector. Equivalently, v is
fixed by A2n−2 where A2n−2, Cn, A2n−1 and V are as in Tables 1(1)
and 2(1).

(2) H = B2n, ϕ = ϕk2n and v is a highest weight vector. Equivalently, v
is fixed by A2n where A2n, B2n, D2n+1 and V are as in Tables 1(2)
and 2(2.1) or 2(2.2).

(3) H = B2n−1, ϕ = ϕk2n−1 and v is fixed by Cn where Cn, B2n−1, D2n
and V are as in Tables 1(3.1) and 2(3.2).

(4) H = G2, ϕ = ϕk2 and v is fixed by B2 where B2, G2, B3 and V are
as in Tables 1(4.1) and 2(4.1).

(5) H = B4, ϕ = ϕ4 and Hv is closed. Equivalently, v is fixed by B7
where B4, B7, D8 and V are as in Tables 1(6) and 2(6.1).

(6) H = B7, ϕ = ϕk7 and v is fixed by B4 where B4, B7, D8 and V are
as in Tables 1(6) and 2(6.3) or 2(6.4).

For special direct sums of representations we have the following result.

Proposition 4.12. — Let Vi be an irreducible Hi-module where the
Hi are semisimple, i = 1, . . . , k. Let V = V1⊕· · ·⊕Vk be the corresponding
H = H1 × · · · × Hk-module. Suppose that 0 6= vi ∈ Vi such that vi is
(semi)-characteristic for Hi for each i. Then v is (semi)-characteristic for
H where v = (v1, . . . , vk) ∈ V .
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Proof. — Let G be as usual. First suppose that V is an irreducible G0-
module. Then, up to a cover and scalar matrices, G0 = G1×· · ·×Gr where
the Gj are simple and V ' U1 ⊗ · · · ⊗ Ur where the Uj are irreducible
Gj-modules. By Theorem 4.10 each simple factor of each Hi must project
nontrivially to a single Gj . But given the structure of V as H-module, this
implies that k = 1, where the theorem is trivial.
We may now assume that there is a maximal flag W1 ⊂ · · · ⊂ Wr ⊂

Wr+1 = V of G0-stable subspaces where r > 1. We may assume that, as
H-module, Wr = V1⊕ · · ·⊕Vp so that V/Wr ' Vp+1⊕ · · ·⊕Vk. The image
of G in GL(V/Wr) is reductive. Let G′ denote its semisimple part. Then
for g ∈ G′, we have g(vp+1, . . . , vk) ∈ (Hp+1 × · · · ×Hk)(vp+1, . . . , vk). By
induction on k, G′ = Hp+1 × · · · ×Hk. But by maximality of the flag, we
must have that p = k − 1, i.e., V/Wr ' Vk. If Vk is not G-stable, then
g contains a nonzero linear map of Vk to Wr. Since g is stable under the
action of H, we may assume that it contains Hom(Vk, V1). Thus the G-
orbit of v contains a point (0, v2, . . . , vk). Such a point is not in Hv, so we
have a contradiction. Thus Vk is G-stable and we have a G-module direct
sum decomposition V = Wr ⊕ Vk. It follows by induction on k that Hv is
(semi)-characteristic. �

If one considers the adjoint representation h of a simple H, the only case
that appears in Theorem 4.11 is H = Cn, n > 2, where h = ϕ2

1. Thus we
have

Corollary 4.13. — Let H = H1 × · · · ×Hk where the Hi are simple,
and let ϕ : H → GL(h) be the adjoint representation. Let v = (v1, . . . , vk) ∈
⊕ihi where no vi is zero. Then v is semi-characteristic if and only if for every
simple component Hi of type Cn, n > 2, vi ∈ cn is not on the highest weight
orbit.

5. The case H is simple

We now consider the case where H is simple of rank at least two and
our H-module V may be reducible. We consider the possible semisimple
G which can act on V such that Gv = Hv where v ∈ V is generic for the
action of H.
Here are some examples to keep in mind.

Example 5.1. — Let H be simple and let V be an H-module. Let G =
H × H and let v be the identity in V ⊗ V ∗. Then Gv = Hv where the
diagonal copy of H in G plays the role of K.
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Example 5.2. — Let (G,H,K) or (G,K,H) be an entry of Table 1. Let
V =

⊕n
i=1miVi be the isotypic decomposition of a G-module such that

dimV Ki > mi > 1 for all i. Let v ∈ V K be generic for the action of G.
Then Gv = Hv.

Example 5.3. — HereH'A2n−1. Let (G1,H1,K1)=(D2n,A2n−1,B2n−1)
and (G2, H2,K2) = (A2n−1,A2n−2,Cn). Let G = G1 × G2, let H denote
the diagonal copy of A2n−1 and let K = K1 ×K2. Then G = HK. Let V
be a representation of G which contains a generic vector v ∈ V K . If V is
irreducible, then V = V1 ⊗ V2 where Vi is an irreducible representation of
Gi, i = 1, 2, and v ∈ V K1

1 ⊗V K2
2 . The only possibilities allowing nontrivial

fixed points are V1 = ϕk1 , k > 0, and V2 = ϕa2
2 ϕa4

4 · · ·ϕ
a2n−2
2n−2 where the a2i

are in Z+. In both cases, dimV Ki
i = 1. Thus for v to be generic, V must

be a sum of representations (each of multiplicity one) of the form V1 ⊗ V2
where dimV Ki

i = 1 for all i. For V to be almost faithful the sum must
contain a nontrivial V1 and a nontrivial V2.

Example 5.4. — Here H ' A3. Let (G1, H1,K1) = (B3,D3,G2) and
(G2, H2,K2) = (A3,A2,C2). Let G = G1 ×G2, let H be the diagonal copy
of A3 = D3 and let K = K1 ×K2. Then G = HK. If Vi is an irreducible
representation of Gi, i = 1, 2, with V K1

1 6= (0) 6= V K2
2 , then V1 = ϕk3 , k > 0

and V2 = ϕ`2, ` > 0. Again, dimV Ki
i = 1, i = 1, 2, and the conditions for

v generic and V almost faithful are as in the case above.

Example 5.5. — Here H ' B3. Let (G1, H1,K1) = (D4,B3,B3) and
(G2, H2,K2) = (B3,G2,B2 or D3). Let G = G1 × G2, let H ⊂ H1 × G2
be the diagonal copy of B3 and let K = K1 × K2. Then G = HK. The
possibilities for the Vi having nontrivial Ki-fixed points are V1 = ϕk1 , k > 0
and V2 = ϕa1ϕ

b
2 if K2 = B2 and V2 = ϕa1 if K2 = D3 where a and b

are nonnegative. While V K1
1 has dimension 1, this is not true for V K2

2 , in
general, if K2 = B2. Let v ∈ V be generic and K-fixed. Then irreducible
G-modules which can occur in V are sums of tensor products of modules
V1 ⊗ V2 where dimV Ki

i > 1, i = 1, 2.

Example 5.6. — Let (G1, H1,K1) be an entry of Table 1. Let G =
G1 × G1, let H be the diagonal copy of G1 and let K = H1 × K1 ⊂ G.
Then G = HK. It is usually easy to determine the almost faithful V1 ⊗ V2
with K-fixed points. For example, in the case of (A2n−1,Cn,A2n−2), V1 has
to be of the form ϕa2

2 · · ·ϕ
a2n−2
2n−2 where the a2i are nonnegative and V2 has

to be of the form ϕk1 or ϕk2n−1 for k > 0. On the other hand, if we have
(D8,B7,B4), then V1 is of the form ϕk1 , k > 0, and we have been unable to
pin down exactly which V2 have B4 fixed points.
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Looking at Table 1 one easily sees the following.

Proposition 5.7. — Suppose that (G,H,K) and (G′, H ′,K ′) appear
in Table 1 where H ∩K ' H ′ ⊂ L ⊂ G′ or H ∩K ' K ′ ⊂ L ⊂ G′ and L
is isomorphic to H or K. Then G′ is isomorphic to L.

5.8. — LetH be simple of rank at least 2 and let V be an almost faithful
H-module. Let v ∈ V be generic. Let G = G1 × · · · ×Gr where the Gi are
simple and simply connected and G acts almost faithfully on V such that
Gv = Hv where H ⊂ G. Let K denote a Levi factor of Gv. Then G = HK.
Let pri : G→ Gi denote projection on the ith factor, i = 1, . . . , r. We may
assume that pri(H) 6= {e} for 1 6 i 6 s and pri(H) = {e} for s < i 6 r

where s > 1. Let G′ = G1×· · ·×Gs and G′′ = Gs+1×· · ·×Gr. For r > j > s

there is a unique simple component Kj of K such that prj(Kj) = Gj and
clearly K ′′ := Ks+1×· · ·×Kr covers G′′. The kernel of K ′′ → G′ commutes
with H and fixes v. Since Hv spans v (Proposition 2.7), the kernel must
be finite. Hence K ′′ covers its image in G′. Let K ′ denote the product of
the simple components of K not in K ′′. Then K ′ ⊂ G′ and the projection
of K ′′ to G′ centralizes K ′. We must have that HK ′ = G′.

