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ALGEBRAS OF DIFFERENTIABLE FUNCTIONS
by E. T. Y. LEE

1. Introduction.

Let Co == Co(R") be the Banach space of all complex-
valued continuous functions on R" vanishing at infinity,
supplied with the sup-norm [| . | ( ; and 3) the dense subspace
consisting of all infinitely differentiable functions with compact
support. Denote by 2 == ^(R71) the linear space of all diffe-
rential operators

A== S ^Da
|a |^ fc

of constant (complex) coefficients. Here as usual

a== (ai, .. ., aj

is a multi-index, with a; nonnegative intergers, and

|a| == Sa, ; D01 == D?*D^ . . . D?", where Df1 == (-^Y1-

For an operator A = Sa^D", the formal adjoint operator
A of A is

A = 2 (- l^laj)01.

If /*<= Co, A e 2, A/* is defined in the distribution sense; thus
we say A/* is equal to a function h e Co if and only if for every
ye®,

f(^)f=fh^
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Following de Leeuw and Mirkil ([!]), a subspace B of Co
is said to be a space of differentiable functions if

B = Co(a) = [f^ Co : At e Co, VA e cX|

for some subset a of 2. A space of differentiable functions
which is invariant under all rotations in R" (the precise sense
of which will be defined in the next section) will be called a
rotating space of differentiable functions. Examples of such
rotating spaces are C? = Co(^), where ^ stands for all
operators in 2 of order not exceeding N; and also the space
Cc° == Co (2) = n C^. A space of differentiable functions which
is not Co" and not any Co? will be called a proper space of
differentiable functions. In [I], de Leeuw and Mirkil studied
spaces of differentiable functions on R2, giving a complete
classification of all the rotating ones. Other results are that
each rotating space of differentiable functions is an algebra,
under pointwise multiplication, and that except for C^,
each is a Banach algebra, under a natural norm. In obtaining
the classification theorem, an essential role is played by the
fact that rotations in R2 form a commutative group. Even
though this is no longer true for R", n > 2, it is found that
their results can also be extended very naturally to higher
dimensions. The purpose of this work is to present these
extensions.

Of necessity, then, we must repeat most of de Leeuw and
Mirkil. In particular, we list here all the preliminary proposi-
tions that are relevant to us. For proofs and other details
the reader is urged to refer to [1]. For a space of differentiable
functions B = Co(<9L), we define

€XB= | A e a : A f ^ C o , V f e B j ;

thus da is a subspace of 2, B == Co^a) and OB => CX. We
endow the space Co(<X) with the locally convex topology given
by the semi-norms \\f\\, ||A/1|, A e= el. Each Co(eX) is a Frechet
space, in which 2) is dense. If Co(CXi) === Co^Xg), the topologies
defined by CX^ and Cig coincide. Thus, for any space of dif-
ferentiable functions B, one may speak of the topology r(B)
of B, without reference to any (X for which B=Co(eX).
The following simple proposition plays an important role in
the classification of spaces of differentiable functions :
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PROPOSITION 1.1. — Let B; = Co(<9L^ ^ == 1, 2. TAen ̂
following are equivalent:

1° Bi c Bg.
2° r(Bi) D^Bg), W/I^TI restricted to 3).
3° For eacA A e (fig, ^r<° exist Ai, . . . , A^ <== 0i^ and

K ;> 0, such that for all y e ® ,

||A9||<K(||9|| + S 1|A,9||\
\ i /

Sup-norm estimates of this kind contain useful information
about the operators :

THEOREM 1.2. — Let Ai, . . . , A^<=a , with orders < N.
Suppose A e Q and that there exists K > 0 such that

|A9(0)[<K(||9|| + S ||A,9|[\ 90®,
\ i /

then A has order <; N; and the homogeneous part of A of
order N is a linear combination of the homogeneous parts of
Ai, . . ., A^ of order N.

As a direct consequence of this, we have, if A has order N,
then there exists fe C^~1 such that A/*^ Co. This also implies
that (9L^ = SN.

