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GENERALIZED STAIRCASES: RECURRENCE AND
SYMMETRY

by W. Patrick HOOPER & Barak WEISS (*)

Abstract. — We study infinite translation surfaces which are Z-covers of com-
pact translation surfaces. We obtain conditions ensuring that such surfaces have
Veech groups which are Fuchsian of the first kind and give a necessary and suf-
ficient condition for recurrence of their straight-line flows. Extending results of
Hubert and Schmithüsen, we provide examples of infinite non-arithmetic lattice
surfaces, as well as surfaces with infinitely generated Veech groups.
Résumé. — Nous étudions les Z-revêtements de translation des surfaces de

translation compactes. Nous donnons des conditions nécessaires pour que le groupe
de Veech soit fuchsien du premier type, et une condition nécessaire et suffisante
pour la récurrence du flot directionnel. En étendant des résultats de Hubert et
Schmithüsen, nous donnons des exemples non-arithmétiques dont le groupe de
Veech est un réseau et des exemples à groupe de Veech de type infini.

1. Introduction

The geometry of translation surfaces has been intensively studied in re-
cent years (see [13] and [24] for definitions and a survey of recent work).
While most of the work was concerned with compact surfaces, in several
recent papers non-compact surfaces were also considered. For instance, in
[1], the horseshoe and baker’s transformations were realized by an affine
transformation; [6] is a study of the geometry and dynamics of an infi-
nite translation surface which arises as a geometric limit of compact lattice
surfaces; in [9], a connection was made to Z-valued skew products over
1-dimensional systems, and in [21], the topology of the unfolding surface
for an irrational billiard was determined. Removing the restriction that
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Math. classification: 11Y40, 12Y05, 37M99, 52C99.
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1582 W. Patrick Hooper & Barak Weiss

the surface is compact gives a flexible setup and many phenomena, absent
in the compact case, may be observed. For example, in the recent paper
[8], Hubert and Schmithüsen made the surprising discovery that there are
infinite square tiled surfaces whose Veech group is infinitely generated.
The examples studied in [9, 8] are Z-covers of compact translation sur-

faces. Although this class is much smaller than the general case, it already
displays many surprising features. It may be hoped that it provides a good
starting point for a study of the geometry and dynamics of infinite transla-
tion surfaces. In this paper we begin the systematic study of these surfaces.
Our analysis yields a bijection between Z-covers M̃ → M , ramified over
a finite set P ⊂ M , and projective classes of elements w ∈ H1(M,P ;Z)
(Proposition 3.2). Under this bijection, recurrent Z-covers, i.e. covers on
which the straightline flow is recurrent in almost all directions, correspond
to homology classes with vanishing holonomy (Proposition 4.3). Utilizing a
theorem of Thurston which appeared in the unpublished manuscript [20],
we obtain a sufficient condition ensuring that the Veech group of a cover
M̃ is Fuchsian of the first kind (Theorem 5.6). This result implies that any
recurrent Z-cover of a square tiled surface in genus 2 has a Veech group
which is of the first kind (Corollary 5.7), extending the results of [8]. We
also obtain necessary and sufficient conditions for a (finite power of a) par-
abolic element in the Veech group of M to lift to the Veech group of every
recurrent Z-cover M̃ (Theorem 6.4). Using it one may reprove some of the
results of [8] in a more general setting. We illustrate the use of our re-
sults in the last section, where we provide an example of an infinite lattice
translation surface with a non-arithmetic Veech group (Proposition 7.2),
and answer a question of Hubert and Schmithüsen (Section 7.2).

2. Regular covers of translation surfaces

Let M denote a compact translation surface and P ⊂M denote a finite
(possibly empty) subset. We consider P to be a collection of punctures of
the surface M and will use M◦ to denote M r P .

Recall that the translation surface M◦ comes equipped with local charts
to R2 defined away from a discrete set of singularities, such that the transi-
tion functions are all translations [13] [24]. An affine automorphism of M◦
is a homeomorphism f : M◦ → M◦ which preserves the underlying affine
structure ofM◦. The local charts identify the tangent plane TPM◦ of every
non singular point P with the plane T0R2 = R2. If f is an affine automor-
phism, then the induced actions on the tangent planes TPM◦ → Tf(P )M

◦,
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as identified with R2, are the same. We call this induced map the deriv-
ative of f , D(f) : R2 → R2. Note that D(f) ∈ GL(2,R), and if M is
compact then D(f) has determinant ±1. The collection of all affine au-
tomorphisms of M◦ forms the affine automorphism group Aff(M◦). The
group Γ(M◦) = D

(
Aff(M◦)

)
⊂ GL(2,R) is called the Veech group of M◦.

Covering space theory associates covers of a space with the subgroups
of its fundamental group. A cover is called regular if it is associated to
a normal subgroup. We consider a normal subgroup N ⊂ π1(M◦), and
consider the associated cover π : M̃ → M◦. The group ∆ = π1(M◦)/N
acts on M̃ as the automorphisms of the cover, with M̃/∆ = M◦.
We have the following from covering space theory.
Proposition 2.1. —
(1) An element f ∈ Aff(M◦) lifts to an f̃ ∈ Aff(M̃) if and only if

f∗(N) = N .
(2) An element f̃ ∈ Aff(M̃) descends to an f ∈ Aff(M◦) if and only if

f̃ normalizes the deck group ∆. That is, f̃∆f̃−1 = ∆.

