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SURJECTIVITY OF SIEGEL Φ-OPERATOR FOR
SQUARE FREE LEVEL AND SMALL WEIGHT

by Siegfried BÖCHERER & Tomoyoshi IBUKIYAMA (*)

Abstract. — We show the surjectivity of the (global) Siegel Φ-operator for
modular forms for certain congruence subgroups of Sp(2,Z) and weight k = 4,
where the standard techniques (Poincaré series or Klingen-Eisenstein series) are
no longer available. Our main tools are theta series and genus versions of basis
problems.
Résumé. — Nous démontrons la surjectivité de l’opérateur Φ de Siegel pour des

formes modulaires pour certains groupes de congruence de Sp(2,Z) et de poids 4,
où les techniques standards (séries de Poincaré ou séries de Klingen-Eisenstein) ne
marchent pas. Nous utilisons des séries thêta et le problème de base pour plusieurs
genres.

1. Introduction

The difference of dimensions between Siegel cusp forms and Siegel mod-
ular forms is well-understood when the weight is big enough. But not much
is known for small weights, in particular for congruence subgroups, and we
need special care in these cases. Our aim of this paper is to show surjectiv-
ity of the global Siegel Φ-operator for Siegel modular forms of degree two
with respect to a certain discrete group for weight k > 4. Satake proved the
same result for k > 5 in [17] by using the Poincaré series but the argument
there does not work for k = 4 since the series do not converge for such
a small weight. Besides, the Hecke trick seems difficult either for Poincaré
series or Klingen type Eisenstein series. We prove the surjectivity by apply-
ing the affirmative answer to the precise basis problems on modular forms

Keywords: Siegel modular form, Φ-operator, Theta series.
Math. classification: 11F46, 11F27.
(*) The second author was partially supported by JSPS Grant in Aid, Scientific Resarch
A, No. 21244001 during the preparation of this paper.
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of one variable for each genus and obtain a new result for k = 4, including
the vector valued case.
Now we explain the details of our statement. For any ring (or a field) R,

we denote by Sp(n,R) the group of 2n × 2n symplectic matrices over R,
i.e.

Sp(n,R) =
{
g ∈M2n(R); tgJng = Jn

}
where we put Jn =

( 0 −1n
1n 0

)
for the n × n unit matrix 1n. We denote by

Γn = Sp(n,Z) the usual Siegel modular group of degree n. For any positive
integer N , we define a Hecke type subgroup of Γn of level N by

Γ(n)
0 (N) =

{(
A B

C D

)
∈ Γn;C ≡ 0 mod N

}
.

When n = 1, we omit n and simply write Γ0(N) = Γ(1)
0 (N). For any non-

negative integer k, we denote by Ak(Γ(n)
0 (N)) the space of holomorphic

Siegel modular forms of weight k belonging to Γ(n)
0 (N). We denote by Hn

the Siegel upper half space of degree n and by S(N) the Satake compactifi-
cation of the analytic space Γ(2)

0 (N)\H2. We denote by Bd(N) the boundary
of S(N). The boundary components of Bd(N) are modular curves and they
intersect at various cusps of those curves. (cf. I. Satake [15].) The modular
forms of weight k on Bd(N) are by definition modular forms of weight k
on these components taking the same value at each intersection point. We
denote their space by Ak(Bd(N)). We denote by Sk(Bd(N)) the subspace
of cusp forms in Ak(Bd(N)), or equivalently the space of forms which van-
ish at all the zero-dimensional components. One-dimensional components
of Bd(N) are called one-dimensional cusps. They correspond bijectively
with double cosets Γ(2)

0 (N)\Sp(2,Q)/P2,1(Q), where P2,1(Q) is the maxi-
mal parabolic subgroup of Sp(2,Q) defined by

P2,1(Q) =



Q 0 Q Q
Q Q Q Q
Q 0 Q Q
0 0 0 Q


 ∩ Sp(2,Q).

For any good function F on H2, we define a function Φ(F ) on H1 by

(ΦF )(τ) = lim
λ→∞

F

(
τ 0
0 iλ

)
.

We choose representatives of the above double cosets as

Γ(2)
0 (N)\ Sp(2,Q)/P2,1(Q) =

d⊔
i=1

Γ(2)
0 (N)giP2,1(Q).

ANNALES DE L’INSTITUT FOURIER
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For any g = (A B
C D ) ∈ Sp(2,R), we write j(g, Z) = det(CZ + D). For any

function F on H2 and any integer k, we write

F |k[g] = j(g, Z)−kF (gZ)

where gZ = (AZ + B)(CZ + D)−1. Then as in Satake [16], we can define
a global Siegel Φ-operator Φ̃ of Ak(Γ(2)

0 (N)) to Ak(Bd(N)) by

Φ̃F = (Φ(F |k[gi]))16i6d.

Here each Φ(F |[gi]) is a modular form of one variable on the modular
curve corresponding to the component determined by gi. Apparently this
map depends on the choice of representatives gi but not essentially. A Siegel
modular form F such that Φ̃(F ) = 0 (or equivalently Φ(F |k[g]) = 0 for any
g ∈ Sp(2,Q)) is called a cusp form. The space of cusp forms is denoted by
Sk(Γ(2)

0 (N)).

Theorem 1.1. — Assume that N is squarefree and k > 4. Then the
global Siegel operator Φ̃ is surjective, i.e.

Φ̃(Ak(Γ(2)
0 (N))) = Ak(Bd(N)).

Remark. — This is known for k > 6 by Satake. (See [17], Théorème
1.) When k = 2, Φ̃ is not surjective, but when N is a prime, the image is
described explicitly in [10], pp. 192–194. When k = 2 and N is not a prime,
we do not have a definite result yet. When k is odd, the operator Φ̃ is the
zero map since Ak(Bd(N)) = 0.

The above result and the explicit description of the boundary Bd(N)
given in Section 2 gives the difference between dimensions of the space of
cusp forms and the space of all modular forms as follows.

Corollary 1.2. — We denote by t the number of prime divisors of the
squarefree integer N . For odd k, we have Ak(Γ(2)

0 (N)) = Sk(Γ(2)
0 (N)). For

even k > 4, we have

dimAk(Γ(2)
0 (N))− dimSk(Γ(2)

0 (N)) = 3t + 2t dimSk(Γ0(N)).

One way to prove the surjectivity to Sk(Bd(N)) is to show that there
are enough theta series whose linear combinations give enough cusp forms
on the boundary. The behavior at each cusp on the boundary is calculated
directly by transformation formulas of the theta series. This direct method
will be given in Section 6, including the vector valued case. But we have
another viewpoint which seems equally interesting by which we can prove
the surjectivity to the whole Ak(Bd(N)). In order to prove the above the-
orem, we can use surjectivity of a map which we call Witt projection W ,

TOME 62 (2012), FASCICULE 1



124 Siegfried BÖCHERER & Tomoyoshi IBUKIYAMA

and a variant of the basis problem explained first in [10]. We explain this
now. The Witt operator W is a map from holomorphic functions F on H2
to those on H1 × H1 defined by

(WF )(τ, ω) = F

(
τ 0
0 ω

)
.