We may write V =
⊕
Vi ⊗Wi where the Vi are pairwise nonisomorphic

irreducible representations of G′ and the Wi are representations of G′′.
Then the projection vi of v to each Vi⊗Wi is a tensor of rank dimWi since
v is generic. Let Ui denote the smallest subspace of Vi such that vi ∈ Ui⊗Wi.
Then dimUi = dimWi and vi ∈ Ui ⊗Wi corresponds to a K ′′-equivariant
isomorphism of W ∗i onto Ui ⊂ Vi. In the sense of the following definition,
vi corresponds to a subordination αi : (W ∗i , G′′)→ (Vi, G′).

Definition 5.9. — Let Zi be an Li-module i = 1, 2, where the Li
are reductive. We say that Z1 is subordinate to Z2 if there is a linear
injection α : Z1 → Z2 and a reductive subgroup L ⊂ L1 × L2 such that
α is L-equivariant (for the L-module structures on Z1 and Z2). Moreover,
we require that pr1 : L → L1 be a cover. We say that α : Z1 → Z2 is a
subordination of Z1 to Z2. We sometimes use the notation α : (Z1, L1) →
(Z2, L2) to specify the groups involved.

We now consider the possibilities for K ′.

Lemma 5.10. — Let H, etc. be as in (5.8). Then for 1 6 i 6 s we have
pri(K ′) 6= Gi.

Proof. — Suppose that pri(K ′) = Gi. Then there is a unique simple
component Ki of K ′ such that pri(Ki) = Gi. If prj(Ki) = {e} for j 6= i,
then Gi acts trivially on Gv, which is not possible. Hence prj(Ki) 6= {e}
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for some j 6= i, 1 6 j 6 s. Suppose that prj(Ki) = Gj . Then no simple
component of K ′ other than Ki can project nontrivially to Gi and Gj .
Consider the projections H ′ of H and K ′i of Ki to Gi ×Gj . Then H ′K ′i =
Gi × Gj , and by reason of dimension we must have that pri(H ′) = Gi
and prj(H ′) = Gj . On the level of Lie algebras this says that we have a
simple Lie algebra g and two subalgebras h1 and h2 of g⊕ g which project
isomorphically to each g factor such that h1 + h2 = g ⊕ g. But it follows
from [10, Theorem 9] that h1 ∩ h2 6= (0), a contradiction.
We may thus assume that dim prj(Ki) < dimGj , hence dimH < dimGj

as well. By Corollary 4.6 we have that prj(Ki) prj(H) = Gj and that
prj(K ′) differs from prj(Ki) by at most a factor of rank 1. Hence, with H ′
and K ′i as above, we again have H ′K ′i = Gi ×Gj which is not possible by
reason of dimension. Hence we have that pri(K ′) 6= Gi for 1 6 i 6 s. �

Corollary 5.11. — Suppose that 1 6 i 6 s and that Ki ⊂ K ′ is a
simple factor of rank at least two such that pri(Ki) 6= {e}. Then prj(Ki) =
{e} for i 6= j, 1 6 j 6 s.

Proof. — Suppose that prj(Ki) 6= {e}. If dimH < dimGi and dimH <

dimGj , then Corollary 4.6 shows that pri(Ki) and prj(Ki) differ from
pri(K ′) and prj(K ′) by at most groups of rank 1, so that with H ′ and K ′i
as above, we have H ′K ′i = Gi × Gj , which is not possible by reason of
dimension. Thus pri(H) = Gi (or prj(H) = Gj) which forces prj(Ki) = Gj
(or pri(Ki) = Gi), contradicting the lemma above. �

Theorem 5.12. — Let H, s, r, V =
⊕

i Vi⊗Wi, etc. be as above. Then
one of the following occurs.

(1) s = 1 and H = G1. Then G′′ = G2 × · · · × Gr and v corresponds
to a subordination (

⊕
iW
∗
i , G

′′)→ (
⊕

i Vi, H) where W ∗i is sent to
V K

′

i for each i.
(2) s = 1, H 6= G1 and G1 = HK1 where K1 ⊂ G1 is a simple com-

ponent of K. If r > 1, then r = 2, G2 = SL2 (up to a cover) and
(G1, H,K1 × SL2) is case 3.2 of Table 1. We have a subordination
(
⊕
W ∗i ,SL2) → (

⊕
Vi, H) where the image of W ∗i is a subset of

V K1
i for each i.

(3) s = 2, pr1(H) = G1, pr2(H) = G2 and there are subgroups K ′1, K ′2
ofH such that (H,K ′1,K ′2) occurs in Table 1. We haveK = K1×K2
where Ki = pri(K ′i), i = 1, 2 and G = HK (Example 5.6). If
r > 2, then r = 3, (H,K ′1,K ′2 × SL2) or (H,K ′2,K ′1 × SL2) is entry
3.2 of Table 1, G′′ = SL2 and v corresponds to a subordination
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(
⊕

iW
∗
i ,SL2) → (

⊕
i Vi, H) where W ∗i has image in V K1×K2

i for
all i.

(4) r = s = 2 where pr1(H) 6= G1 and pr2(H) = G2. Then we are in
the case of Example 5.3, 5.4 or 5.5.

Proof. — The cases where s = 1 are quite easy and we leave them to
the reader. Now suppose that s > 1. Suppose that pr1(H) 6= G1 and that
pr2(H) 6= G2. Then there are strongly semisimple factors Ki of K ′ such
that pri(Ki) pri(H) = Gi, i = 1, 2. By Lemma 5.10 and Corollary 5.11 the
pri(Ki) are proper subgroups of the Gi where pr2(K1) = pr1(K2) = {e}.
Applying Proposition 5.7 we obtain that each of the Gi is isomorphic to
H, a contradiction. Thus we may assume that pr1(H) = G1.
Let L′ (resp. K1) be the product of the strongly simple components of

K ′ which map trivially (resp. nontrivially) to G1. Then L′ ⊂ G2×· · ·×Gs.
Since G′ = HK ′ and pr1(H) = G1, we must have that G2×· · ·×Gs = H ′L′

where H ′ is the inverse image of pr1(K1) in H projected to G2 × · · · ×Gs.
Since H ′ is a proper subgroup of H, pri(H ′) 6= Gi, i = 2, . . . , s. Since
pr2(H ′) pr2(L′) = G2, we must have that H ′ is simple, by Table 1. By our
argument above, we must have that s = 2.
Now suppose that pr1(H)=G1 and that pr2(H)=G2. Then by Lemma 5.10

and Corollary 5.11 we have that H×H ' G1×G2 =H(K1×K2) where the
Ki ⊂ Gi are images of simple subgroups K ′1 and K ′2 of K. Then H = K ′1K

′
2

so that (H,K ′1,K ′2) occurs in Table 1, as claimed. Suppose that r > 2. Then
for j > 2, Kj ⊂ G1×G2×Gj projects onto Gj and commutes with K1 and
K2. But the centralizer of K1×K2 in G1×G2 is trivial unless (H,K ′1,K ′2)
or (H,K ′2,K ′1) is entry 3.1 of Table 1, in which case the centralizer is SL2.
Thus r = 3 and there is a subordination as claimed.
Finally, suppose that s = 2 and that pr2(H) = G2 and pr1(H) 6= G1. Us-

ing Lemma 5.10 and Corollary 5.11 and the fact that HK ′ = G1G2, we see
that there are simple subgroups Ki ⊂ Gi, i = 1, 2, such that H(K1K2) =
G1G2. We have entries (G1,pr1(H),K1) and (pr2(H),pr2(L),K2) in Ta-
ble 1 where L is the preimage in H of pr1(H) ∩K1. Then H must be B3
or of type A2n−1. If H = B3, then one easily sees that we are in Exam-
ple 5.5 and that we cannot have r > 2. The remaining possibilities are that
H = A2n−1 and G1 = D2n or B3 giving Examples 5.3 and 5.4 where r = 2
is forced. �

The theorem above gives one the possibilities for the semisimple part of
the Levi factor of {g ∈ GL(V ) | Gv = Hv}. Preferable would be a theorem
which starts with a representation V of H and a generic v ∈ V and tells you
when v is almost semi-characteristic. In general, it is rather cumbersome
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to give such a theorem (for SL2 see section 7). We content ourselves with
working out the following example.

Example 5.13. — Let H = D2n+1, n > 2. Let V =
⊕k

i=1 niVi be the
isotypic decomposition of the H-module V . Let v = (v1, . . . , vk) ∈ V

be generic. We find conditions which guarantee that v is almost semi-
characteristic.
Each vi is (vi1, . . . , vi,ni) where vij lies in the jth copy of Vi, and the

vij span a subspace Ui ⊂ Vi of dimension ni. In order to avoid case (1) of
Theorem 5.12 we have to assume that the intersection of the stabilizers of
the subspaces Ui in H contains no nontrivial semisimple group. Cases (2)
and (4) do not apply, so we are left with case (3), where we have G = H×H,
K1 = B2n and K2 = A2n. But then there is a copy of A2n−1 in D2n+1 which
fixes our point. We have already ruled this out.

6. Semisimple groups

We turn our attention to the case that H ⊂ G where G and H are con-
nected semisimple, V is an irreducible H-module, G acts almost faithfully
on V and Gv = Hv for some nonzero v ∈ V . Let G1, . . . , Gk be the simple
components of G. Then Theorem 4.10 tells us that H = H1 · · ·Hk where
the Hi are semisimple and lie in Gi, i = 1, . . . , k. Note that no Hi is trivial,
else Gi acts trivially on V . Thus if Gi has rank 1, then Gi = Hi. We have
V = V1 ⊗ · · · ⊗ Vk where Vi is an almost faithful irreducible representation
of both Gi and Hi, i = 1, . . . , k.

