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REMARKS ON THE FUNDAMENTAL SOLUTION
TO SCHRÖDINGER EQUATION

WITH VARIABLE COEFFICIENTS

by Kenichi ITO & Shu NAKAMURA (*)

Abstract. — We consider Schrödinger operators H on Rn with variable co-
efficients. Let H0 = − 1

24 be the free Schrödinger operator and we suppose H is
a “short-range” perturbation of H0. Then, under the nontrapping condition, we
show that the time evolution operator: e−itH can be written as a product of the
free evolution operator e−itH0 and a Fourier integral operator W (t) which is as-
sociated to the canonical relation given by the classical mechanical scattering. We
also prove a similar result for the wave operators. These results are analogous to
results by Hassell and Wunsch, but the assumptions, the proof and the formulation
of results are considerably different. The proof employs an Egorov-type theorem
similar to those used in previous works by the authors combined with a Beals-type
characterization of Fourier integral operators.
Résumé. — Nous considérons des opérateurs de Schrödinger H à coefficients

variables sur Rn, qui sont des perturbations “à courte portée” de l’opérateur de
Schrödinger libre H0 = − 1

24. Dans le cas non captant, nous montrons que l’opé-
rateur d’évolution temporelle e−itH s’écrit comme le produit de l’opérateur d’évo-
lution libre e−itH0 et d’un opérateur intégral de Fourier W (t), qui est associé à
la relation canonique donnée par la diffusion classique. Nous établissons aussi un
résultat similaire pour les opérateurs d’onde. Ces résultats sont analogues à ceux
obtenus par Hassell et Wunsch, mais leurs hypothèses, leur preuve et leur formula-
tion sont nettement différents. La preuve repose sur un théorème de type Egorov
semblable à ceux utilisés dans les travaux précédents des auteurs, et qui est combiné
ici à une caractérisation de type Beals des opérateurs intégraux de Fourier.
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1092 Kenichi ITO & Shu NAKAMURA

1. Introduction

We consider Schrödinger equations on Rn with n > 1 of the following
form:

i
∂

∂t
ψ(t, x) = Hψ(t, x), t ∈ R, x ∈ Rn,

ψ(0, x) = ψ0(x) ∈ L2(Rn),

H = −1
2

n∑
j,k=1

∂

∂xj
ajk(x) ∂

∂xk
+ V (x),

where ajk(x) and V (x) are real-valued C∞-functions on Rn.

Assumption A. — There exists µ > 0 such that for any α ∈ Zn+∣∣∂αx (ajk(x)− δjk
∣∣) 6 Cα〈x〉−µ−|α|, ∣∣∂αxV (x)

∣∣ 6 Cα〈x〉2−µ−|α|
for x ∈ Rn with some Cα > 0.

It is well-known that under our assumptions H is essentially self-adjoint
on C∞0 (Rn). We denote the unique self-adjoint extension by the same
symbol H. Then the solution to the Schrödinger equation is given by
ψ(t) = e−itHψ0 ∈ L2(Rn) by Stone’s theorem.

We are interested in the microlocal structure of the evolution operator
e−itH . If ajk(x) = δjk, i.e., if the metric is flat, then e−itH is represented by
an oscillatory integral similar to Fourier integral operators (Fujiwara [2]),
though it is not a Fourier integral operator (FIO) in the sense of Hörman-
der ([5, 6]). For general H, it is difficult to show similar representations
because of the existence of the caustics. In this paper, we discuss different
representation of the evolution operator, namely, we show

e−itH = e−itH0W (t)

where H0 = − 1
24 is the free Schrödinger operator, and W (t) is possibly

an FIO. In the following, we show W (t) is in fact an FIO under suitable
conditions. We note

W (t) = eitH0e−itH ,

and we study the microlocal structure of W (t) defined as above.
In order to state the condition, we consider the classical mechanics asso-

ciated to our Hamiltonian. We set

p(x, ξ) = k(x, ξ) + V (x), k(x, ξ) = 1
2

n∑
j,k=1

ajk(x)ξjξk, p0(ξ) = 1
2 |ξ|

2
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FUNDAMENTAL SOLUTION TO SCHRÖDINGER EQUATION 1093

on T ∗Rn ∼= Rn × Rn. k(x, ξ) is the kinetic energy, p(x, ξ) is the classical
Hamilton function, and p0(ξ) is the free energy function. We denote the
corresponding Hamilton vector fields by Hp and Hk, Hp0 , respectively, i.e.,

Hp =
n∑
j=1

∂p

∂ξj

∂

∂xj
−

n∑
j=1

∂p

∂xj

∂

∂ξj
, Hk =

n∑
j=1

∂k

∂ξj

∂

∂xj
−

n∑
j=1

∂k

∂xj

∂

∂ξj
,

etc. and we denote the Hamilton flows on T ∗Rn by exp(tHp), exp(tHk) and
exp(tHp0) (t ∈ R), respectively. We write

T ∗M \ 0 =
{

(x, ξ)
∣∣ (x, ξ) ∈ T ∗M, ξ 6= 0

}
.

Definition 1.1. — Let (x0, ξ0) ∈ T ∗Rn \ 0, and we denote

(y(t), η(t)) = exp(tHk)(x0, ξ0), for t ∈ R.

(x0, ξ0) is said to be forward (backward, resp.) nontrapping if

|y(t)| → +∞ as t→ ±∞.

If (x0, ξ0) is forward/backward nontrapping, then it is well-known that

ξ± = lim
t→±∞

η(t)

exist under Assumption A. Moreover, if µ > 1, then

z± = lim
t→±∞

(y(t)− tη(t))

are also well-known to exist (see, e.g., [14]). These imply y(t) ∼ z± + tξ±
as t→ ±∞. We call (z±, ξ±) the scattering data of (x0, ξ0), and we denote

w±(x0, ξ0) = (z±, ξ±) = lim
t→±∞

exp(−tHp0) ◦ exp(tHk)(x0, ξ0).

We note that z±(x, ξ) and ξ±(x, ξ) are homogeneous of order 0 and 1 with
respect to ξ, respectively, since both k(x, ξ) and p0(ξ) are homogeneous of
order 2 in ξ. Moreover, w± are canonical transform on the domain where
w± are defined.

Theorem 1.2. — Suppose Assumption A with µ = 2, and suppose the
global nontrapping condition, i.e., every (x0, ξ0) ∈ T ∗Rn \0 is nontrapping.
Then W (t) is an FIO associated to w± for each t ∈ R±.

Remark 1.3. — We suppose the global nontrapping condition for the
sake of simplicity. If we suppose (x0, ξ0) is forward nontrapping and t > 0,
then we can find a symbol a(x, ξ) ∈ S0

cl(Rn) such that a0(x0, ξ0) 6= 0 and
W (t)a(x,Dx) is an FIO associated to w+ defined in a conic neighborhood
of (x0, ξ0). Here we have denoted the principal symbol of a by a0. The same
generalization applies to the following theorems, but we do not discuss in
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1094 Kenichi ITO & Shu NAKAMURA

detail. The proof of the above statement is same as that of the theorem.
In fact, we need only to prove the theorem microlocally, and we prove the
above claim to conclude the main result by using the microlocal partition
of unity.

Remark 1.4. — Theorem 1.2 actually implies a propagation of singular-
ity result. Namely, if we set

Λ± =
{

(y, η, x,−ξ)
∣∣ (y, η) = w±(x, ξ)

}
⊂ T ∗Rn × T ∗Rn,

then Theorem 1.2 implies WF(W (t)) ⊂ Λ± for t ∈ R±, where WF(W (t))
denotes the wave front set of the distribution kernel ofW (t). Thus, in turn,
it implies

WF(W (t)u) ⊂ w±(WF(u))

for u ∈ L2(Rn) or u ∈ E ′(Rn). In fact, we have the equality in the above
inclusion ([14, 13, 8]).

We now consider the general short-range case, i.e., the case when 1 <

µ < 2. Then we learn that Theorem 1.2 does not hold as it is, and we need
to modify the definition of the FIOs. In [6], an FIO is defined as an opera-
tor of which the distribution kernel is a Lagrangian distribution associated
to a conic Lagrangian submanifold. We need to employ a Lagrangian dis-
tribution associated to an asymptotically conic Lagrangian manifold. Such
Lagrangian submanifold is associated to an asymptotically homogeneous
canonical transform. We discuss these definitions in Section 4.
We set

w(t) = exp(−tHp0) ◦ exp(tHp) : T ∗Rn → T ∗Rn.

We can show w(t)(x, ξ) = w±(x, ξ) +O(|ξ|2−µ) as |ξ| → ∞ for ±t > 0, and
hence w(t) is asymptotically close to the homogeneous canonical transform
w± if µ > 1 (Appendix, Lemma A.1).

Theorem 1.5. — Suppose Assumption A with 1 < µ < 2, and suppose
the global nontrapping condition. Then W (t) is an FIO associated to w(t).

Remarks 1.3 and 1.4 also apply to Theorem 1.5.
Next we consider the wave operators. Here we suppose

Assumption B. — There exists µ > 1 such that for any α ∈ Zn+∣∣∂αx (ajk(x)− δjk
)∣∣ 6 Cα〈x〉−µ−|α|, ∣∣∂αxV (x)

∣∣ 6 Cα〈x〉−µ−|α|
for x ∈ Rn with some Cα > 0.

ANNALES DE L’INSTITUT FOURIER



FUNDAMENTAL SOLUTION TO SCHRÖDINGER EQUATION 1095

Under Assumption B, it is well-known that the wave operators:

W± = s-lim
t→±∞

eitHe−itH0

exist on L2(Rn).