Spaces of differentiable functions which lie between C^
and C^~1, for some N, will be said to be squeezed. If
B==Co(<9L) and C? c B c Cj?-1, then the linear space [0L, 2^_i]
spanned by (9L and Q^-i is clearly contained in 0L^ On
the other hand, each A e (Sig maps B continuously into Co,
so that A can be estimated by a finite number of operators
Ai, . . ., A, e a c 2^i. By Theorem 1.2, A e [<9L, %,_,]. This
gives Corollary 1.3 below, from which Corollary 1.4 can
established as a consequence.

COROLLARY 1.3. — If B=Co(B) and C^ c B c C^-1, then

eXa = [a, ^_i].

COROLLARY 1.4. — The map OL -> Co{0i) is a one-one
correspondence between subspaces 0L of 2 satisfying
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QN-I c (ft c 3^ and spaces of differentiable functions B with
C^ c B c C^~1. T7^ inverse of this map is the map B —> (Sip.

Let B be a space of differentiable functions, C^ c B c C^~1,
and let A e= (Sta. Leibnitz's rule shows there are AJ, A^ e 2,
with orders less than that of A, such that

(1.1) A^ = yA^ + ^Ay + SA;yA^, 9, ^ e 3).

Since QN-I c <^B? AJ, A^ e (fig also. Since 2 is dense in B,
equation (1.1) extends to 9, ^ e B. This implies that B is
closed under pointwise multiplication. Since (Sta e Q^, CXe is
finite-dimensional, so that the sum of the semi-norms given
by a basis for (^IB is indeed a norm. One can also check that
the multiplication is continuous on B X B. Thus :

THEOREM 1.5. — Every squeezed space of differentiable
functions is a Banach algebra.

In the next section we will show that every rotating space of
differentiable functions is squeezed. Section 3 contains the
main result, namely the classification of these rotating spaces
on R", n > 2. Section 4 contains extensions to spaces of
differentiable functions on C" invariant under the group
U(yi) of unitary transformations in C".

2. Squeezing of Rotating Spaces.

Let G be a group of invertible linear transformations
in R71. For each ( T € = G and / ^ R / ' — ^ C , we define R^f by

(R,f)(x)=f^-lx), x^R\

Each R(j is an algebra isomorphism of, say, Co; and the map
(T -> Rg is a homomorphism of G. We also define the action
of G on 2: for A e 2, SiyA. is given by

(^A)9 = (R, o A o R^)9, 9 e 3).

It can easily be checked that if o-^ == Sc^y, where |<°^ is

the standard basis of R" then ^( — ) == SIc» — • Since 3{y\^xJ ^xj
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is linear and multiplicative, this shows that 3{y maps 2
into 2, and indeed is an algebra isomorphism of 2. Again
o- -> 9{y is a homomorphism of G.

Let S be the space of all polynomials in x^ . . ., x^ with
complex coefficients. If A e 2, with A = P(D), P e S , the
characteristic polynomial of A is defined to be the polynomial
A, with A.(rc) = P(^), ^ e R". For each o- e 0(n), the group
of orthogonal transformations in R", we have

(2.1) §CA == R,A,

that is, the map A —> A commutes with 0(n). This is easy

to check for the operators —? i = 1, . .., n\ and this is all
^Xi

we need to check, since A —> A is an algebra isomorphism of
2 and 2.

A subspace of Co (or of 2) is said to be invariant under
G if it is invariant under all Rcr, (or, respectively, 9iy), o- e G.
We will restrict ourselves here to the group G == S0(n)
of all rotations in R", although what follows in this section
also holds for the group 0{n). We retain the terminology of
de Leeuw and Mirkil: the word rotating is used to mean inva-
riant under SO(yz). It is clear that if B is a space of diffe-
rentiable functions, B is rotating if and only if (XB is rotating;
and by (2.1), this occurs if and only if (XB == |A.: Aed^ j
is a rotating subspace of £. For any P e 2, let P1 denote the
homogeneous part of P of degree Z. It is simple to check
that (RaPy = RoP^ consequently if X is a rotating subs-
space of £, then so is X ' = | P ^ P e X ^ .

We call a set of differentiable operators |Ai, . . . , A^
an elliptic system of operators of order N if each Ai has order
not exceeding N and if the polynomials Aj^, . . ., A^
possess no common zero in R" except at the origin x == 0.

LEMMA 2.1. — Let B be a rotating space of differentiable
functions. If €L^ contains an operator of order N, then any
basis of the space €i^ n Sly is an elliptic system.