Definition 2.2. — The affine automorphism group of a cover M̃ →M◦

is the group of pairs of elements (f̃ , f) ∈ Aff(M̃) × Aff(M◦) for which
π ◦ f̃ = f ◦π. We denote this group by Aff(M̃,M◦). A necessary condition
for (f̃ , f) ∈ Aff(M̃,M◦) is that D(f̃) = D(f). Thus we have a canonical
definition of the derivative D : Aff(M̃,M◦)→ GL(2,R). We call the image
of the group homomorphism D the Veech group of the cover, and denote
it by Γ(M̃).

Let GN = {f ∈ Aff(M◦) : f∗(N) = N}. For an f ∈ GN the action of
f∗ on π1(M◦) induces an action on ∆ = π1(M◦)/N . The following is an
immediate consequence:

Corollary 2.3. — Aff(M̃,M◦) ∼= ∆ o GN , with GN acting on ∆ as
mentioned above. Indeed, we have a short exact sequence

1→ ∆ ↪→ Aff(M̃,M◦)� GN → 1.

Note that the projection p : Aff(M̃,M)→ Aff(M̃) may not be injective.
However, we do not miss much.

Proposition 2.4. — If M◦ is not an unpunctured torus, then
p
(
Aff(M̃,M◦)

)
is a finite index subgroup of Aff(M̃).

Proof. — Consider the group T ⊂ Aff(M̃) of elements ι for whichD(ι) =
I, i.e. the group of translation automorphisms of M̃ . We claim that T acts
properly discontinuously on the set of non-singular points of M̃ . To see this,
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1584 W. Patrick Hooper & Barak Weiss

let Q denote the union of the singularities ofM with P . By assumption Q is
non-empty. The surface M◦ has a Delaunay decomposition relative to the
points in Q. See [12, §1] for background. The Delaunay decomposition of M̃
relative to the lifts of Q is the lift of the decomposition ofM◦. A translation
automorphism must permute the cells in the Delaunay decomposition, and
hence is properly discontinuous.
The deck group ∆ is a finite index subgroup of T , because Area(M̃/∆) =

Area(M) < ∞. The group ∆ is finitely generated because it is a quotient
of π1(M◦), which is finitely generated. T is also finitely generated as it
contains ∆ as a finite index subgroup. An element f̃ ∈ Aff(M̃) acts on
T by conjugation, and preserves the index of subgroups. There are only
finitely many subgroups of T with index [T : ∆], because T is finitely
generated. Thus, a finite index subgroup of Aff(M̃) normalizes ∆. The
conclusion follows by Proposition 2.1. �

Presumably, nearly every countable subgroup of GL(2,R) arises as a
Veech group of some infinite translation surface. (See [16] for an investi-
gation of Veech groups of tame translation surfaces homeomorphic to the
Loch Ness monster.) However, because Veech groups of compact translation
surfaces are discrete [22], we have different answer for normal covers.

Corollary 2.5. — IfM◦ is not an unpunctured torus, the Veech group
Γ(M̃) is a discrete subgroup of ŜL(2,R), the group of 2 × 2 real matrices
of determinant ±1.

3. Z-covers

We use H1(M,P ;Z) to denote the relative homology of M with respect
to the set of punctures, and H1(M◦;Z) denotes the absolute homology of
the punctured surface. Intersection number is a non-degenerate bilinear
form

i : H1(M,P ;Z)×H1(M◦;Z)→ Z.

Definition 3.1. — The Z-cover of M◦ associated to a non-zero w ∈
H1(M,P ;Z) is the cover associated to the kernel of the homomorphism

ϕw : π1(M◦)→ Z, γ 7→ i(w, JγK),

where JγK denotes the homology class of γ. We denote this cover by M̃w.

If A is a free abelian group, we use PA to denote (A r {0})/ ∼, where
a ∼ b if there are non-zero m,n ∈ Z for which ma = nb. By non-degeneracy
of the bilinear intersection form, we have:
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GENERALIZED STAIRCASES: RECURRENCE AND SYMMETRY 1585

Proposition 3.2. — The Z-covers M̃w and M̃w′ are the same if and
only if w ∼ w′.

Thus, the space of Z-covers of M◦ is naturally identified with
PH1(M,P ;Z). Statement (1) of proposition 2.1 can be restated as follows.

Proposition 3.3. — An f ∈ Aff(M◦) lifts to an f̃ ∈ Aff(M̃w) if and
only if f∗(w) = ±w, where f∗ denotes the action of f on H1(M,P ;Z).

We conclude this section with some remarks on the topology of Z-covers.
Since we will not be using these results in the sequel, they will be stated
without proof.

Loosely speaking, we think of M̃w as a cover ofM ramified over points of
P . To make this intuition precise, recall that by pulling back the Euclidean
metric, we may endow a translation surface with a metric, and consider its
completion. The completion of M◦ is M , and the map π extends to a map
π̄ : M̄ → M , where M̄ is the completion of M̃w. It is natural to inquire
whether π̄ is a covering map. To this end we have:

Proposition 3.4. — For each p ∈ P , let Up ⊂ M be an open disk
with boundary curve γp such that Up ∩ P = {p} and γp ∩ P = ∅. Let
Ūp = π̄−1(Up). Then π̄|Ūp

is a covering map if and only if i(w, JγpK) = 0.

Thus, π̄ is a covering map if and only if i(w, JγpK) = 0 for all p ∈ P . The
following is equivalent.

Corollary 3.5. — The map π̄ is a covering map if and only if w is an
element of H1(M ;Z), viewed as a subset of H1(M,P ;Z).