If F ∈Mk(Γ(2)
0 (N)), then WF is a modular form in Ak(Γ0(N)) as a func-

tion of each τ or ω. In particular, WF = 0 if k is odd. Since F |k[γ] =

(−1)kF for γ =
(

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
, we have F ( ω z

z τ ) = (−1)kF ( τ zz ω ) . So for even

k, WF is written as a linear combination of f(τ)g(ω) + f(ω)g(τ) for some
f , g ∈ Ak(Γ0(N)). This means that WF ∈ Sym2(Ak(Γ0(N))) where for
any vector space V , we denote by Sym2(V ) the vector space of symmetric
tensors of degree two of V . We denote by W the composite map of W and
the natural projection

Sym2(Ak(Γ0(N))) −→ Sym2(Ak(Γ0(N)))/ Sym2(Sk(Γ0(N)))

and call this map the Witt projection.

Theorem 1.3. — WhenN = p is a prime, for k > 4, the Witt projection
is surjective, i.e.

W (Ak(Γ(2)
0 (p))) = Sym2(Ak(Γ0(p)))/ Sym2(Sk(Γ0(p))).

For a squarefree N which is not a prime, there are some constraints
coming from the cusp configuration on symmetric tensors of Eisenstein
series when they are in the image ofW , andW is not surjective in the sense
above, but we can describe the image of W explicitly. This will be given
as Theorem 3.1 in Section 3. The above theorem is proved by solving the
variant of basis problem proposed in [10], p. 194. It seems interesting that
we can prove Theorem 1.1 related with various cusps by using Theorem 3.1
related only with the behavior on the diagonals; the ultimate reason for
this is that we can represent the cusps for Γ(n)

0 (N) by diagonally embedded
matrices of type SL(2).
By the way, the Witt operator W itself is not surjective to

Sym2(Ak(Γ(2)
0 (N))) in general. Indeed Cris Poor informed us of the follow-

ing counter-example. Poor and Yuen have shown that dimS2(Γ(2)
0 (37)) = 2

(cf. [14], Theorem 1.3.) But we have dimS2(Γ0(37)) = 2 (e.g. [18], [13]), so
we have Sym2(S2(Γ0(37))) = 3. We can show that if W (F ) is in
Sym2(Sk(Γ0(N))) for F ∈ A2(Γ(2)

0 (N)) for squarefree N , then F is a cusp
form (see Section 3). So by dimensional reason, the Witt operator is not
surjective for N = 37 and k = 2.

ANNALES DE L’INSTITUT FOURIER
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Traditionally, the Witt operator was often used to describe the structures
of the ring A(Γ) of Siegel modular forms, reducing it to the structure of
Ker(W ) and A(Γ)/Ker(W ). So, it is a natural question to ask to what
extent W is surjective. Furthermore, we should point out that the image
of cusp forms under the Witt operator is closely related to the Gross-
Prasad conjecture as considered in [4]: Indeed, if WF =

∑
c(i, j)fi⊗gj for

cuspidal Hecke-eigenforms F ∈ Sk(Γ(2)
0 (N)) and fi, gj ∈ Sk(Γ0(N)), then

the coefficients c(i, j) should be expressed by square roots of the degree 16
L-function L(F ⊗ fi ⊗ gj , s) at the center point s = 1/2. So, we believe
that our results on the Witt projection answer some natural problems to
be clarified and are worth to be mentioned.
Now we write a short explanation of each section. In Section 2, we quote

the explicit description of irreducible components of the boundary of the
Satake compactification S(N) in [6] and then see how one-dimensional
cusps intersects with each other at zero-dimensional cusps. In Section 3,
we describe natural constraints on the image of the Witt projection W and
state Theorem 3.1 that W is surjective to that space. Taking this theorem
for granted, we prove the surjectivity of Φ̃. The proof of Theorem 3.1 will be
given in Section 4 and 5. In Section 4, we prove that the symmetric tensors
of cusp forms and Eisenstein series modulo symmetric tensors of cusp forms
are contained in the image of W . In Section 5, we show that linear spans
of Eisenstein series tensor Eisenstein series with some constraints modulo
symmetric tensors of cusp forms are contained in the image of W and
complete the proof. These claims are proved by using theta representability
of modular forms of one variables by lattices in a fixed genus. In Section 6,
we shortly show the surjectivity of Φ-operator again, including the vector
valued case of weight detk ⊗Sym(j) with k > 4. Here we give arguments
without using the Witt operator. In Section 7, we give a remark how we
can generalize these to the case of Siegel modular forms with characters.

Acknowledgements. — We thank R. Schulze-Pillot and C. Poor for valu-
able discussions.

2. Structures of cusps of Γ(2)
0 (N)

The definition of boundary components of the Satake compactification
is explained in [15]. We shortly review the general theory of cusps, and
then give explicit descriptions of the cusp configuration for Γ(2)

0 (N) for
squarefree N .

TOME 62 (2012), FASCICULE 1
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2.1. General theory

Let Γ be an arithmetic discrete subgroup of Sp(2,Q). The one-
dimensional cusps of the Satake compactification S(Γ\H2) of Γ\H2 cor-
responds bijectively with Γ\Sp(2,Q)/P2,1(Q) and zero-dimensional cusps
with Γ\Sp(2,Q)/P2,0(Q), where Pn,0(Q) is the so-called Siegel parabolic
subgroup for any degree n defined by

Pn,0(Q) =
{
g =

(
A B

0 D

)
∈ Sp(n,Q)

}
.

Sometimes it is more convenient to take

GSp(2,Q) =
{
g ∈M4(Q);t gJg = n(g)J, n(g) ∈ Q×

}
and define P ∗2,1(Q) or P ∗2,0(Q) by the maximal parabolic subgroup of
GSp(2,Q) containing P2,1(Q) or P2,0(Q), respectively. Since GSp(2,Q) =
Sp(2,Q)P ∗2,i(Q) for i = 0, 1, in the above double cosets we can replace
Sp(2,Q) by GSp(2,Q) and P2,i(Q) by P ∗2,i(Q) respectively. We put

GSp(2,Q) =
d⊔
i=1

ΓgiP ∗2,1(Q).

Here we assume that n(gi) > 0. For any g =
(
a b
c d

)
∈ GL2(Q), we put

ι1(g) =


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 and ι2(g) =


1 0 0 0
0 a 0 b

0 0 1 0
0 c 0 d

 .

When g ∈ SL2(Q), then ιi(g) ∈ Sp(2,Q) for i = 1, 2. If g1, g2 ∈ GL2(Q)
and det(g1) = det(g2), then ι1(g1)ι2(g2) ∈ GSp(2,Q). We also define a
mapping ω1 of P2,1(Q) to SL2(Q) by

ω1


a 0 b ∗
∗ ∗ ∗ ∗
c 0 d ∗
0 0 0 ∗

 =
(
a b

c d

)
.

We put
Γi = ω1(g−1

i Γgi ∩ P2,1(Q)).
For a general discrete group, this might be different from g−1

i Γgi ∩
ι1(SL2(Q)). The one-dimensional cusp corresponding to gi is isomorphic
to Vi = Γi\H1. The usual zero-dimensional cusps of Vi correspond with

ANNALES DE L’INSTITUT FOURIER
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Γi\SL2(Q)/P1,0(Q). Take a representative hj of this set. Then the zero-
dimensional cusp of Vi corresponding to hj is identified with the zero-
dimensional cusp of S(Γ\H2) corresponding to Γgiι1(hj)P2,0(Q). If this is
the same as the double coset for different i, then it means that two one-
dimensional components intersect at this zero-dimensional cusp.

