
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Nikolai NIKOLSKI

In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert
multidisc
Tome 62, no 5 (2012), p. 1601-1626.

<http://aif.cedram.org/item?id=AIF_2012__62_5_1601_0>

© Association des Annales de l’institut Fourier, 2012, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie de cet article sous quelque forme que
ce soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2012__62_5_1601_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
62, 5 (2012) 1601-1626

IN A SHADOW OF THE RH: CYCLIC VECTORS OF
HARDY SPACES ON THE HILBERT MULTIDISC

by Nikolai NIKOLSKI

Abstract. — Completeness of a dilation system (ϕ(nx))n>1 on the standard
Lebesgue space L2(0, 1) is considered for 2-periodic functions ϕ. We show that the
problem is equivalent to an open question on cyclic vectors of the Hardy space
H2(D∞2 ) on the Hilbert multidisc D∞2 . Several simple sufficient conditions are
exhibited, which include however practically all previously known results (Wint-
ner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip).
For instance, each of the following conditions implies cyclicity of a function f ∈
H2(D∞2 ): 1) f1+ε ∈ H2(D∞2 ), f−ε ∈ H2(D∞2 ); 2) Re(f(z)) > 0, z ∈ D∞2 ; 3)
f ∈ Hol((1 + ε)D∞2 ) and f(z) 6= 0 on D∞2 . The Riemann Hypothesis on zeros of
the Euler ζ-function is known to be equivalent to a completeness of a similar but
non-periodic dilation system (due to Nyman).
Résumé. — Il s’agit du problème de la complétude d’un système de dilatations

(ϕ(nx))n>1 dans l’espace de Lebesgue L2(0, 1) où ϕ est une fonction impaire 2-
périodique. Sans utiliser les séries de Dirichlet, on montre que le problème est
équivalent à une question ouverte sur les vecteurs cycliques dans l’espace de Hardy
H2(D∞2 ) du multidisque D∞2 de Hilbert. Quelques conditions suffisantes de cyclicité
sont établies, ce qui néanmoins inclut pratiquement tous les résultats précédents du
sujet (ceux de Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm,
Lindquist, and Seip). Par exemple, chacune des conditions suivantes entraîne la
cyclicité d’une fonction f dans H2(D∞2 ): 1) f1+ε ∈ H2(D∞2 ), f−ε ∈ H2(D∞2 ); 2)
Re(f(z)) > 0, z ∈ D∞2 ; 3) f ∈ Hol((1 + ε)D∞2 ) et f(z) 6= 0 sur D∞2 . L’Hypothèse
de Riemann sur les zéros de la fonction ζ d’Euler est équivalente à un problème
semblable de la complétude des dilatations (B.Nyman).

1. Introduction

Let H2 = H2(D) be the Hardy space of the disc,

H2 =
{
f =

∞∑
k=0

f̂(n)zn :
∞∑
k=0

∣∣∣f̂(n)
∣∣∣2 <∞},

Keywords: dilation semigroup, Hilbert’s multidisc, cyclic vector, outer function, com-
pleteness problem, Riemann hypothesis.
Math. classification: 32A35, 32A60, 42B30, 42C30, 47A16.
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and
H2

0 =
{
f ∈ H2 : f̂(0) = f(0) = 0

}
.

Given n ∈ N, where N = {1, 2, . . .} is regarded as a subsemigroup of a
multiplicative group of positive reals R+ = (0,∞), we define an operator
Tn on H2

0 by
Tnf(z) = f(zn), f ∈ H2

0 .

Clearly, Tn is an isometry on H2
0 and n 7−→ Tn is a representation of N

on H2. We are interested in cyclic vectors of the semigroup (Tn), i.e. in
functions f ∈ H2

0 such that

spanH2
0
(Tnf : n ∈ N) = H2

0 ,

where spanX means the closed (in X) linear hull. This interest is stimulated
by the relations of invariant subspaces of the semigroup (Tn) with the
zeros of the Riemann zeta function, see [22], [7], [6], [2], [3], [14]. We briefly
describe below these links and a history of the problem. In fact, the problem
of a description of the lattice of (closed) (Tn)-invariant subspaces

Lat(Tn) = {E ⊂ H2
0 : TnE ⊂ E,∀n},

and in particular, (Tn)-cyclic vectors, is interesting and challenging in its
own. Obviously, the function f(z) = z is (Tn)-cyclic, and functions f(z) =
zk, k > 1, are not. It is less obvious that a function f(z) = z(λ−zk), k > 0,
is cyclic for |λ| > 1 and not cyclic for |λ| < 1. And it is more involved that
the functions fN = z(λ − z)N , λ > 1, are cyclic for small values of N
(N < log 2/ log(1 + 1

|λ| )), and are not for N large enough (N > λ); for
example, for λ = 3, f2 is cyclic but f3 is not.
We explain these and many other effects using a unitary transformation

f 7−→ Uf , which is a kind of dual eigenfunction representation of f ∈ H2
0 ,

generated by the eigenvector bundle of (T ∗n). In order to find eigenfunctions
of (T ∗n), we denote consecutive prime numbers by

p1 = 2, p2 = 3, p3 = 5, . . . , ps, . . .

and identify a number n ∈ N with an infinite sequence of nonnegative
integers

α(n) = (α1, α2, α3, . . . )

coming from the canonical representation of n = pα1
1 pα2

2 . . . pαss (αt are
eventually zero (as t −→ ∞), so that the sequence α always has a finite
support).

ANNALES DE L’INSTITUT FOURIER



CYCLIC VECTORS ON HILBERT’S MULTIDISC 1603

In fact, α : n 7−→ α(n) is a bijection from N onto the set

Z+(∞) =
⋃
k>1

Zk+

of all finitely supported sequences of nonnegative integers. It is also a semi-
group homomorphism from the multiplicative N to the additive Z+(∞).

Lemma. — A nonzero element f =
∑∞
k=1 anz

n ∈ H2
0 is an eigenvector

of (T ∗n), i.e. there exists a sequence (λn) of complex numbers such that

T ∗nf = λnf, ∀n,

if and only if there is a sequence ζ = (ζ1, ζ2, . . . , ζk, . . . ) of complex numbers
and a constant c 6= 0 such that |ζk| < 1 (∀k),

∑
k>1 |ζk|2 <∞ and

an = cζα(n),∀n,

where ζα(n) = ζα1
1 ζα2

2 . . . ζαss . . . . In this case, λn = ζα(n) for every n ∈ N.

Proof. — Let f be an eigenvector of (T ∗n). By the definition,

λn(f, g) = (T ∗nf, g) = (f, g(zn))

for every n and every g ∈ H2
0 , which implies λnak = ank for every n and

k. By induction, an = a1ζ
α1
1 ζα2

2 . . . ζαss , where (using the above notation)
n = pα1

1 pα2
2 . . . pαss and ζj = λpj . The formula for λn follows from Tn =

Tα1
p1
Tα2
p2
. . . Tαsps . It remains to note (taking c = 1) that

∞ >
∑
n>1
|an|2 =

∑
α∈Z+(∞)

|ζα|2 = sup
n∈N

∑
(α1,...,αn)∈Zn+

|ζα1
1 |2 . . . |ζαnn |2

= sup
n∈N

n∏
k=1

( 1
1− |ζk|2

)
=
∏
k>1

( 1
1− |ζk|2

)
.