In case i(w, JγpK) 6= 0, there is no multiple of γp which lifts to M̃w as
a closed loop. In this case we call any p̄ ∈ π̄−1(p) an infinite singularity,
since the map π̄ : M̄ → M in a neighborhood of p̄ has the structure of an
‘infinite cone angle singularity’ or a ‘logarithmic singularity’. To compute
the number of such points on M̄ , we have:

Proposition 3.6. — Assume w is a primitive element of H1(M,P ;Z).
Suppose p ∈ P is such that i(w, JγpK) 6= 0. Then

∣∣π̄−1(p)
∣∣ = |i(w, JγpK)| . In

particular the number of infinite singularities is finite.

If M̄ has an infinite singularity p̄, its metric topology is not proper.
Indeed, the closure of any small ball around p̄ is not compact. Therefore it
is natural to consider M̂ , the complement in M̄ of the infinite singularities.
That is, M̂ is the largest subset of M̄ such that the restriction of π̄ to M̂ is
a covering map. Repeating the arguments of [21] and recalling terminology
of [17], we may understand the topology of M̂ . We have:

TOME 62 (2012), FASCICULE 4
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Proposition 3.7. — If M̄ has infinite singularities, then M̂ has only
one end and is in the homeomorphism class of the ‘Loch Ness monster’,
the orientable infinite genus surface with a single end. If M̄ has no infinite
singularities then it has two ends. In this case, M̄ is either a cylinder or is
homeomorphic to the orientable infinite genus surface with two non-planar
ends.

4. Recurrent Z-covers

A translation surface has a holonomy map hol : H1(M,P ;Z) → R2,
obtained by developing a representative of the class into R2 and taking the
difference of the starting and end points. For dynamical reasons, we are
especially interested in Z-covers with the following property.

Definition 4.1 (Recurrent Z-covers). — The Z-cover M̃w is called re-
current if hol(w) = 0.

Although not explicitly stated, square-tiled covers of this type were stud-
ied before in [9] and [8]. One reason for restricting attention to recurrent Z-
covers is that non-recurrent Z-covers have few affine symmetries. A discrete
subgroup of ŜL(2,R) is called elementary if it contains a finite index abelian
subgroup and non-elementary otherwise. Conversely, a non-elementary sub-
group of ŜL(2,R) contains the free group with two generators [14, Theorem
2.9]. We have the following corollary of Proposition 3.3.

Corollary 4.2. — If there is an A ∈ Γ(M̃w) ∩ SL(2,R) with
trace(A) 6= ±2, then M̃w is a recurrent Z-cover. In particular, if Γ(M̃w)
is non-elementary, then M̃w is a recurrent Z-cover.

Proof. — We prove the contrapositive. Suppose hol(w) 6= 0. By Propo-
sition 3.3, (f̃ , f) ∈ (M̃w,M

◦) implies that f∗(w) = ±w. Then
D(f)

(
hol(w)

)
= hol

(
f∗(w)

)
= ±hol(w). Thus,

Γ(M̃w) ⊂
{
A ∈ ŜL(2,R) : A

(
hol(w)

)
= ±hol(w)

}
∼= (RoZ/2Z)⊕Z/2Z.

We conclude Γ(M̃w) is abelian or contains an index two abelian subgroup.
Moreover, all elements A ∈ Γ(M̃w) ∩ SL(2,R) have trace ±2. �

We will now justify the term recurrent Z-cover. Let F θt : M →M denote
the straight-line flow in direction θ ∈ S1. Similarly, we will use F̃ θt : M̃ → M̃

to denote the straight-line flow on a Z-cover M̃ in direction θ. Recall that
a measure preserving flow Ft is called recurrent if for any measurable set
A, for a.e. x ∈ A there is tn →∞ such that Ftnx ∈ A.

ANNALES DE L’INSTITUT FOURIER
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Proposition 4.3 (Recurrence of the straight-line flow). — Let M̃ be a
Z-cover of M◦. Then M̃ is a recurrent Z-cover if and only if for any θ for
which F θt is ergodic, F̃ θt is recurrent.

Proof. — We will reduce the statement to a classical result of K. Schmidt
[18, Theorem 11.4] in infinite ergodic theory. Suppose (X,µ) is a finite
measure space and T : X → X is a measurable transformation preserving
µ which is ergodic. For a measurable f : X → Z, f ∈ L1(X,µ), define
Xf = X × Z and

Tf : Xf → Xf , Tf (x, k) = (Tx, k + f(x)) .

Then Tf is recurrent if and only if
∫
f dµ = 0.

Given θ, we reduce to the above statement as follows: choose a segment
α in M , which is in the direction θ′ perpendicular to θ. Define α̃ in M̃ to
be the union of all lifts of α to M̃ . Denote by T (resp. T̃ ) the Poincaré
return map to the section α (resp. α̃), so that T is an interval exchange
transformation. The ergodicity of T is equivalent to that of F θt and the
recurrence of F̃ θt is equivalent to the recurrence of T̃ . Since continuous
maps have Borel sections, we may (measurably) identify M̃ with M × Z.
In these coordinates T̃ = Tf where

f = f (θ) : α→ Z, f(x) = i(w, JβxK),

and βx is the curve from x to Tx along the F θt orbit of x, and then from Tx

to x along α. Let µ be the length measure on α. Up to scaling, Lebesgue
measure on M can be represented as dµdt, where dt denotes the length
measure along the orbits of F θt . Since f assumes finitely many values, one
on each interval of continuity of T , it is in L1(α, µ).
Label by I1, . . . , I` be the partition of α into intervals of continuity for

T . By refining this decomposition we assume that the flow in direction θ

starting from the interior of Ij does not hit a puncture in P . For each j,
let βj be a closed loop βxj

as above, corresponding to some xj ∈ Ij ; the
particular choice of xj does not affect JβjK. Now write β =

∑
µ(Ij)JβjK ∈

H1(M ;R). We claim that for a path γ on M representing an element of
H1(M,P ;Z),

i(γ, JβK) = holθ′(γ),

i.e. the holonomy vector orthogonally projected onto the one-dimensional
vector space in direction θ′. Indeed after homotoping γ off α, each positive
crossing of `j means γ has crossed the rectangle above Ij , and contributes

TOME 62 (2012), FASCICULE 4



1588 W. Patrick Hooper & Barak Weiss

µ(Ij) to holθ′(γ). Therefore∫
f (θ) dµ =

∑
j

µ(Ij)i(w, JγjK)

= i(w, JβK) = holθ′(w).