Proof. — If jAi, . . . , A^j is a basis of (fin n 2^, then
PI == AI, . . ., P^ = A^ form a basis of X == da n 2,N,
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and P?, . . ., P^ span X^ If XQ ̂  0 is a common zero of
^P^, each Pe XN must vanish at x^ and by homogeneity
also at cxo, c > 0. For each x e R", there exists (T e SO(^),

^;==M^ g^hat P(^) = (RW^Y^ 0, since XN is
l^ol \ |^o| /

rotating. Thus X^ = [ 0 ^ , contrary to the assumption that
de has an operator of order N.

Our purpose in this section is to show that any rotating
space of differentiable functions B =^= C^ is squeezed, and
therefore, in view of Theorem 1.5, is a Banach algebra. This
follows easily from the following.

THEOREM 2.2. — Let |Ai, . . . , A^j be an elliptic system
of operators of order N. For each A e 2 with order o(A) <; N,
there exists K > 0, such that

| |A9||<K(j|9||+2||A,y|l) 90®.
\ i /

Let us first derive from it the squeezing theorem. If B is a
space of differentiable functions such that (Sin contains an
elliptic system ^Ai, . . ., A^| of order N, then

B=Co(<9LB)cCo|Ai, ..., A^cC?-1,

by Theorem 2.2 and Proposition 1.1; thus (^=^N-1. Now
if OLa is rotating and infinite-dimensional, Proposition 2.1
shows ^LB contains elliptic systems of arbitrarily high order,
so that <XB == a and B == C^. If CZp is rotating and B =^ Co0,
let N be the smallest positive integer such that OL^ c SN.
The same argument then shows that (XB^QN-I. Thus:

THEOREM 2.3. — Let B be a rotating space of differentiable
functions. If (fle is infinite-dimensional, B == C^. Otherwise
there is a positive integer N such that Co? c B c C^~1.

Theorem 2.2 is a slight extension of a corresponding theorem
of de Leeuw and Mirkil ([2]) concerning domination by a
single elliptic operator. Our proof here will be also a mere
modification of theirs. The proof relies on the following two
theorems, both of which were proved in [2].
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THEOREM 2.4. — Let A, Ai, . . . , A ^ € = 2 Aa^ characte-
ristic polynomials P, Pi, . . ., P^. Then there exists K > 0
5iAcA that

m

||A9Jl<K5||A.yl|,
1

for all 9 e 3), if and only if
m

P = S M.P.
1

for some Fourier-Stieltjes transforms Mi, . . ., M^.

THEOREM 2.5. — If f is a homogeneous function on
R" — \ 0 \ of degree — k, k a positive integer, and is infinitely
differentzable, then f is a Fourier transform near infinity.
That is, there is a function in L^R") whose Fourier transform
agrees with f outside some compact set.

We now prove Theorem 2.2. We will show that if Pi,
P^ e= £ have maximum degree N and if P^, . . ., P^ have
no common non-zero zero in R", then for any P <= £ with degree
< N — 1, one can find Fourier-Stieltjes transforms M,
Mi, . . ., M^ such that

(2.2) P = M + 2 M,P,
i

It suffices to prove (2.2) when P is homogeneous. First consi-
der the case when all the P'^s are homogeneous of degree N.
Then S|Pi|2 has no non-zero real zero, and we define

(2.3) N,̂ j|H, ^0.

Each N; is a Fourier transform near infinity, by Theorem 2.5.
Let ^ be a C°°-function, zero near origin and 1 outside some
appropriate compact set. Define M, = ̂ N,; then M; e C00

and agress with N^ near infinity. Each M; is a Fourier
transform. (For if M, = h, outside a compact set K, let
9 e ®, y = i on K. Then ^(M, — A,) = M, - h,. But y
and yM^ are Fourier transforms, being functions in 3).)
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From (2.3), SM^ = P near infinity, so that to obtain (2.3),
we need only define M === P — SMiP;.

For the general case where the PJs are not homogeneous,
we have

2|P.P=SlP.T(l+^

where Q is a polynomial of degree not exceeding 2N — 1.