Theorem 1.6. — Suppose Assumption B, and suppose the global non-
trapping condition. Then W± are FIOs associated to w−1

± .

Note that w± is homogeneous in ξ, and W± are FIOs in the sense of
Hörmander even if µ < 2.

We prove our main results combining a Beals-type characterization of
FIOs and Egorov-type theorems, which are variations of corresponding the-
orems proved in [14, 13, 8] to characterize the wave front set of solutions to
Schrödinger equations. We discuss the Beals-type characterization theorem
in Section 2, and then its generalization to FIOs associated to asymptoti-
cally homogeneous canonical transforms in Section 4. Using these, we prove
Theorem 1.2 and Theorem 1.5 in Section 3 and Section 4, respectively. Ap-
plication of these ideas to wave operators (Theorem 1.6) is discussed in
Section 5. Several technical lemmas are proved in Appendix A.

The fundamental solution to Schrödinger equation with the flat Lapla-
cian as the principal terms has been studied by many authors, for example
Fujiwara [2] and Yajima [18]. In this case, a global construction of the fun-
damental solution is known, and it was applied to various estimates, for
example dispersive estimates of the Schrödinger evolution group.

On the other hand, not much has been known about the fundamental
solution to the Schrödinger equation with variable coefficients. The local
regularity properties of the fundamental solution under nontrapping con-
dition is known for some time, but it is not enough to characterize the
singularities of solutions to the Schrödinger equation (cf. e.g., Kapitanski-
Safarov [9]), because the equation has infinite propagation speed. The first
step of the analysis of microlocal singularity for the equation was carried
out by Craig, Kappeler and Strauss [1]. They proved microlocal smooth-
ing property of the equation, and thus gave a sufficient condition for the
microlocal regularity of solutions. The result has been improved or general-
ized by Wunsch [17], Robbiano-Zuily [15], Nakamura [12], Ito [7], Martinez-
Nakamura-Sordoni [10], etc. Then a complete characterization of the mi-
crolocal singularities of solutions was given by Hassell and Wunsch [3, 4] by
constructing a parametrix as a Legendre distribution on scattering mani-
folds. The result was later generalized by Nakamura [14, 13], Ito-Nakamura
[8] and Martinez-Nakamura-Sordoni [11]. In these papers, the authors do
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1096 Kenichi ITO & Shu NAKAMURA

not construct a parametrix, but instead use Egorov-type theorems to obtain
the characterization of singularities of solutions.
In this paper, we show that these Egorov-type theorems actually imply

that the fundamental solution is written in terms of an FIO and the free
evolution operator. Our result is analogous to results by Hassell and Wun-
sch [3, 4], but the formulation is quite different, and we work in the standard
framework of FIOs and Lagrangian distributions, combined with classical
mechanical scattering theory. Our model is restricted to Schrödinger op-
erators on the Euclidean space, but our assumption on the perturbation
is weaker than theirs. In particular, we consider general short-range per-
turbations, not necessarily having an asymptotic expansion starting from
O(|x|−2) terms. We may also include operators with unbounded potential
terms. Our method can be applied also to operators on scattering mani-
folds, and we discuss them in a forthcoming paper.

We use the following notation throughout this paper: For function spaces
X, Y , L(X,Y ) denotes the linear space of the continuous linear maps from
X to Y . We write R+ = (0,∞) and R− = (−∞, 0). Also we write Z+ =
{0, 1, 2, . . .}. For u ∈ S(Rn), we denote the Fourier transform by

û(ξ) = Fu(ξ) = (2π)−n/2
∫
Rn
e−ix·ξf(x) dx.

F is extended to a map from S ′(Rn) to S ′(Rn). We denote the stan-
dard symbol class of pseudodifferentail operators as follows: We write a ∈
Smρ,δ(Rn) if a(x, ξ) ∈ C∞(Rn × Rn) and for any α, β ∈ Zn+,∣∣∂αx ∂βξ a(x, ξ)

∣∣ 6 Cαβ〈ξ〉m+δ|α|−ρ|β|, x, ξ ∈ Rn,

with some Cαβ > 0. We write a ∈ Smcl (Rn) if a ∈ Sm1,0 and a has an
asymptotic expansion:

a(x, ξ) ∼
∞∑
j=0

aj(x, ξ), as |ξ| → ∞,

where aj(x, ξ) are homogeneous of order (m− j) in ξ. For a symbol a(x, ξ),
the pseudodifferential operator a(x,Dx) is defined by

a(x,Dx)u(x) = (2π)−n/2
∫
Rn
eix·ξa(x, ξ)û(ξ) dξ, u ∈ S(Rn),

and the Weyl quantization is defined by

aW (x,Dx)u(x) = (2π)−n
∫
R2n

ei(x−y)·ξa
(x+ y

2 , ξ
)
u(y) dy dξ.

For (x0, ξ0) ∈ T ∗M , Ω ⊂ T ∗M is called a conic neighborhood of (x0, ξ0) if Ω
is a neighborhood such that if (x, ξ) ∈ Ω then (x, λξ) ∈ Ω for any λ ∈ [1,∞).

ANNALES DE L’INSTITUT FOURIER



FUNDAMENTAL SOLUTION TO SCHRÖDINGER EQUATION 1097

A conic set is called narrow if for any (x, ξ), (x, η) ∈ Ω, (ξ, η 6= 0), ξ̂ · η̂ > a

with fixed a > 0, where ξ̂ = ξ/|ξ|.

2. Beals-type characterization
of Fourier integral operators

In this section we prove a Beals-type characterization theorem for Fourier
integral operators. At first we recall several standard definitions.

Let Λ ⊂ T ∗Rm be a smooth m-dimensional submanifold. L is called
Lagrangian if the pull back of the standard canonical form vanishes on Λ,
i.e., i∗(dξ∧dx) = 0 on T ∗Λ. Λ is called conic if (x, ξ) ∈ Λ implies (x, λξ) ∈ Λ
for λ > 0.

Definition 2.1 (Besov space Bσ,∞2 (Rm)). — Let σ ∈ R and let u ∈
S ′(Rm) such that û ∈ L2

loc(Rm). Then we set

‖u‖Bσ,∞2
=
(∫
|ξ|61

|û(ξ)|2dξ
)1/2

+ sup
j>0

(∫
2j6|ξ|62j+1

∣∣2σj û(ξ)
∣∣2dξ)1/2

.

Then Bσ,∞2 (Rm) is defined by

Bσ,∞2 (Rm) =
{
u ∈ S ′(Rm)

∣∣ ‖u‖Bσ,∞2
<∞

}
and

Bσ,∞2,loc(Rm) =
{
u ∈ D′(Rm)

∣∣ ϕu ∈ Bσ,∞2 (Rm) for any ϕ ∈ C∞0 (Rm)
}
.

According to Hörmander [6] (see also Sogge [16]), the Lagrangian distri-
bution is defined as follows:

Definition 2.2 (Lagrangian distribution). — Let Λ ⊂ T ∗Rm \ 0 be a
conic Lagrangian submanifold, u ∈ S ′(Rm) and σ ∈ R. u is called La-
grangian distribution associated to Λ of order σ if for any p1, . . . , pN ∈
S1
cl(Rm) such that the principal symbols of pj vanish on Λ (j = 1, 2, . . . , N),

p1(x,Dx)p2(x,Dx) · · · pN (x,Dx)u ∈ B−σ−m/4,∞2,loc (Rm),

and we denote u ∈ Iσ(Rm,Λ).

Definition 2.3 (Fourier integral operators). — Let S be a canonical
transform from T ∗Rn to T ∗Rn, and suppose S is homogeneous of order 1
with respect to ξ. Let

ΛS =
{

(y, x, η,−ξ)
∣∣ (y, η) = S(x, ξ), (x, ξ) ∈ T ∗Rn \ 0

}
⊂ T ∗R2n \ 0.

Let U ∈ L(S(Rn),S ′(Rn)) and let u ∈ S ′(R2n) be its distribution kernel.
Then U is called a Fourier integral operator of order σ associated to S if
u ∈ Iσ(R2n,ΛS).

TOME 62 (2012), FASCICULE 3



1098 Kenichi ITO & Shu NAKAMURA

Note ΛS is a conic Lagrangian submanifold since S is a homogeneous
canonical transform.

Remark 2.4. — If U is a Fourier integral operator, it is known that
there is m 6 2n, a phase function Ψ(x, θ, y) (x, y ∈ Rn, θ ∈ Rm), which is
homogeneous of order 1 in θ, and a symbol a(x, θ, y) ∈ Sσ+n/2−m/2

1,0 such
that

Uϕ(x) = (2π)−n/2+m/2
∫
Rm×Rn

eiΨ(x,θ,y)a(x, θ, y)ϕ(y)dydθ

and we have a familiar representation of an FIO (see [6] or [16] for the
detail).

We give a characterization of FIOs in terms of conjugation of operators.
Let S be a canonical transform and U ∈ L(S(Rn),S ′(Rn)) as above. Let
a ∈ Sm1,0(Rn) (m ∈ R) such that

(2.1)
{
x
∣∣ a(x, ξ) 6= 0 for some ξ ∈ Rn

}
b Rn, supp a ∩ (Rn × {0}) = ∅.

For such a, we set

AdS(a)U = (a ◦ S−1)(x,Dx)U − Ua(x,Dx) : S → S ′.

Theorem 2.5. — Let S be as above, and let U ∈ L
(
L2

cpt(Rn), L2
loc(Rn)

)
.