The main theorem of [11] guarantees the existence of two independent
ergodic θ. We see that

∫
f (θ) dµ = 0 for any ergodic direction θ on M , if

and only if hol(w) = 0. �

A similar argument was employed by Conze and Gutkin in [2] to prove
recurrence of the billiard flow on some infinite billiard tables.

Corollary 4.4. — If hol(w) = 0, the straightline flow F̃ θt on M̃w is
recurrent for a.e. θ.

Proof. — Combine Proposition 4.3 with the famous result of Kerckhoff,
Masur and Smillie [11]. �

5. Veech groups of recurrent Z-covers

Let H ⊂ R2. We define K(H) to be the smallest extension field of Q for
which there is an A ∈ GL(2,R) such that A(H) ⊂ K(H)2 ⊂ R2. The holo-
nomy field of a translation surface M is the field k = K

(
hol(H1(M ;Z))

)
.

The holonomy field was first introduced and studied by Gutkin and Judge
[4]. We will follow the treatment of the holonomy field given in the ap-
pendix of [10]. It is known (see [10], Theorem 28) that if M is compact
and there is a pseudo-Anosov homeomorphism in Aff(M), then k is a field
extension of Q of degree at most the genus g of M . Moreover, the image
hol
(
H1(M ;Z)

)
is a Z-module of rank 2[k : Q].

It follows from the work of Kenyon and Smillie that if Aff(M◦) contains
a pseudo-Anosov homeomorphism then

K
(
hol(H1(M ;Z))

)
= K

(
hol(H1(M,P ;Z))

)
.

We unambiguously declare this the holonomy field in this case, and we use
k to denote this field.

Definition 5.1 (Holonomy-free subspaces). — The holonomy-free sub-
spaces of homology are W = ker hol ⊂ H1(M,P ;Z) of relative homology,
and W0 = W ∩H1(M ;Z) of absolute homology.

ANNALES DE L’INSTITUT FOURIER
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The Z-modules W0 and W have ranks given by the following equations.

rk W0 = rk H1(M ;Z)− 2[k : Q] = 2(g − [k : Q]).

rk W = rk H1(M,P ;Z)−2[k : Q] =
{

2(g − [k : Q]) + #P − 1 if P 6= ∅
2(g − [k : Q]) otherwise.

The affine automorphism group Aff(M◦) acts on homology and preserves
the subspaces W0 and W . Thus, we have the following group homomor-
phisms.

ψ0 : Aff(M◦)→ Aut(W0), f 7→ f∗|W0 .

ψ : Aff(M◦)→ Aut(W ), f 7→ f∗|W .
The following statement follows immediately from Proposition 3.3. It ex-
plains our interest in these homomorphisms.

Proposition 5.2. — Let f ∈ ker ψ. For each w ∈ W , there is an
f̃ ∈ Aff(M̃w) such that (f̃ , f) ∈ Aff(M̃w,M

◦). The subgroup

{(f̃ , f) ∈ Aff(M̃w,M
◦) : f ∈ ker ψ}

is normal inside Aff(M̃w,M
◦).

The elements of Aff(M◦) permute the punctures. Let ρ : Aff(M◦) →
Sym(P ) be the map which assigns to an f ∈ Aff(M◦) the permutation
induced on P . We have the following.

Proposition 5.3. — ψ(ker ψ0 ∩ ker ρ) is abelian of rank at most
(rk W0)(rk W − rk W0). Thus, there is an exact sequence

1→ ker ψ ↪→ ker ψ0 � A→ 1

where A ⊂ Z(rk W0)(rk W−rk W0) o Sym(P ) has a finite index free abelian
subgroup.

Proof. — Enumerate P = {p1, . . . , pn}, and let γi ∈ H1(M◦;Z) be the
homology class of a loop which travels clockwise around pi for i = 1, . . . , n.
Let J : W → Zn denote the function

J(w) =
(
i(w, γ1), . . . , i(w, γn)

)
∈ Zn.

Note that for all f ∈ Aff(M◦) we have J ◦ f∗(w) = ρ(f) ◦ J(w), where
the permutation ρ(f) is acting as a permutation matrix. In addition, J(w)
determines the coset of W/W0 which contains w. The following statements
follow from this discussion.

(1) ker J = W0.
(2) If f ∈ ker ρ, then f∗(w)− w ∈W0 for all w ∈W .

TOME 62 (2012), FASCICULE 4



1590 W. Patrick Hooper & Barak Weiss

By definition, if f ∈ ker ψ0, then f∗(w0) = w0 for all w0 ∈ W0. For
f ∈ ker ψ0 ∩ ker ρ, let hf : W/W0 → W0 denote the map w + W0 7→
f∗(w) − w. This is well defined by the above discussion. Moreover, we
can recover ψ(f) = f∗|W via the formula ψ(f)(w) = w + hf (w + W0). If
f, g ∈ ker ψ0 ∩ ker ρ,

ψ(g ◦ f)(w) = ψ(g)
(
w + hf (w +W0)

)
= w + hf (w +W0) + hg

(
w + hf (w +W0) +W0

)
= w + hf (w +W0) + hg(w +W0).