,̂ • is a Fourier transform near infinity, by Theorem 2.5

applied to each homogeneous part of Q. Let K be a compact

neighborhood of the origin outside of which ^ , . ' g <; 1;

choose a C^-function ^, 0 <; ^ <; 1, which is zero in a
neighborhood of K and 1 near infinity. Define

/O A\ M = ^ppi 1
^) ll ^Wi+WIW2)'

then Mi e C°° and 2M;Pi = P near infinity. Set

M = P — SM»Pi,

then M e ® and so is a Fourier transform.
It remains to show that the M^s are Fourier-Stieltjes

transforms. Now ' ~ ,o ^d each ' . are Fourier^'l1^ ^ A ^ A
transforms, by our previous arguments; therefore it suffices
to show that

1i+ww
is a Fourier-Stieltjes transform. This follows from a well
known theorem in Banach algebras : If B is a commutative
Banach algebra, x e B, and if F is an analytic function defi-
ned on some open set in C including the spectrum of re,
and F(0) == 0 in case B has no unit, then F o x == y for
some y e B, where x denotes the Gelfand transform of x.
In the present case B == L^R") and the Gelfand transform
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is simply the Fourier transform. Let T x == f, fe L1, then
1 j }

the spectrum of f is contained in the open unit disk, since

Fourier transform, and therefore

^-7==l-^:7
is a Fourier-Stieltjes transform, 1 being the transform of the
unit mass at origin. This completes the proof of Theorem 2.2.

3. Classification of Rotating Spaces.

Let ON be the space of homogeneous differential operators
of order N; 2^ the space of homogeneous polynomials in
R" of degree N. The mapping o- —>• 9{y is a representation
of the group S0(n) in ON. Since a representation of a com-
pact group is completely reducible, the space ON can be
expressed as a direct sum of a family of irreducible invariant
subspaces:

(3.1) ON==e^S, : /e l ^ .

If iSj: / e INJ comprises all the irreductible subspaces of ON,
then (3.1) is the unique decomposition of ON into a direct sum
of irreducible subspaces. (The converse is also true, as can be
easily seen, since any representation of a compact group is
equivalent to a unitary representation.) The following propo-
sition is simply a re-wording of a theorem in [1] in a slightly
different context.

PROPOSITION 3.1. — Suppose ON = €) |Sy : / e I^j is the
unique decomposition of ON into a direct sum of irreducible
rotating subspaces, then:

lo if <X == 0 S^, J a proper subset of IN, then CoW
jej

is a proper rotating space of differentiable functions and
C^cCoWcC^1 .
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2° if j^j, anrf a;= ® s,, 1=1, 2, ^n Co(ai)^Co(<^).
J € J(

3° If B i$ a proper rotating space of differentiable functions
and Q c B c Q-1, ^en B = Co(c9L) for some (ft = © Sy,
J a proper subset of IN. ^ e j

Proo/'. — lo If CX = © S,, then 0 contains an elliptic
y e j r

system of order N, since each Sy does. Thus Co(eX) c C^-1,
as in the proof of Theorem 2.3; Co(<9L) D q trivially, so that
Co(CX) is squeezed and 0^0) = CX © ̂ -i by Corollary 1.3.
This implies Co(<9L) is rotating, since <9Lc^cl) is. It is easy to
check that Co(<9L) is proper.

2° Co((9Li) = Co(e4) implies
a! ® ̂ N-i = eic^a,) == (9 )̂ = ̂  e 2^-1,

so that CXi === (9.2, which is impossible since Ji ^= Jg and the
spaces S,, / e 1 ,̂ are linearly independent.

3° (i) CXB is rotating and ^-i c 0X0 c Q^. Let (9L = elB n ON.
It is easy to check that (9L is a proper subspace of ON. <9L is
rotating, so the complete reducibility of the representation
o- -> ̂  applies; and by the uniqueness hypothesis, each
irreducible rotating subspace of CX must be some Sy, j e 1 ,̂
so that (9L = (]) Sy, for some proper subset J of Lj

J'ej
(ii) We must show that B==Co(<9L). By lo, C? c Co(CX) c Q-1,

so that (9Lc^i) = (9Le2N-r In view of Corollary 1.4, we must
show that (9LB=(9L©2N-r <9La ^ C9L © ^N-1 by definition of a
If Ae(9LB, then A^ = A - (A - A^) e (9La + ̂ -i == ^B; thus
A ^ c X B n O N ^ C X and A = AN + (A - A^ e ae2N-r This
proves (9Lp = (9L e ̂ -1.