U is an FIO of order 0 associated to S if and only if for any a1, a2, . . . , aN ∈
S1
cl(Rn) satisfying (2.1),

(2.2) AdS(a1)AdS(a2) · · ·AdS(aN )U ∈ L
(
L2

cpt(Rn), L2
loc(Rn)

)
.

The next corollary gives convenient sufficient conditions.

Corollary 2.6.
(i) Let S and U be as in Theorem 2.5. If for any a ∈ S1

cl(Rn) satisfying
(2.1), there is b ∈ S0

1,0(Rn) such that

AdS(a)U = b(x,Dx)U +R

with a smoothing operator R, then U is an FIO associated to S.
(ii) Let S and U as above, and suppose U is invertible. If for any a ∈

S1
cl(Rn) satisfying (2.1) there is b ∈ S0

cl(Rn) such that

Ua(x,Dx)U−1 = (a ◦ S−1)(x,Dx) + b(x,Dx),

then U is an FIO of order 0 associated to S.

ANNALES DE L’INSTITUT FOURIER



FUNDAMENTAL SOLUTION TO SCHRÖDINGER EQUATION 1099

Proof. — (i) The condition (2.2) with N = 1 follows immediately from
the assumption of (i). Let N = 2, and let AdS(aj)U = bj(x,Dx)U + Rj ,
j = 1, 2. Then we have

AdS(a1)AdS(a2)U = (a1 ◦ S−1)(x,Dx)b2(x,Dx)U − b2(x,Dx)Ua1(x,Dx)
+AdS(a1)R2

=
[
(a1 ◦ S−1)(x,Dx), b2(x,Dx)

]
U

− b2(x,Dx)b1(x,Dx)U +AdS(a1)R2 + b2(x,Dx)R1

= b12(x,Dx)U +R12

where b12 ∈ S0
1,0(Rn) and R12 is a smoothing operator. Repeating this

procedure, we conclude (2.2) for any N . Now (ii) follows easily from (i). �

In order to prove Theorem 2.5, we first notice that the L2
cpt-L2

loc bound-
edness implies the distribution kernel is locally B−n/2,∞2 .

Lemma 2.7. — Suppose U ∈L(L2
cpt
(
Rn), L2

loc(Rn)
)
, and let u ∈ S ′(R2n)

be its distribution kernel. Then u ∈ B−n/2,∞2,loc (R2n).

Proof. — Let u be the distribution kernel of U . Let χ, ψ ∈ C∞0 (Rn;R),
and we suppose χ is an even function. We consider

I =
∫
R2n

∣∣ψ(ξ)ψ(η)F2n[χ(x)χ(y)u(x, y)](ξ, η)
∣∣2dξ dη.

Here we denote the Fourier transform on R2n by F2n. In the following, F
denotes the Fourier transform on Rn. We choose χ1 ∈ C∞0 (Rn) so that
χ1(x) = 1 on suppχ. We note I can be expressed in terms of the Hilbert-
Schmidt norm:

I =
∥∥ψFχUχF−1ψ

∥∥2
HS

where ψ = ψ(ξ) and χ = χ(x) denote the multiplication operators on
L2(Rnξ ) and L2(Rnx), respectively. ‖·‖HS denotes the Hilbert-Schmidt norm.
Then we represent the Hilbert-Schmidt norm by a trace:

I = Tr
[
(ψFχUχF−1ψ)∗(ψFχUχF−1ψ)

]
= Tr

[
ψFχU∗χF−1ψ2FχUχF−1ψ

]
= Tr

[
((χ1Uχ1)∗χF−1ψ2Fχ)((χ1Uχ1)χF−1ψ2Fχ)

]
= Tr

[
((χ1Uχ1)∗χψ2(Dx)χ)((χ1Uχ1)χψ2(Dx)χ)

]
.

TOME 62 (2012), FASCICULE 3



1100 Kenichi ITO & Shu NAKAMURA

We use the Schwarz inequality for the trace to obtain

I 6
∥∥(χ1Uχ1)∗χψ2(Dx)χ

∥∥
HS

∥∥(χ1Uχ1)χψ2(Dx)χ
∥∥
HS

6 ‖χ1Uχ1‖2L(L2)
∥∥χψ2(Dx)χ

∥∥2
HS

= (2π)−n‖χ1Uχ1‖2L(L2)‖ψ‖
4
L4‖χ‖2L2‖χ‖2L∞ .

Here we have used the well-known properties: ‖AB‖HS 6 ‖A‖ ‖B‖HS and
‖a(x)b(Dx)‖HS = (2π)−n/2‖a‖L2‖b‖L2 .
Now we choose ψ ∈ C∞0 (Rn) so that ψ(ξ) = 1 for 1 6 |ξ| 6 2, and we set

ψN (ξ) = ψ(2−Nξ), for N = 1, 2, . . . , and ξ ∈ Rn.

We note ‖ψN‖4L4 = 2nN‖ψ‖4L4 . Then, by the above estimate, we have∫∫
2N6|ξ|,|η|62N+1

∣∣F2n[χ(x)χ(y)u(x, y)](ξ, η)
∣∣2dξdη

6
∫∫ ∣∣ψN (ξ)ψN (η)F2n[χ(x)χ(y)u(x, y)](ξ, η)

∣∣2dξdη
6 (2π)−n‖χ1Uχ1‖2L(L2)‖ψ‖

4
L4‖χ‖2L2‖χ‖2L∞ × 2nN ,

and this implies χ(x)χ(y)u(x, y) ∈ B−n/2,∞2 (R2n) for any χ ∈ C∞0 (Rn). �
We set

Λ̃S =
{

(y, η, x, ξ)
∣∣ (y, η) = S(x, ξ)

}
⊂ T ∗Rn × T ∗Rn.

Lemma 2.8. — Let p ∈ S1
cl(R2n) such that the principal symbol of

p vanishes on Λ̃S , and suppose p is supported in a narrow convex conic
neighborhood of (S(x0, ξ0), x0, ξ0) ∈ Λ̃S . Then there exist bj ∈ S0

cl(R2n),
fj ∈ S1

cl(Rn) (j = 1, 2, . . . 2n), and r ∈ S0
cl(R2n) such that

p(y, η, x, ξ) =
2n∑
j=1

bj(y, η, x, ξ)
(
(fj ◦ S−1)(y, η)− fj(x, ξ)

)
+ r(y, η, x, ξ).

Proof. — We may assume p is homogeneous of order 1 without loss of
generality. We denote

(z, ζ) = S−1(y, η)

so that p(y, η, z, ζ) = 0. We let Γ2,Γ3 be convex conic neighborhoods of
(x0, ξ0) such that Γ2 ⊂ Γ3, and let Γ0,Γ1 be convex conic neighborhoods
of (y0, η0, x0, ξ0) such that

supp p ⊂ Γ0 ⊂ Γ0 ⊂ Γ1 ⊂ (SΓ2)× Γ2.
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We choose χ ∈ S0
cl(R2n) so that χ = 1 on Γ0 and suppχ ⊂ Γ1. We also

choose ρ ∈ S0
cl(Rn) so that ρ = 1 on Γ2 and supp ρ ⊂ Γ3. Then we compute

p(y, η, x, ξ) = p(y, η, x, ξ)− p(y, η, z, ζ)

=
∫ 1

0

d

dt

(
p(y, η, tx+ (1− t)z, tξ + (1− t)ζ)

)
dt

=
n∑
j=1

(xj − zj)
∫ 1

0

∂p

∂xj
(y, η, tx+ (1− t)z, tξ + (1− t)ζ)dt

+
n∑
j=1

(ξj − ζj)
∫ 1

0

∂p

∂ξj
(y, η, tx+ (1− t)z, tξ + (1− t)ζ)dt.

We now set

gj(y, η, x, ξ) = χ(y, η, x, ξ)
∫ 1

0

∂p

∂xj
(y, η, tx+ (1− t)z, tξ + (1− t)ζ)dt

gn+j(y, η, x, ξ) = χ(y, η, x, ξ)
∫ 1

0

∂p

∂ξj
(y, η, tx+ (1− t)z, tξ + (1− t)ζ)dt

for j = 1, 2, . . . , n. We note gj ∈ S1
cl(R2n) for j = 1, 2, . . . , n, and gj ∈

S0
cl(R2n) for j = n+ 1, . . . , 2n. By the choice of χ, we have

(2.3) p(y, η, x, ξ) =
n∑
j=1

(xj − zj)gj(y, η, x, ξ) +
n∑
j=1

(ξj − ζj)gn+j(y, η, x, ξ).