6.1. — Suppose that G = HK where K is semisimple and G, H and
V are as above. (Think of K ⊂ Gv.) Let pri denote the projection of G
to Gi, i = 1, . . . , k. Let K ′ be a simple component of K and set I ′ := {i |
Hi pri(K ′) = Gi and Hi 6= Gi}. We may assume that K contains no simple
component of rank 1.

Proposition 6.2. — Let G = HK as above. Let K ′, K ′′ be distinct
simple components of K and let I ′ and I ′′ be as above. Then

(1) I ′ ∩ I ′′ = ∅.
(2) |I ′| 6 2. If |I ′| = 2, then pri(K ′) = Gi for some i ∈ I ′.

Proof. — For any i ∈ I ′ ∩ I ′′, the (nontrivial) images of K ′ and K ′′

in Gi commute. This is clearly not possible if pri(K ′) is Gi. If not, then
we are in one of the entries of Table 1, and commutativity is not possible
if pri(K ′) is one of the groups occurring there. Hence (1) holds. Suppose
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that i, j ∈ I ′, i 6= j and pri(K ′) 6= Gi and prj(K ′) 6= Gj . Then we must
have that HjL = Gj where L = prj(pr−1

i (Hi) ∩K ′) is a proper subgroup
of prj(K ′) as in the last column of Table 1. But then, by inspection, we
cannot have HjL = Gj . If i, j and k are distinct elements of I ′, then we
can assume that pri(K ′) = Gi, and we derive a contradiction as before by
considering the non-surjective projections of pr−1

i (Hi) ∩K ′ to Gj and Gk.
Thus we have (2). �

Theorem 6.3. — Suppose that k = 2 and that H1 6= G1, H2 6= G2 and
Gv = Hv for a nonzero v ∈ V . Then we are in one of the following cases.

(1) There are tuples (Gi, Vi, Hi,Ki) in Table 2, i = 1, 2, and v ∈
V K1

1 ⊗ V K2
2 .

(2) The tuple (G1, V1, H1,K1) is entry (1) of Table 2, (G2, V2, H2,K2)
is entry (3.3) (with the same k) and v generates the one-dimensional
space of A2n−1 fixed vectors in V1 ⊗ (V2|A2n−1).

(3) The tuple (G1, V1, H1,K1) is entry (6.2) of Table 2, (G2, V2, H2,K2)
is entry (6.3) (with k = 1) and v generates the one-dimensional
space of D8 fixed points in V1 ⊗ V2.

Proof. — Let K1 denote a maximal strongly semisimple subgroup of Gv.
Suppose that K1 ⊂ G1. Then Table 1 implies that H1K1 = G1. Let K2 be
a strongly semisimple subgroup of Gv such that pr2(K2)H2 = G2. Then we
must have pr1(K2) = {e} (again by Table 1), hence K2 ⊂ G2 and we are
in case (1). Thus we may suppose that any maximal strongly semisimple
subgroup L of Gv lies diagonally in G1 ×G2. Since we are not in case (1),
pr2 restricted to L is almost faithful (and so is pr1). By Table 1, L must
be simple. It follows from Proposition 6.2 that we have two cases:
Case 1: pr1(L) = G1 and pr2(L) = K2 where (G2, H2,K2) is in Table 1.
Moreover, (G2, H2,K

′
2) is in Table 1, where K ′2 = pr2(pr−1

1 (H1)∩L). Thus
we are in the case (G2, H2,K2) = (D2n,B2n−1,A2n−1) and (G2, H2,K

′
2) =

(D2n,B2n−1,Cn), n > 2, where H1 ' Cn. Then from Table 2 we see that
V1 ' ϕk1(A2n−1) (or its dual). From Table 2(3.3) we get possibility (2) of
our theorem. From (3.1) we get nothing since A2n−1 has no fixed vectors
in V1 ⊗ V2. The possibilities (4.2) and (5.2) fail for the same reason. Hence
we only get (2).
Case 2: Here we have that pr1(L) = G1 and pr2(L) = G2. Then L = H ′1H

′
2

where H ′i = pr−1
i (Hi) ∩ L, i = 1, 2. Moreover, there are irreducible repre-

sentations Vi of L whose restrictions to H ′i are irreducible, i = 1, 2. Table 2
tells us that we may have possibilities from entry (5.3) (and isomorphic
entries), but then there are no D4-fixed points in V1 ⊗ V2. Finally, from
(6.2) and (6.3) we get possibility (3) above. �
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6.4. — Let H ⊂ GL(V ) where H is semisimple connected and V is an
irreducible H-module. Suppose that v ∈ V is a nonzero orbit such that the
connected semisimple part G of {g ∈ GL(V ) | gHv = Hv} is strictly larger
than H. Let K denote the strongly semisimple part of Gv. We are then in
the situation of 6.1. For each simple componentKj ofK, let Ij ⊂ {1, . . . , k}
be as in 6.1. Set I ′ = ∪jIj , V ′ = ⊗i∈I′Vi and V ′′ = ⊗i 6∈I′Vi. Define G′ and
G′′ analogously. Then G′′ = H ′′ = Πi6∈I′Hi. Let K ′ be the product of the
Kj such that Kj ⊂ G′ and let K ′′ be the product of the other simple
factors of K so we have K = K ′K ′′. Via the projections to G′ and H ′′ we
have K ′′-module structures on V ′ and V ′′. Let W ′ ⊂ V ′ be the minimal
subspace such that v ∈W ′ ⊗ V ′′. Then W ′ ⊂ (V ′)K′ and v is K ′′-fixed.

Remark 6.5. — It follows from Theorem 6.3 that each simple component
of K ′ arises from an entry of Table 2 as in Theorem 6.3(1), is a group A2n−1
as in Theorem 6.3(2) or is the group D8 in Theorem 6.3(3).

We restate the discussion in (6.4) as follows.

Theorem 6.6. — Let v ∈ V . If Hv is not semi-characteristic, then
there are K ′, K ′′, etc. as in (6.4) and a minimal K ′′-stable subspace W ′ ⊂
(V ′)K′ such that v ∈W ′ ⊗ V ′′. If K ′′ 6= {e}, then there is a subordination
α : ((W ′)∗,K ′′)→ (V ′′, H ′′).

Now we would like to find some simple sufficient criteria for all generic v
to be semi-characteristic. For this, we only need to avoid the case that Gv =
Hv where Gi differs from Hi for only one i. Then after renumbering we
have that G1 6= H1 and Gi = Hi for i > 1. We have that V ′′ = V2⊗· · ·⊗Vk
and H ′′ = H2 × · · · ×Hk. Note that H1 may be any semisimple subgroup
of H.

Proposition 6.7. — Let G1 ⊃ H1 be as above. Then one of the fol-
lowing occurs.

(1) There is a subordination α : (V ∗1 , G1) → (V ′′, H ′′) where K ′′ pro-
jects onto G1.

(2) The tuple (V1, G1, H1,K1) occurs in Table 2 where K1 is the pro-
jection of K ′′ to G1, and we have a subordination (W ∗1 ,K1) →
(V ′′, H ′′) where W1 is minimal such that v ∈W1 ⊗ V ′′.

(3) The groupK ′′ projects trivially toG1 and the tuple (V1, G1, H1,K1)
occurs in Table 2 for some K1 where V K1

1 6= (0).

Proof. — If pr1(K ′′)={e}, then we are in case (3). Suppose that pr1(K ′′)
is nontrivial. Then it follows from Table 1 that K ′ = {e}. If the projection
of K ′′ to G1 is G1, then v corresponds to a subordination of V ∗1 to V ′′ and
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we are in case (1). The only other possibility is that the projection of K ′′
is K1 where (V1, G1, H1,K1) occurs in Table 2 and we are in case (2). �

Example 6.8. — Suppose that k = 2, dimV2 > dimV1 and that H2 =
SL(V2). Let v ∈ V1 ⊗ V2 have maximal rank. Then case (1) applies. If
(V1, G1, H1,K1) occurs in Table 2, let W1 be any nontrivial K1-subspace
of V1 and let v ∈W1 ⊗ V2 have maximal rank. Then case (2) applies.

From Proposition 6.7 we get the following criterion for all nonzero orbits
Hv to be semi-characteristic.

Corollary 6.9. — Let V be an irreducible H-module where H is
semisimple. Write H = H1 × · · · ×Hk where the Hi are simple for i > 1,
and let V = V1 ⊗ · · · ⊗ Vk be the corresponding decomposition of V . Let
V ′′ denote V2⊗ · · ·⊗Vk and set H ′′ = H2 · · ·Hk. Suppose that none of the
following occurs for any decomposition H = H1 × · · · ×Hk.

(1) There is a subordination (V ∗1 , H1)→ (V ′′, H ′′) where H1 6= SL(V1).
(2) There is a tuple (V1, G1, H1,K1) in Table 2 and a subordination

(W ∗,K1)→ (V ′′, H ′′) where W ⊂ V1 is K1-stable.
(3) There is a tuple (V1, G1, H1,K1) in Table 2 where V K1

1 6= (0).
Then every nonzero v ∈ V is semi-characteristic.

Admittedly, the corollary is a little unwieldy, but in any concrete case
it is quite easy to apply. We see what we can say in the case of isotropy
representations of symmetric spaces.