�

Having a (anti)holomorphic vector bundle of eigenvectors fζ =∑
n>1 ζ

α(n)
zn, we in a standard way can represent elements of H2

0 as holo-
morphic functions, so that the action of Tn becomes a multiplication by
independent variables:

U : f −→ Uf(ζ) = (f, fζ),

where ζ runs over an infinite dimensional multidisc described in Lemma
above. Formalizing this idea, we define the following transform, which was

TOME 62 (2012), FASCICULE 5



1604 Nikolai NIKOLSKI

previously used by H. Bohr in studies of Dirichlet series, see [8]. The Bohr
transform of f ∈ H2

0 is

Uf(ζ) =
∑
n>1

f̂(n)ζα(n),

where ζ = (ζ1, ζ2, . . . ) ∈ D∞2 and ζα = ζα1
1 ζα2

2 . . . ζαss . . . , and D∞2 stands
for the Hilbert multidisc

D∞2 = {ζ = (ζ1, ζ2, . . . ) : ζ ∈ l2, |ζj | < 1 for every j > 1}.

It is essentially known (see [8], [12], [14]) that U is well defined as a unitary
transformation from H2

0 onto the Hardy space of the Hilbert multidisc,

U : H2
0 −→ H2(D∞2 ),

H2(D∞2 ) =:
{
F =

∑
α∈Z+(∞)

cα(F )ζα : ‖F‖22 =
∑

α∈Z+(∞)

|cα(F )|2 <∞
}
.

For the readers convenience, we give a short proof in Lemma 2.1 below.
Moreover, the following intertwining property holds

(UTnU−1)f(ζ) = ζα(n)f(ζ)

for every n and every ζ ∈ D∞2 . It follows that

Lat(Tn) = U−1 Lat(Mζ),

which means that a (closed) subspace E ⊂ H2
0 is Tn-invariant for every n ∈

N if and only if UE is ζk-invariant for every k ∈ N (f ∈ UE ⇒ ζkf ∈ UE
for every k ∈ N). In particular, a function f ∈ H2

0 is (Tn)-cyclic if and only
if Uf is cyclic in H2(D∞2 ) with respect to multiplications by independent
variables (the shift operators on D∞2 ), i.e. if and only if

H2(D∞2 ) = span
(
ζαUf : α ∈ Z+(∞)) = clos(Uf ·H∞(D∞2 )

)
,

where span and clos mean, respectively, the closed liner hull and the closure
for the norm topology in H2(D∞2 ), and

H∞(D∞2 ) = {F ∈ H2(D∞2 ) : F is bounded on D∞2 }.

The first result of Section 3 (known already to A. Beurling, [7]) says that
the condition Uf(ζ) 6= 0 for all ζ ∈ D∞2 is necessary for (Tn)-cyclicity of a
function f ∈ H2

0 . We show that it becomes sufficient if one supposes that
the Fourier spectrum of f is finitely generated in N and f̂(n) = O( 1

nε ) for
some ε > 0. This generalizes a result by Neuwirth, Ginsberg, and Newman
who showed it for a polynomial f , [12]. It is also shown that if a function
ζ 7−→ Uf(ζ), ζ = (ζ1, . . . , ζn, . . . ), depends on a finite number of variables
ζk only, say, on (ζ1, . . . , ζN ) ∈ DN , then f is (Tn)-cyclic if and only if
Uf is cyclic in H2(DN ). This provides us with some curious examples of

ANNALES DE L’INSTITUT FOURIER
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cyclic/non-cyclic functions, see Section 4 below. Moreover, it is shown that
each of the following conditions on a function f ∈ H2

0 implies that f is
(Tn)-cyclic:
1) Uf ∈ H2(D∞2 ), 1

Uf ∈ H∞(D∞2 ) (is contained also in [14], with a
different proof);
2) there exist ε > 0 and δ > 0 such that Uf ∈ H2+ε(D∞2 ), 1

(Uf)δ ∈
H2(D∞2 );

3) Re(Uf(ζ)) > 0 for every ζ ∈ D∞2 (and f 6= 0).
4) Uf depends on a finitely many variables ζi, i = 1, . . . , N , Uf ∈

Hol((1 + ε)DN ) and Uf(ζ) 6= 0 for ζ ∈ DN (is contained in [12] for the case
of a polynomial f).
5) Uf = Uf1 · Uf2 · Uf3 · Uf4, where fi satisfies condition i) above,

i = 1, 2, 3, 4.
Here Hol(Ω) stands for the space of all holomorphic functions on an open

set Ω, Ω ⊂ CN . By the way, concerning claims 1)–3) above, it is of interest
to notice that the condition f ∈ H∞(D) does not imply Uf ∈ H∞(D∞2 ), see
Remark to Point (8), Section 2. We also consider criteria of (Tn)-cyclicity
for polynomials p =

∑N
n=1 akz

k of low degrees in more explicit terms of
the coefficients ak.
All proofs below are short and elementary. In particular, we have an

easy proof for the fact that a function f =
∑∞
k=1 f̂(n)zn with f̂(1) =

1 and
∑∞
k=2 |f̂(n)| 6 1 is cyclic (this is one of important examples in

[14], where the proof is different of ours). Similarly, Wintner’s result [28]
establishing (Tn)-cyclicity of functions f =

∑
n>1

zn

ns , Re(s) > 1/2, is a
simple consequence of proposition 2) above. Also, the author is aware of the
existence of a huge litterature on the function theory in polydiscs and other
domains in Cn, but he found almost no information on cyclic functions.
We quote however several papers on polydisc invariant subspace theory,
[1], [10], [20], [25], [26], [12], [24], [28]. A few of more specific comments as
well as historical remarks are collected below.

An Abridged Story of an Invariant Subspace Approach to
the RH

B. Nyman, in his thesis of 1950 [22], established the following equivalence.
Let ρ(x) = x− [x] for x ∈ R (fractional part of x),

ϕ(x) = ρ(1/x) for x ∈ (0, 1).

Then the following are equivalent.

TOME 62 (2012), FASCICULE 5



1606 Nikolai NIKOLSKI

(1) All zeros of the Euler ζ-function ζ(s) =
∑
n>1

1
ns , after a holomorphic

extension to {s ∈ C : Re(s) > 0, s 6= 1}, are on the line Re(s) = 1
2 .

(2) spanL2(0,1)(ϕ(tx) : t > 1) = L2(0, 1)
(3) χ(0,1) ∈ spanL2(0,∞)(ϕ(tx) : t > 1), where χA stands for the charac-

teristic function of A.