We also set

fj(x, ξ) = xj |ξ|ρ(x, ξ), fn+j(x, ξ) = ξjρ(x, ξ)

for j = 1, 2, . . . , n. Then, as well as the computation above, we have

(fj ◦ S−1)(y, η)− fj(x, ξ) = fj(z, ζ)− f(x, ξ)

= −
∫ 1

0

d

dt
fj(tx+ (1− t)z, tξ + (1− t)ζ)dt

= −
n∑
k=1

(xk − zk)
∫ 1

0

∂fj
∂xk

(tx+ (1− t)z, tξ + (1− t)ζ)dt

−
n∑
k=1

(ξk − ζk)
∫ 1

0

∂fj
∂ξk

(tx+ (1− t)z, tξ + (1− t)ζ)dt.
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It is easy to see that on (SΓ2)× Γ2, we have
∂fj
∂xk

(tx+ (1− t)z, tξ + (1− t)ζ) = δjk|tξ + (1− t)ζ|,

∂fj
∂ξk

(tx+ (1− t)z, tξ + (1− t)ζ) = rjk(y, η, x, ξ),

∂fn+j

∂xk
(tx+ (1− t)z, tξ + (1− t)ζ) = 0,

∂fn+j

∂ξk
(tx+ (1− t)z, tξ + (1− t)ζ) = δjk,

where rjk ∈ S0
cl(R2n), j, k = 1, 2, . . . , n. Thus we have

(fj◦S−1)(y, η)−fj(x, ξ) = −(xj−zj)
∫ 1

0
|tξ+(1−t)ζ|dt+rj(y, η, x, ξ)

(fn+j ◦ S−1)(y, ξ)− fn+j(x, ξ) = −(ξj − ζj)

on (SΓ2) × Γ2 for j = 1, 2, . . . , n, where rj ∈ S0
cl(R2n). Since gj are sup-

ported in Γ1 ⊂ (SΓ2)× Γ2, we can find bj ∈ S0
cl(R2n) such that

(xj − zj)gj(y, η, x, ξ) = bj(y, η, x, ξ)((fj ◦ S−1)(y, η)− fj(x, ξ)) + r′j ,

(ξj − ζj)gn+j(y, η, x, ξ) = bn+j(y, η, x, ξ)((fn+j ◦ S−1)(y, η)− fn+j(x, ξ))

with r′j ∈ S0
cl(R2n), j = 1, 2, . . . , n. The assertion now follows from these

and (2.3). �

Proof of Theorem 2.1. — The “only if ” part is straightforward: If aj ∈
S1
cl(Rn) satisfying (2.1), then pj(y, η, x, ξ) = (aj ◦ S−1)(y, η) − aj(x,−ξ)

vanish on ΛS , and hence (2.2) follows from the definition of the FIOs and
the L2-boundedness theorem of FIOs (see, e.g., [6] Theorem 25.3.1 or [16]
Theorem 6.2.1).
We suppose (2.2) and show the “if” part. At first, we note WF(u) ⊂ ΛS :

If (y0, x0, η0,−ξ0) /∈ ΛS , then we can find a ∈ S0
cl(Rn) and b ∈ S1

cl(Rn)
such that a0(y0, η0) 6= 0, b0(x0, ξ0) 6= 0 and that a and b are supported
in small conic neighborhoods of (y0, η0) and (x0, ξ0), respectively, so that
a(y, η) · (b ◦ S−1)(y, η) = 0. By (2.2) with Lemma 2.7, we learn

a(y,Dy)((b ◦ S−1)(y,Dy)− b(x,−Dx))u

= (−a(y,Dy)b(x,−Dx) +R(y,Dy))u ∈ B−n/2,∞2 (R2n)

with R ∈ S0
1,0(Rn). This implies a(y,Dy)b(x,−Dx)u ∈ B−n/2,∞2 (R2n) by

the boundedness of R in B−n/2,∞2 (R2n) (see [6] Corollary B.1.6). Iterating
this procedure, we learn

[a(y,Dy)b(x,−Dx)]Nu ∈ B−n/2,∞2 (R2n)
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for any N , and this implies (y0, η0, x0,−ξ0) /∈WF(u).
We now let p1, p2, . . . , pN ∈ S1

cl(R2n) such that pj vanish on Λ̃S , and we
show

p1(y,Dy, x,−Dx)p2(y,Dy, x,−Dx) · · · pN (y,Dy, x,−Dx)u∈B−n/2,∞2,loc (R2n).

By the above observation, we may assume u is essentially supported in an
arbitrarily small conic neighborhood of ΛS . Moreover, by partition of unity,
we may also assume pj are supported in a small convex conic neighborhood
of (y0, η0, x0, ξ0) ∈ Λ̃S , where (y0, η0) = S(x0, ξ0). Then by Lemma 2.8, we
have

pj(y,Dy, x,−Dx) =
2n∑
k=1

bjk(y,Dy, x,−Dx)((fk◦S−1)(y,Dy)− fk(x,−Dx))

+ rj(y,Dy, x,−Dx)

for each j = 1, . . . , N , where bjk ∈ S0
cl(R2n) and fj ∈ S1

cl(R2n) are those
given in Lemma 2.8, and rj ∈ S(1, dy2 + dη2

〈η〉2 + dx2 + dξ2

〈ξ〉2 ), where S(m, g)
denotes the symbol class defined in [6], Section 18.5 (Weyl calculus). Then
by simple symbol calculus, we can show

(2.4)
N∏
j=1

pj(y,Dy, x,−Dx)u =
2n∑
k1=1
· · ·

2n∑
kN=1

N∏
j=1

bjkj (y,Dy, x,−Dx)

×
N∏
j=1

(
(fkj ◦ S−1)(y,Dy)− fkj (x,−Dx)

)
u+R(y,Dy, x,−Dx)u

with some R ∈ S(1, dy2 + dη2

〈η〉2 +dx2 + dξ2

〈ξ〉2 ). Note R is bounded in B−n/2,∞2
(R2n). Each term in the RHS has the form

B(y,Dy, x,−Dx) ker
[
AdS(fk1) · · ·AdS(fkN )U

]
with B ∈ S0

cl(R2n) except for R, where ker[A] denotes the distribution
kernel of an operator A. Now the claim follows from the assumption and
Lemma 2.7. �

3. Proof of Theorem 1.2

Here we prove that, under Assumption A with µ = 2,W (t) = eitH0e−itH

satisfies the condition of Corollary 2.6-(ii) with S = w±, where t ∈ R±. The
condition is an Egorov-type theorem, and it was essentially proved in [14]
(see also [13, 8]) in the semiclassical formalism. We modify the argument
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to prove the Egorov theorem in S1
1,0(Rn) symbol class. Namely, we prove

the following:

Theorem 3.1. — Suppose Assumption A with µ = 2, and suppose the
global nontrapping condition. Let ±t > 0. Then for any a ∈ S1

1,0(Rn)
satisfying (2.1), there is b(t) ∈ S0

1,0(Rn) such that

W (t)a(x,Dx)W (t)−1 = (a ◦ w−1
± )(x,Dx) + b(t, x,Dx).

We first sketch the outline following [14]. We set

A(t) = W (t)a(x,Dx)W (t)−1, t ∈ R.

If we considerW (t) as an evolution operator, we can compute the generator
as follows: For ψ ∈ S(Rn), we have

d

dt
W (t)ψ = eitH0(iH0 − iH)e−itH0W (t)ψ

= −i
(
eitH0He−itH0 −H0

)
W (t)ψ = −iL(t)W (t)ψ.

Since
eitH0Dxe

−itH0 = Dx, eitH0xe−itH0 = x− tDx,

we learn that the principal symbol of L(t) is given by

`(t, x, ξ) = 1
2

n∑
j,k=1

(ajk(x− tξ)− δjk)ξjξk + V (x− tξ).

In fact, if we use the Weyl calculus, which we do, the symbol of L(t) is given
by `(t, x, ξ) modulo S0

1,0-terms. The classical flow generated by `(t, x, ξ) is

w(t) = exp(−tHp0) ◦ exp(tHp).

Here we use, however, the flow:

w0(t) = exp(−tHp0) ◦ exp(tHk)

which is generated by

`0(t, x, ξ) = 1
2

n∑
j,k=1

(ajk(x− tξ)− δjk)ξjξk.

Analogously to the usual Egorov theorem, we expect the principal symbol
of A(t) is given by (a0 ◦ w0(t)−1)(x, ξ), where a0 is the principal symbol
of a. We construct an asymptotic expansion of A(t) by solving transport
equations iteratively. We set

ψ0(t, x, ξ) = (a ◦ w0(t)−1)(x, ξ)
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for a ∈ S1
1,0(Rn). We note that by Lemma A.1, ψ0(t, ·, ·) ∈ S1

1,0(Rn), uni-
formly in t. For a symbol q(x, ξ) ∈ Sm1,0(Rn), we define a family of seminorms
by

|q|m,L,K =
∑

|α|+|β|6L

sup
x∈K,ξ∈Rn

∣∣〈ξ〉−m+|β|∂αx ∂
β
ξ q(x, ξ)

∣∣
for L ∈ N, K b Rn. For T > 0, we write IT = [−T, T ].

Lemma 3.2. — Let a ∈ S1
1,0(Rn) satisfying (2.1). Then there exists

ψ(t, x, ξ) such that
(i) ψ(0, x, ξ) = a(x, ξ).
(ii) ψ(t, ·, ·) ∈ S1

1,0(Rn) and for any L, T > 0 and K b Rn,

|ψ(t, ·, ·)|1,L,K 6 CL,T,K , t ∈ IT .

(iii) ψ(t, ·, ·)− ψ0(t, ·, ·) ∈ S0
1,0(Rn), and for any L, T > 0 and K b Rn,

|ψ(t, ·, ·)− ψ0(t, ·, ·)|0,L,K 6 CL,TK , t ∈ IT .

(iv) Let G(t) = ψW(t, x,Dx), and set

R(t) = d

dt
G(t) + i[L(t), G(t)].

Then R(t) is a smoothing operator, and ‖〈Dx〉NR(t)〈Dx〉N‖L(L2) 6
CT,N , for any N , t ∈ IT .