So ψ(ker ψ0 ∩ ker ρ) is abelian group. Moreover, an element ψ(f) of this
group is uniquely determined by the linear map hf : W/W0 → W0. It
can be observed that W/W0 ∼= Zrk W−rk W0 and W0 ∼= Zrk W0 . Hence, the
space of all possible hf is isomorphic to Z(rk W0)(rk W−rk W0). �

If G is a discrete subgroup of GL(2,R), we will use ΛG ⊂ RP1 to denote
the limit set of the projection of G to PGL(2,R) = Isom(H2). A subgroup
G of GL(2,R) or PGL(2,R) is elementary if and only if ΛG contains two or
fewer points. See [14] for background on the limit set and for the following.

Lemma 5.4 (Limit sets of normal subgroups). — Suppose G is a non-
elementary discrete subgroup of GL(2,R) or PGL(2,R). IfN is a non-trivial
normal subgroup of G, then ΛN = ΛG.

Theorem 5.5. — If D
(
Aff(M◦)

)
is non-elementary and D(ker ψ0) is

non-trivial, then

ΛD
(
Aff(M◦)

)
= ΛD(ker ψ0) = ΛD(ker ψ).

In this case, ΛΓ(M̃w) = ΛD
(
Aff(M◦)

)
for all recurrent Z-covers M̃w of

M◦.

Proof. — If D(ker ψ0) is non-trivial, then by a direct application of
Lemma 5.4, ΛD

(
Aff(M◦)

)
= ΛD(ker ψ0). In particular, D(ker ψ0) is non-

elementary and thus contains a free group with two generators [14, Theorem
2.9]. By Proposition 5.3, D(ker ψ) is a finite index subgroup of the kernel of
a map from D(ker ψ0) to an abelian group. Hence, D(ker ψ) is non-empty.
By another application of Lemma 5.4, we see ΛD(ker ψ) = ΛD(ker ψ0). �
A Fuchsian group of the first kind is a discrete subgroup Γ of Isom(H2)

(or some other linear group which acts isometrically on H2) for which ΛΓ =
RP1.

Theorem 5.6. — Suppose D
(
Aff(M◦)

)
is a lattice and that rk W0 6 2.

Then D(ker ψ) is a Fuchsian group of the first kind. In particular, for any
w ∈W , Γ(M̃w) is Fuchsian of the first kind.
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Proof. — By Theorem 5.5, it is sufficient to show that D(ker ψ0) is non-
trivial. Note that rk W0 is even. If rk W0 = 0, then ker ψ0 = Aff(M◦).
The more difficult case is when rk W0 = 2. We will assume that ker ψ0 is
empty and derive a contradiction.
By the Selberg lemma, the group D

(
Aff(M◦)

)
contains a finite index

subgroup Γ which is torsion free [14, Theorem 2.29]. As observed by Veech
[22], H2/D

(
Aff(M◦)

)
is not co-compact. Therefore, Γ is isomorphic to the

fundamental group of the punctured surface H2/Γ, which is a free group.
This free group Γ pulls back to a free group F ⊂ Aff(M◦) such that D|F
is injective.
Since rk W0 = 2, ψ0 : F → ŜL(2,Z), where ŜL(2,Z) denotes the set

of 2 × 2 matrices of determinant ±1. By our assumption from the first
paragraph, ψ0|F is injective. Without loss of generality, we may assume
that ψ0(F ) ⊂ SL(2,Z). (If not, replace F by the index two subgroup for
which this is true.)
Summarizing the previous two paragraphs, we have two faithful repre-

sentations, D|F and ψ0|F , of F into SL(2,R). We will derive a contradiction
from properties of these representations. These representations satisfy the
following statements for all f ∈ F .

(1) If D(f) is parabolic, then ψ0(f) is also parabolic.
(2) If D(f) is hyperbolic, then 2 6 |tr ψ0(f)| < |tr D(f)|.

Statement 1 is true because if f ∈ Aff(M◦) is a parabolic, then some power
of f is a multi-twist of M◦. All eigenvalues of the action of a multi-twist
on homology are 1. In particular, the eigenvalues for the action of f on
homology are all of modulus 1. Thus, ψ0(f) is either elliptic or parabolic.
But, if ψ0(f) is elliptic, then ψ0 is not faithful. If D(f) is hyperbolic, then
f ∈ Aff(M◦) is a pseudo-Anosov homeomorphism. Let λ be the eigenvalue
of D(f) with largest magnitude. A theorem of Fried implies that λ is also
the eigenvalue with largest magnitude of the action of f∗ onH1(M◦;Z), and
also that λ occurs with multiplicity one [3]. In particular, the eigenvalues
of ψ0(f) = f∗|W0 have modulus strictly less than |λ|. Again, ψ0(f) is not
elliptic since ψ0 is assumed to be faithful.
Now consider the quotient surfaces S1 = H2/D(F ) and S2 = H2/ψ0(F ).