For our days, the proof is quite simple. Indeed, after the Fourier-Mellin
transform, the closure in the left hand side of (2) becomes a translation
invariant subspace of the Hardy space H2(C+), whose characteristic inner
function, say θ, is expressed in terms of the ζ-function (via the known
representation

1
s− 1 −

ζ(s)
s

=
∫ ∞

0
ρ(t)t−s−1 dt

for Re(s) > 0); identifying the zeros of θ with {s : ζ(s + 1
2 ) = 0,Re(s) >

0} and observing the absence of singular inner factors in θ (since ζ is
holomorphic on Re(s) = 1/2), one obtains the result. �
In fact, Nyman has used an approximation by linear combinations f(x) =∑
j ajϕ(tjx) satisfying f(1) =

∑
j aj/tj = 0. But since the functional L :

f 7−→ f(1) is discontinuous on L2(0, 1), it is easy to see that the above
form of Nyman’s result is equivalent to the original one (indeed, if the set
X of all linear combinations (as in (2) above) is dense in L2(0, 1), then the
restriction L|X is unbounded, and hence Ker(L|X) is dense in X, and so
in L2(0, 1)). This question is also discussed in [3].

More than 40 years later, L. Báez-Duarte [2] showed (with a more in-
volved reasoning) that Nyman’s (1)–(3) are equivalent to

(4) χ(0,1) ∈ spanL2(0,∞)(ϕ(nx) : n ∈ N).

For more details about Nyman’s approach to the RH, we refer to an
interesting survey by M.Balazard [5]. The above form of Nyman’s result
suggests the following general dilation completeness problem.
Dilation Completeness Problem. To characterize functions f ∈ Lp(0,∞)

such that
spanLp(0,1)(f(nx) : n ∈ N) = Lp(0, 1).

Extending the problem, we can also ask the same question but replacing
(0, 1) by another subset E ⊂ (0,∞) and a subsemigroup trajectory (Dnf :
n ∈ N), Dnf(x) = f(nx), by just a family of dilations (f(tx) : t ∈ T ) with
a set T ⊂ (0,∞) given in advance.

It is also of interest to describe all (Dn)-invariant subspaces of Lp(0,∞),
i.e., closed subspaces X ⊂ Lp(0,∞) such that DnX ⊂ X for every n > 1.

ANNALES DE L’INSTITUT FOURIER
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In particular, to know when the characteristic function χ(0,1) belongs to
such a subspace. Following B. Nyman and L. Báez-Duarte, the Riemann
Hypothesis corresponds to the case f = ϕ, T = N, p = 2.

An interesting partial case of the DCP is the following Periodic DCP,
which was initiated much earlier by A. Wintner (1944) and (independently)
A. Beurling (1945).
Periodic Dilation Completeness Problem. Given positive reals a > 0,

b > 0, to characterize a-periodic functions f on (0,∞), f ∈ Lp(0, a), such
that

(2′) spanLp(0,b)(f(nx) : n ∈ N) = Lp(0, b).

A. Wintner 1944 [28] showed that a sequence {f(kx) : k ∈ N} is complete
in L2(0, 1) for f = ρ(x/2) (so, a = 2, b = 1), and — more general — this
is the case for

fs =
∑
n>1

n−s sin(nπx)

with Re(s) > 1/2. This result is a simple consequence of Theorem 3.3
below.
A. Beurling 1945 [7] observed that the condition Uf(ζ) 6= 0 for ζ ∈ D∞2

is necessary for (Tnf)n>1 to be complete in H2
0 (in fact, Beurling used

the language of dilations Dn). J. Neuwirth, J. Ginsberg, and D. Newman
1970 [12] have established that a polynomial f , deg(f) 6 N , is (Tn)-cyclic
if and only if Uf(ζ) 6= 0 for ζ ∈ DN . H. Hedenmalm, P. Lidquist, and
K. Seip, [14], proved point 1) above, as well as the (Tn)-cyclicity of f =
z +

∑
n>2 akz

k satisfying
∑
n>2 |ak| 6 1 and a number of results on Riesz

bases in H2
0 of the form (Tnf)n>0. Their statements are given in a language

of multipliers of a space of Dirichlet series
∑
n>1

an
ns ,

∑
n>1 |an|2 < ∞.

All results on the PDCP listed above are simple partial cases of results
proved in this paper. The link between the Wintner–Beurling version of
the PDCP and the semigroup (Tn) is very simple: taking an orthonormal
basis {

√
2 sin(πkx)}k>1 in L2(0, 1) and defining a unitary operator V :

H2
0 −→ L2(0, 1) by (V zk)(x) =

√
2 sin(πkx), k = 1, 2, . . . , one can easily

see that a function ϕ ∈ L2(0, 1),

ϕ =
∑
k>1

ak
√

2 sin(πkx),

TOME 62 (2012), FASCICULE 5



1608 Nikolai NIKOLSKI

(developed in its Fourier series) satisfies ϕ(nx) = (V TnV −1ϕ)(x), and
hence it obeis completeness property (2’) if and only if a function

F = V −1ϕ =
∑
k>1

akz
k

is (Tn)-cyclic in H2
0 .

Therefore, tempting to approach to the Riemann Hypothesis by Nyman-
Wintner-Beurling approximations, one can hope on Hardy space techniques
in D∞2 and specific arithmetic properties of the Fourier coefficients ak =
ak(ϕ) for the function we need to treat, namely for ϕ(x) = ρ(1/x) (as it
was the case for Wintner’s results [28], where k 7−→ ak was a contractive
semicharacter of the multiplicative semigroup N, see Section 3 for details).
Do not forget, however, that in the RH we deal mostly with the DCP,
and not with the PDCP. It is also worth mentioning that the complete-
ness problem for all dilations f(tx), t > 0, is usually settled with classical
techniques (say, Plancherel-Mellin theorem for L2-approximation, and the
Wiener Tauberian Theorem for L1-approximation), whereas the discrete
semigroup (Tn) requires more sophisticated tools.

Acknowledgements

I am indebted to my former colleague at the University Bordeaux 1
Michel Balazard, who initiated my interest to the semigroup (Tn) in the
beginning of the 1990s, asking me several interesting questions. Most of the
results presented here was obtained shortly after but have waited for more
than 15 years in order to be taped. I am also grateful to the referee for a
careful reading the manuscript.

2. Semigroup (Tn) and the Hardy space on the Hilbert
multidisc

This Section deals with several elementary properties of functions in
H2(D∞2 ), some of which were observed already by D.Hilbert [16]. We would
like to avoid technical subtleties, unnecessary for our goals and related to
analysis of functions of infinitely many variables. This is why we do not
touch more general Hp spaces (p 6= 2), for which even the question on
the natural domain of analyticity is not completely obvious. See a few of
remarks below.
The following lemma is mostly known, see [14]. The spaces H2

0 and
H2(D∞2 ), as well as the mapping U are defined in the Introduction.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — 1. For every f ∈ H2
0 and ζ ∈ D∞2 , the series Uf(ζ) =∑

n>1 f̂(n)ζα(n) is absolutely convergent, and one has

|Uf(ζ)| 6 ‖f‖2
∏
k>1

( 1
1− |ζk|2

)1/2
.