Proof. — We can find K b Rn such that ψ0(t, x, ξ) = 0 if x /∈ K, since
w0(t)(x, ξ) has limits as t→ ±∞. We note `0(t, ·, ·) ∈ S2

1,0(Rn) and for any
L, |`0(t, ·, ·)|2,L,K is uniformly bounded. By the construction, ψ0 satisfies

∂

∂t
ψ0(t, x, ξ) = −{`0, ψ0}(t, x, ξ),

where {·, ·} denotes the Poisson bracket. Then by virtue of the Weyl cal-
culus, we learn

∂

∂t
ψW0 (t, x,Dx) + i[L(t), ψW0 (t, x,Dx)] = rW0 (t, x,Dx)

with r0 ∈ S0
1,0(Rn), and the seminorms of r0 are locally uniformly bounded

in t. Then we solve the transport equation:

(3.1) ∂

∂t
ψ1(t, x, ξ) + {`0, ψ1}(t, x, ξ) = −r0(t, x, ξ)

with ψ1(0, x, ξ) = 0. It is easy to see that ψ1 ∈ S0
1,0(Rn) and the seminorms

are locally uniformly bounded in t. Iterating this procedure, we obtain
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ψj ∈ S1−j
1,0 (Rn), j = 1, 2, . . . , and we set the asymptotic sum as ψ:

ψ ∼
∞∑
j=0

ψj in S1
1,0(Rn).

Now it follows from the above construction that

(3.2) ∂

∂t
ψW(t, x,Dx) + i[L(t), ψW(t, x,Dx)] = r(t, x,Dx)

with r ∈ S−∞1,0 (Rn). Thus our ψ satisfies the required properties. �

Proof of Theorem 3.1. — Let ψ(t, x, ξ) be as in Lemma 3.2 and let
G(t) = ψW(t, x,Dx). By the lemma, we have

d

dt
(W (t)−1G(t)W (t)) = W (t)−1R(t)W (t)

and the RHS is a smoothing operator, and its seminorms are uniformly
bounded. Since W (0)−1G(0)W (0) = aW(x,Dx), we learn

(3.3) W (t)aW(x,Dx)W (t)−1 −G(t) = R2(t)

is a smoothing operator. Thus, the principal symbol of A(t) is a ◦w0(t)−1.
It remains to compare a ◦ w0(t)−1 with a ◦ w−1

± .
We denote

(x̃(t, z, η), ξ̃(t, z, η)) = w0(t)−1(z, η), (x̃±(z, η), ξ̃±(z, η)) = w−1
± (z, η).

Then by Lemma A.1, we learn∣∣∂αz ∂βη (x̃(t, z, η)− x̃±(z, η))
∣∣ 6 Cαβ〈η〉−|β|〈tη〉−µ+1,∣∣∂αz ∂βη (ξ̃(t, z, η)− ξ̃±(z, η))
∣∣ 6 Cαβ〈η〉1−|β|〈tη〉−µ+1

for ±t > 0. We then compute

(a ◦ w0(t)−1)(z, η)− (a ◦ w−1
± )(z, η)

= a(x̃(t, z, η), ξ̃(t, z, η))− a(x̃±(z, η), ξ̃±(z, η))

=
∫ 1

0

∂

∂s
a(sx̃(t, z, η) + (1− s)x̃±(z, η), sξ̃(t, z, η) + (1− s)ξ̃±(z, η))ds

= (x̃(t, z, η)− x̃±(z, η))
∫ 1

0
(∂xa)(sx̃+ (1− s)x̃±, sξ̃ + (1− s)ξ̃±)ds

+ (ξ̃(t, z, η)− ξ̃±(z, η))
∫ 1

0
(∂ξa)(sx̃+ (1− s)x̃±, sξ̃ + (1− s)ξ̃±)ds

= (x̃(t)− x̃±) ·A(z, η) + (ξ̃(t)− ξ̃±) ·B(z, η),

and it is easy to see∣∣∂αz ∂βηA(z, η)
∣∣ 6 Cαβ〈η〉1−|β|, ∣∣∂αz ∂βηB(z, η)

∣∣ 6 Cαβ〈η〉−|β|.
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Combining these, we now have∣∣∂αz ∂βη (a ◦ w0(t)−1 − a ◦ w−1
± )
∣∣ 6 Cαβ〈η〉1−|β|〈tη〉−µ+1

for ±t > 0. For fixed t 6= 0, this implies a◦w0(t)−1−a◦w−1
± ∈ S

2−µ
1,0 = S0

1,0
since µ = 2. Combining this with ψ(t, ·, ·) − a ◦ w0(t)−1 ∈ S0

1,0, we learn
ψ(t, ·, ·)− a ◦ w± ∈ S0

1,0. The assertion follows from this and (3.3). �

Theorem 1.2 now follows immediately from Theorem 3.1 and Corol-
lary 2.6-(ii).

4. Fourier integral operators associated to asymptotically
homogeneous canonical transform

Here we discuss FIOs associated to asymptotically homogeneous canon-
ical transform, e.g., w(t) and w0(t), and we prove Theorem 1.5. We start
with several definitions.

Definition 4.1. — Let Λ ⊂ T ∗Rm\0 be a d-dimensional conic subman-
ifold, and let (x0, ξ0) ∈ Λ. Suppose Ω be a conic neighborhood of (x0, ξ0)
and let Φ : Ω → R2m be a local coordinate system on Ω. Φ is called an
admissible conic local coordinate system (associated to Λ) if Φ satisfies the
following conditions:

(i) Φ is expressed as

Φ(x, ξ) = (|ξ|, σ(x, ξ̂), τ(x, ξ̂)), σ(x, ξ̂) ∈ Rd−1, τ(x, ξ̂) ∈ R2m−d

for (x, ξ) ∈ T ∗R2m, where ξ̂ = ξ/|ξ|, i.e., σ(x, ξ) and τ(x, ξ) are
independent of |ξ|.

(ii) Λ ∩ Ω =
{

(x, ξ) ∈ Ω
∣∣ τ(x, ξ) = 0

}
.

Definition 4.2. — Let Λ ⊂ T ∗Rm be a d-dimensional submanifold. Λ
is called asymptotically conic if Λ satisfies the following conditions:

(i) There exists a d-dimensional conic submanifold Λc ⊂ T ∗Rm such
that for any K b Rm and Ω ⊂ T ∗Rm : a conic neighborhood of
Λc ∩ (K × Rm), there is R > 0 such that

Λ ∩
{

(x, ξ)
∣∣ x ∈ K, |ξ| > R} ⊂ Ω.

(ii) Let Ω be a conic neighborhood of (x0, ξ0) ∈ Λc, and let Φ be an
admissible conic local coordinate system on Ω. Then there are R >

0, an R2m−d-valued function ϕ(λ, σ) such that

Λ ∩
{

(x, ξ) ∈ Ω
∣∣ |ξ| > R}

=
{

(x, ξ) ∈ Ω
∣∣ τ(x, ξ) = ϕ(|ξ|, σ(x, ξ)), |ξ| > R

}
,
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and ε > 0 such that for any k ∈ Z+ and α ∈ Zd−1
+ ,∣∣∂kλ∂ασϕ(λ, σ)

∣∣ 6 Ckα〈λ〉−ε−k, λ > R.

Definition 4.3 (Lagrangian distribution). — Let Λ ⊂ T ∗Rm be an
asymptotically conic Lagrangian submanifold, and let u ∈ S ′(Rm). Let
ν ∈ R. u is called a Lagrangian distribution associated to Λ of order ν, if
for any p1, . . . , pN ∈ S1

1,0(Rm) such that pj = 0 on Λ (j = 1, 2, . . . , N),

p1(x,Dx)p2(x,Dx) · · · pN (x,Dx)u ∈ B−ν−m/4,∞2,loc (Rm).

We then write u ∈ Iν(Λ,Rm).

Definition 4.4. — Let S : T ∗Rn → T ∗Rn be a diffeomorphism. S is
called asymptotically homogeneous (of order one) if S satisfies the following
conditions: We write S(x, ξ) = (y(x, ξ), η(x, ξ)). There exists Sc : T ∗Rn →
T ∗Rn, a homogeneous canonical map (of order one) such that

y(x, ξ)− yc(x, ξ) ∈ (S−ε1,0(Rn))n, η(x, ξ)− ηc(x, ξ) ∈ (S1−ε
1,0 (Rn))n,

with some ε > 0, where we denote Sc(x, ξ) = (yc(x, ξ), ηc(x, ξ)).

Remark 4.5. — By Lemmas A.1 and A.2, we learn w0(t) and w(t) are
asymptotically homogeneous for t 6= 0, and they are associated to homoge-
neous canonical transforms w± for t ∈ R±, respectively.

Lemma 4.6. — Suppose S : T ∗Rn → T ∗Rn is an asymptotically homo-
geneous canonical transform. Then

ΛS =
{

(y, x, η,−ξ) ∈ T ∗R2n ∣∣ (y, η) = S(x, ξ)
}

is an asymptotically conic Lagrangian submanifold of T ∗R2n.