2.2. The cusps of Γn0 (N) and the Atkin-Lehner involution

Now we assume that N is squarefree throughout the paper. We de-
note by t the number of prime divisors of N . Then the representatives of
cusps of Γn0 (N) for each dimension are given explicitly in [6], Lemma 8.1.
In this subsection, first we review this for n = 1 and 2, and then de-
scribe how one-dimensional cusps intersect with each other. First we review
the Atkin-Lehner involution of Γ0(N) (for n = 1). The main reference is
T. Miyake [13], §4.6. For any positive divisor N1|N , there exists an element
γN1 ∈ SL2(Z) such that

γN1 ≡



(
0 −1
1 0

)
modN2

1 ,(
1 0
0 1

)
mod(N/N1)2.

We put

ηN1 = γN1

(
N1 0
0 1

)
.

Proposition 2.1. — The set {ηN1 ; 0 < N1|N} is a complete set of rep-
resentatives of Γ0(N)\GL2(Q)/P ∗1,0(Q), i.e. cusps of Γ0(N). The number
of cusps of Γ0(N) is 2t.

For the sake of simplicity, we denote by κ(l) the cusp of Γ0(N) repre-
sented by ηl with l|N .

For later use, we add one more formula. Let m, l be positive divisors
of N . Let c be the greatest common divisor of l and m, i.e. c = gcd(l,m)
and put l1 = l/c, m1 = m/c. Then we have

Γ0(N)ηlηm = Γ0(N)ηl1m1

(
c 0
0 c

)
.

Now we treat the case when n = 2. By virtue of [6], one-dimensional
cusps of Γ(2)

0 (N) are represented by elements γ ∈ Sp(2,Z) such that γ ≡

TOME 62 (2012), FASCICULE 1



128 Siegfried BÖCHERER & Tomoyoshi IBUKIYAMA

ι1(12)ι2(Jep

1 ) mod p for every p|N where ep = 0 or 1. The zero-dimensional
cusps are by γ such that γ ≡ ι1(Je1,p

1 )ι2(Je2,p

1 ) mod p for every p|N with
0 6 e1,p 6 e2,p 6 1. Since the Atkin-Lehner involutions are more conve-
nient for our purpose than γm, we rewrite the above claim in the following
way.

Proposition 2.2. — We assume that N is squarefree.
(1) A complete set of representatives of the equivalence classes of one-

dimensional cusps of S(N) are given by ι1(ηm)ι2(ηm) for positive
divisors m|N . The number of one-dimensional cusps is equal to 2t.
All the one-dimensional cusps are isomorphic to Γ0(N)\H1.

(2) A complete set of representatives of the zero-dimensional cusps of
S(N) are given by ι1(γl)ι2(γm) where l|m|N . The number of zero-
dimensional cusps is equal to 3t.

We denote by κ1(m,m) the one-dimensional cusp corresponding to
ι1(ηm)ι2(ηm) and by κ0(l,m) the zero-dimensional cusp corresponding to
ι1(γl)ι2(γm).
For the configuration of cusps, we have the following proposition.

Proposition 2.3.
(1) For any l, m with l|N , m|N and any divisor c of l which is coprime

to m, we have

Γ(2)
0 (N)ι1(γl)ι2(γm)P2,0(Q) = Γ(2)

0 (N)ι1(γl/c)ι2(ιcm)P2,0(Q).

(2) The zero-dimensional cusp κ(l) of the one-dimensional cusp
κ1(m,m) ∼= Γ0(N)\H1 in the usual sense coincides in the Satake
compactification S(N) with the zero-dimensional cusp κ0(m1,m1l1c)
where c = gcd(m, l),m1 = m/c, l1 = l/c. In particular, any two cusps
on the same one-dimensional cusp do not intersect.

(3) The zero-dimensional cusp κ0(N1, N2) with N1|N2|N is on the one-
dimensional cusp κ1(m,m) with m|N if and only if there exists
c|(N2/N1) such that m = N1c. In particular, the number of one-
dimensional cusp passing through κ(N1, N2) is the number of posi-
tive divisors of N2/N1.

Before proving the proposition, we check the consistency of numbers. Any
cusp κ(m,m) has 2t cusps. So if we count all the zero dimensional cusps
on each one-dimensional cusp separately, then the total is 2t × 2t = 4t. On
the other hand, denote by the number of prime divisors of N2 or N1 by a
or b, respectively. The choice of N2 is

(
t
a

)
and for fixed N2 the choice of

N1|N2 is
(
a
b

)
. For fixed such N1 and N2, the number of one-dimensional

ANNALES DE L’INSTITUT FOURIER



SURJECTIVITY OF SIEGEL PHI-OPERATOR 129

cusps passing through κ(N1, N2) is 2a−b. So the total of zero-dimensional
cusps counted separately for each component is

∑t
a=0

(
t
a

)∑a
b=0
(
a
b

)
2a−b =∑t

a=0
(
t
a

)
3a = 4t. So the number is consistent.

Proof of the proposition. — The proof of (1) is obvious since
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

× ι1(12)ι2(J1) = ι1(J1)ι2(12)×


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


and the double coset is determined only by modulo N . To prove the rest,
we consider everything in GSp(2,Q). So the one-dimensional cusp corre-
sponds with Γ(2)

0 (N)ι1(ηm)ι2(ηm)P ∗2,1(Q) and the zero-dimensional cusp
with Γ(2)

0 (N)ι1(ηl)ι2(ηm)ι1
(
m/l 0

0 1

)
P ∗2,0(Q). Now we have

Γ(2)
0 (N)ι1(ηm)η2(ηm)ι1(ηl)ι2

(
l 0
0 1

)
P2,0(Q)

= Γ(2)
0 (N)ι1(ηmηl)ι2(ηm)ι2

(
l 0
0 1

)
P2,0(Q)

= Γ(2)
0 (N)ι1(ηm1l1)ι1(c12)ι2(γm)ι2

(
ml 0
0 1

)
P2,0(Q),

where c = gcd(m, l) and l1 = l/c, m1 = m/c. The above double coset is
equal to

Γ(2)
0 (N)ι1(γm1l1)ι2(γm)ι1

(
m1l1c 0

0 c

)
ι2

(
ml 0
0 1

)
P2,0(Q).

Since m1l1c
2 = ml, we have

ι1

(
m1l1c 0

0 c

)
ι2

(
ml 0
0 1

)
∈ P2,0(Q)

and the above double coset is represented by ι1(γm1l1)ι2(γm). By the as-
sertion (1), this is also represented by ι1(γm1)ι2(γl1m) = ι1(γm1)ι2(γl1m1c).
Since this gives a different zero-dimensional cusp for a different choice of l,
we prove (2).
Now we prove (3). If κ0(N1, N2) is on κ1(m,m), then this means that

for some l, we have N1 = m1 and N2 = m1l1c where c = gcd(m, l) and
l1 = l/c, m1 = m/c. If so, then l = l1c = N2/N1 and m = cm1 = cN1. So
m is determined by a divisor c of N2/N1. This proves (3). �

As a corollary to the above proposition, we have

TOME 62 (2012), FASCICULE 1



130 Siegfried BÖCHERER & Tomoyoshi IBUKIYAMA

Proposition 2.4. — For k > 4, we have

dimAk(Bd(N)) = 3t + 2t dimSk(Γ0(N)).