2. U is a unitary mapping from H2
0 onto H2(D∞2 ), which maps an or-

thonormal basis (zn)n>1 of H2
0 on the orthonormal basis (ζα)α∈Z+(∞) of

H2(D∞2 ).
3. For every f ∈ H2

0 , ζ ∈ D∞2 and n ∈ N,

(UTnf)(ζ) = ζα(n)(Uf)(ζ)

where α(n) = (α1(n), . . . , αk(n), . . . ) is defined in the Introduction.
Proof. — 1. By Cauchy-Schwarz,

|Uf(ζ)|2 6 ‖f‖22
∑
α>0
|ζα|2 = ‖f‖22 sup

n∈N

∑
(α1,...,αn)∈Zn+

|ζα1
1 |2 . . . |ζαnn |2

= ‖f‖22 sup
n∈N

n∏
k=1

( 1
1− |ζk|2

)
= ‖f‖22

∏
k>1

( 1
1− |ζk|2

)
.

2. By definition, Uf(ζ) =
∑
n>1 f̂(n)ζα(n), and hence Uzn = ζα(n),

n ∈ N. Since α is a bijection from N to Z+(∞), the result follows.
3. Since α is a homomorphisme,

(UTnzk)(ζ) = (Uzkn)(ζ) = ζα(kn) = ζα(n)ζα(k) = ζα(n)(Uzk)(ζ)

for every k ∈ N. Since f 7−→ Uf(ζ) is linear and bounded on H2
0 (see point

1 above), we get the result. �

Corollary 2.2. — Let E be a (closed) subspace of H2
0 .

E ∈ Lat(Tn)⇔ UE ∈ Lat(Mζ).

A function f ∈ H2
0 is (Tn)-cyclic if and only if Uf is Mζ-cyclic in H2(D∞2 ).

�

Now, since the problem of (Tn)-invariant subspaces is reduced to the
Hardy space H2(D∞2 ), we need to recall some properties of the latter. Since
the author is not able to localise references (if existed), we are giving a list
of these properties with short proofs (where the statement is not completely
obvious). In fact, all properties are natural analogues of the corresponding
properties of H2(D) and H2(Dn).

TOME 62 (2012), FASCICULE 5



1610 Nikolai NIKOLSKI

2.1. A few general properties of H2(D∞2 ) functions. (1) A polyno-
mial p is a finite linear combination of monomials: p =

∑
α∈σ cαζ

α, where
cα ∈ C and σ is finite, σ ⊂ Z+(∞). The set of polynomials P is norm dense
in H2(D∞2 ). �

(2) Let F ∈ H2(D∞2 ). Denote

F(n)(ζ) = F (ζ1, . . . , ζn, 0, 0, . . . ), ζ ∈ D∞2

and Z+(n) = {α ∈ Z+(∞) : αj = 0 for j > n}; since F(n) does not depend
on ζj , j > n, we sometimes will also write F(n)(ζ) = F(n)(ζ1, . . . , ζn). Then,

F(n) =
∑

α∈Z+(n)

cα(F )ζα,

‖F(n)‖22 =
∑

α∈Z+(n)

|cα(F )|2, lim
n
‖F − F(n)‖2 = 0, ‖F‖2 = sup

n>1
‖F(n)‖2,

and also,

‖F(n)‖22 = sup
0<r<1

∫
Tn
|F(n)(rζ1, . . . , rζn)|2 dm(ζ1) . . . dm(ζn),

‖F‖22 = sup
n>1

sup
0<r<1

∫
Tn
|F(n)(rζ1, . . . , rζn)|2 dm(ζ1) . . . dm(ζn)

where Tn = T× · · · × T, T being the unit circle T = {z ∈ C : |z| = 1}.
Conversely, if (fn) is a sequence of functions fn ∈ H2(Dn), such that

fn+1(ζ, 0) = fn(ζ) for ζ ∈ Dn and supn ‖fn‖2 < ∞, then there exists a
(unique) function F ∈ H2(D∞2 ) such that fn = F(n) for every n > 1.

Indeed, all claims are easily verified, including the last one, where we
simply define F by F̂ (α) = f̂n(α) for α ∈ Z+(n). In principle, this last
assertion is a partial case of results of D. Hilbert [16]. �

(3) We have H∞(D∞2 ) ⊂ H2(D∞2 ). More precisely,

‖F‖2 6 ‖F‖∞

for F ∈ H∞(D∞2 ), where ‖F‖∞ = sup{|F (ζ)| : ζ ∈ D∞2 }.
Indeed, it follows from (2) that ‖F(n)‖2 6 ‖F‖∞ for every n, and hence
‖F‖2 6 ‖F‖∞. �

(4) The reproducing kernel for H2(D∞2 ). Let

kλ(ζ) =
∑

α∈Z+(∞)

λ
α
ζα,
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where λ, ζ ∈ D∞2 and λ = (λ1, . . . , λn, . . . ). Then kλ ∈ H2(D∞2 ), ‖kλ‖22 =∏
n>1

1
1−|λn|2 and, for every F ∈ H2(D∞2 ),

F (λ) = (F, kλ).

Indeed, the reproducing property of kλ is obvious by the definition of the
scalar product in H2(D∞2 ), (F,G) =

∑
α∈Z+(∞) cα(F )cα(G). The norm of

kλ is computed as in Lemma 2.1. �

Remark. — It is curious to mention that kλ ∈ H∞(D∞2 ) if and only if∑
n>1 |λn| <∞. Moreover, since∑

α∈Zn+

|λα1
1 λα2

2 . . . λαnn | = lim
r−→1

kλ( rλ1

|λ1|
, . . . ,

rλn
|λn|

, 0, 0, . . . ),

we get

sup
ζ∈D∞

2

|kλ(ζ)| = sup
n

sup
ζ∈Dn

∣∣∣∣ ∑
α∈Z+(n)

λ
α
ζα
∣∣∣∣ = sup

n

∑
α∈Zn+

|λα1
1 λα2

2 . . . λαnn | =

= sup
n

n∏
k=1

1
1− |λk|

=
∞∏
k=1

1
1− |λk|

. �

(5) If F ∈ H∞(D∞2 ) then F(n) ∈ H∞(D∞2 )(F(n) is defined in (2)) and

‖F(n)‖∞ 6 ‖F(n+1)‖∞ 6 ‖F‖∞, lim
n
F(n)(λ) = F (λ)

for every λ ∈ D∞2 (the latter is true for every F ∈ H2(D∞2 )).
Indeed, it is clear from the definition of F(n). In fact, F(n) can be seen as

a restriction of F on Dn. The claimed convergence property follows from
(2). �

(6) Clearly,
H2(D∞2 ) = spanH2(kλ : λ ∈ D∞2 )

and hence, a sequence (Fn) converges weakly in H2(D∞2 ) to a function
F ∈ H2(D∞2 ) if and only if limn Fn(λ) = F (λ) for every λ ∈ D∞2 and
supn ‖Fn‖2 <∞. �

(7) For every ϕ ∈ H∞(D∞2 ), there exists a sequence of polynomials
(pn)n>1 such that limn pn(ζ) = ϕ(ζ) for ζ ∈ D∞2 and ‖pn‖∞ 6 ‖ϕ‖∞
for every n > 1.
Indeed, first, we can take a sequence (ϕ(n)) from (5); next, we pass to

Fejer polynomials pn for ϕ(n) of sufficiently large degree N = N(n). Since
the Hilbert multidisc D∞2 is not locally compact (and we do not know any
kind of Vitali’s theorem), let us enter in some details. Precisely, we exploit
a property of Fejer approximation maps on Dn, f 7−→ (f − ΦN,n ∗ f),
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N = 1, 2, . . . , that their restrictions to a compact set ∆Dn, 0 < ∆ < 1
(denote them by ΦN,n,∆ : f 7−→ (f − ΦN,n ∗ f)|∆Dn) tend to zero for the
operator norm H2(Dn) −→ H∞(∆Dn), for every ∆, i.e.

lim
N→∞

‖ΦN,n,∆‖ = lim
N→∞

sup
‖f‖261

‖f − ΦN,n ∗ f‖H∞(∆Dn) = 0.