Proof. — Let Sc be the associated homogeneous canonical transform,
and let ΛSc be the corresponding Lagrangian manifold. Let (x0, ξ0) ∈ T ∗Rn
and let (y0, x0, η0,−ξ0) ∈ ΛSc with (y0, η0) = Sc(x0, x0). Let Ω1 × Ω2 ⊂
Rn × Sn−1 be a small neighborhood of (x0, ξ̂0) ∈ ΛSc and let

ψ : Ω1 × Ω2 → Rn × Rn−1, (x, ω) 7→ (x− x0, σ(ω))

be a local coordinate system on Ω1 × Ω2. We then set

Ψ : R+ × ψ(Ω1 × Ω2)×Bε(0)×Bε(0)→ T ∗R2n

with

Ψ : (λ, α, β, τ, τ ′) 7→

(yc(ψ−1(α, β)) + τ, x0 + α, λ(ηc(ψ−1(α, β)) + τ ′),−λσ−1(β)),
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where Bε(0) = {x ∈ Rn | |x| < ε} with sufficiently small ε > 0. Then
Ran Ψ is a conic neighborhood of (y0, x0, η0,−ξ0) in T ∗R2n, and Ψ−1 is an
admissible conic local coordinate system. We note if R is sufficiently large,

ΛS ∩ (Ran Ψ({λ > R}))

=
{(
y(x0 + α, λσ−1(β)), x0 + α, η(x0 + α, λσ−1(β)),−λσ−1(β)

) ∣∣
λ > R, (α, β) ∈ ψ(Ω1 × Ω2)

}
and hence (y, x, η,−ξ) ∈ ΛS ∩ (Ran Ψ({λ > R})) if and only if

τ = y(x0 + α, λσ−1(β))− yc(ψ−1(α, β)),

τ ′ = λ−1(η(x0 + α, λσ−1(β))− ηc(x0 + α, λσ−1(β))),

where (λ, α, β, τ, τ ′) = Ψ−1(y, x, η,−ξ). Now it is easy to check ΛS satisfies
conditions of Definition 4.2 if we set σ → (α, β), τ → (τ, τ ′),

ϕj(λ, α, β) = yj(x0 + α, λσ−1(β))− yc,j(x0 + α, λσ−1(β)),

and

ϕn+j(λ, α, β) = λ−1(ηj(x0 + α, λσ−1(β))− ηc,j(x0 + α, λσ−1(β))
)

for j = 1, 2, . . . , n. �

Definition 4.7. — Let S be an asymptotically homogeneous canonical
transform from T ∗Rn to T ∗Rn, and let ΛS be the associated Lagrangian
manifold in T ∗R2n, which is asymptotically conic by Lemma 4.6. Let U ∈
L(S(Rn),S ′(Rn)) and let u ∈ S ′(R2n) be its distribution kernel. Then U

is called a Fourier integral operator associated to S of order σ ∈ R if
u ∈ Iσ(ΛS ,R2n).

Given Definition 4.7, we now have the exact meaning of Theorem 1.5,
and we prove Theorem 1.5 in the remaining of this section. We note Theo-
rem 2.5 holds with little modification for FIOs associated to asymptotically
homogeneous canonical transforms:

Theorem 4.8. — Let S : T ∗Rn → T ∗Rn be an asymptotically homo-
geneous canonical transform, and let U ∈ L(S(Rn),S ′(Rn)). U is an FIO
associated to S if and only if for any a1, a2, . . . , aN ∈ S1

1,0(Rn) satisfying
(2.1),

AdS(a1)AdS(a2) · · ·AdS(aN )U ∈ L(L2
cpt(Rn), L2

loc(Rn)).

The proof of Theorem 4.8 is almost the same as that of Theorem 2.5. In
the “only if” part, we use the fact that L2-boundedness theorem holds for
FIOs associated to asymptotically homogeneous canonical transforms. An
analogue of Lemma 2.8 is given as follows:
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Lemma 4.9. — Let S be an asymptotically homogeneous canonical
transform as above. Let p ∈ S1

1,0(R2n) such that p vanishes on

Λ̃S =
{

(y, η, x, ξ)
∣∣ (y, η) = S(x, ξ)

}
.

Then there exist bj ∈ S0
1,0(R2n), fj ∈ S1

1,0(Rn), (j = 1, 2, . . . , 2n), and
r ∈ S0

1,0(R2n) such that

p(y, η, x, ξ) =
2n∑
j=1

bj(y, η, x, ξ)
(
(fj ◦ S−1)(y, η)− fj(x, ξ)

)
+ r(y, η, x, ξ).

Lemma 4.9 is proved in almost the same manner as Lemma 2.8. Then the
rest of the proof of Theorem 4.8 follows from the argument of Theorem 2.5,
and we omit the detail.

Proof of Theorem 1.5. — Given the above formulation, the proof of
Theorem 4.8 is similar to that of Theorem 1.2. Here we explain only the
necessary modifications. When we construct the asymptotic solution to the
Heisenberg equation: ∂tG(t) = i[L(t), G(t)], we use

ψ0(t, x, ξ) = (a ◦ w(t)−1)(x, ξ)

instead of (a◦w0(t)−1)(x, ξ) in Section 3. By virtue of Lemma A.2, we learn
ψ0 ∈ S1

1,0(Rn), and we can carry out the symbol calculus as in Section 3
with no difficulty. Then the remainder terms of the asymptotic expansion
(e.g., r0 in the proof of Lemma 3.2) is in S0

1,0(Rn) even if 1 < µ < 2, since
w(t) includes the influence of the potential function V (x). The rest of the
proof is almost identical. �

5. Microlocal structure of wave operators

Throughout this section, we suppose Assumption B with 1 < µ < 2, and
we prove Theorem 1.6. We use an argument analogous to Lemma 3.2, but
we need to examine the t-dependence of seminorms more carefully. We note∣∣∂αx ∂βξ `0(t, x, ξ)

∣∣ 6 CαβK〈tξ〉−µ−|α|〈ξ〉2−|β|,(5.1) ∣∣∂αx ∂βξ Ṽ (t, x, ξ)
∣∣ 6 CαβK〈tξ〉−µ−|α|〈ξ〉−|β|(5.2)

for any α, β ∈ Zn+, K b Rn, where Ṽ (t, x, ξ) = V (x− tξ). For a ∈ S1
cl(Rn)

satisfying (2.1), we set ψ0(t, x, ξ) = (a◦w0(t)−1)(x, ξ) as in Section 3. Then
we have ∣∣ψ0(t, ·, ·)

∣∣
1,L,K 6 CL,K , t ∈ R,
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for any L > 0, K b Rn. Moreover, by (5.1) and (5.2), we also have∣∣r0(t, ·, ·)
∣∣
0,L,K 6 CL,K〈t〉

−µ, t ∈ R,

where r0 is defined as in the proof of Lemma 3.2. Here we have used the
fact |ξ| > c > 0 for all t on the support of ψ0. Thus, since the solution to
the transport equation (3.1) is uniformly bounded, we have∣∣ψ1(t, ·, ·)

∣∣
0,L,K 6 CL,K , t ∈ R.

We repeat this procedure. We set ψj be the solution to the transport equa-
tions:

∂

∂t
ψj(t, x, ξ) + {`0, ψj}(t, x, ξ) = −rj−1(t, x, ξ)

with ψj(0, x, ξ) = 0 (as in the proof of Lemma 3.2), and we set rj ∈ S−j1,0
such that

rWj (t, x,Dx) = ∂

∂t
ψWj (t, x,Dx) + i[L(t), ψWj (t, x,Dx)] + rWj−1(t, x,Dx)

given ψj ∈ S1−j
1,0 (Rn). Then we learn, similarly as above,

(5.3)
∣∣rj(t, ·, ·)∣∣−j,L,K 6 CjLK〈t〉−µ, ∣∣ψj(t, ·, ·)∣∣1−j,L,K 6 CjLK ,

uniformly in t ∈ R with any L > 0, K b Rn, for each j. By (5.3) and the
transport equations, we learn

ψj,±(x, ξ) = lim
t→±∞

ψj(t, x, ξ) ∈ S1−j
1,0 (Rn), j = 0, 1, 2, . . . ,

exist, and they converge with respect to the seminorms in S1−j
1,0 (Rn) by

virtue of Lemma A.1. More precisely, we have

(5.4)
∣∣ψj(t, ·, ·)− ψj,±(·, ·)

∣∣
1−j,L,K 6 CjLK〈t〉

1−µ, t ∈ R

for all j. We note
ψ0,±(x, ξ) = (a ◦ w−1

± )(x, ξ)
by our construction.
We now construct the asymptotic sum: ψ ∼

∑∞
j=0 ψj as follows. We

choose K b Rn so large that all symbols in the above construction are
supported in K × Rn for all t. We choose εj > 0 so that

sup
{
〈ξ〉j−2|∂αx ∂

β
ξ ψj(t, x, ξ)|

∣∣ |α|+ |β| 6 j, x ∈ K, |ξ| > ε−1
j , t ∈ R

}
6 2−j ,

which is possible since |ψj(t, ·, ·)|1−j,L,K is uniformly bounded in t. We let
χ ∈ C∞(Rn) such that χ(ξ) = 0 for |ξ| 6 1, and χ(ξ) = 1 for |ξ| > 2. Then
we set

ψ(t, x, ξ) =
∞∑
j=0

χ(εjξ)ψj(t, x, ξ).
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By the standard argument, we learn ψ(t, ·, ·) ∈ S1
1,0(Rn) for all t ∈ R.

Moreover, by the same argument with (5.4), we learn

ψ±(x, ξ) = lim
t→±∞

ψ(t, x, ξ) ∈ S1
1,0(Rn)

exist, and they converge with respect to seminorms of S1
1,0(Rn).

Lemma 5.1. — Let ψ as above, and let r ∈ S1
1,0(Rn) such that

rW(t, x,Dx) = ∂

∂t
ψW(t, x,Dx) + i[L(t), ψW(t, x,Dx)].

Then r(t, ·, ·) ∈ S−∞1,0 (Rn) for each t ∈ R, and for any N ,

∣∣r(t, ·, ·)∣∣−N,L,K 6 CNLK〈t〉−µ.
Proof. — We write ψ̃j(t, x, ξ) = χ(εjξ)ψj(t, x, ξ) and set r̃j(t, x, ξ) ∈ S−j1,0

so that

∂

∂t
ψ̃Wj (t, x,Dx) + i[L(t), ψ̃Wj (t, x,Dx)] = r̃Wj (t, x,Dx).