Proof. — Since k > 4, there exists an Eisenstein series Em ∈ Ak(Γ0(N))
such that this does not vanish at the cusp of Γ0(N)\H1 corresponding to
ηm and vanishes at all the other cusps. Now we fix a zero-dimensional
cusp κ0(l,m) of S(N). Then for a one-dimensional cusp κ1(N1, N1) pass-
ing through κ0(l,m), there exists a modular form fN1 on κ1(N1, N1) which
takes the value one at κ0(l,m) and vanishes at all the other cusps of
κ1(N1, N1). So we can define a modular form f ∈ Ak(Bd(N)) such that
f = fN1 for all such one-dimensional cusps passing through κ0(l,m) and
f = 0 on all the other one-dimensional cusps. This is a modular form in
Ak(Bd(N)) which does not vanish only at κ0(l,m) and vanishes at all the
other zero-dimensional cusps. So subtracting a suitable linear combination
of such modular forms from an element of Ak(Bd(N)) we get an element
which vanishes at all the zero-dimensional cusps. The space of such func-
tions is just the direct sum of Sk(Γ0(N)) on each one-dimensional cusp. �

3. The Witt projection W and the operator Φ̃

First we see consistency between action and restriction. For gi =
(
ai bi

ci di

)
∈

GL2(Q) with det(g1) = det(g2) > 0 and a holomorphic function F (Z) on
Z = ( τ zz ω ) ∈ H2, we have(
F |k [ι1(g1)ι2(g2)]

)
(Z)

=
((
c1τ + d1

)
(c2ω + d2)− c1c2z2

)−k

× F


(a1τ + b1)(c2ω + d2)− a1c2z

2

(c1τ + d1)(c2ω + d2)− c1c2z2
det(g1)z

(c1τ + d1)(c2ω + d2)− c1c2z2

det(g2)z
(c1τ + d1)(c2ω + d2)− c1c2z2

(a2ω + b2)(c1τ + d1)− a2c1z
2

(c1τ + d1)(c2ω + d2)− c1c2z2

 .

So we have(
W
(
F |k [ι1(g1)ι2(g2)]

))
(τ, ω)

= (WF )
(
a1τ + b1
c1τ + d1

,
a2ω + b2
c2ω + d2

)
(c1τ + d1)−k(c2ω + d2)−k.

Now we see relations between the Witt projection and the Φ-operator. We
assume that k > 4. For any m|N , we denote by Em the Eisenstein series
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in Ak(Γ0(N)) such that

lim
λ→∞

(Em|k[ηm])(iλ) = 1 and lim
λ→∞

(Em|k[ηl])(iλ) = 0

for any other l 6= m with l|N . We may write

(WF )(τ, ω) =
∑
m|N

(
Fm(τ)Em(ω) + Fm(ω)Em(τ)

)
+
∑
i

(
gi(τ)hi(ω) + gi(ω)hi(τ)

)
where Fm ∈ Ak(Γ0(N)) and gi, hi ∈ Sk(Γ0(N)). For any m′|N , the limit
of F to the one-dimensional cusp κ1(m′,m′) is given by(

Φ
(
F |k [ι1(ηm′)ι2(ηm′)]

))
(τ) =

∑
m|N

(Fm|k[ηm′ ])(τ).

In particular if WF ∈ Sym2(Sk(Γ0(N))), then F ∈ Sk(Γ(2)
0 (N)) obviously.

Since ηm′ normalizes Γ0(N), we have again Fm|k[ηm′ ] ∈ Ak(Γ0(N)) and if
Fm is a cusp form, then this is also a cusp form. Now we see the constraints
coming from the fact that these modular forms should take the same value
at each zero-dimensional cusp κ0(l,m) with l|m|N . To describe this, we
rewrite Fm as a sum of Eisenstein series and cusp forms. Then we may
write

(WF )(τ, ω) =
∑
m|N

(fm(τ)Em(ω) + Em(τ)fm(ω))

+
∑
l,m|N

c(l,m)(El(τ)Em(ω) + Em(τ)El(ω))

where fm ∈ Sk(Γ0(N)) and c(l,m) ∈ C. Then the image of F at the
one-dimensional cusp κ1(m,m) is

∑
l|N c(l,m)El|k[ηm] up to cusp forms.

The value of this at the cusp of κ1(m,m) corresponding to ηl is the value
of
∑
l′|N c(l′,m)El′ |k[ηmηl] at i∞. If we write m1 = m/ gcd(l,m) and

l1 = l/ gcd(l,m), then we have El′ |k[ηmηl] = El′ |k[ηl1m1 ] so the value
at i∞ is 1 for l′ = l1m1 and 0 otherwise. So the value of the whole func-
tion is c(l1m1,m). The above cusp of κ1(m,m) corresponds to the zero-
dimensional cusp κ0(m1, lm1). So if we fix zero-dimensional cusp κ0(N1, N2)
with N1|N2|N instead, then if we put l = N2/N1, m = cN1 and m1 = N1
for any c|(N2/N1), then gcd(l,m) = c because N is squarefree and so
N2/N1 and N1 is coprime, and c(l1m1, cN1) = c(N2/c, cN1) must be the
same for any c|(N2/N1). Since N is squarefree and c|(N2/N1), we have
gcd(N2/c, cN1) = N1. This means that for divisors l, m, l′, m′ of N , we
have

c(l,m) = c(l′,m′)
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if lm = l′m′ and gcd(l,m) = gcd(l′,m′).
So we define the subspace consisting of the elements which satisfy the

constraints as above. More precisely we define a linear subspace Vk(N) of
Sym2(Ak(Γ0(N)))/ Sym2(Sk(Γ0(N))) generated by fm(τ)Em(ω) +
fm(ω)Em(τ) for m|N , fm ∈ Sk(Γ0(N)) and

∑
l,m|N c(l,m)(El(τ)Em(ω) +

El(ω)Em(τ)) with c(l,m) = c(l′,m′) if gcd(l,m) = gcd(l′,m′) and lm = l′m′.
The next theorem is a natural generalization of Theorem 1.3 in the in-

troduction.

Theorem 3.1. — For squarefree N and k > 4, the Witt projection on
Ak(Γ(2)

0 (N)) is surjective to Vk(N).

The proof of this theorem will be given in Section 4 and 5.
Proof of Theorem 1.1. — Assuming the above theorem for a while, we

prove the surjectivity of Φ̃. Fix m|N and take any f ∈ Sk(Γ0(N)). By the
above theorem there exists F ∈ Ak(Γ0(N)) such that

W (F ) =
(
f |k
[
η−1
m

])
(τ)Em(ω) + Em(τ)

(
f |k
[
η−1
m

])
(ω).