Using this property, we obtain for pn(ζ) = ΦN,n ∗ ϕ(n)(ζ),

|ϕ(ζ)− pn(ζ)| 6 |ϕ(ζ)− ϕ(n)(ζ)|+ |ϕ(n)(ζ)− ΦN,n ∗ ϕ(n)(ζ)|
6 ‖ϕ− ϕ(n)‖2‖kζ‖2 + ‖ΦN,n,∆‖ · ‖ϕ(n)‖2,

where ∆ = ∆(ζ) = maxj |ζj | < 1. Now, it is clear that there exists a
sequence N = N(n) −→ ∞ such that limn |ϕ(ζ) − pn(ζ)| = 0 for every
ζ ∈ D∞2 (and even uniformly on the sets {ζ ∈ D∞2 : ‖kζ‖ 6 A,∆(ζ) 6 ∆ <

1}). �

Remark. — It is curious to note that F ∈ H2(D∞2 ) does not imply
Fr ∈ H∞(D∞2 ) for 0 < r < 1 (as it is the case on Dn). For example, if
λ ∈ D∞2 but

∑
|λj | = ∞, then (kλ)r = krλ 6∈ H∞(D∞2 ) (see Remark to

(4), Section 2).

(8) The space of multipliers of H2(D∞2 ), Mult(H2(D∞2 )) =: {ϕ : F ∈
H2(D∞2 )⇒ ϕF ∈ H2(D∞2 )}, is H∞(D∞2 ).
Indeed, (2) implies that every ϕ∈H∞(D∞2 ) is a multiplier and ‖ϕ‖Mult6

‖ϕ‖∞. The converse is a well-known common place — every multiplier ϕ
is bounded (whatever the basic space is) —

|ϕ(λ)| = |(ϕn · 1)(λ)|1/n 6 (‖ϕ‖nMult‖1‖2‖kλ‖2)1/n

for every λ ∈ D∞2 , which implies ϕ ∈ H∞(D∞2 ) and ‖ϕ‖∞ 6 ‖ϕ‖Mult. �

Remark. — It is curious to note that UH∞(D) is NOT contained in
H∞(D∞2 ). To see that, one can use, for example, the fact that the set P of
prime numbers is not a Sidon set in Z (a set A ⊂ Z is Sidon if every L∞
function f with the Fourier spectrum in A is in the Wiener class

∑
|f̂(k)| <

∞). Indeed, for every Sidon set S, there exists a constant c(S) such that
the length of any arithmetic progression in S, A ⊂ S, is bounded by c(S):
|A| 6 c(S); see, for example, [19]. To the contrary, the famous Green-Tao
theorem claims that P contains arbitrarily long arithmetic progressions,
[13]. Since P is not Sidon, there exists an H∞(D) function f =

∑
p∈P apz

p

such that
∑
p∈P |ap| = ∞. Since Uf(ζ) =

∑
p∈P apζp for ζ ∈ D∞2 , we

obviously have Uf 6∈ H∞(D∞2 ).

(9) Let F ∈ E and E ∈ Lat(Mζ). Then, F ·H∞(D∞2 ) ⊂ E.
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Indeed, let ϕ ∈ H∞(D∞2 ) and (pk) be a sequence of polynomials men-
tioned in (7). Then pkF ∈ E and (pkF )k weakly converges to ϕF : ‖pkF‖2 6
‖pk‖∞‖F‖2 6 ‖ϕ‖∞‖F‖2 (see (8)) and limk pk(ζ)F (ζ) = ϕ(ζ)F (ζ) for ev-
ery ζ ∈ D∞2 (see (6)). Hence, ϕF ∈ E. �

(10) Let S ⊂ N and, for α ∈ Z+(∞), the symbol αχS means a product
of two functions on N: αχS = (α1χS(1), . . . , αkχS(k), . . . ). Further, let
H2(DS2 ) be a subspace of H2(D∞2 ) defined by

H2(DS2 ) =
{
F =

∑
α∈χSZ+(∞)

cα(F )ζα :
∑

α∈χSZ+(∞)

|cα(F )|2 <∞
}

=
{
F ∈ H2(D∞2 ) : σ(F ) ⊂ ZS+

}
where σ(F ) stands for the Fourier spectrum

σ(F ) = {α ∈ Z+(∞) : cα(F ) 6= 0}

of a function F ∈ H2(D∞2 ), and ZS+ = {α ∈ Z+(∞) : αj = 0 for j ∈ S′},
S′ = N \ S. One can say that H2(DS2 ) consists of functions depending on
variables ζj , j ∈ S only. We write H2(Dn) for H2(D{1,2,...,n}2 ) and Z+(n)
for ZS+ with S = {1, 2, . . . , n}.
Now, if S

⋂
S′ = ∅, the subspaces H2(DS2 ) and H2(DS′

2 ) are independent
in the following sense:
i) H2(DS2 ) ⊥ H2(DS′

2 );
ii) F ∈ H2(DS2 ), G ∈ H2(DS′

2 ) imply FG ∈ H2(DS′′

2 ), where S′′ = S∪S′,
and ‖FG‖22 = ‖F‖22‖G‖22;
iii) moreover, H2(DS2 )⊗H2(DS′

2 ) = H2(DS′′

2 ), where S′′ = S ∪ S′ and

H2(DS2 )⊗H2(DS
′

2 ) = span
( ∑

finite
FjGj : Fj ∈ H2(DS2 ), Gj ∈ H2(DS

′

2 )
)

Indeed, i) is obvious; ii) follows from the Fubini theorem and property (2)
above; iii) is clear since polynomials depending on variables S are densely
contained in H2(DS2 ), and similarly for H2(DS′

2 ) and H2(DS′′

2 ). �
(11) Let S ⊂ N, S′ = N \ S be the complement of S, and E a (closed)

subspace of H2(DS2 ). Then

E ⊗H2(DS
′

2 ) = H2(D∞2 )

if and only if E = H2(DS2 ).
Indeed, the sufficiency follows from (10)-iii. For the necessity, we first

observe that σ(F ) ⊂ ZS+ for every function F ∈ E, and — on the other
hand — the product Fp with every polynomial p ∈ H2(DS′