Example 6.10. — Let H = A5 × A1 acting on V = ϕ3 ⊗ ϕ1. This
corresponds to the symmetric space of type EII (see [8, Ch. X, Table V]).
Let 0 6= v ∈ V and let G be as usual with semisimple part Gs. If Gs
contains H, then Gs cannot be simple (by Table 2), and if it is of the form
G1 ×G2 where G1 ⊃ A5 and G1 = SL2, then it follows from Corollary 6.9
or Proposition 6.7 that G1 = A5. Hence v is semi-characteristic.

Example 6.11. — Let p > q ∈ N where p > 1. Let H = Sp2p× Sp2q act
in the natural way on V = C2p ⊗ C2q. This corresponds to the symmetric
space of type CII. Let 0 6= v ∈ V . Then one easily sees that the only
possibility for a semisimple Gs containing H stabilizing Hv occurs in the
case that v has rank 1, in which case Gs = SL2p×SL2q. For q > 1 this
corresponds to Theorem 6.3(1). If rank v > 1, then v is semi-characteristic.

Example 6.12. — Let p > q > 1. Let H be the intersection of the block
diagonal copy of GLp×GLq in GLp+q with SLp+q. Then H acts naturally
on V ⊕ V ∗ where V = Hom(Cp,Cq). This is an isotropy representation
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corresponding to the symmetric space of type AIII. First suppose that
q > 2. Let v = (x, x∗) where x ∈ V and x∗ ∈ V ∗ are nonzero. Let G =
{g ∈ GL(V ⊕V ∗) | gHv = Hv}0. Suppose that v is not semi-characteristic.
Then g is an H-stable Lie subalgebra of Hom(V ⊕ V ∗, V ⊕ V ∗) which
properly contains h. If g projected to Hom(V, V ) or Hom(V ∗, V ∗) is more
than a central extension of h, then g has to contain slp+q. But there is
no corresponding entry in Table 2. Thus we can suppose that g projects
nontrivially to one of the irreducible components of

Hom(V, V ∗) ' V ∗ ⊗ V ∗ ' (S2(Cp) + ∧2(Cp))⊗ (S2((Cq)∗) + ∧2((Cq)∗))).

Let us consider the case that g contains g′ := ∧2(Cp)⊗ ∧2((Cq)∗). Now x

has normal form
∑k
i=1 e

∗
i⊗fi where e1, . . . , ep is a basis of Cp, f1, . . . , fq is a

basis of Cq and e∗1, . . . , e∗p, f∗1 , . . . , f∗q denote the elements of the dual bases.
Then e1∧e2⊗f∗1 ∧f∗2 lies in g′ and applied to x gives us y∗ = e1⊗f∗1 +e2⊗f∗2
if k > 2. The contraction of x and y∗ (an H-invariant of V ⊕ V ∗) is not
zero. Thus (x, x∗ + y∗) cannot be in the H-orbit of v, a contradiction. If
k = 1, then acting by the reductive part of Hx we can bring x∗ to the
normal form

ce1 ⊗ f∗1 + e1 ⊗ f∗ + e⊗ f∗1 +
∑̀
i=2

ei ⊗ f∗i

where c ∈ C, f∗ ∈ span{f∗2 , . . . , f∗q } and e ∈ span{e2, . . . , ep}. If c 6= 0,
then acting by unipotent elements of Hx we can arrange that e and f∗ are
zero. Then ` + 1 is an invariant of x∗ (its rank) under the action of Hx.
But we can change ` by adding elements of g′ applied to x, again giving
a contradiction. If c = 0 and q > 2, then one similarly sees that we can
change the rank of x∗. If c = 0, q = 2 and e or f∗ 6= 0, however, the G′-orbit
of v is contained in the Hx-orbit of v and v is not semi-characteristic. The
other three possible components of g give nothing new. Thus v is possibly
not semi-characteristic only when q = 2, v is in the null cone and one of x
and x∗ has rank 1.
If p = 1 and q = 1 we have a torus action in which case G = H. If q = 1

and p > 2 we have the action of GLp on Cp ⊕ (Cp)∗. If Hv is not closed,
then v is semi-characteristic. If Hv is closed, then G ' SO2p and v is not
semi-characteristic.

Example 6.13. — In general, one has a good chance to have points v
which are not semi-characteristic in case your representation is reducible.
One can calculate that this actually occurs for the following isotropy rep-
resentations of symmetric spaces.
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(1) (V,H) = (Cp ⊗ C2,SOp×SO2), p > 3. This is of type BDI and of
type CI for p = 3.

(2) (V,H)=(∧2(Cn)⊕∧2((Cn)∗),GLn), 3 6 n 6 5. This is of type DIII.
(3) (V,H) = (ϕ4 ⊗ ν1 + ϕ5 ⊗ ν−1,D5 × C∗). This is of type EIII. Here

νj denotes the one-dimensional representation of C∗ of weight j.
(4) (V,H) = (ϕ1 ⊗ ν1 + ϕ5 ⊗ ν−1,E6 × C∗). This is of type EVII.

Our discussion above establishes

Proposition 6.14. — Let (V,H) be the isotropy representation of an
irreducible symmetric space. Then, with the exception of the adjoint rep-
resentation of Cn, n > 2 and the exceptions noted in Examples 6.11, 6.12
and 6.13, every orbit Hv, v generic, is semi-characteristic.

The proposition applies to some of the questions of Raïs in [20].

7. Representations of SL2

We consider the case of H-modules V where H := SL2 and V H = 0. We
have a generic v ∈ V and G := {g ∈ GL(V ) | gHv = Hv}0 is not equal
to H. We denote by Rn the H-module of binary forms of degree n. Then
Rn ' Sn(C2) has basis xn, xn−1y, . . . , yn where x, y are the usual basis
of C2 and xn is a highest weight vector. Let NG(H) denote the connected
normalizer of H in G.

To determine G, we show that it suffices to determine NG(H) and gu.
We determine NG(H) in Theorem 7.4 below. We show that gu is abelian
and a multiplicity free H-module (Proposition 7.15). We give necessary and
sufficient conditions for gu to contain a copy of Rp, p > 0 (Theorem 7.27).
We then find some simple conditions that guarantee that gu is zero or the
trivial H-module for every generic v ∈ V (Corollary 7.29).

Lemma 7.1. — Let G̃ be a Levi component of G containing H. Then
G̃ ⊂ NG(H).

Proof. — It follows from Theorem 4.3 that G̃v contains the simple com-
ponents of G̃ of rank at least 2. These components are normalized by H so
they fix the whole orbit Hv which spans V . Thus all the components of G̃
have rank at most 1 and G̃ ⊂ NG(H). �

Corollary 7.2. — We have g ' g̃ngu. Hence G 6= NG(H) if and only
if gu, as H-module, contains Rp for some p > 0. To determine G it suffices
to determine NG(H) and gu.
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We now consider the possibilities for NG(H).

Examples 7.3.
(1) Let H̄ be another copy of SL2 and let Vk = Rk ⊗ R̄k, k > 1, where

R̄k is the H̄-module of binary forms of degree k. Let vk ∈ Vk be
a nonzero fixed vector of {(h, h)} ⊂ H × H̄. Then Hvk = (H ×
H̄)vk and vk is generic. We can also take V = Vk1 ⊕ · · · ⊕ Vk`

and v = (vk1 , . . . , vk`
) where k1 < · · · < k`. Then v is generic and

NG(H) ⊃ HH̄.
(2) Let V =

⊕
k∈F mkRk where 1 6 mk 6 k + 1 for all k and F is a

nonempty finite subset of N. Let B and B̄ be the standard Borel
subgroups of H and H̄, respectively. Let vk be the highest weight
vector of the copy of R2k+2−2mk

in Vk = Rk ⊗ R̄k for the diagonal
H-action. Then vk lies in Rk tensored with the span of the weight
vectors of R̄k of weight at least k−2mk+2. Now vk is an eigenvector
for the diagonal copy of B, with weight 2k+2−2mk. For b̄ ∈ B̄, let
χ(b̄) denote its upper left hand entry. Let b̄ act on R̄k as the tensor
product of the usual action and the scalar action b̄ 7→ χ(b̄)2mk−2k−2.
Then vk is fixed by the diagonal in B × B̄. Assume that mk > 2
for some k so that B̄ acts effectively. Set v =

⊕
k∈F vk. Then v is

generic and NG(H) ⊃ HB̄.
(3) Let V =

⊕
k∈F mkRk as above. Let v ∈ V be a generic vector

whose projection vk,j to the jth copy of Rk is a weight vector. If
the weight is not zero, then there is an obvious C∗-action on this
copy of Rk such that vk,j is fixed by the product of the standard
torus in H and our external copy of C∗. If v is not a sum of zero
weight vectors we have NG(H) ⊃ HC∗.

Theorem 7.4. — Let V =
⊕

k∈F mkRk be a representation ofH = SL2
where V H = 0. Let v ∈ V be generic. If NG(H) 6= H, then, up to the action
of
∏
k∈F GLmk

, we are in one of the cases of Example 7.3. If G ⊃ HH̄ as
in Example 7.3(1), then G = HH̄.