For i = 1, 2, let gi denote the genus of Si and let ni > 1 denote the
number of ends. We have F = π1(S1) = π1(S2), so this induces a homotopy
equivalence φ : S1 → S2. Thus, we have that rk F = 2gi + ni − 1 for each
i. By statement 1 above, we have n1 6 n2. We will show that g1 = g2 and
n1 = n2.
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An element of the fundamental group of a surface is called peripheral if it
is homotopic to a puncture. Assume that n1 < n2. Let γ1, . . . , γn1 ∈ π1(S1)
denote disjoint peripheral curves. Note that the homology classes of these
curves are linearly dependent. Let γ′j = φ∗(γj) ∈ π1(S2). Note that since S2
has n2 > n1 punctures, the homology classes of the curves γ′1, . . . , γ′n1

are
linearly independent. This contradicts either the fact that φ is a homotopy
equivalence, or that n1 < n2. Thus, n1 = n2.

By the previous two paragraphs, we may take the homotopy equivalence
φ : S1 → S2 to be a homeomorphism. In addition, these surfaces have
the same number of parabolic cusps. Thus ψ0(F ) is a lattice in SL(2,Z).
For non-peripheral β ∈ π1(S1) let `1(β) denote the length of the geodesic
representative on S1, and let `2(β) denote the length of the geodesic rep-
resentative of φ∗(β). Theorem 3.1 of [20] states that

sup
β∈π1(S1)

`2(β)
`1(β) > 1,

with equality only if S1 = S2. (This holds for any pair of complete, finite
area, hyperbolic structures on the same surface.) This contradicts state-
ment (2). �

The following immediate consequence illustrates the use of Theorem 5.6.

Corollary 5.7. — If M is any translation surface of genus 1 or 2 with
non-elementary Veech group, then the Veech group of any recurrent Z-cover
has the same limit set. In particular, if M is a square tiled surface of genus
1 or 2 then the Veech group of any recurrent Z-cover is Fuchsian of the
first kind.

6. Multi-twists

A multi-twist is an f ∈ Aff(M◦) which preserves the cylinders in a
cylinder decomposition and for which D(f) is parabolic with eigenvalue 1.
It is well known that if M is compact, and D(f) is parabolic then some
power of f is a multi-twist. The action of a multi-twist f on H1(M,P ;Z)
is given by the formula

(6.1) f∗ : x 7→ x+
∑
j

i(x, γ◦j )tjγj ,

where j varies over the cylinders in the preserved decomposition. Here
γj ∈ H1(M,P ;Z) and γ◦j ∈ H1(M◦;Z) denote the homology classes of the
core curve in cylinder j (although the curves are the same they represent
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elements in different homology spaces, and we will use different notation
to distinguish them). We denote by 〈γj〉 and 〈γ◦j 〉 the Z-module spanned
by these curves in their respective homology groups. The restriction of the
action of f on cylinder j is a Dehn twist. The number tj ∈ Z is the twist
number of this Dehn twist. Each tj is non-zero and they all have the same
sign. If this sign is positive f is performing left Dehn twists and if it is
negative f is performing right Dehn twists.
Let φ = f∗ − I. That is,

(6.2) φ : H1(M,P ;Z)→ H1(M,P ;Z), x 7→
∑
j

i(x, γ◦j )tjγj .

A direct application of Proposition 3.3 yields the following.

Proposition 6.1. — The multi-twist f ∈ Aff(M◦) lifts to an f̃ ∈
Aff(M̃w,M

◦) if and only if φ(w) = 0.

A linear map g on a vector space V is called unipotent of index n if
(g − I)n(V ) = 0.
Lemma 6.2. —
(1) f∗ : H1(M,P ;Z)→ H1(M,P ;Z) is unipotent of index 2. In partic-

ular, ker φ = Fix(fk∗ ) for all non-zero k ∈ Z.
(2) φ

(
H1(M,P ;Z)

)
is a submodule of 〈γj〉 of full rank. Moreover, this

rank is bounded from above by the genus of M .
(3) If D

(
Aff(M◦)

)
is non-elementary, then both hol ◦ φ

(
H1(M,P ;Z)

)
and hol(ker φ) are Z-modules of rank [k : Q], where k is the holo-
nomy field.

Proof. — We prove these statements in order. For all x ∈ H1(M,P ;Z),
φ(x) is a linear combination of the {γj}. But, i(γi, γ◦j ) = 0 for all i and j.
This implies statement (1).
From equation (6.2), we infer that φ

(
H1(M,P ;Z)

)
⊂ 〈γj〉. Consider the

map π : H1(M◦;Z)→ H1(M,P ;Z) induced by the inclusion of M◦ ↪→M .
Define the map

η : H1(M,P ;Z)→ 〈γ◦j 〉, x 7→
∑
j

i(x, γ◦j )tjγ◦j .

Note that π◦η = φ. We claim that the image of η is a Z-module of rank equal
to rk 〈γ◦j 〉. If this is true, then the conclusion follows as π

(
〈γ◦j 〉

)
= 〈γj〉. We

now prove this claim. By non-degeneracy of i : H1(M,P ;Z)×H1(M◦;Z)→
Z, it is equivalent to show that if x ∈ ker(η) then i(x, γ◦) = 0 for all
γ◦ ∈ 〈γ◦j 〉. We will prove the contrapositive of this statement. Suppose
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i(x, γ◦) 6= 0 for some γ◦ ∈ 〈γ◦j 〉. Then i(x, γ◦k) 6= 0 for some k. We compute

i
(
x, η(x)

)
= i
(
x,
∑
j

i(x, γ◦j )tjγ◦j
)

=
∑
j

tji(x, γ◦j )2.

Recall that each tj is non-zero and has the same sign. In addition, i(x, γ◦k) 6=
0, so i

(
x, φ(x)

)
6= 0. Therefore, η(x) 6= 0.