2 ) can be written
as Fp = Fp(0) + F (p− p(0)), where F (p− p(0)) is orthogonal to each ζα
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with supp(α) ⊂ S, and hence F (p − p(0)) ⊥ H2(DS2 ). Now, if we assume
E ⊗H2(DS′

2 ) = H2(D∞2 ) and take an element G ∈ H2(DS2 ) and a sequence
(Φk)k from{ ∑

finite
Fjpj : Fj ∈ E, pj are polynomials in H2(DS

′

2 )
}

such that limk ‖Φk − G‖2 = 0, then Φk = Gk + G′k, where Gk ∈ E and
‖Φk − G‖22 = ‖Gk − G‖22 + ‖G′k‖22. This means that limk ‖Gk − G‖2 = 0,
and hence G ∈ E. Therefore, E = H2(DS2 ). �

(12) Lp-norms on H2(D∞2 ) and powers of H2(D∞2 ) functions.
i) Let F ∈ H2(D∞2 ) and F (ζ) 6= 0 for ζ ∈ D∞2 . Then for every t, 0 <

t 6 1, there exist functions F t ∈ H2(D∞2 ) satisfying F tF s = F t+s, (F t)s =
F st, F 1 = F .
Indeed, a family of functions (F(n))t with these properties obviously ex-

ists on Dn. Since |at − bt| 6 C|a− b|t for every a, b ∈ C, we get

‖(F(n))t − (F(m))t‖2 6 C‖F(n) − F(m)‖t2.

The last expression tends to 0 as n,m −→ ∞. So, property (2) implies
that there exists F t ∈ H2(D∞2 ) such that (F(n))t = (F t)(n) for every n and
t. The result follows. �
ii) For a function F ∈ H2(D∞2 ) and 2 6 p <∞, we define the Hp norm

of F (finite or not) as follows

‖F‖pp = sup
n>1

sup
0<r<1

∫
Tn

∣∣∣F(n)(rζ1, . . . , rζn)|p dm(ζ1) . . . dm(ζn).

Further, given r, 0 < r < 1, we set Fr(ζ) = F (rζ) and F(n)r(ζ) =
F(n)(rζ) for all ζ ∈ D∞2 (F(n) are defined in (2) above). Then,
‖Fr‖p 6 ‖F‖p, ‖F(n)r‖p 6 ‖F(n)‖p 6 ‖F‖p for every F ∈ Hp(D∞2 ), n

and r, 0 < r < 1. Moreover, 2 6 p 6 q ⇒ ‖F‖q > ‖F‖p.
Indeed, it is clear by the definition ofHp and the properties of the Poisson

means in Dn. �
iii) Let G ∈ H2(D∞2 ) and G(ζ) 6= 0 for ζ ∈ D∞2 . Then for every t,

0 < t 6 1, ‖Gt‖2/t < ∞ and there exists a sequence of polynomials (pn)n
such that limn ‖Gt − pn‖2/t = 0.
In order to find polynomials pn, we can use obvious properties that for

every G ∈ H2(D∞2 ) we have limn ‖G(n) − G‖2 = 0 and limr→1 ‖G(n)r −
G(n)‖2 = 0 (for every n), and hence there exists a sequence r(n) −→ 1
such that limn ‖G(n)r(n) − G‖2 = 0. But G(n)r(n)(ζ) 6= 0 for ζ ∈ D∞2 , and
using an above inequality |at − bt| 6 C|a− b|t, we obtain

‖Gt(n)r(n) −G
t‖2/t2/t 6 C

2/t‖G(n)r(n) −G‖22 −→ 0 (as n −→∞).
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Approximating Gt(n)r(n) by polynomials pn uniformly on Dn, we obtain
the result. �
iv) For a general function F on D∞2 , which is a sum of an absolutely

convergent power series in D∞2 , we define its roots of a natural degree.
Namely, given N ∈ N, we say that F 1/N exists if there is an absolutely
convergent power series in D∞2 , whose sum — F 1/N — satisfies (F 1/N )N =
F .

Remark. — A problem for defining Hp spaces of infinitely many vari-
ables is, in particular, in the choice of a natural domain where the space
should be defined. For example, for 1 6 p 6 2, given an absolutely conver-
gent power series F , the Hausdorff–Young inequality says that

‖F̂(n)‖lp′ (Zn+) 6 ‖F(n)‖Hp(Dn) 6 ‖F‖Hp = sup
n
‖F(n)‖Hp(Dn)

for every n. If the latter quantity is finite, then an absolutely convergent
representation F (ζ) =

∑
α∈Z+(∞) cαζ

α exists for

ζ ∈ D∞p =
{
ζ :
∑
j>1
|ζj |p <∞, |ζj | < 1(∀j)

}
.

However, an extension to D∞2 is still unclear. In the opposite direction,
when p > 2, it seems that D∞2 could be a natural domain for Hp(D∞2 ),
but we prefer do not enter in a discussion. However, in the limit case as
p −→ ∞, one can consider the corresponding "multi-disc algebras", and
even if for the ‖ · ‖∞ closure of polynomials the natural domain, perhaps,
is still D∞2 , for the corresponding Wiener algebra

W =
{
F (ζ) =

∑
α∈Z+(∞)

cαζ
α :

∑
α∈Z+(∞)

|cα| <∞
}

the natural domain is definitly much larger, namely it is D∞∞ = {ζ ∈ C∞ :
|ζj | < 1,∀j}.

3. Some invariant subspaces and cyclic vectors of (Tn)

Here we obtain some necessary/sufficient conditions for a function f ∈
H2(D) to be (Tn)-cyclic, or equivalently, Uf = F ∈ H2(D∞2 ) to be Mζ-
cyclic. In order to place the question properly, recall that a partial case of
the problem of Mζ-cyclicity is a problem of cyclic function in H2(Dn), a
quite famous question which is still open at least from the time of Rudin’s
book [24] (1969). In fact, Theorem 3.3 below is nothing but a multidisc
analogue of facts proved for the disc D already in [21], Section 2.1., and even
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for a variety of function spaces (including weighted Hardy and Bergman
spaces). We start with two lemmas.

Lemma 3.1. — Let F ∈ H2(D∞2 ). If F is Mζ-cyclic then F (ζ) 6= 0 for
ζ ∈ D∞2 .

Proof. — Obvious since Lemma 2.1. �

We need a bit more notation. Let J ⊂ N and

NJ = {pα = pα1
1 . . . pαmm : (α1, . . . , αm, . . . ) ∈ ZJ+}

be a subsemigroup of N generated by prime numbers pj , j ∈ J . More gen-
eral, we consider subsets Σ ⊂ Z+(∞) being a positive part of a subgroup
Σ′ ⊂ Z∞, namely, Σ = Σ′∩Z+(∞); we call them "semi-subgroups". Such a
semi-subgroup Σ can be characterized by the following property: if α ∈ Σ,
β ∈ Z+(∞) and α + β ∈ Σ then β ∈ Σ. At the level of N, for the corre-
sponding (multiplicative) subgroups σ = {pα : α ∈ Σ} (p = (p1, p2, . . . )),
the latter property says n ∈ σ, m ∈ N and nm ∈ σ ⇒ m ∈ σ. For instance,
semigroups ZJ+ and every one-generated semigroup Σ = {nα : n ∈ Z+},
α ∈ Z+(∞) are semi-subgroups in Z+(∞), and their counterparts in N are
NJ and σ = {pnα : n ∈ Z+}.
The following lemma is stated for semi-subgroups NJ but it is also true

for an arbitrary semi-subgroup σ ⊂ N. The leading partial case is for J =
{1, . . . ,m}, m ∈ N, when H2(DJ2 ) = H2(Dm).