Then we have Φ(F |k[ι1(ηm)ι2(ηm)]) = f and Φ(F |k[ι1(ηl)ι2(ηl)]) = 0
for any l 6= m, l|N . So the image of Φ̃ contains the direct sum of cusp
forms on each one-dimensional component. Now fix natural numbers N1
and N2 such that N1|N2|N and take F ∈ Ak(Γ(2)

0 (N)) such that WF =∑
c|(N2/N1)(EN2/c(τ)EcN1(ω) + EcN1(τ)EN2/c(ω)). Then Φ̃(F ) does not

vanish at the zero-dimensional cusp κ0(N1, N2) and vanishes at any other
zero-dimensional cusps. So we prove the theorem. �

By the way, for the sake of completeness, we count here the dimension
of Vk(N) separately. The number of pairs (l,m) up to the above relation
is exactly 3t. Also there are 2t Eisenstein series in Ak(Γ0(N)) so from the
tensors of cusp forms and Eisenstein series, we have 2t dimSk(Γ0(N)). So
the total is equal to the dimension of Ak(Bd(N)).
We add here an example of configuration of cusps below. Since the picture

of cusps is complicated, we give an example as a table in the case N = pq
where p, q are primes. In the following table, the first row means the usual
four cusps of Γ0(pq)\H1. The identification of these on each one dimensional
cusp with zero dimensional cusps of S(N) is written in each column. Each
row below means which zero dimensional cusps are on the one dimensional
cusp in the first column.

one dim. cusps\usual cusps κ(1) κ(p) κ(q) κ(pq)
κ1(1, 1) κ0(1, 1) κ0(1, p) κ0(1, q) κ0(1, pq)
κ1(p, p) κ0(p, p) κ0(1, p) κ0(p, pq) κ0(1, pq)
κ1(q, q) κ0(q, q) κ0(q, pq) κ0(1, q) κ0(1, pq)
κ1(pq, pq) κ0(pq, pq) κ0(q, pq) κ0(p, pq) κ0(1, pq)
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4. The image of W

For a given f ∈ Sk(Γ0(N)) let us consider more generally the space

E(f) :=
{
e ∈ Ek(Γ0(N)) | e⊗ f + f ⊗ e ∈ Im(W )

}
,

where Ek(Γ0(N)) ⊆ Ak(Γ0(N)) denotes the space generated by Eisenstein
series. We will study this space using theta series.

4.1. Some properties of theta series

We first recall some properties of quadratic forms and theta series in a
slightly more general setting. For a natural number k, let S be a 2k × 2k
positive definite integral symmetric matrix. If all the diagonal components
of S are even, S is called even. The minimum of all natural numbers N such
that NS−1 is also even is called the level of S. We call two such quadratic
forms S and T equivalent (over Z) if AtSA = T for some A ∈ GL(2k,Z).
We say that S and T are in the same genus g, if they are equivalent over Zp
for all primes p. Whenever convenient, we freely switch from the language
of quadratic forms and symmetric matrices to the language of lattices in
a quadratic space; we just recall that starting from a lattice L we get a
matrix S by choosing a Z-basis of L and considering the (Gram)-matrix of
scalar products of these basis elements.
The degree n theta series attached to S is then defined by

Θn
S(Z) :=

∑
X∈M2k,n(Z)

exp(πiTr(XtSXZ)) (Z ∈ Hn).

This theta series is known to define a modular form of weight k for Γ(n)
0 (N)

with character defined by the quadratic character χS :=
( (−1)k det(S)

·
)
.

For a genus g of positive even integral quadratic forms of 2k variables,
we define the (degree one) unnormalized genus theta series by

e(g)(τ) :=
∑ 1

A(Si)
ΘSi

(τ) (τ ∈ H1),

where the Si are representatives of the equivalence classes in g and A(Si)
denotes the number of integral automorphisms of Si. By a famous result
of Siegel [19] , this modular form is in the space of Eisenstein series.
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Basic Observation. — Assume that two positive definite integral qua-
dratic forms S1 and S2 are in the same genus, then

ΘS1 ⊗ΘS2 + ΘS2 ⊗ΘS1 ∈ Im(W ).

Proof. — We write the expression above as

ΘS1(τ)·ΘS1(w)+ΘS2(τ)·ΘS2(w)−(ΘS1(τ)−ΘS2(τ))·(ΘS1(w)−ΘS2(w)) .

The values of theta series in the cusps are given essentially by exponential
sums, in particular they depend only on the genus; this statement seems
to be due to Siegel [19, p. 376]. Therefore the last summand is an element
of Sym2(Sk(Γ0(N))). Clearly products of type ΘS(τ) · ΘS(w) = Θ2

S ( τ 0
0 z )

are in the image of the Witt operator. �

As a consequence of the observation above we obtain

Proposition 4.1. — Let f ∈ Sk(Γ0(N)) be a fixed cusp form.
a) If f can be written as a linear combination of theta series ΘS with

all S in a fixed genus g of level N , then

e(g)⊗ f + f ⊗ e(g) ∈ Im(W ).

b) We denote by Eθ(f) the space generated by all genus theta series e(g)
such that f is a linear combination of theta series ΘS with S ∈ g.
Then we have

Eθ(f) ⊆ E(f).

Proof. — If g is a genus satisfying the conditions of a), then the genus
Eisenstein series e(g) as well as the cusp form f can be written as linear
combination of theta series ΘS with quadratic forms S ∈ g. We can then
apply the basic observation. �

Remark. — So far, everything works for arbitrary level, arbitrary
weight (using a slightly more general notation, we may also include ar-
bitrary real nebentypus and half-integral weight modular forms); the for-
mulation was chosen in such a way that it may be also applied to cases,
where E(f) depends on f .

4.2. Witt projection and basis problems for several genera

We recall that if all cusp forms in Sk(Γ0(N)) can be written as linear
combinations of theta series ΘS with S ∈ g, then we say that g solves the
basis problem for Sk(Γ0(N)) (more precisely: it solves the genus version of
the basis problem).
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From now on we stick to the case N squarefree with t prime factors,
k even and k > 4. Then in this situation, by our solution of the basis
problem [3, Theorem] we may choose in Proposition 4.1 (independently of
f ∈ Sk(Γ0(N))) as g any genus of exact level N satisfying for all p|N the
extra condition

L⊗ Zp and p · L] ⊗ Zp are not maximal;

here L denotes any lattice from g and L] is the lattice dual to L.
We must assure that we obtain enough Eisenstein series in this way: We

put Lk(N) the set of all genera of rank 2k, which satisfy the conditions as
above.

Proposition 4.2. — Let N be squarefree, then for even k > 4

C{e(g) | g ∈ Lk(N)} = Ek(Γ0(N)).

Proof. — We have to assure the existence of sufficiently many such gen-
era: If 4|k there exists a genus g0,2k of even unimodular lattices of rank
2k; this genus is locally everywhere at finite primes a direct sum of hyper-
bolic planes H. We consider for all divisorsM |N the positive definite genus
g(N,M) which looks locally like

N ·H ⊥M ·H ⊥ H ⊥ · · · ⊥ H.

Note that such a genus exists indeed, because all its local invariants are
the same as those of g0,2k. In this way we define 2t many genera with the
requested property; their Eisenstein series are linearly independent; this can
be either read off from the considerations in [11] or [5]; a more direct proof
follows from considering the constant terms of these 2t many Eisenstein
series in the 2t many cusps. The square matrix describing these values is
then (for N = p1 · p2 · · · pt) a Kronecker product(

1 1
p−1

1 p−2
1

)
⊗
(

1 1
p−1

2 p−2
2

)
⊗ · · · ⊗

(
1 1
p−1
t p−2

t

)
,

in particular it is of full rank 2t. Therefore, using these genus Eisenstein
series we get the full space of Eisenstein series.
If 4 < k ≡ 2 mod 4 we start from a genus of lattices L ⊥ M where

M ∈ g0,2k−4 and L is any quaternary lattice of levelN and determinantN2.
We may now apply essentially the same procedure as for the case 4|k. �

Remark. — We should emphasize that in our construction of many gen-
era it is important to have 3 hyperbolic planes: The first one we need to
assure (by scaling using N) that the true level is N and the lattice is
not maximal at any prime p|N . The second hyperbolic plane we need to
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produce (by scaling using R|N) many genera; the third hyperbolic plane
assures that also N · L] is not maximal at any prime p|N .

Corollary 4.3. — For N squarefree, k even with k > 4, all tensors of
type

(e⊗ f) + (f ⊗ e), f ∈ Sk(Γ0(N)), e ∈ Ek(Γ0(N))
are in the image of W .