The inequality rk 〈γj〉 6 genus(M) follows from topology. Note that the
core curves of cylinders are disjoint. Cutting along g+ 1 closed curves on a
surface of genus g necessarily disconnects the surface. Hence, the maximal
rank of the span of the {γj} is genus(M), because the γj have disjoint
representatives.
Now we will consider statement (3). SinceD

(
Aff(M◦)

)
is non-elementary

we can conjugate f ∈ Aff(M◦) to obtain a new f ′ ∈ Aff(M◦) so that D(f ′)
has an eigenvector distinct from the eigenvector of D(f). By applying an
element of SL(2,R) to M◦, we may assume without loss of generality that
the derivatives are of the form

D(f) =
[

1 √
µ

0 1

]
and D(f ′) =

[
1 0

±√µ 1

]
,

for some µ > 0. Then the surface M can be obtained from Thurston’s con-
struction of flat surfaces admitting pseudo-Anosov automorphisms [19, §6].
In particular, the widths of all horizontal cylinders (resp. vertical cylinders)
appear as the entries of an eigenvector of a Perron-Frobenius matrix with
eigenvalue µ. So from the theory of such matrices, we know µ ∈ k and

rk holx
(
H1(M,P ;Z)

)
= rk holy

(
H1(M,P ;Z)

)
= rk Z[µ] = [k : Q],

where holx(γ) and rk holy(γ) denote the x- and y-coordinates of the ho-
lonomy map respectively, and Z[µ] is the Z-module generated by µ. For all
γ ∈ H1(M,P ;Z), we have

hol ◦ φ(γ) = D(f)hol(γ)− hol(γ) =
(
µholy(γ), 0

)
.

We conclude

rk hol ◦ φ
(
H1(M,P ;Z)

)
= rk holy

(
H1(M,P ;Z)

)
= [k : Q].

On the other hand, γ ∈ ker φ if and only if holy(γ) = 0. Thus

rk hol(ker φ) = rk holx
(
H1(M,P ;Z)

)
= [k : Q].

�

We first establish a corollary of statement (1) of the lemma.

Corollary 6.3. — Let f ∈ Aff(M◦) be a multi-twist, and let w ∈W .
If f∗(w) 6= w, then D

(
Aff(M̃w,M

◦)
)
is infinite index in D

(
Aff(M◦)

)
.
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Recall the definition of the holonomy-free subspace W of H1(M,P ;Z).
Proposition 3.3 stated that an element f ∈ Aff(M◦) lifted to an affine
automorphism f̃ ∈ Aff(M̃w,M) if and only if f∗(w) = ±w.

Theorem 6.4 (Lifting multi-twists). — Assume f ∈ Aff(M◦) is a multi-
twist and that D

(
Aff(M◦)

)
is non-elementary. Let the notation be as

above.

(6.3) rk W − rk(W ∩ ker φ) = rk 〈γj〉 − [k : Q] 6 g − [k : Q].

In particular, f∗ acts trivially on W if and only if rk 〈γj〉 = [k : Q].

Proof. — By linearity of φ and statement (2) of Lemma 6.2,

rk(ker φ) = rk H1(M,P ;Z)−rk φ(H1(M,P ;Z)) = rk W+2[k : Q]−rk 〈γj〉.

Now, note that W ∩ ker φ = ker hol|ker φ. By linearity of hol, we have

rk(ker φ) = rk(W ∩ ker φ) + rk hol(ker φ) = rk(W ∩ ker φ) + [k : Q],

with the last equality following from statement (3) of the lemma. Subtract-
ing these two equations gives (6.3). The inequality follows from statement
(2) of the lemma. �

As an illustration of the use of Theorem 6.4, we deduce:

Corollary 6.5. — Suppose M is square-tiled and has a cylinder de-
composition in which all cylinders are homologous in H1(M,P ;Z). Then
the Veech group of any recurrent Z-cover is Fuchsian of the first kind.

Proof. — In this case rk〈γj〉 = 1 and k = Q, so f∗ ∈ ker ψ0. Since Df∗
is nontrivial, the result follows from Theorem 5.5. �

Remark 6.6. — In [5, Theorem 2], Hubert and Schmithüsen define a
class of Z-covers of square tiled surfaces O∞ → O. They show that if O
has a one-cylinder decomposition, then the Veech group of O∞ is Fuchsian
of the first kind. Thus Corollary 6.5 is an extension of the results of [8].

7. Examples

7.1. Square tiled surfaces with homologous cylinders

We give a construction of a square tiled surface with a horizontal cylinder
decomposition all of whose cylinders are homologous. (In fact the reader
may verify that all such surfaces arise via this construction.)
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Let C0, . . . , Ck−1 be cylinders all with the same rational circumference
c, and each with rational width. For each i = 0, . . . , k − 1 pick a rational
interval exchange of Ti : [0, c)→ [0, c). Use Ti to identify the bottom edge
of Ci to the top edge of Ci+1(mod k). Call the resulting surface M , and
let P ⊂ M be a finite set of points with rational coordinates. Then there
is a horizontal cylinder decomposition of M◦, all of whose cylinders are
homologous. So, by Corollary 6.5, any recurrent Z-cover ofM◦ has a Veech
group which is Fuchsian of the first kind.
The term eierlegende Wollmilchsau refers to the square tiled surface, W ,

whose properties were first studied by Herrlich and Schmithüsen [5]. It can
be obtained by the above construction. See figure 7.1. This is a surface of
genus three with four cone singularities, each with cone angle 4π. Let P
denote the set of these singularities. The Veech group of W ◦ is ŜL(2,Z),
the group of integer matrices of determinant ±1.

i ii iii

iv v vi vii

iiiiii

viviiivv

Figure 7.1. The eierlegende Wollmilchsau surface. Horizontal edges are
glued together as indicated by the roman numerals. Vertical edges are
glued to their opposite (by horizontal translations).