Lemma 3.2. — Let f ∈ H2
0 (D) having the Fourier spectrum in a semi-

subgroup NJ , σ(f) ⊂ NJ , for a subset J ⊂ N. Then, f is (Tn)-cyclic if and
only if Uf is (Mζα)α∈ZJ+ -cyclic in H2(DJ2 ).

Proof. — Assume Uf is (Mζα)α∈ZJ+ -cyclic in H2(DJ2 ), and let E be an
Mζ-invariant subspace generated by Uf in H2(D∞2 ). Clearly,

E ⊃ H2(DJ2 )⊗H2(DJ
′

2 ) = H2(D∞2 )

(see (11), Section 2), i.e. Uf is Mζ-cyclic.
Conversely, assume that Uf is Mζ-cyclic in H2(D∞2 ). We employ a rea-

soning similar to those of (11), Section 2. Namely, let P be an orthogonal
projection in H2(D∞2 ) on the subspace H2(DJ2 ). Notice, that if a monomial
ζα = ζα1

1 . . . ζαn has the spectrum σ(ζα) = {α1, . . . αn, 0, 0, . . .}, which is
not in ZJ+ (i.e., there is a "new variable" in ζα), then

ζαH2(DJ2 ) ⊥ H2(DJ2 ).
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It follows that, for every polynomial q, we have P (qUf) = (Pq)Uf . Let now
G ∈ H2(DJ2 ) and (qk) be a sequence of polynomials such that limk ‖G −
qkUf‖2 = 0. Then, limk ‖G − (Pqk)Uf‖2 = 0 and Pqk ∈ H2(DJ2 ). This
means that Uf is (Mζα)α∈ZJ+ -cyclic in H2(DJ2 ). �

Theorem 3.3. — Let F be a function on D∞2 such that F (ζ) 6= 0 for
ζ ∈ D∞2 .
(1) If F ∈ H2(D∞2 ) and 1/F ∈ H∞(D∞2 ) then F isMζ-cyclic in H2(D∞2 ).
(2) If F ∈ H2(D∞2 ) and Re(F (ζ)) > 0 for ζ ∈ D∞2 then F is Mζ-cyclic in

H2(D∞2 ).
(3) If there exist ε > 0 and N > 1 such that F 1+ε ∈ H2(D∞2 ) and

1/F 1/N ∈ H2(D∞2 ), then F is cyclic in H2(D∞2 ).

Proof. — Let E be a (closed) Mζ-invariant subspace of H2(D∞2 ) gener-
ated by F . For cyclicity, it suffices to prove that 1 ∈ E.
(1) By (9), Section 2, we have 1 = F · 1

F ∈ E.
(2) By (9), Section 2, we have F

F+ε ∈ E for every ε > 0. Moreover,
| F (ζ)
F (ζ)+ε | 6 1 and limε−→0

F (ζ)
F (ζ)+ε = 1 for every ζ ∈ D∞2 . By (6) and (3) of

Section 2, we obtain 1 ∈ E.
(3) Without loss of generality, we can assume that 1/ε ∈ N. Let γ = ε/N

1+ε ,
q = 2(1+ε)

ε . Then, by (12) of Section 2, we have 1/F γ ∈ Hq(D∞2 ). Let pk
be polynomials found in (12) iii, Section 2, so that limk ‖ 1

Fγ − pk‖q = 0.
By Hölder, since 1

2(1+ε) + 1
q = 1

2 , we obtain

‖F 1−γ − pkF‖2 =
∥∥∥F ( 1

F γ
− pk)

∥∥∥
2
6 ‖F 1+ε‖1/1+ε

2

∥∥∥ 1
F γ
− pk

∥∥∥
q
.

This implies F 1−γ ∈ E. Repeating the preceding step for

‖F 1−2γ − pkF 1−γ‖2 = ‖F 1−γ( 1
F γ
− pk)‖2,

we get F 1−2γ ∈ E, etc. — so that, in 1/γ steps we obtain 1 ∈ E, and hence
F is cyclic. �

Below, in theorem 3.4, we show that for functions f ∈ H2
0 (D) having

the Fourier support in NJ for a finite J , the trivial necessary condition
of Lemma 3.1, (together with a slight smoothness condition), is, in fact,
sufficient for f to be a (Tn)-cyclic element. We give a separated proof for
the case of a polynomial since, in this case, the proof is much easier.

Theorem 3.4. — (1) Let f =
∑n
k=1 f̂(k)zk be a polynomial on D. Then

f is (Tn)-cyclic if and only if Uf(ζ) 6= 0 for ζ ∈ D∞2 (in fact, for ζ ∈ DJ ,
J =

⋃
k supp(α(k)) where the union is taken over all k with f̂(k) 6= 0).
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(2) Let J be a finite set in N and f ∈ H2
0 (D) having the Fourier spectrum

in NJ , σ(f) ⊂ NJ , such that f̂(k) = o(k−ε) for k −→ ∞ for a positive ε.
Then f is (Tn)-cyclic if and only if Uf(ζ) 6= 0 for ζ ∈ D∞2 (in fact, for
ζ ∈ DJ).

(3) The same as in (2) but for functions f with Uf ∈ Hol(∆DJ), ∆ > 1.
(4) Let n > 1 be an integer and f ∈ H2

0 with σ(f) ⊂ {nk : k ∈ Z+}.
Let further ϕ =

∑
k>0 f̂(nk)zk. Then f is (Tn)-cyclic if and only if ϕ is

a Beurling inner function. Moreover, if E is a (Mζ)-invariant subspace of
H2(D∞2 ) generated by F = Uf , then

E = I(ζα(n))H2 ⊗H2(DN\{n}
2 ),

where I is the inner part of ϕ.

Proof. — (1) Necessity is a general fact (Lemma 3.1), we need to prove
the sufficiency. Assume Uf(ζ) 6= 0 for ζ ∈ Dm, m = π(n), π(n) being the
number of primes less or equals to n. By Lemma 3.2, it suffices to check that
F = Uf is (Mζj )16j6m cyclic in H2(Dm2 ). Let E be an invariant subspace
generated by F . Since 1/Fr ∈ H∞(Dm) for every r, 0 < r < 1, we have
F/Fr ∈ E and limr−→1

F (ζ)
Fr(ζ) = 1 for every ζ ∈ Dm. Moreover,∣∣∣ F (ζ)

Fr(ζ)

∣∣∣ 6 2deg(F ) for every 0 < r < 1 and ζ ∈ Dm

the latter is a slightly improved inequality from [12]; see also [11] (for
the readers convenience, we give a short proof of this inequality in Re-
mark 3.5 after the Theorem). Hence, sup0<r<1 ‖ FFr ‖2 < ∞ and, therefore,
limr→1

F
Fr

= 1 weakly in H2(Dm). This implies 1 ∈ E, and the result
follows.
(2)–(3) As before, the necessity is obvious. The proof of the sufficiency

makes use of Theorem 3.3(3). For notation simplicity we argue for the case
J = {1, . . . ,m} only; the general case is similar. Let F = Uf , F (ζ) 6= 0
for ζ ∈ Dm. We will check that F ∈ H∞(Dm) and 1/F ∈ Hδ(Dm) for a
positive δ. Indeed, the condition f̂(k) = o(k−ε) means that

f̂(pα1
1 pα2

2 . . . pαms ) = o(p−εα1
1 p−εα2 . . . p−εαms ) as αj −→∞ for 1 6 j 6 m.