Proof. — We have NG(H) = HG′ where G′ is the identity component
of the centralizer of H in G. The group G′v fixes Hv, so it is trivial. Hence
the Lie algebra of Gv = {hg′ | hg′v = v} projects onto g′ and into h, so
that G′ is locally isomorphic to a quotient of a connected subgroup of H.
Hence G′ is locally isomorphic to a connected subgroup of H.
Case 1: G′ = SL2 or SO3. Going to a cover, we can assume that G′ = H̄

so that Gv is isomorphic to the diagonal copy of H. Then V is a sum of
representations Vk = Rk⊗Sk where Sk is a representation of H̄ of dimension
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at most k+ 1 and the projection of v to Vk is a fixed point of the diagonal
action of H. Thus Sk ' R̄k and v is as in Example 7.3(1). Suppose that
gu 6= 0. Then, as (H × H̄)-module, gu cannot contain R0 or R̄0 since the
connected centralizer of H is H̄ and vice versa. Thus gu contains a term
Ra⊗ R̄b where ab 6= 0. Hence, as H-module, gu is not multiplicity free. But
this contradicts Proposition 7.15 below. Hence gu = 0 and G = HH̄.
Case 2: G′ = C∗. Then Gv ⊂ H × C∗ is a diagonal torus and the fixed
subspace of Gv on each isotypic component mkRk of V is a sum of mk

distinct weight spaces of H. Thus we are in Example 7.3(3).
Case 3: G′ ⊃ Ū and G′ 6⊃ H̄ where Ū ⊂ H̄ is the standard maximal
unipotent subgroup of our second copy H̄ of SL2. We have V =

⊕
k∈F Rk⊗

Sk where Sk is a representation of Ū . The isotropy group of v in H × Ū
can be taken to be the diagonal copy of U in U × Ū . Then v corresponds
to a subordination S∗k → Rk, hence the image of S∗k is a U -stable subspace
of Rk and Sk is a B̄-stable subspace of R̄k. In fact, it is the span of xk,
xk−1y, . . . , xk−mk+1ymk−1, and acting by elements of the various GL(mk)
we can arrange that v is as in Example 7.3(2). Hence NG(H) ' HB̄. �

Corollary 7.5. — Let V be as above and v ∈ V generic. Suppose that
Example 7.3(1) does not apply so that NG(H) 6= HH̄. Then v is almost
semi-characteristic.

We now turn to the determination of gu when it is not zero or a trivial
H-module.

Proposition 7.6. — Let v ∈ V be generic. Suppose that there is a
copy of Rp in gl(V ), p > 0, which is a Lie subalgebra and acts nilpotently
on V . Further suppose that Rp(v) ⊂ h(v). Then Rp ⊂ gu.

Proof. — Consider the action σ : Rp ⊗ V → V . Then for h ∈ H,

σ(Rp ⊗ h(v)) = hσ(Rp ⊗ v) ⊂ hh(v) = h(hv).

Hence Hv is open in Gpv where Gp is the connected group with Lie algebra
hnRp. Thus Gp ⊂ G and Rp ⊂ g. The projection of Rp to Lie(NG(H)) is
trivial (by our classification of NG(H) and the fact that Rp is nilpotent).
Hence Rp ⊂ gu. �

Remark 7.7. — The proposition remains true if p = 0 as long as G 6=
HH̄ as in Example 7.3(1).

Example 7.8. — Let p, l > 0. Let vl+p = xl+p and let vl = a0x
l +

a1x
l−1y, a1 6= 0. Set V = Rl+p + Rl. Consider a nonzero equivariant map

σ : Rp ⊗ Rl+p → Rl. Then σ(xiyp−i ⊗ vl+p) vanishes for i > 0 and σ(yp ⊗
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vl+p) is a nonzero multiple of xl. Thus we may arrange that σ(yp⊗xl+p) =
a1x

l. If A ∈ sl2 is x∂/∂y, then σ(yp ⊗ vl+p) = A(vl). We may consider σ
as an equivariant mapping of Rp to Hom(Rl+p, Rl). Then Rp applied to
v := vl+p + vl is the same as u(v) where u = C · A. By Proposition 7.6,
Rp ⊂ gu. We can also have a copy of Rq in gu, q 6= p, by adding Rl+q to V
and adding vl+q to v, where vl+q = xl+q.

We now try to pin down the structure of V and v. The situation can be
quite complicated. First we need a lemma.

Lemma 7.9. — Let ϕ : Rp⊗Rn → Rp+n−2i be equivariant and nonzero
where 0 6 i 6 min{p, n}. Then ϕ(xp−jyj ⊗ xn) 6= 0 for i 6 j 6 p.

Proof. — If ϕ(xp−jyj ⊗ xn) = 0, then the sl2-submodule W of Rp ⊗Rn
generated by xp−jyj ⊗ xn lies in the kernel of ϕ. Applying x∂/∂y ∈ sl2
repeatedly we may reduce to the case that ϕ(xp−iyi ⊗ xn) = 0. Suppose
by induction that xp−kyk ⊗ xn−lyl lies in W for k + l = i and l 6 s. Then
applying y∂/∂x followed by x∂/∂y to xp−kyk⊗xn−sys we obtain elements
in W as well as k(n − s)xp−k+1yk−1 ⊗ xn−s−1ys+1. Thus W contains all
the weight vectors of Rp ⊗ Rn of weight p + n − 2i. This implies that
Rp+n−2i ⊂W , a contradiction. Thus ϕ(xp−jyj ⊗ xn) 6= 0. �

Remark 7.10. — Reversing the roles of x and y we have ϕ(xjyp−j⊗yn) 6=
0 for i 6 j 6 p.

Corollary 7.11. — Let ϕ, etc. be as above where p+ n− 2i 6= 0. Let
w = xn ∈ Rn. Then dimϕ(Rp⊗w) > 2 unless i = p < n so that ϕ(yp⊗w)
is a highest weight vector of Rn−p.

Set W0 = V and for j > 0 set Wj = gu(Wj−1). Then Wj is a proper
H-stable subspace of Wj−1 for j > 0. Let k be the greatest integer j such
that Wj 6= 0. Since gu acts nontrivially on V , we must have k > 0. Let Vj
be an H-complement to Wj+1 in Wj for 0 6 j 6 k. Then V = ⊕jVj . Write
v = v0 + v1 + w2 where vi ∈ Vi, i = 1, 2, and w2 ∈ W2. As before, let A
denote x∂/∂y ∈ h.

Lemma 7.12. — Perhaps replacing v by hv for some h ∈ H we have the
following.

(1) The vector v0 is a sum of highest weight vectors.
(2) The dimension of gu(v) is one with basis A(v).
(3) Suppose that Rp ⊂ gu where p > 0. Then for p > i > 0, xiyp−i ∈ Rp

annihilates v.
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Proof. — Since gu acts nontrivially on V and v is generic, there has to be
a C ∈ gu such that C(v) ∈W1 and C(v) 6∈W2. Then there must be a D ∈ h

such that D(v0 + v1) = C(v) modulo W2. Since D preserves V0 and V1, we
must have that D(v1) = C(v0) modulo W2 and that D annihilates v0. Up
to the action of H, we may thus assume that v0 is a sum of highest weight
vectors or a sum of zero weight vectors. We assume the latter and derive
a contradiction. Since gu is H-stable, we may assume that C is a weight
vector for the action of C∗ ⊂ H. Note that D generates the Lie algebra of
C∗ ⊂ H. If C has weight zero, then so does C(v) +W2 = C(v0) +W2 and
we cannot have that C(v) = D(v) modulo W2. Thus C has weight j for
some j 6= 0 so that C(v0) + W2 = D(v1) + W2 also has weight j. Hence
v1 = v′1 + v′′1 where v′1 + W2 = C(v0) + W2 and v′1 has weight j while v′′1
has weight 0. Now let Z be the two-dimensional vector space generated by
v0 and v′1, all modulo W2. The groups generated by exp(tD) and exp(tC),
t ∈ C, act on Z and the orbits of (v0, v

′
1) are the same. But exp(tC)(v0, v

′
1)

contains the point (v0, 0) while exp(tD)(v0, v
′
1) clearly does not. Hence we

have (1), i.e., v0 is a sum of highest weight vectors. Moreover, gu(v) +W2
is one-dimensional and generated by A(v1) +W2.
Let C ∈ gu as above. Then C(v) = D(v) for some D ∈ hv0 , where D is

a multiple of A. Hence we have (2). Finally, suppose that Rp ⊂ gu where
p > 0. By Corollary 7.11, for i > 0, xiyp−i annihlates v, modulo W2, while
yp sends v to a multiple of A(v), modulo W2. If xiyp−i acts nontrivially on
v it follows that dim gu(v) > 1. Hence we have (3). �

Let σ : Rp ⊗ V → V be the action of some Rp ⊂ gu where p > 0. Let
µ : V → V be the action of yp via σ. We may assume that µ(v) = A(v).

Corollary 7.13.

(1) For all j > 1, µj(v) = Aj(v).
(2) If p > 0, then for all 1 6 i 6 p, j > 0, σ(xiyp−i ⊗Aj(v)) = 0.

Proof. — Suppose that p > 0. We prove (1) and (2) simultaneously by
induction on j. Assume that µj(v) = Aj(v) for 1 6 j 6 m and that
σ(xiyp−i ⊗ Ajv) = 0 for 0 6 j < m, i > 0. We certainly have the case
that m = 1. Apply A to the equation σ(yp ⊗ Am−1(v)) = Am(v). Since σ
is equivariant, one obtains that

σ(pxyp−1 ⊗Am−1(v)) + σ(yp ⊗Am(v)) = Am+1(v).