It is clear, from the commutativity of the isomorphism
A -> A with rotations, that we may just as well work with the
representation (T -> R^ in 2^. For any subspace X of S^
and any integer k > 0, denote by r^X the space
^P:Pe=X^ where r2 = S .̂ Let ^ stand for the
subspace of ^ consisting of harmonic polynomials. 3^ is
rotating, since the Laplacien A = 2D2 satisfies S^A == A
for all rotations a-. Now it is known that for all n > 2, one
has

(3.2) ^==^er^N-2.
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(See, for example, [4], p. 127, where it is shown that
^ == 38^ -(- r2S^^. That the sum is direct is also known and
quite simple to check.) As a consequence,

(3.3) 3?N= © r̂ N-2..
0^2w^N

The following theorem, given by Brelot and Choquet ([3]),
is precisely what we need here :

PROPOSITION 3.2. — Let n ̂  3.
1° The action of S0{n) on each 3€y is irreducible.
2° Any irreducible rotating subspace of Sy must be some

r^^N-^m- In other words, (3.3) is the unique decomposition
of SN into a direct sum of irreducible invariant subspaces.

We sketch a proof of 2° here, since we will have to refer to
the proof again in the next section. (The proof is somewhat
different from that given in [3], but its essence is really
contained there.) First, some simple remarks :

(i) Ra ° A = A o R^ on £.
(ii) For any P e S ,̂ Ar^P = cr21?, where c > 0 depends

only on N, I and n.
(iii) If /IN denotes the dimension of <%N, then AN is

strictly increasing with N, for each n ̂  3. (For n = 2,
AN == 2 for all N > 1.)

(i) is trivial, (ii) is obtained by direct computation, using
Euler's identity for homogeneous polynomials; (iii) follows
from an examination of formula (3.2).

LEMMA 3.3. — Let X be an irreducible rotating subspace of
SN+2H-2. If AX == ^XN, then X == r^+^N.

Proof. — A : X —> r^S^N isomorphically, otherwise the
null space of A in X is a proper rotating subspace, by (i).
Let Pi, . . ., Pfc, k = AN? be a basis of S^N. Choose a basis
Qi? - • • ? Qfc? °f X, such that AQ, == cr^Pi, where c is the
positive constant given in (ii). Thus

A(Q, - r^Pt) = 0, i= l , ..., ^.

We wish to conclude that Q; = r24"2?, for all i. If this is
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not the case, |Q^ — r2^2?^ would span a non-zero subspace
Y of ^N+2H-2. Now AR,Q,= R^Q^cr^P,; thus if

(3.4) R,P, = 2a,,(<T)P,,

we have A(R^ - Sa,,((7)Q,) = 0. Since A is injective
on X, this implies

(S-5) RoQ, = 2a,^)Q,.

Equations (3.4) and (3.5) imply that Y is rotating; thus
Y = ^N+2^+2, by the irreducibility of ^N+2^2. But this
would imply ^N+2^2 ^ h^ which is absurd by (iii). This
proves the lemma.

Part 2° of Proposition 3.2 follows immediately. If X is a
non-zero irreducible rotating subspace of Sy, let m be the
non-negative integer such that ^X ̂  \0\ but A^X =i0i.
Then ^X = 3^N-2m? and repeated application of lemma 3 3
yields X == r27" .̂.̂ .

Proposition 3.2, in conjunction with Proposition 3.1, gives
us a complete classification of all rotating spaces of differen-
tiable functions on R", n > 3. Before summarizing the results,
let us make some side remarks here. The spaces 3^ are
actually invariant under the group 0(n), instead of simply the
subgroup S0(n). This is clear since ^A = A for all creO^).
For the case n = 2, the decomposition of S^ into irreducible
rotating subspaces is

(3.6) ^N== © |W],•n
»»4-n==N

where z = a; + iy, z = a; — iy, and f^z"] denotes the
subspace of ^ generated by the polynomial z"1 "̂. This can
be obtained by noticing that any irreducible representation
of a compact commutative group is one-dimensional. (See
[1J). NoteJ;hat a reflection of axis, say y -> — y, sends
zV to z"z'», so that [z'"z"J is not invariant under 0(2)
unless m = n. In fact, one sees that the irreducible invariant
subspaces of Sy, under 0(2), are precisely the subspaces
[zV, zV] = r2"- .̂̂  (if m<n) . Thus, the decomposition
of Sy under 0(2) is also given by formula (3.3).