By estimating ∂tψ̃j and [L(t), ψ̃Wj (t, x,Dx)] separately, we obtain rather
crude estimates:

(5.5)
∣∣r̃j(t, ·, ·)∣∣2−j,L,K 6 CLK〈t〉−µ2−j , t ∈ R,

if j > L+ 1, where CLK is independent of t and j. Similarly we have

(5.6)
∣∣r̃j(t, ·, ·)− rj(t, ·, ·)∣∣−N,L,K 6 CjNLK〈t〉−µ

for each j. Now we compute

rW(t, x,Dx) =
∞∑
j=0

(
∂

∂t
ψ̃Wj (t, x,Dx) + i

[
L(t), ψ̃Wj (t, x,Dx)

])
= I + II + III,
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where

I =
M∑
j=0

(
∂

∂t
ψWj (t, x,Dx) + i

[
L(t), ψWj (t, x,Dx)

])
= rWM(t, x,Dx),

II =
M∑
j=0

(
∂

∂t
(ψ̃j − ψj)W(t, x,Dx) + i

[
L(t), (ψ̃j − ψj)W(t, x,Dx)

])

=
M∑
j=0

(
(r̃j − rj)W(t, x,Dx)

)
,

III =
∞∑

j=M+1

(
∂

∂t
ψ̃Wj (t, x,Dx) + i

[
L(t), ψ̃Wj (t, x,Dx)

])

=
∞∑

j=M+1
r̃Wj (t, x,Dx),

where M = max(N + 2, L). Here we denote the symbol of an operator A
by σ(A). Then we have |σ(I)|−N,L,K 6 C〈t〉−µ by (5.3). Using (5.6), we
also have |σ(II)|−N,L,K 6 C〈t〉−µ. Finally we have

|σ(III)|−N,L,K 6 C
∞∑

j=M+1
〈t〉−µ2−j 6 C ′〈t〉−µ

by (5.5), and the claim follows from these inequalities. �

Proof of Theorem 1.3. — Let R(t) = rW(t, x,Dx). Lemma 5.1 implies

‖R(t)‖L(H−N ,HN ) 6 CN 〈t〉−µ, t ∈ R

for any N . By our construction, we have

W (t)−1G(t)W (t)− aW(x,Dx) =
∫ t

0
W (s)−1R(s)W (s)ds,

where G(t) = ψW(t, x,Dx). Hence we have

(5.7) W (t)−1G(t)− aW(x,Dx)W (t)−1 =
∫ t

0
W (s)−1R(s)W (s)W (t)−1ds.

We note∥∥W (t)
∥∥
L(HN ,HN ) =

∥∥〈Dx〉NeitH0e−itH〈Dx〉−N
∥∥
L(L2)

6
∥∥〈Dx〉N 〈H〉−N/2

∥∥
L(L2)

∥∥〈H〉N/2〈Dx〉−N
∥∥
L(L2)
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is bounded uniformly in t ∈ R with any N ∈ R. Hence we learn∥∥W (s)−1R(t)W (s)W (t)−1∥∥
L(H−N ,HN ) 6 CN 〈t〉

−µ

and then the RHS of (5.7) converges absolutely in L(H−N , HN ) as t →
±∞. On the other hand, G(t) converges to ψW± (x,Dx) in OPS1

1,0(Rn), and
hence in L(H1, L2) as t → ±∞. By the definition of wave operators, we
then have

W (t)−1G(t)→W±ψ
W
± (x,Dx),

aW(x,Dx)W (t)−1 → aW(x,Dx)W±
strongly in L(H1, H−1) as t→ ±∞. Thus we learn

W±ψ
W
± (x,Dx)− aW(x,Dx)W± = R ∈ L(H−N , HN )

with any N . Since ψ± − a ◦ w−1
± ∈ S0

1,0(Rn), i.e., a− ψ± ◦ w± ∈ S0
1,0(Rn),

Theorem 1.6 now follows from Corollary 2.6. �

Appendix A. Classical trajectories

Here we prove several technical inequalities.

Lemma A.1. — Suppose Assumption A with µ > 0, and assume the
global nontrapping condition. Let

(z(t, x, ξ), η(t, x, ξ)) = w0(t)(x, ξ) = exp(−tHp0) ◦ exp(tHk)(x, ξ),
(z±(x, ξ), ξ±(x, ξ)) = w±(x, ξ) = lim

t→±∞
w0(t)(x, ξ).

Then for any α, β ∈ Zn+ and K b Rn there is CαβK > 0 such that

(A.1)
∣∣∂αx ∂βξ z(t, x, ξ)∣∣ 6 CαβK〈ξ〉−|β|, ∣∣∂αx ∂βξ η(t, x, ξ)

∣∣ 6 CαβK〈ξ〉1−|β|
and, moreover,∣∣∂αx ∂βξ (z(t, x, ξ)− z±(x, ξ))

∣∣ 6 CαβK〈ξ〉−|β|〈tξ〉−µ+1,(A.2) ∣∣∂αx ∂βξ (η(t, x, ξ)− ξ±(x, ξ))
∣∣ 6 CαβK〈ξ〉1−|β|〈tξ〉−µ(A.3)

for x ∈ K, ξ ∈ Rn.

Proof. — We note

(A.4) ∂

∂t
zj = ∂`0

∂ηj
(z, η), ∂

∂t
ηj = −∂`0

∂zj
(z, η)

and `0 satisfies ∣∣∂αz ∂βη `0(z, η)
∣∣ 6 CαβK〈tη〉−µ−|α|〈η〉2−|β|
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for z ∈ K b Rn. We first show (A.1) by induction in |α| + |β| = m. If
α = β = 0, (A.1) is well-known (see, e.g., [14], Lemma 3.). Suppose (A.1)
holds for |α|+ |β| < m, and let |α|+ |β| = m. By differentiating (A.4), we
have

∂

∂t

(
∂αx ∂

β
ξ zj
)

=
n∑
k=1

(
∂αx ∂

β
ξ zk
) ∂2`0
∂zk∂ηj

+
n∑
k=1

(
∂αx ∂

β
ξ ηk

) ∂2`0
∂ηk∂ηj

+ r1,(A.5)

∂

∂t

(
∂αx ∂

β
ξ ηj
)

=
n∑
k=1

(
∂αx ∂

β
ξ zk
) ∂2`0
∂zk∂zj

−
n∑
k=1

(
∂αx ∂

β
ξ ηk

) ∂2`0
∂ηk∂zj

+ r2,(A.6)

where

r1 = O
(
〈tη〉−µ〈η〉1−|β|

)
, r2 = O

(
〈tη〉−1−µ〈η〉2−|β|

)
by the induction hypothesis. We also note

∂2`0
∂z∂η

= O
(
〈tη〉−1−µ〈η〉

)
,
∂2`0
∂η2 = O

(
〈tη〉−µ

)
,
∂2`0
∂z2 = O

(
〈tη〉−2−µ〈η〉2

)
.

We consider the case: t > 0. The case: t < 0 is handled similarly. We now
let R � 0, and R 6 |ξ| 6 2R. This also implies R/C 6 |η| 6 CR with
some C > 0. Then we have∣∣∣∣ ∂∂t(∣∣∂αx ∂βξ z∣∣+R−1∣∣∂αx ∂βξ η∣∣)∣∣∣∣ 6 C〈tR〉−µR(∣∣∂αx ∂βξ z∣∣+R−1∣∣∂αx ∂βξ η∣∣)

+ C〈tR〉−µR1−|β|.

By the Duhamel formula and the estimate on the initial condition:

(∣∣∂αx ∂βξ z∣∣+R−1∣∣∂αx ∂βξ η∣∣)∣∣∣
t=0
6 CR−|β|,

we learn

∣∣∂αx ∂βξ z∣∣+R−1∣∣∂αx ∂βξ η∣∣ 6 C exp
(
C

∫ ∞
0
〈tR〉−µRdt

)
×

×
(
CR−|β| + C

∫ ∞
0
〈tR〉−µR1−|β|dt

)
6 C ′R−|β|

since µ > 1. This implies (A.1).
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Now we use (A.5)–(A.6) again with (A.1) to learn∣∣∣∣ ∂∂t(∣∣∂αx ∂βξ z∣∣)
∣∣∣∣ 6 C〈tR〉−1−µR1−|β| + C〈tR〉−µR1−|β| + C〈tR〉−µR1−|β|

6 C ′〈tR〉−µR1−|β|,∣∣∣∣ ∂∂t(∣∣∂αx ∂βξ η∣∣)
∣∣∣∣ 6 C〈tR〉−2−µR2−|β|+C〈tR〉−1−µR2−|β|+C〈tR〉−1−µR2−|β|

6 C ′〈tR〉−1−µR2−|β|.

Hence, by integrating these on [t,∞), we learn∣∣∂αx ∂βξ (z(t, x, ξ)− z+(x, ξ))
∣∣ 6 C ∫ ∞

t

〈tR〉−µR1−|β|dt

= CR−|β|
∫ ∞
Rt

〈s〉−µds 6 CR−|β|〈tR〉1−µ,

∣∣∂αx ∂βξ (η(t, x, ξ)− ξ+(x, ξ))
∣∣ 6 C ∫ ∞

t

〈tR〉−1−µR2−|β|dt

= CR1−|β|
∫ ∞
Rt

〈s〉−1−µds 6 CR1−|β|〈tR〉−µ,

For the case: t < 0, we integrate these inequalities on (−∞, t] to obtain
corresponding estimates. (A.2) and (A.3) follows immediately from these
estimates. �

Next we consider the evolution:

(z1(t, x, ξ), η1, t, x, ξ)) = w(t)(x, ξ) = exp(−tHp0) ◦ exp(tHp)(x, ξ)

and compare it with w0(t)(x, ξ) as |ξ| → ∞ for t in a fixed bounded interval.
We denote IT = [−T, T ], and we consider the case t > 0 only in the proof.