Since the first term above is zero, we have that µ(Am(v)) = Am+1v so that,
by induction, we have µm+1(v) = Am+1(v). Now apply A to the equation
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σ(xiyp−i ⊗Am−1(v)) = 0. One obtains that

σ((p− i)xi+1yp−i−1 ⊗Am−1(v)) + σ(xiyp−i ⊗Am(v)) = 0

so that σ(xiyp−i⊗Am(v)) = 0. This completes the induction. In case p = 0,
A commutes with the generator of R0, so that (1) is immediate. �

Remark 7.14. — Suppose that p > 0 and that we have (1) above. Then
applying A to the equations of (1) and using induction we obtain (2).

Proposition 7.15. — The Lie algebra gu is abelian and as H-module
is multiplicity free.

Proof. — Suppose that we have copies of Rp and Rq in gu where we
allow p = q (in which case we have two copies of Rp). If [Rp.Rq] 6= 0, then
we have a copy of some Rs in gu which maps V to W2. Thus Rs(v) 6= 0
while Rs(v) ∈W2. This implies, as in the proof of Lemma 7.12, that gu(v)
has dimension greater than one, a contradiction. Hence gu is abelian. If Rp
has multiplicity two or more, then it follows from Lemma 7.12 that there is
a copy of Rp which sends v to 0 implying that this copy of Rp acts trivially
on V , a contradiction. Hence gu is multiplicity free. �

Proposition 7.16. — For all i > 0, Ai(v) is generic in Wi.

Proof. — Since v is generic in V and gu is H-stable, W1 is generated by
the H-orbit of gu(v). Hence Av is generic in W1. Then the same argument
shows that the H-orbit of A2(v) spans W2, etc. �

We say that a vector w ∈ Rl has height k if w = a0x
l + · · · + akx

l−kyk

where ak 6= 0. A vector in Z :=
∑
imiRi has height at least k (resp. height

at most k) if it is generic in Z and when written as a sum
∑
i vi,1+· · ·+vi,mi

where vi,j is in the jth copy of Ri, each vi,j has height at least k (resp. at
most k).

Proposition 7.17. — The H-modules Vi are multiplicity free.

Proof. — The vector Ajv is generic in Wj , j > 0, and the projection
of Ajv to any Rl in Wj cannot be zero. Thus the projection of v to any
Rl ⊂Wj has height at least j. We have v+Wj = v0 + v1 + · · ·+ vj−1 +Wj

where Ajv ∈ Wj . It follows that Ajvi = 0 for i < j, hence any vi is a sum
of vectors of height at most i. Since vj ∈Wj it is a sum of vectors of height
at least j. Thus Ajvj is a sum of highest weight vectors and it is generic in
Wj . Hence any Rl can occur in Wj with multiplicity at most one. �

Write v = v0 + · · ·+ vk where vi ∈ Vi. Then each vi is a sum
∑
l∈Fi

vi,l
where Fi ⊂ N and vi,l lies in the copy of Rl ⊂ Vi.
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Corollary 7.18. — Each vector vi,l has height i.

Lemma 7.19. — Let ϕ : Rp ⊗Rm → Rl be equivariant and nonzero.

(1) Necessarily m = l + p− 2i for some i with 0 6 i 6 min{l, p}.
(2) Suppose that w ∈ Rm has height n 6 l − i. Then ϕ(yp ⊗ w) has

height n+ i.

Proof. — Since representations of H are self-dual, Rl appears in Rp⊗Rm
if and only if Rm appears in Rp⊗Rl. Then Clebsch-Gordan implies (1). Now
consider z := ϕ(yp ⊗ xm−nyn) where m = l + p − 2i. Then Remark 7.10
shows that z 6= 0 if the weight of yp ⊗ xm−nyn is at least −l. This is
equivalent to n 6 l − i, hence we have (2). �

As above, we have vi =
∑
l∈Fi

vi,l where vi,l ∈ Rl ⊂ Vi. For any s > 0,
we haveW1 = V1⊕V2⊕· · ·⊕Vs+1⊕Ws+2, hence we have an H-equivariant
projection of W1 to Vs+1. Let τ denote σ on Rp ⊗ (V0 + · · ·+ Vs) followed
by projection onto Rl ⊂ Vs+1. Since we have σ(yp ⊗ Ar(v)) = Ar+1(v),
r > 0, for every vs+1,l ∈ Rl ⊂ Vs+1, Ar+1(vs+1,l) must be a multiple of
τ(yp⊗Ar(v0 + · · ·+ vs)) for r > 0. Note that τ vanishes on Rp⊗ vi,t unless
t = l + p− 2j where 0 6 j 6 min{p, s}.

Proposition 7.20. — Let s and l be as above. Let Rl+p−2j ⊂ Vi, j 6
min{p, s}. If i+ j > s, then τ(Rp ⊗Rl+p−2j) = 0.

Proof. — Consider the pairs (i′, j′) where 0 6 i′ 6 s, 0 6 j′ 6 min{p, s},
i′ + j′ > s and vi′,l+p−2j′ 6= 0. Assume that i is the maximal i′ that
occurs and that j is the maximal j′ that occurs in a pair (i, j′). Con-
sider Ai(vi,l+p−2j). It is a highest weight vector of weight l + p− 2j. Sup-
pose that τ(yp ⊗ Ai(vi,l+p−2j)) is nonzero. Then it has height j > s − i.
Moreover, by the choice of i and j, τ(yp ⊗ Ai(vi,l+p−2j)) is the nonzero
τ(yp⊗Ai(vi,l+p−2j′)) of largest height (equivalently, of lowest weight). But
τ(yp ⊗ Ai(v)) = Ai+1(vs+1,l) where Ai+1(vs+1,l) has height s − i. Thus
τ(yp ⊗ Ai(vi,l+p−2j)) must be zero. Now for 0 < m 6 p we have that
σ(xmyp−m ⊗ Ai(v)) = 0. Again, by height considerations, one sees that
τ(xmyp−m ⊗ Ai(vi,l+p−2j)) must vanish. Hence τ(Rp ⊗ Ai(vi,l+p−2j)) = 0
which shows that τ(Rp ⊗ Rl+p−2j) = 0. Now the proof can be completed
by downward induction on i and j. �

For 0 6 j 6 min{p, s} and Rl+p−2j ⊂ Vi, the restriction of τ to Rp ⊗
Rl+p−2j is a multiple ti,s−jτs−j of τs−j where τs−j : Rp ⊗Rl+p−2j → Rl is
equivariant and normalized so that τs−j(yp ⊗ xl+p−2j) = xl−jyj . We have
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that

(7.1)
min{p,s}∑
j=0

s−j∑
i=0

ti,s−jτs−j(yp ⊗Ar(vi,l+p−2j)) = Ar+1(vs+1,l)

for all r > 0 where we set vi,q = 0 if q 6∈ Fi.
Let ai and bs−ji,m be scalars such that vs+1,l = a0x

l+ · · ·+as+1x
l−s−1ys+1

and vi,l+p−2j = bs−ji,0 xl+p−2j+· · ·+bs−ji,i x
l+p−2j−iyi whenever l+p−2j ∈ Fi

and 0 6 j 6 min{p, s}. We use tj and bj as shorthand for tj,j and bjj,j ,
respectively. For now assume that l + p− 2j ∈ Fs−j , j = 0, . . . ,min{p, s}.

Theorem 7.21. — For m = 0, . . . , s, consider the equation (7.1) with
r = m in weight l−2s+ 2m. This gives us s+ 1 equations in the unknowns
ts−jbs−j for 0 6 j 6 min{p, s}. The unique solutions are

ts−jbs−j =
(
s
j

)(
p
j

)(
l+p−j+1

j

) (s+ 1)as+1, 0 6 j 6 min{p, s}.

Proof. — First assume that p > s. Since τs−j(yp ⊗ xl+p−2j) = xl−jyj , it
follows that

τs−j(yp ⊗ xl+p−2j−kyk) =
(
l−j
k

)(
l+p−2j

k

)xl−j−kyj+k, k 6 l − j.
Now the 0th equation (m = 0) is

t0b0 + t1b1
l−s+1

l+p−2s+2 + · · ·+ tjbj

(
l−s+j
j

)(
l+p−2s+2j

j

) + · · ·+ tsbs

(
l
s

)(
l+p
s

) = (s+ 1)as+1.

For m = 1 the equation is

t1b1+2t2b2 l−s+2
l+p−2s+4 +· · ·+jtjbj

(
l−s+j
j−1

)(
l+p−2s+2j

j−1
)+· · ·+stsbs

(
l

s−1
)(

l+p
s−1
) = s(s+1)as+1

and the mth equation is

m!tmbm + · · ·+ j!/(j −m)!tjbj

(
l−s+j
j−m

)(
l+p−2s+2j

j−m
) + · · ·+ s!

(s−m)! tsbs

(
l

s−m
)(

l+p
s−m

)
= (s+ 1)!

(s−m)!as+1.

Thus our system of equations is equivalent to

(7.2)
s∑
j=0

(
j

m

)
cj

(
l−s+j
j−m

)(
l+p−2s+2j

j−m
) =

(
s

m

)
, m = 0, . . . , s
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where cj = tjbj/((s + 1)as+1). Since the equations are in triangular form,
there is a unique solution. Now the theorem will be proved if we can show
that a solution to (7.2) is

cs−j =
(
s
j

)(
p
j

)(
l+p−j+1

j

) .
But one can prove this using the WZ method [28]. (See [23] for a brief
introduction.) We used the implementation of the WZ method in MAPLE.
Now suppose that p < s. We may still consider the system of equations

(7.2). The solutions remain the same, but note that for j > p, the formula
for cs−j gives zero. Hence the theorem is true even when p < s. �

Remark 7.22. — Let 0 6 j 6 min{p, s}. We assumed that Rl+p−2j
occurred in Vs−j . But the equations force ts−jbs−j to be nonzero. Thus, in
fact, Rl+p−2j must occur in Vs−j for there to be a solution of (7.1) for all
r > 0.