We summarize the results. Let 3^ denote the space of



ALGEBRAS OF DIFFERENTIABLE FUNCTIONS 273

homogeneous differential operators in 3 of order N with
harmonic characteristic polynomials; thus 3^ == <%N . A^N
will mean the obvious thing : A^N = r2^^^. We have shown

THEOREM 3.4. — Let

^(Rn)= {W^: i=0, 1, ..., [N/2]^.

Then, for all n ̂  2,

1° J/1 (9L is a sum of a proper subset of ^(R"), ^n Co(^l)
is a proper space of differentiable functions, invariant under 0(n)
and squeezed between C^ and C^~1.

2° Distinct subsets of ^(R") g^ distinct spaces of diffe-
rentiable functions.

3° Any proper space of differentiable functions between C^
and C^~1 and invariant under 0{n) must be a Co(<St), where
€L is a sum of some proper subset of ^(R").

For n ̂  3, the above description also gives all the spaces of
differentiable functions invariant under S0(n).

Note that the number of distinct proper spaces of diffe-
rentiable functions, between C^ and C^~1 and invariant
under 0(n), is the same for all n ̂  2. ^(R") consists of
only one element, so that there is no such proper invariant
space between C^ and Co. Note, however, for n = 2, we do
have two proper rotating spaces of differentiable functions
between Co and Co, from the results of de Leeuw and
Mirkil. An example for n === 3 : the two proper rotating spaces
of differentiable functions between C| and Co are

C(A). C / ̂  ^ , ^ ^, ^ . ^ , a2 \
0 °\^ 1̂ 1̂ ^4 ^1^2 ^2^3 ^3^1 /

The group 0(n) is the group of linear isometries of R\
The de Leeuw-Mirkil rotating spaces on R2 can be considered
as the spaces of differentiable functions on C1 invariant
under the linear isometries of C1, since these are precisely
all the rotations on R2. Thus the next question to ask is :
What are the spaces of differentiable functions on CS", n ̂  2,
invariant under the linear isometries of C"?
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4. Invariant Algebras of Differentiable Functions on C",

We identify C" with R2" by

(^i? ..., ^n)——(^i, . . . , x^ yi, . . . , yj,

where Zj = Xj + iyjy ]' == I? • • • 9 ^- For functions on C",
continuity and differentiation are defined in terms of corres-
ponding functions on R271. Naturally we define the spaces of
differentiable functions in (^(C^) to be just the spaces of
differentiable functions in Co(R271). The group of linear
isometries of C" is the group V(n) of unitary transforma-
tions, which can be considered as a subgroup of 0(2n) when
we identify C71 and R2". Our problem here is simply to
find all spaces of differentiable functions in Co(R2") which are
invariant under this subgroup. One therefore expects a larger
number of these spaces than there are such invariant under
0(2n). This is already seen to be the case when n = 1. In
this section, whenever the word invariance is used, it will be
understood to mean invariance under the group U(n). The
result of section 2, namely that invariant spaces of differen-
tiable functions are squeezed, remains valid here, since one
has only to modify trivially the proof of lemma 2.1, noting
that the group U(n) acts transitively on the unit sphere
of C\

The space 2 == Q(R271) is the space of all polynomials in

— ? — • With the notation
^Xj ^yj

A — J- / ^ _ • b \ A = JL / 6 _i • b \
^~y\^~ l^/ ^~ 2 \^Xj \y,]

Q is the space of differential operators of the form

V / ^ V/ 6 '
^a8 —— } [~

'\^Z \^Z

where

^JL Y == ̂ -(L^al f-^-^ ( ̂  = ̂ -^-Y1 . (-^^
^z) \(^J " \ ^ n ) ' \^) ~\^J " \ ^W
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Note the characteristic polynomial of — is a multiple of Zj.
bz/

The isomorphism A —> A takes operators A e Q into poly-
nomials in ^i, . . ., z^ Zi, . . ., z^

DEFINITION. — S is the space of polynomials in 2n variables
^i, . . ., x^ 2/1, . . ., y^ SN the subspace consisting of polyno-
mials homogeneous of degree N. For P e 3?, let £ be the
function on C" given by

P(zi, . . ., zj = P(zi, . . ., ^, Zi, . . ., ^),

or IM 5/iort, P(2?) == P(z, z). TAe collection |P : P e £^^ q^H
&^ denoted by ^N.