Lemma A.2. — Suppose Assumption A with 1 < µ < 2, and assume
the global nontrapping condition. Let T > 0. Then for any α, β ∈ Zn+ and
K b Rn, there is C = C(α, β,K, T ) > 0 such that

(A.7)
∣∣∂αx ∂βξ z1(t, x, ξ)

∣∣ 6 C〈ξ〉−|β|, ∣∣∂αx ∂βξ η1(t, x, ξ)
∣∣ 6 C〈ξ〉1−|β|

and ∣∣∂αx ∂βξ (z1(t, x, ξ)− z(t, x, ξ))
∣∣ 6 C〈ξ〉1−µ−|β|,(A.8) ∣∣∂αx ∂βξ (η1(t, x, ξ)− η(t, x, ξ))
∣∣ 6 C〈ξ〉1−µ−|β|(A.9)

for t ∈ IT , x ∈ K and ξ ∈ Rn.
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Proof. — Step 1: We first show (A.8) and (A.9) with α = β = 0. We
denote Ṽ (t, z, η) = V (z − tη) so that `(t, z, η) = `0(t, z, η) + Ṽ (t, z, η). We
note

∂

∂t
(z1 − z) = ∂`0

∂η
(z1, η1)− ∂`0

∂η
(z, η) + ∂Ṽ

∂η
(z1, η1),(A.10)

∂

∂t
(η1 − η) = −∂`0

∂z
(z1, η1) + ∂`0

∂z
(z, η)− ∂Ṽ

∂z
(z1, η1).(A.11)

We now suppose

(A.12) |z1 − z| 6 ε0|z|, |η1 − η| 6 ε0|η|

for x ∈ K b Rn, ξ ∈ Rn and t ∈ IT ′ with T ′ > 0. We suppose t > 0 and
we have

∂

∂t
(z1 − z) = (z1 − z) ·

∫ 1

0

∂2`0
∂z∂η

(sz1 + (1− s)z, sη1 + (1− s)η)ds

(A.13)

+ (η1 − η) ·
∫ 1

0

∂2`0
∂η∂η

(sz1 + (1− s)z, sη1 + (1− s)η)ds

+ ∂Ṽ

∂η
(z1, η1),

∂

∂t
(η1 − η) = −(z1 − z) ·

∫ 1

0

∂2`0
∂z∂z

(sz1 + (1− s)z, sη1 + (1− s)η)ds

(A.14)

− (η1 − η) ·
∫ 1

0

∂2`0
∂η∂z

(sz1 + (1− s)z, sη1 + (1− s)η)ds

− ∂Ṽ

∂z
(z1, η1),

for t ∈ [0, T ′]. We again assume R 6 |ξ| 6 2R with R � 0, so that
|η| ∼ O(|ξ|) = O(R). Then we have

∂

∂t
(|z1 − z|+R−1|η1 − η|) 6 C〈tR〉−µR(|z1 − z|+R−1|η1 − η|)

+ C〈tR〉2−µR−1.

Then by the Duhamel formula, we learn

|z1 − z|+R−1|η1 − η| 6 Ce
C
∫ t

0
〈sR〉−µRds ×

∫ t

0
〈sR〉2−µR−1ds

6 C ′R−2
∫ Rt

0
〈s〉2−µds,
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since z1 = z, η1 = η at t = 0. We note∫ σ

0
〈s〉2−µds 6

∫ σ

0
(1 + s)2−µds = (1 + σ)3−µ − 1

3− µ 6 C(σ + σ3−µ),

and hence

(A.15) |z1 − z|+R−1|η1 − η| 6 CR−2(Rt+ (Rt)3−µ) 6 C ′tR1−µ

for t ∈ [0, T ′], R� 0. Thus, in particular, (A.12) holds with ε0 = O(R1−µ).
By contradiction, we learn that (A.12) holds for t ∈ [0, T ] if |ξ| is sufficiently
large. (A.15) also implies (A.8) with α = β = 0. We substitute (A.15) to
(A.14) to learn∣∣∣∣ ∂∂t (η1 − η)

∣∣∣∣ 6 C(t〈tR〉−2−µR3−µ + t〈tR〉−1−µR3−µ + 〈tR〉1−µ
)

6 C
(
〈tR〉−1−µR2−µ + 〈tR〉−µR2−µ + 〈tR〉1−µ

)
since t〈tR〉−1 6 R−1. Integrating this inequality, we have

|η1 − η| 6 C
(
R1−µ

∫ ∞
0
〈tR〉−µRdt+

∫ t

0
〈sR〉1−µds

)
6 C ′

(
R1−µ + 〈tR〉

2−µ

R

)
6 C ′′R1−µ

for t ∈ [0, T ], and this implies (A.9) with α = β = 0.
Step 2: We then prove (A.7) mimicking the proof of (A.1). We note∣∣∂αz ∂βη `(z, η)

∣∣ 6 C(〈tη〉−µ−|α|〈η〉2−|β| + 〈tη〉2−µ−|α|〈η〉−|β|)
for any α, β ∈ Zn+. We prove them by induction in |α| + |β| = m. We
suppose (A.7) holds for |α|+ |β| < m and let |α|+ |β| = m. Analogously to
the proof of (A.1), it follows from the induction step that if R 6 |ξ| 6 2R
with R� 0,

∂

∂t

(∣∣∂αx ∂βξ z1
∣∣+R−1∣∣∂αx ∂βξ η1

∣∣)
6 C

(
〈tR〉−µR+ 〈tR〉2−µR−1)(∣∣∂αx ∂βξ z1

∣∣+R−1∣∣∂αx ∂βξ η1
∣∣)

+ C
(
〈tR〉−µR1−|β| + 〈tR〉2−µR−1−|β|).
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Hence, by using the Duhamel formula again, we obtain∣∣∂αx ∂βξ z1
∣∣+R−1∣∣∂αx ∂βξ η1

∣∣
6 C exp

(
C

∫ t

0
〈sR〉−µRds+ C

∫ t

0
〈sR〉2−µR−1ds

)
×

×
(
R−|β| +

∫ t

0
〈sR〉−µR1−|β|ds+

∫ t

0
〈sR〉2−µR−1−|β|ds

)
6 C ′R−|β|

for t ∈ [0, T ], and (A.7) follows.
Step 3: We now prove (A.10) and (A.11). We again prove it by induction

in m = |α|+ |β|. We suppose

(A.16)
∣∣∂αx ∂βξ (z1−z)

∣∣ 6 C|t|〈ξ〉1−µ−|β|, ∣∣∂αx ∂βξ (η1−η)
∣∣ 6 C|t|〈ξ〉2−µ−|β|

hold if |α|+ |β| < m. We differentiate (A.13) and (A.14) to learn
∂

∂t
(∂αx ∂

β
ξ (z1 − z))

= ∂αx ∂
β
ξ (z1 − z) ·

∫ 1

0

∂2`0
∂z∂η

(sz1 + (1− s)z, sη1 + (1− s)η)ds

+ ∂αx ∂
β
ξ (η1 − η) ·

∫ 1

0

∂2`0
∂η∂η

(sz1 + (1− s)z, sη1 + (1− s)η)ds

+ r1,

where

|r1| 6 C
(
|t|〈tR〉−1−µR2−µ−|β| + |t|〈tR〉−µR2−µ−|β| + 〈tR〉2−µR−1−|β|)

6 C ′
(
〈tR〉1−µR1−µ−|β| + 〈tR〉2−µR−1−|β|),

and
∂

∂t
(∂αx ∂

β
ξ (η1 − η))(A.17)

= −∂αx ∂
β
ξ (z1 − z) ·

∫ 1

0

∂2`0
∂z∂z

(sz1 + (1− s)z, sη1 + (1− s)η)ds

+ ∂αx ∂
β
ξ (η1 − η) ·

∫ 1

0

∂2`0
∂η∂z

(sz1 + (1− s)z, sη1 + (1− s)η)ds

+ r2,

where

|r2| 6 C
(
|t|〈tR〉−2−µR3−µ−|β| + |t|〈tR〉−1−µR3−µ−|β| + 〈tR〉1−µR−|β|

)
6 C ′

(
〈tR〉−µR2−µ−|β| + 〈tR〉1−µR−|β|

)
,
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by virtue of (A.16). These imply
∂

∂t

(∣∣∂αx ∂βξ (z1 − z)
∣∣+R−1∣∣∂αx ∂βξ (η1 − η)

∣∣)
6 C

(∣∣∂αx ∂βξ (z1 − z)
∣∣+R−1∣∣∂αx ∂βξ (η1 − η)

∣∣)〈tR〉−µR
+ C

(
〈tR〉1−µR1−µ−|β| + 〈tR〉2−µR−1−|β|),

and by the Duhamel formula again with the vanishing initial conditions,
we obtain ∣∣∂αx ∂βξ (z1 − z)

∣∣+R−1∣∣∂αx ∂βξ (η1 − η)
∣∣ 6 C|t|R1−µ−|β|

for t ∈ [0, T ]. This proves (A.16) for |α| + |β| = m, and we learn (A.16)
holds for all α, β. (A.8) follows immediately from (A.16). We substitute
(A.16) to (A.17), and we have (A.9) analogously to Step 1. �
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