Since we are guaranteed to have vectors vs−j,l+p−2j in our solution of
(7.1), what role do the vectors vi,l+p−2j play for i < s− j? It is easy to see
that the term involving vi,l+p−2j may be eliminated if we change vs−j,l+p−2j
to vs−j,l+p−2j + ti,s−j

ts−j
vi,l+p−2j . Let us say that v′′ =

∑
j v
′
s−j,l+p−2j is

obtained from v′ =
∑
j vs−j,l+p−2j by an admissible modification if each

v′s−j,l+p−2j differs from vs−j,l+p−2j by a linear combination of the vi,l+p−2j
for i < s− j. Thus we have the following

Remark 7.23. — We have a solution of (7.1) if and only if, up to an
admissible modification of the vs−j,l+p−2j , we have a solution of

(7.3)
min{p,s}∑
j=0

ts−jτs−j(yp ⊗Ar(vs−j,l+p−2j)) = Ar+1(vs+1,l), r > 0.

Proposition 7.24. — Let vs+1,l ∈ Vs+1 and vs−j,l+p−2j ∈ Vs−j have
coefficients aj and bs−ji,m as above. Fix the bs−j , 0 6 j 6 min{p, s}. Then
there are unique values of the ts−j and bs−js−j,m for m < s−j such that there
is a solution of (7.3).

Proof. — We know that the ts−j are uniquely determined. We only need
to show that the bs−js−j,m for m < s − j are unique satisfying (7.3). This
is easy because of the triangular form of the equations. For r = 0, the
equation in weight l reads tsbss,0 = a1. For arbitrary r 6 s, the equation in
weight l is r!tsbss,r = (r + 1)!ar+1. For r = s this is one of the equations
we considered in Theorem 7.21 and we have bss,r = r+1

ts
ar+1 for r < s. Now
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suppose that we have determined the bs−qs−q,j for 0 6 q < m. Consider (7.3)
in weight l− 2m with r = 0. It gives an expression for ts−mbs−ms−m,0 in terms
of the ai and bs

′

s′,s′−j′ for s′ > s −m. Thus we may solve for bs−ms−m,0. For
0 < r 6 s − m we obtain an equation that we can solve for bs−ms−m,r. The
equation that we get for bs−m is one of the equations that we considered
in Theorem 7.21. Hence given a1, . . . , as+1 and the bs−j , there are unique
ts−j and bs−js−j,m solving (7.3). �

Remark 7.25. — Suppose that l + p − 2j ∈ Fi for all i + j 6 s, 0 6
j 6 min{p, s}. Then we may modify the vs−j,l+p−2j admissibly so that the
bs−js−j,m, m < s − j, are arbitrary. Hence there are ts−j giving solutions of
(7.3) (after admissible modifications) and giving solutions of (7.1) (without
changing any vectors).

Let us formulate the conditions that need to be satisfied to have Rp ⊂ gu,
p > 0.

Definition 7.26. — Let v ∈ V be generic. We say that v satisfies (∗p) if
(1) We have a decomposition V = ⊕ki=0Vi where the Vi are multiplicity

free H-modules. Let Fi ⊂ N such that Vi = ⊕l∈Fi
Rl.

(2) Possibly replacing v by hv for some h ∈ H, we have that v =∑
i

∑
l∈Fi

vi,l where vi,l ∈ Rl ⊂ Vi has height i.
(3) For every vs+1,l ∈ Vs+1, s > 0, we have that l + p − 2j ∈ Fs−j for

0 6 j 6 min{p, s}. Let the ts−j be given by Theorem 7.21. Then
the vectors vs−j,l+p−2j , perhaps after admissible modification, are
solutions of (7.3).

Theorem 7.27. — Let v ∈ V be generic. Then Rp ⊂ gu, p > 0, if and
only if v satisfies (∗p).

Proof. — We have shown that Rp ⊂ gu implies that (∗p) holds. Con-
versely, if (∗p) holds, then we have constants ti,s−j such that (7.1) is satis-
fied. Let τ denote the corresponding map

Rp ⊗ (
min{p,s}⊕
j=0

s−j⊕
i=0

⊕
l+p−2j∈Fi

Rl+p−2j ⊂ Vi)→ Rl ⊂ Vs+1.

The various mappings τ combine to give us an equivariant map σ : Rp⊗V →
V . It follows from Remark 7.14 that σ(xiyp−i ⊗ v) = 0 for i > 0. By con-
struction, σ(Rp⊗v) is one-dimensional and generated by σ(yp⊗v) = A(v).
If S denotes the copy of Rp ⊂ End(V ) corresponding to σ, then [S, S](v) =
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0 which implies that [S, S] acts trivially on V , i.e., [S, S] = 0. By construc-
tion, S consists of nilpotent transformations. Now by Proposition 7.6 we
have S ⊂ gu. �

Corollary 7.28. — Suppose that there is a generic v ∈ V such that gu
is not zero or the trivial H-module. Then there are subsets F0, . . . , Fk ⊂ N
such that V =

⊕k
i=0
⊕

l∈Fi
Rl and p > 0 such that for every l ∈ Fs+1,

s > 0 we have l + p− 2j ∈ Fs−j for 0 6 j 6 min{p, s}.

Corollary 7.29. — The group G normalizes H if V does not satisfy
the condition of Corollary 7.28. In particular, G normalizes H in the fol-
lowing cases.

(1) V is an isotypic H-module.
(2) The multiplicity of Rl is at least two, where l is maximal such that

Rl ⊂ V .

Proof. — Part (1) is clear. In case (2), there has to be a vector vs+1,l
where s > 0. Thus we must have Rp+l ⊂ Vs, which obviously fails. �

Using Remark 7.25 it is clear that one can have extremely complicated
situations where Rp ⊂ gu. Here is a modestly complicated case.

Example 7.30. — Let V0 = Rl+p−2 ⊕ Rl+2p, V1 = Rl+p and V2 = Rl,
where l > 1, p > 0. Let v = v0,l+p−2 + v0,l+2p + v1,l+p + v2,l ∈ V =
V0⊕V1⊕V2 where the vr,s are of height r in Rs ⊂ Vr. Then by Remark 7.25,
gu contains a copy of Rp. Here we have that σ(yp ⊗ v0,l+2p) = A(v1,l+p)
and σ(yp ⊗ Ar(v0,l+p−2 + v1,l+p)) = Ar+1(v2,l), r = 0, 1. If we add a copy
of Rl to V1 and a copy of Rl to V0 (assume p 6= 2) with corresponding
components v1,l and v0,l in v, then we also have a copy of R0 in gu. If
p = 2, we already have Rl ⊂ V0 and we only have to add Rl ⊂ V1 and v1,l.

Example 7.31. — Suppose that V = 2Rl ⊕ Rl−1 ⊕ Rl+1 where l > 2.
Then it is possible to have a generic v ∈ V such that R1 ⊂ gu. However,
one can check that this is not possible if we increase the multiplicity of Rl
to 3.

8. Appendix

Here we establish the branching rules which are used in Table 2 and the
calculation of V K in cases 6.3 and 6.4. Recall that if ϕ is a G-module, then
S(ϕ) = ⊕kSk(ϕ) where Sk(ϕ) denotes the subspace of Sk(ϕ) obtained
using Cartan multiplication of the irreducible subrepresentations of ϕ.
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Let n = 2m + 1, m > 1. Let X denote the cone in ϕn−1(Dn) which
is the closure of the orbit of a highest weight vector. Consider the action
of SLn×C∗ on O(X) where ϕ1(Dn) = C2n = ϕ1(SLn) ⊕ ϕn−1(SLn) =
Cn ⊕ (Cn)∗. Here Cn is the span of the positive weight vectors of Dn,
C∗ acts on Cn with weight 2 and on (Cn)∗ with weight −2. As SLn×C∗
representation, ϕn−1(Dn) is νn⊕ϕn−2(SLn)⊗ νn−4 +ϕn−4(SLn)⊗ νn−8 +
· · · + ϕ1(SLn) ⊗ ν−n+2 and ϕn(Dn) = ϕn−1(Dn)∗ = ϕn−1(SLn) ⊗ νn−2 +
· · ·+ ϕ2(SLn)⊗ ν−n+4 + ν−n.

Theorem 8.1. — Let X be the closure of the highest weight orbit in
ϕn−1(Dn). Then, as (SLn×C∗)-module, O(X) = S(ϕn(Dn)).