5. The Eisenstein part

5.1. General aspects

The problem can be studied in a quite general context. The relevant
parabolic subgroup here is the Siegel parabolic Pn,0; For any subgroup G
of Sp(n,Z) we put G∞ := G ∩ Pn,0(Z). Let Γ be an arbitrary congruence
subgroup of Sp(n,Z). We consider only even weights here. The first obser-
vation is that for a modular form F ∈ Ak(Γ) the value at a zero dimensional
cusp, i.e.

(F |kR)(i∞)
for R ∈ Sp(n,Z) depends only on the double coset Γ ·R · Pn,0(Z).
On the other hand, we can define Eisenstein series

Enk (Γ, R)(Z) :=
∑

γ∈(R−1ΓR)∞\R−1·Γ

j(γ, Z)−k,
(
Z ∈ Hn, R ∈ Sp(n,Z)

)
.

They are known to converge absolutely (and uniformly in Siegel domains
for Γ) if the weight is large, i.e. k > n+1. The matrices R and R′ define the
same series if R and R′ define the same cusp. Moreover, for two matrices
R,S ∈ Sp(n,Z):

(Enk (Γ, R)|k[S])(i∞) =
{

1 if ΓRPn,0(Z) = ΓSPn,0(Z),
0 otherwise.

For weights k > n+ 1 we get a direct sum decomposition

Ak(Γ) = Ek(Γ)⊕Ak(Γ)0,

where Ek(Γ) is the space generated by these Eisenstein series and Ak(Γ)0

the subspace of modular forms vanishing at all zero dimensional cusps.
Now we start from a congruence subgroup Γ of Sp(2n,Z) (size 4n) and

we consider the generalized Witt operator

W : Ak(Γ) −→ Ak(Γ′)⊗Ak(Γ′′)
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defined by

(WF )(τ, ω) := F

(
τ 0
0 ω

)
, (τ, ω ∈ Hn)

where the congruence subgroups Γ′ and Γ′′ are defined by

Γ′ × 12n = Γ ∩
(
Sp(n)× 12n

)
12n × Γ′′ = (12n × Sp(n)) ∩ Γ.

Here we identify Sp(n)×Sp(n) with a subgroup of Sp(2n) in the usual way
via ((

A B

C D

)
,

(
A′ B′

C ′ D′

))
7−→


A 0 B 0
0 A′ 0 B′

C 0 D 0
0 C ′ 0 D′

 .

We will apply slash-operators |k to images under Witt-operators; we use
then an upper index to indicate the variable (τ or ω) which is relevant.

For F ∈ Ak(Γ) the value

((WF )|τk[γ]|ωk [δ]) (i∞, i∞)

does in general not really depend on the double cosets Γ′γPn,0(Z) and
Γ′′δPn,0(Z) but only on the double cosets

Γ · (γ × δ) · P2n,0(Z);

this relation may sometimes be weaker.
If we have convergent Eisenstein series (i.e. for k > n+1) we can rephrase

this as follows. Let (γi) and (δj) be a system of representatives for the zero
dimensional cusps for Γ′ and Γ′′. Then we get a decomposition

WF (τ, ω) =
∑
i,j

c(i, j)Enk (Γ′, γi)⊗ Enk (Γ′′, δj) +R0

for some R0 ∈ R = Ak(Γ′) ⊗ Ak(Γ′′)0 + Ak(Γ′)0 ⊗ Ak(Γ′′). Then the
coefficients c(i, j) are not completely free, they must always satisfy the
relations

Γ · (γi× δj) ·P2n,0(Z) = Γ · (γi′ × δj′) ·P2n,0(Z) =⇒ A(i, j) = A(i′, j′). (∗)

Thus we have shown that the Eisenstein part of the image of the Witt
operator lies modulo R in a subspace E2n,n

k (Γ) of Ek(Γ′) ⊗ Ek(Γ′′) defined
by the relation (∗) above. For large weights we can say more:

Proposition 5.1. — For k > 2n + 1 the Eisenstein part of the image
of the Witt operator is modulo R equal to E2n,n

k (Γ).
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Proof. — For γi, δj as above we consider the degree 2n Eisenstein series
attached to R := γi × δj . Then we see that for any γi′ , δj′(

WE2n
k (τ, ω)|τk[γi′ ]|ωk [δj′ ]

)
(i∞, i∞)

is equal to 1 if Γ(γ, δ)P2n,0(Z) = Γ(γ′, δ′)P2n,0(Z), i.e. i = i′, j = j′ and
zero otherwise. �
Remarks.
1) The considerations above also work in essentially the same way for

Witt operators for more general restrictions from Hn+r to Hn × Hr.
2) There are cases, where W (E2n

k (Γ, R)) contains no Eisenstein part: To
give a simple example we consider for n = 2, Γ = Γ(p) the principal
congruence subgroup of level p and the Eisenstein series associated
to R =

( 12 02
X 12

)
, where X is integral symmetric and not diagonal mod

p. Then the double coset Γ(p) · R · P2,0 cannot be represented by an
element of the form γ × δ with γ, δ ∈ SL(2,Z).

3) The case Γ = Γ(2n)
0 (N) is much simpler, because here all zero dimen-

sional cusps can be represented by elements of the form
(γ × δ) ∈ Sp(n,Z) × Sp(n,Z), in fact one can choose representatives
in SL(2,Z)2n ⊆ Sp(2n,Z), see [12, 5]. If N is squarefree, then the
situation simplifies still further (see [6]).

5.2. The special case n = 1

Our original aim was to determine the Eisenstein part of our Witt pro-
jection (with level N squarefree). Here we can parametrize the degree one
Eisenstein series by divisors M of N: we associate to M first any matrix
R :=

(
a b
c d

)
∈ SL(2,Z) such that c is divisible by M and coprime to N/M .

We then write ek,M instead of Ek(Γ0(N), R).
Essentially as a special case of the Proposition above we obtain

Corollary 5.2. — For squarefree N and even k > 4 the Eisenstein
part of Im(W ) is the space{ ∑

M1,M2|N

A(M1,M2)ek,M1 ⊗ ek,M2

∣∣A(M1,M2) ∈ C with (∗∗)
}

where (∗∗) means that

A(M1,M2) = A(M ′1,M ′2)

if gcd(M1,M2) = gcd(M ′1,M ′2) and M1 ·M2 = M ′1 ·M ′2.
The dimension of this space is 3t.
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Proof. — The condition above is a reformulation of

rank Fp

(
M1 0
0 M2

)
= rank Fp

(
M ′1 0
0 M ′2

)
, (∀p|N).

Clearly the condition above is of multiplicative structure; to compute the
dimension, we only have to consider the case of N a prime, where the
dimension is indeed equal to 3. �

We also note that due to our results about tensors of type e⊗ f + f ⊗ e,
where f is cuspidal and e is an Eisenstein series, the corollary does not need
to be considered modulo R, it is enough to factor out symmetric tensors
of cusp forms.
Proof of Theorem 3.1. — This is now obvious by Corollary 4.3 and

Corollary 5.2. �

Remarks.
1) Compared with the general results on “pullbacks of Eisenstein series”

a la Garrett [7, 8] and others, the statements above are quite weak,
because we consider only the Eisenstein part; on the other hand we
avoid the double coset decompositions used in the investigation of
pullbacks; they can be quite complicated for Eisenstein series for con-
gruence subgroups, see e.g. [2]

2) In [10] a variant of the basis problem was proposed:
Is Sym2(Ak(Γ0(N)))/ Sym2(Sk(Γ0(N))) spanned by theta series
ΘS(τ) × ΘS(w) with S running over even integral positive definite
matrices of size 2k × 2k and level N?
Surprisingly, it is the Eisenstein series part, which is responsible for a
negative answer in general: Sym2(Ek(Γ0(N))) has dimension
2t−1(2t + 1) whereas dim E2,1

k (Γ0) = 3t. This fits well to the fact
that our “basic observation” cannot be applied to tensors of type
e(g)⊗ e(g′) + e(g′)⊗ e(g) for two different genera g and g′.