Proposition 7.1. — Any recurrent Z-cover of W ◦ has a Veech group
that contains the congruence 4 subgroup of SL(2,Z).

Proof. — The horizontal direction has a multi-twist φ in a pair of homol-

ogous cylinders with derivative D(φ) =
[

1 4
0 1

]
. For any B ∈ ŜL(2,Z) =

Γ(W ◦), there is a multi-twist φB in a pair of homologous cylinders with
derivative D(φB) = BD(φ)B−1. By Corollary 6.5, each φB lifts to any re-
current Z-cover. The derivatives of these elements generate the congruence
4 subgroup of SL(2,Z). �
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7.2. A question of Hubert and Schmithüsen

We consider a surface defined in [8]. Let Z3,1 be as in figure 7.2, let w be
the cycle marked on figure 7.2 and let Z∞3,1 be the corresponding Z-cover.
Since hol(w) = 0 this is a recurrent Z-cover. Hubert and Schmithüsen
proved that the Veech group of Z3,1 is not a lattice, but, since the genus of
Z3,1 is 2, rk W0 = 2 so Theorem 5.6 implies that the Veech group of Z∞3,1
is Fuchsian of the first kind. This answers a question raised in [8].
Since the Veech group of Z3,1 is of the first kind but is not a lattice, it

is infinitely generated. Note that a similar argument was employed in [7]
and [15] to produce compact translation surfaces with infinitely generated
Veech groups, and again in [8] to proved the existence of non-compact
square-tiled surfaces with infinitely generated Veech group.

i

ii

i ii

Figure 7.2. The surface Z3,1 and the cycle w.

7.3. A double cover of the octagon

Let X denote the polygon shown on the left side of figure 7.3. The trans-
lation surface O is obtained by applying the Zemlyakov-Katok unfolding
construction to X [23]. The surface O is a double cover of the regular oc-
tagon with opposite sides identified, as depicted on the right side of figure
7.3. The surface O is of genus 3 with two cone singularities, each with cone
angle 6π.

Let P consist of the two singularities of O. The orientation preserving
part of the Veech group is generated by the derivatives of the following
affine automorphisms.
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45° 45°

ii

iiiii

ii iii

iv

iv

v

v vi

vi
vii

vii

Figure 7.3. The polygon X and the surface O.

• h ∈ Aff(O◦) is the right multi-twist in the horizontal cylinder de-

composition. We have D(h) =
[

1 2 +
√

2
0 1

]
.

• g ∈ Aff(O◦) is the right multi-twist in the cylinder decomposition in

the direction of angle π/4. We haveD(g) =
[

−
√

2 1 +
√

2
−1−

√
2 2 +

√
2

]
.

• f ∈ Aff(O◦) is the right multi-twist in the cylinder decomposition

in the direction of angle π/8. D(f) =
[
−1−

√
2 4 + 3

√
2

−
√

2 3 +
√

2

]
.

• The two elements in Aff(O◦) with derivative −I.
The orientation preserving part of the Veech group D

(
Aff(O◦)) is an index

two subgroup of a (4,∞,∞)-triangle group.

Proposition 7.2. — For any w ∈ W ⊂ H1(O,P ;Z), there is a lift of
f ∈ Aff(O◦) to D

(
Aff(Õw, O◦)

)
. In particular, D

(
Aff(Õw, O◦)

)
is always

a Fuchsian group of the first kind.

Proof. — The affine automorphism f is a multi-twist which preserves
a cylinder decomposition consisting of two cylinders. By the multi-twist
theorem, it fixes all of W . By Theorem 5.5, D

(
Aff(Õw)

)
is a Fuchsian

group of the first kind. �

The following gives an example of an infinite translation surface with
non-arithmetic Veech group which is a lattice.

Proposition 7.3. — There exists a w1 ∈W for whichD
(
Aff(Õw1 , O

◦)
)

is an infinitely generated Fuchsian group of the first kind, and a w2 ∈
W for which D

(
Aff(Õw2 , O

◦)
)
contains the lattice 〈D(f), D(g), D(h)〉 ⊂

D
(
Aff(O◦)

)
.

Proof. — We saw in the previous proposition that f always lifts. As O
is genus 3, the multi-twist theorem implies that FixW (g∗) and FixW (h∗)
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are at worst codimension 1 inside W . Note that dim W = 3. Thus, we can
find a non-zero w2 ∈ FixW (g∗) ∩ FixW (h∗). As D

(
Aff(O◦)

)
is generated

by 〈D(f), D(g), D(h)〉, we see D
(
Aff(Õw2 , O

◦)
)

= D
(
Aff(O◦)

)
.

To see that there is a w1 ∈ W for which D
(
Aff(Õw1 , O

◦)
)
is infinitely

generated, it is sufficient to show that D
(
Aff(Õw2 , O

◦)
)
is infinite index in

D
(
Aff(O◦)

)
. By Corollary 6.3 and the multi-twist theorem, it is sufficient

to check that the span of the core curves of a cylinder decomposition span
a rank three submodule of H1(O,P ;Z). This is true for both the horizontal
direction and the direction of angle π/4. �

It turns out that there is only one non-zero w ∈ W up to scaling which
is fixed by f∗, g∗ and h∗. This w is the homology class shown in grey in
figure 7.3.
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