The coefficients of the polynomial P can be expressed in
terms of the derivatives at z = 0 of the function P. Thus
P(jz) ==0 for all zeC" implies P is the zero polynomial;
in other words Sy and ^ are isomorphic. The map A —> A
gives an isomorphism of ON and ^; thus the problem of
classification of invariant spaces of differentiable functions
on C71 amounts to finding all irreducible invariant subspaces
of SN.

DEFINITION. — For any two non-negative integers p, q,
let S^q} be the subspace of 2 consisting of polynomials which
are homogeneous of degree p in the variables x^ . . . , x^
(as polynomials over C[j/i, . . . , Vn\)^ an(^ homogeneous of
degree q in y^ . . ., y^ (as polynomials over C[^i, . . ., x^\).
P^'^ will stand for the space of all P for which Pe=f£(^);
a function P e ̂ '^ will sometimes be said to be of type (p, g).
3.g(p,g) ^[\\ stand for the subspace of ^P1q>) consisting of all P
which are harmonic.

To avoid confusion with notations, let us note here that
PeW^^ does not mean that P is harmonic; of course the
polynomial P*, given by

P*(a;i, . . ., x^ 2/1, . . ., y ^ ) == P(^i + iyi, . . ., ^ + ^/n),

is harmonic. Note that if P €= ̂ , then P*e2'N; but if
Pe^), P* does not have to be in S^^.

Clearly ^^c^. In fact, each P e S^'^ is of the
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form Saap^yP, |a| == p, |(3| = q. One can easily check that if
{P,} is a basis of S^°\ [(^} a basis of S^°^\ then |P(Q,J
is a basis of S^^. Thus

(4.1) dim 2^ = dim S^°\dim a .̂

The distinct spaces S^9^ p + q = N, are linearly inde-
pendent. For let £(P^i\ i == 1, ..., k, be these and P, e= ̂ ^'^
with Pi + • • • + P/c == 0. Replacing x by tx, t > 0, we
have ^*Pi + • • • + ^Pk == 0. Suppose pi is the smallest
of the p/s$ divide the above result by t^ and then let
t -> 0, we have Pi == 0. Similarly the others. Since each
P < = ^ N is of the form Saaj^y^ with | a |+ |p |=N, we
conclude that

(4.2) ^= © ^\
P+?=N

One can verify directly that S^'^, 3^19^ are invariant
under U(n). Also, if Pe^^), then

W/^Ype£(P-!^^Pl)
W \^/

The following fact can be proved in exactly the same manner
as the corresponding fact (3.2) :

(4.3) ^g) = 3^1 ̂  e r2^-1' q-l\

A. direct computation from (4.1) and (4.3) shows that for
yi>2,

(4.4) dim ^<p-lt M) < dim ̂  g), p > 1, q > 1.

With slight modifications, the proof of 1°, Proposition 3.2,
also carries over. Thus, for n ̂  2, the action of U(n) on
each S^^^ is irreducible. A simple consequence of this,
although we do not need it here, is that ^(pt?) has a basis
consisting of functions of the form

n V/ n \^\p f n. \y
?S^) S^,i / \ i /

with a;, &i e C such that ^ ̂ i == 0.
i
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Clearly ^N) == ̂ N), ^ °) == ̂  °). These are the only
^g) which are irreducible; for if p =^ 0, q ̂  0, ^(p> g) is a
proper subspace of '̂̂ ), since Azfz^^O. Repeated appli-
cation of (4.3) gives

(4.5) So^)=== ® (̂p-i.̂
O^i^ min(P,g)

which, together with (4.2), yields a decomposition of Sy as a
direct sum of irreducible subspaces :

(4.6) SN= ® r2^1^.
2i-+-y+fc==N

With the aid of (4.4), the proof of 2°, Proposition 3.2, can be
carried out without change, showing that the only irreducible
invariant subspaces of 3^ 9) are the spaces r21^^"1' ̂ i),
i == 0, 1, . .., min (p, g). That (4.6) indeed gives the unique
decomposition of Sy as a direct sum of irreducible subspaces
is shown by the following lemma.