3) Our consideration shows that up to cusp forms the space Ak(Γ(2)
0 (N))

is generated by theta series if k > 4: This is clear for forms which map
under Φ̃ to cusp forms (by Corollary 4.3), while theta series generate
the full space of Eisenstein series by referring to [5] or by applying a
genus 2 version of the method used in the proof of Proposition 4.2.

6. The Φ-operator again (vector-valued case)

Here we define vector valued Siegel modular forms only for very special
weights detk ⊗Symν where Symν is the symmetric tensor representations
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of GL(n,C) of degree ν. This is enough for our setting since only these
representations occur for n = 1 and 2. We realize these representations in
the usual way on the space Vn,ν := C[u1, . . . , un]ν of homogeneous polyno-
mials of degree ν. We denote by Ak,ν(Γ(n)

0 (N)) the space of Siegel modular
forms for Γ(n)

0 (N) with values in C[u1, . . . , un]ν and with automorphy fac-
tor detk ⊗ Symν . More precisely, F ∈ Ak,ν(Γ(n)

0 (N)) is a C[u1, . . . , un]ν
valued holomorphic function F (Z, u) (Z ∈ Hn, u = (u1, . . . , un)) such that
F (γZ, u) = j(γ, Z)kF (Z, uγ) for any γ ∈ Γ(n)

0 (N) (+holomorphy at cusps
if n = 1). Note that for n = 1 this is the space of modular forms of weight
k + ν if we identify f(τ) ∈ Ak+ν(Γ0(N)) with f(τ)uν1 .
For a divisor R of N we define the Φ-operator ΦR by

ΦR :


Ak,ν(Γ(2)

0 (N)) −→ Ak+ν(Γ0(N))

F 7−→ lim
λ→∞

(F |k,ν ι1(id)ι2(ηR))
(
τ 0
0 iλ

)
.

Here we note that in the limit for n = 2 above all the coefficients of
ua1u

b
2 vanish unless b = 0 and hence the image is in Ak+ν(Γ0(N))uν1 ∼=

Ak+ν(Γ0(N)). This can be proved in the same way as in Arakawa [1]. We
first describe this Φ-operator on theta series: We denote by Pm,n,ν the
space of pluriharmonic polynomial maps P from Cm,n to Vn,ν satisfying

P (XA) = Symν(At)P (X),
(
X ∈ C(m,n), A ∈ GL(n,C)

)
For an even positive definite symmetric matrix S of size m = 2k and a

polynomial P ∈ Pm,n,ν we define a degree n theta series by

Θn
S,P (Z) :=

∑
X∈M2k,n(Z)

P
(
S1/2X

)
exp
(
πiTr(XtSXZ)

)
,

where S1/2 denotes a positive definite symmetric matrix whose square is
S. This theta series is known to define a Siegel modular form of level N for
the automorphy factor detk ⊗Symν , where N is the level of S.
In the case n = 2 we can write P ∈ P2k,2,ν as sum of monomials uj1u

ν−j
2 ;

this gives

P =
ν∑
j=0

Qj

with Qj ∈ P2k,1,j ⊗ P2k,1,ν−j . This corresponds to a decomposition

Θ2
S,P

(
τ1 0
0 τ2

)
=
ν−1∑
j=0

∑
~x1,~x2∈Z2k

Qj
(
~x1, ~x2

)
exp
(
πi(~xt1S~x1τ1 + ~xt2S~x2τ2)

)
+ ΘS,P 0(τ1)ΘS,1(τ2).
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Here P 0 := P (u1, 0) (so Qν = P 0 ⊗ 1) and we observe that all the contri-
butions for j < ν are cuspidal for τ2. We get

ΦR(Θ2
S,P ) = (ΘS,1|kηR) (i∞) ·ΘS,P 0 .

The global Φ̃-operator can be defined as before by

Φ̃ :
{

Ak,ν(Γ(2)
0 (N)) −→ Ak+ν(Γ0(N))ω(N)

f 7−→ (ΦR(f)R|N )

where ω(N) is the number of divisors of N , i.e. the number of one-
dimensional cusps of Γ(2)

0 (N).

Theorem 6.1. — The operator Φ̃ is surjective onto cusp forms
Sk+ν(Γ0(N))ω(N) for k > 4 and all ν > 0.

This is a generalization of [10], Theorem 5.1 where the case N = 1 was
treated. We remark that for ν > 0 only cusp forms appear in the image
Φ̃(Ak,ν(Γ(2)

0 (N))) as in [1]; furthermore note that in the case ν = 0 we
reprove the surjectivity to Sk(Bd(N)) obtained in previous sections by
using the Witt projection.
To prove the theorem we start from an arbitrary cusp form f ∈

Sk+ν(Γ0(N)). We use the same notation as in Section 4.2. First we assume
4|k; then for any divisorM of N our solution of the basis problem [3] allows
us to write f as a linear combination of theta series using only quadratic
forms from the genus g(N,M), i.e.

f =
∑
i

ΘSi,Pi

with Si ∈ g(N,M) and Pi ∈ P2k,1,ν . For each Pi, if we put P̃i(X) =
P̃i(~x1, ~x2) = Pi(~x1u1 + ~x2u2) (X = (~x1, ~x2), ~xi ∈ C2k), then P̃i ∈ P2k,2,ν

and we have P̃i(~x1, 0) = Pi(~x1)uν1 . The degree two (and V2,ν-valued) Siegel
modular form

FM :=
∑

Θ2
Si,P̃i

then satisfies for any divisor R|N

ΦR(FM ) =
∑
i

(ΘSi
|kηR) (i∞) ΘSi,Pi

= c(R,M) · f.

Here we use that c(R,M) := (ΘSi
|kηR) (i∞) depends only on R andM . As

in Section 4, the square matrix C = (c(R,M)) (of size 2ω(N)) is a Kronecker
product of matrices

(
1 1
p−1 p−2

)
and in particular of maximal rank. This

implies the surjectivity, because we get any tuple of type (0, . . . , f, 0, . . . , 0)
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as an image of Φ̃. If k ≡ 2 mod 4 we use the same kind of modified argument
as in Section 4.

Remark. — The surjectivity of the (suitably defined) Witt projection
for ν > 0 is proved in the same way as before. We omit the details.

7. The real primitive nebentypus case

We can ask the same questions about Witt projections for modular forms
of nebentypus. Of course our techniques of theta series apply only to qua-
dratic characters. We rely here on the methods used in [2]; note that in [3]
only trivial characters are considered. Therefore we must restrict ourselves
to primitive nebentypus, but there is no doubt that the methods and re-
sults of [3, 2] can be generalized to nonprimitive quadratic characters (as
announced in [2]).