Proof. — It is well-known that X is normal, and every point of X except
the origin is smooth. For x ∈ νn, x 6= 0, x is a smooth point of X, x
is a fixed point of SLn and the slice representation of SLn at x is θ1 +
ϕn−2. Since ϕn−2 has no invariants, O(X)SLn is generated by a coordinate
function z on νn. Then z is not a zero divisor in O(X), hence O(X) is a
free C[z]-module. By Luna’s slice theorem [14], O(X) is a free C[z]-module
on O(ϕn−2). But O(ϕn−2) = S(ϕ2) is just the sum of all representations
of the form ϕa2

2 · ϕ
a4
4 . . . ϕ

an−1
n−1 each with multiplicity one. It follows that

the products of the highest weight vectors of the restriction of ϕn−1(Dn)∗
to SLn freely generate the highest weights of O(X) as an SLn-module and
as an (SLn×C∗)-module. �

Now suppose the n = 2m,m > 2. Let X denote the closure of the orbit of
a highest weight vector of ϕn−1(Dn). Consider the action of SLn×C∗ ⊂ Dn
such that ϕ1(Dn) becomes Cn ⊗ ν1 ⊕ (Cn)∗ ⊗ ν−1. Effectively, we have the
action of GLn. Then ϕn−1(Dn), as a GLn-module, is νm + ϕn−2 ⊗ νm−2 +
· · ·+ ν−m.

Theorem 8.2. — Let n = 2m, m > 2 and let X be the closure of
the highest weight orbit in ϕn−1(Dn). Then, as GLn-module, O(X) =
S(ϕn−1(Dn)).

Proof. — Let z± be coordinate functions on the copies of ν±m in
ϕn−1(Dn). As above, one computes that there is a slice representation
(ϕ2m−2 + θ1,SL2m) for the action of SL2m on X. The slice representation
has a quotient of dimension two and principal isotropy group Cm. It follows
that the GLn-invariants have dimension 1, hence they must be generated
by z+z−. Moreover, the only way that the trivial SLn-representation can
occur in C[ϕn−2⊗νm−2 + · · ·+ϕ2⊗ν−m+2] is in products whose C∗-weight
is a multiple of ±m (just count boxes in Young diagrams). Since GLn is
spherical in Dn, each νkm, k ∈ Z, occurs once in the free C[z+z−]-module
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O(X). Thus the SLn-invariants must be the polynomial ring C[z+, z−] and
O(X) is free over C[z+, z−]. For the corresponding map X → C2, the gen-
eral fiber is SLn/Cm, which gives that the only SLn-representations that
occur are ϕa2

2 . . . ϕ
an−2
n−2 for a2, . . . , an−2 > 0, each with multiplicity one. It

follows that O(X) = S(ϕn−1(Dn)). �

Finally, we consider the case where X is the closure of the highest weight
vector in ϕn(Dn), n = 2m > 4. As GLn-module, we have ϕn(Dn) = ϕn−1⊗
νm−1 ⊕ · · · ⊕ ϕ1 ⊗ ν−m+1.

Theorem 8.3. — As GLn-module, O(X) = S(ϕn(Dn)).

Proof. — There are no invariants in this case, so we have to proceed a
little differently. We first find a general point of X. Let e1, . . . , en be the
usual basis of Cn. Let ω = e2 ∧ e3 + · · · + e2n−2 ∧ e2n−1 considered as an
element of the Lie algebra of Dn. Then the action of exp(ω) on e1 sends
it to the sum v of the elements e1 ∧ ωk ∈ ϕ2k+1, k = 0, . . . ,m − 1. The
isotropy group H of SLn acting on v is the semidirect product of Cm−1
with Hom(C · en,Cn−1) ⊕ Hom(Cn−2,C · e1) where Cn−2 here stands for
the span of e2, . . . , en−1 and Cn−1 stands for Cn−2 ⊕ C · e1. Note that our
copy of Cm−1 acts standardly on Cn−2. Now dimSLn/H = dimX, so that
SLn ·v is a dense orbit in X. Since X is factorial [26, Theorem 4], any
divisor in the complement of the dense orbit must be defined by a semi-
invariant of SLn, hence by an invariant. Thus there are no such divisors, so
that the complement of SLn ·v has codimension 2. It follows that O(X) '
O(SLn /H). But the irreducibles of SLn with an H-fixed vector are those
of the form ϕa1

1 ϕa3
3 . . . ϕ

an−1
n−1 where the ai are nonnegative, and the fixed

point set has dimension one. Thus O(X) is as claimed. �

We now compute the ring of K-invariants in the cases (6.3) and (6.4) of
Table 2.

Proposition 8.4. — Let X (resp. Y ) be the closure of the orbit of
the highest weight vector of ϕ7(D8) (resp. ϕ8(D8)). Consider the action of
B4 on X and Y where ϕ1(D8)|B4 = ϕ4(B4). Then O(X)B4 = C[f4] and
O(Y )B4 = C[f2, f3] where deg fi = i.

Proof. — Using LiE [25, 24] one computes that the Poincaré series of
O(X)B4 is 1 + t4 + . . . and that the Poincaré series of O(Y )B4 is 1 + t2 +
t3 +t4 +t5 + . . . . Recall that X and Y are normal, hence so are O(X)B4 and
O(Y )B4 . Thus dimO(Y )B4 > 2. The restriction of ϕ7(D8) (resp. ϕ8(D8)) to
B4 is ϕ1ϕ4 (resp. ϕ2

1 +ϕ3). Let P (resp. Q) be the stabilizer of the highest
weight line in ϕ7(D8) (resp. ϕ8(D8)). Then the Levi components L(P ) and
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L(Q) of P and Q double cover representatives of the two SO16-conjugacy
classes of embeddings of GL8 in SO16. We have L(P ) ' (SL8×C∗)/(Z/4Z)
and the same for L(Q). Restricted to L(P ), ϕ7(D8) becomes the represen-
tation ν4 +∧6(C8)⊗ν2 +∧4(C8) +∧2(C8)⊗ν−2 +ν−4. The highest weight
space of ϕ7(D8) is ν4. The tangent space to X at a nonzero point of ν4 is
ν4 + ∧6(C8) ⊗ ν2 so that dimX = 29. The restriction of ϕ7(D8) to L(Q)
is ∧7(C8)⊗ ν3 + ∧5(C8)⊗ ν1 + ∧3(C8)⊗ ν−1 + C8 ⊗ ν−3. For ϕ8(D8), the
decompositions relative to L(P ) and L(Q) are reversed, so dimY = 29,
also.
Consider the action ofH = Ad SL3 on C9 as ϕ1ϕ2+θ1. Then ϕ4(B4)|H =

2ϕ1ϕ2. Clearly the image of H in SO16 lies in a copy of GL8. Suppose that
this copy of GL8 is double covered by a conjugate of L(P ). Then XH 6= (0),
and the B4-orbit of a nonzero fixed point is closed since the normalizer
of H in B4 is a finite extension of H [15, 3.1 Corollary 1]. It is easy to
check that the isotropy group of a nonzero point of XH is at most a finite
extension of H. Thus the dimension of the corresponding closed B4-orbit is
28. Hence dimO(X)B4 6 1 and the Poincaré series information gives that
O(X)B4 = C[f4] where deg f4 = 4. If our copy of GL8 were double covered
by a conjugate of L(Q), then we would see that dimO(Y )B4 6 1, which is
a contradiction. Thus O(X)B4 is as claimed.
Now consider the group K = SO6×SO3 ⊂ SO9. Then the double cover

K̃ of K is (SL4×SL2)/± I and ϕ4(B4), as K̃-representation, is C4⊗C2 +
(C4)∗ ⊗ C2. Thus K̃ is a subgroup of a copy of GL8 in SO16. If this GL8
is double covered by a conjugate of L(P ), then one sees that there are no
nonzero fixed points of K̃ (actually K) in ϕ8(D8). But ϕ8(D8)|B4 = ϕ2

1 +ϕ3
has K-fixed points of dimension 2. Hence our copy of GL8 is double covered
by a conjugate of L(Q) and the weight space ν4 of the restriction of ϕ8(D8)
to L(Q) lies in Y and is fixed by K̃. The group NB4(K̃)/K̃ ' Z/2 flips
the highest and lowest weight spaces ν±4. Since K̃ is a maximal connected
reductive subgroup of B4, the stabilizer of ν4 is K̃ and any point of ν4 lies
on a closed orbit. The slice representation of K̃ is S2(C4) + θ1 which shows
that the principal isotropy group H of the action of B4 (actually SO9)
is SO3 × SO3× SO3. It follows that dimY//B4 = 2. Now NSO9(H)/H '
W (D3), the Weyl group of D3, where V := ϕ8(D8)H has dimension 5. One
easily computes that the generators of O(V )W (D3) are of degree at most 5.
Then by the Luna-Richardson theorem [15, 3.2 Corollary] it follows that
the invariants of O(Y )SO9 have generators in degree at most 5, and then
from our information about the Poincaré series it follows that O(Y )SO9 =
C[f2, f3] where deg fi = i, i = 2, 3. �
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Remark 8.5. — There is no representation of SO9 with principal isotropy
group H = SO3×SO3×SO3 and slice representation S2(C4) + θ1 of K =
SO6×SO3 which has homogeneous invariants f2 and f3 of degrees 2 and
3, respectively. The reason is that we would have a slice which is an open
K-invariant subset of the linear subspace V = C ·v+S2(C4) where K fixes
v, and the restrictions of the fi to V would have to be functions of C · v
alone since the invariant of S2(C4) is of degree 4. Thus f2 and f3 would be
algebraically dependent, a contradiction to normality.

Remark 8.6. — The generators f2 and f3 form a homogeneous regu-
lar sequence in O(Y ), hence O(Y ) is a free graded C[f2, f3]-module [22,
Lemma 3.3]. It follows that O(Y ) is cofree, i.e., each module of covariants
is free over C[f2, f3]. Of course, we have the analogous result for O(X).
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