LEMMA 4.1. — Any irreducible invariant subspace of £y
must be a subspace of some S^^y p + q == N.

Proof, — In other words, we want to show that all elements
in an irreducible subspace X of ^ must be of a single type.
(Clearly, the type must be the same for all elements in X,
since X is irreducible.) If P e X, P ^=. 0, then by (4.2),

N-4-1

P == 5 P^ where P^e 2^9^ and f<^>, / == 1, . . ., N + 1,
i ^ ^

are the distinct S^'^s of ^N. Thus we wish to show that all
except one of the P/s must be zero. Suppose the contrary;
in fact let us suppose that none of the ?/s are zero, since the
following argument remains valid for other cases as well.
Consider the unitary transformation

(T : Zj —> e^^Zj, a e R,

then R<jP = ^ e^-^Pj. Now pj + qj == p^ + q^ so that
J

if Pj — ^ == Pk — qk, we would have (pj, qj) == (p/,, ^).
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N+l

Thus R<jP = ̂  e^Pj, where the X/s are distinct integers.

Hence for |a| sufficiently small, e^'} -=f=- e1^ if / =7^= k. We
may also consider the maps Zj -> e'^Zj, with [JL == 2, . . ., N.
Altogether we see that X must contain the elements

N+l

S^-P,, i^=0, 1, . . . , N.
y=i

The determinant of the matrix (e1^')^^ ...,N+I is just the Van-
P.=0','.'..','N

dermonde determinant, and since ^e1^^ are distinct, it is not
zero. This implies that X must contain each Py, /' = 1, . . ., N,
which is impossible since, being irreducible, X cannot contain
elements of different type.

Let us finally remark that for the case n = 1, there are no
^g(p.<?) with p=^0, y^O. For any PeS^^ is a multiple
of zpzq=r2Pzp-q (if p>q), so that ^'^ == r2^-^ °>
in this instance. In other words, each S^9^ is irreducible,
and all constituents in the sum (4.5) collapse into one. We now
summarize the results. Let X^'^ denote the space of homo-
geneous differential operators A with A <= ̂ ^'^ We have
proved

THEOREM 4.2. — Let
^(C") == JAW'^ : i, /, k non-negative integers, 2i + / + k = N^
where, for n == 1, ^ 15 understood that the spaces A1^'^ /br
which both j and k are non-zero are to be deleted from the list
3^(C!1). Then for all n > 1,

1° //' (9L ^ a 5^m o/* a proper subset of ^(C"), (Aen Co(<Sl)
is a proper invariant space of differentiable functions on C",
squeezed between C^ and C^4'1.

2° Distinct subsets of 9^(0") give distinct spaces of diffe-
rentiable functions.

3° Any proper space of differentiable functions on C",
between C^ and C^~1 and invariant under U(n), mu^t be a
Co(<St), where Gi is a sum of some proper subset of 9^(0").

Finally, some examples. ^(C2) consists of two elements :

3t(o.i) ^[A, A1. ^(i.o)^
x / bzi OzJ'
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^(C2) consists of four elements :

'""'-S'̂ -SI' 3ta•w' ^-w:
K<"> = r-^-, ̂ -, -6'- - -"•-i.

L&ZI OZz ^2 ̂ l î (»Zi OZa tegj

3'3(C2) consists of six elements :

.-K(o.3) _ r^ , _^_, ^ ^-|. w,o).
"bzi' tei^' <^<^<1' •)i '

A^t<('•l)=^A-6-, A-^-l; A3t<1-0);
L Ozi OzJ'

3t(i,̂  f ^ , _^_, _^^ _ 2—^3—,
L^ î bZ 2 ^^1 ^^ i ^ )̂̂  i )̂̂ i ()̂  ^Z 2

-^--2-^—1; ^^.
bZ2^2 ^i^Zi^J
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