Let N ≡ 1 mod 4 be squarefree and denote by χN the associated (even)
primitive quadratic character mod N . Whenever convenient, we identify
χN with a character of Γ0(N) by

χN

(
a b

c d

)
:= χN (d) for

(
a b

c d

)
∈ Γ0(N).

Let Lχ(N) be the set of genus g consisting of lattices L such that for all
p|N ,

p3 | det(Lp) - p2k−1.

Then we have

Proposition 7.1. — For N as above and even k > 4,

C
{
e(g) | g ∈ Lχ(N)

}
= Ek

(
Γ0(N), χN

)
,

where Ek
(
Γ0(N), χN

)
is the subspace of Eisenstein series inside the space

Ak
(
Γ0(N), χN

)
.

Proof. — There exists a genus g0 of discriminant N , which locally at
all p is of the form

Mp ⊥ H ⊥ · · · ⊥ H
where Mp is a suitable binary lattice with |det(Mp)| = p; for a proof
see [20], where the existence of the adjoint lattice is stated explicitly. For
all divisors R of N we consider lattices, which look locally like

Mp ⊥ N ·H ⊥ R ·H ⊥ · · · ⊥ H.
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Since locally the invariants are the same as Mp, there exist such global
lattices. As before, by using the Eisenstein series of these genera, we get 2t
linearly independent genus Eisenstein series e(g). �

We assume from now on that the basis problem for Sk(Γ0(N), χN ) has
a positive answer for each given genus g ∈ Lχ(N). Unfortunately this was
proved in [2] only for prime levels, but should be true more generally.

Corollary 7.2. — For N ≡ 1 mod 4, N squarefree, all tensors of type

(e⊗f)+(f⊗e), f ∈ Sk(Γ0(N), χN ), e = Eisenstein series inAk(Γ0(N), χN )

are in the image of W under the assumption above.

Again we mention that this is proved without assumption only for the
prime level case. (as far as it relies on [2]).

As for the Eisenstein part, we just mention that instead of the Eisenstein
series Enk (Γ(n)

0 (N), R) we should use

Enk
(
Γ(n)

0 (N), R, χN
)
(Z) =

∑
γ∈(R−1Γ(n)

0 (N)R)∞\R−1Γ(n)
0 (N)

χN (Rγ)j(γ, Z)−k.

We can then get the same results as before about the Eisenstein part of
the image of W . We omit details here.

BIBLIOGRAPHY

[1] T. Arakawa, “Vector-valued Siegel’s modular forms of degree two and the associ-
ated Andrianov L-functions”, Manuscripta Math. 44 (1983), no. 1-3, p. 155-185.

[2] S. Böcherer, “On Eisenstein series of degree two for squarefree levels and the
genus version of the basis problem. I”, in Automorphic forms and zeta functions,
World Sci. Publ., Hackensack, NJ, 2006, Proceedings of the conference in memory
of T.Arakawa, Ed. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato, p. 43-70.

[3] ———, “The genus version of the basis problem II: The case of oldforms”, Preprint,
2009.

[4] S. Böcherer, M. Furusawa & R. Schulze-Pillot, “On the global Gross-Prasad
conjecture for Yoshida liftings”, in Contributions to automorphic forms, geometry,
and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, p. 105-130.

[5] S. Böcherer, Y. Hironaka & F. Sato, “Linear independence of local densities
of quadratic forms and its application to the theory of Siegel modular forms”, in
Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493,
Amer. Math. Soc., Providence, RI, 2009, p. 51-82.

[6] S. Böcherer & R. Schulze-Pillot, “Siegel modular forms and theta series at-
tached to quaternion algebras”, Nagoya Math. J. 121 (1991), p. 35-96.

[7] P. B. Garrett, “Pullbacks of Eisenstein series; applications”, in Automorphic
forms of several variables (Katata, 1983), Progr. Math., vol. 46, Birkhäuser Boston,
Boston, MA, 1984, p. 114-137.

[8] ———, “Integral representations of Eisenstein series and L-functions”, in Number
theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston,
MA, 1989, p. 241-264.

TOME 62 (2012), FASCICULE 1



144 Siegfried BÖCHERER & Tomoyoshi IBUKIYAMA

[9] T. Ibukiyama, “On some alternating sum of dimensions of Siegel cusp forms of
general degree and cusp configurations”, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
40 (1993), no. 2, p. 245-283.

[10] T. Ibukiyama & S. Wakatsuki, “Siegel modular forms of small weight and the
Witt operator”, in Quadratic forms—algebra, arithmetic, and geometry, Contemp.
Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, p. 189-209.

[11] H. Katsurada & R. Schulze-Pillot, “Genus theta series, Hecke operators and
the basis problem for Eisenstein series”, in Automorphic forms and zeta functions,
World Sci. Publ., Hackensack, NJ, 2006, Proceedings of the conference in memory
of T.Arakawa. Ed. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato, p. 234-261.

[12] M. Klein, “Verschwindungssätze für Hermitesche sowie Siegelsche Modulformen
zu Γn

0 (N) sowie Γn
1 (N)”, PhD Thesis, Saarbrücken, 2004 (available from Schulze-

Pillot’s homepage).
[13] T. Miyake, Modular forms, Springer-Verlag, Berlin, 1989, Translated from the

Japanese by Yoshitaka Maeda, x+335 pages.
[14] C. Poor & D. S. Yuen, “Dimensions of cusp forms for Γ0(p) in degree two and

small weights”, Abh. Math. Sem. Univ. Hamburg 77 (2007), p. 59-80.
[15] I. Satake, “Compactification de espaces quotients de Siegel II”, in Séminaire Car-

tan, E. N. S., 1957/58, Exposé 13, p. 1-10.
[16] ———, “L’opérateur Φ”, in Séminaire Cartan, E. N. S., 1957/58, Exposé 14, p. 1-

18.
[17] ———, “Surjectivité globale de opérateur Φ”, in Séminaire Cartan, E. N. S.,

1957/58, Exposé 16, p. 1-17.
[18] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Pub-

lications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers,
Tokyo, 1971, Kanô Memorial Lectures, No. 1, xiv+267 pages.

[19] C. L. Siegel, “Über die analytische Theorie der quadratischen Formen”, Ann. of
Math. (2) 36 (1935), no. 3, p. 527-606.

[20] J.-L. Waldspurger, “Engendrement par des séries thêta de certains espaces de
formes modulaires”, Invent. Math. 50 (1978/79), no. 2, p. 135-168.

Manuscrit reçu le 22 avril 2010,
accepté le 26 novembre 2010.

Siegfried BÖCHERER
Kunzenhof 4B
79117 Freiburg (Germany)
boecherer@t-online.de
Tomoyoshi IBUKIYAMA
Osaka University
Graduate School of Science
Department of Mathematics
Machikaneyama 1-1, Toyonaka
Osaka, 560-0043 (Japan)
ibukiyam@math.sci.osaka-u.ac.jp

ANNALES DE L’INSTITUT FOURIER

mailto:boecherer@t-online.de
mailto:ibukiyam@math.sci.osaka-u.ac.jp

	1. Introduction
	2. Structures of cusps of 0(2)(N)
	2.1. General theory
	2.2. The cusps of 0n(N) and the Atkin-Lehner involution

	3. The Witt projection W and the operator "0365
	4. The image of W
	4.1. Some properties of theta series
	4.2. Witt projection and basis problems for several genera

	5. The Eisenstein part
	5.1. General aspects
	5.2. The special case n=1 

	6. The -operator again (vector-valued case)
	7. The real primitive nebentypus case
	Bibliography