This implies that the function

F (ζ) =
∑

α∈Z+(m)

f̂(pα1
1 pα2

2 . . . pαms )ζα

is holomorphic at least for |ζj | < 2ε, 1 6 j 6 m. In particular, F ∈
H∞(Dm).
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For the inverse 1/F , we use a Lojaciewicz theorem ([18], see also [17]) on
the zero set of an analytic function of several variables. In particular, the
theorem tells that given an analytic function G 6= 0 of m variables, there
exist constants N > 0, 0 < C <∞ such that

|G(ζ)| > C(dist(ζ, Z(G)))N ,

where Z(G) = {z : G(z) = 0} is the zero set of G(we suppose that all
this happens on a compact set in Cm, in whose open neighborhood G is
analytic).
First, we use Lemma 3.6 (below) on the zero set of F and obtain Z(F ) =

A × Dσ, where A ⊂ Tσ′ is a finite union of analytic manifolds of the di-
mension strictly less than d = card(σ′) (the notation is taken from Lemma
3.6). Next, we apply Lojaciewicz’s theorem for F getting, for ζ ∈ Dm,

|F (ζ)| > C(dist(ζ, Z(F )))N = C(dist(ζσ′ , A))N .

Moreover, there exists a constant c > 0 such that

dist(rζσ′ , A) > c · dist(ζσ′ , A)

for every 0 < r < 1 and ζσ′ ∈ Tσ′ (indeed, all distances in Cσ′ being
equivalent, consider ‖z‖∞ = max |zi|; then, for z, ζ ∈ Tσ ′, we have ‖z−ζ‖ 6
‖z − rz‖+ ‖rz − ζ‖ = 1− r‖z‖+ ‖rz − ζ‖ 6 2‖ζ − rz‖). This implies (λm
stands for Lebesgue measure on Tm)∫

Tm

dλm(ζ)
|F (rζ)|δ 6

1
CδcδN

∫
Tm

dλm(ζ)(
dist(ζσ′ , A)

)Nδ
= 1
CδcδN

∫
Tσ′

dλd(ζσ′)(
dist(ζσ′ , A)

)Nδ <∞
if Nδ < 1 and d = card(σ′); indeed, in a neighborhood of any point
of A and with a choice of a convenient parametrization for an analytic
manifold A (i.e., up to a convenient C∞ diffeomorphism of Rd), one has
ζσ′ = x = (x1, . . . , xd), A ⊂ H = {x = (x1, . . . , xd) : x1 = 0}, and hence
dist(ζσ′ , A) > const · dist(x,H) = |x1|, so that the last integral is bounded
by

const ·
∫
|xj |<1,∀j

dx1 . . . dxd
|x1|Nδ

<∞.

It follows that 1/F ∈ Hδ(Dm), and we are done.
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(4) Let σ = {nk : k ∈ Z+} and H2(σ) = {g ∈ H2(D) : σ(g) ⊂ σ}.
Then, the restriction Tn|H2(σ) is obviously unitarily equivalent to the shift
operator SG = zG on the Hardy spaceH2(D). Now, making use of a remark
just before Lemma 3.2 (applied for σ = {nk : k ∈ Z+}), we obtain the claim
on the cyclicity of f (the V. I. Smirnov (1934)–A. Beurling (1949) criterion
for cyclicity is also used: ϕ is z-cyclic in H2 if and only if ϕ is outer). Using
property (11) of Section 2 (and Smirnov–Beurling’s description of simply
generated z-invariant subspaces), we get the formula for E. �

Remark. — Let F be a polynomial such that F (ζ) 6= 0 for ζ ∈ D∞2 .
Here we give a short proof of the inequality∣∣∣ F (ζ)

Fr(ζ)

∣∣∣ 6 2deg(F )

for 0 6 r 6 1 and ζ ∈ D∞2 ; different versions can be found in [12] and
[11], where the degree deg(F ) is replaced by larger values. Of course, it
is sufficient to restrict ourselves to ζ ∈ Dm, where m is the number of
variables involved into F .

For a polynomial of 1 variable, F (z) = A(z−z1) . . . (z−zd) with |zj | > 1,
one has

∣∣ z−zj
rz−zj

∣∣ 6 2 for every z ∈ D (and hence, for z ∈ D) and 0 6 r 6 1;
indeed, ∣∣∣ z − zj

rz − zj

∣∣∣ =
∣∣∣1 + z − rz

rz − zj

∣∣∣ 6 2.

The claimed inequality follows. In several variables, we fix ζ = (ζ1, . . . , ζm)∈
Dm and pass to a polynomial Pζ(z) = F (zζ), z ∈ D. Applying the 1-
dimensional result, we get

∣∣ Pζ(z)
Pζ(rz)

∣∣ 6 2deg(F ) for z ∈ D. It remains to set
z = 1.

Lemma 3.5. — Let F be a function holomorphic on (1+ε)Dm such that
F (z) 6= 0 for every z ∈ Dm, and Z(F ) = {z ∈ Dm : F (z) = 0}. Then there
exist subsets σ ⊂ {1, 2, . . . ,m} (maybe, empty) and A ⊂ Tσ′ such that

Z(F ) = A× Dσ

where A × Dσ = {z = (z1, . . . , zm) : (zi)i∈σ ∈ Dσ, (zi)i∈σ′ ∈ A}, σ′ stands
for the complementary set σ′ = {1, 2, . . . ,m} \ σ. Moreover, A is a finite
union of analytic manifolds of real dimensions strictly less than card(σ′).

Proof. — Assume that Z(F ) is not contained in Tm, and let i∈{1, . . . ,m}
and z ∈ Z(F ) such that |zi| < 1. Writing z = (z′, zi), we show that
{z′}×D ⊂ Z(F ). Indeed, functions ϕr(w) = F (rz′, w), 0 < r < 1, are holo-
morphic and non vanishing in D. The limit function ϕ(w) = limr→1 ϕr(w)
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is vanishing at w = zi ∈ D, and hence ϕ = 0. This implies the inclusion
claimed. Setting

σ = {i : there exists z ∈ Z(F ) such that |zi| < 1},

we get the formula claimed in the Lemma. Take an arbitrary zσ ∈ Dσ.
Since A can be regarded as the zero set of the restriction F0 of the function
zσ′ 7−→ F (zσ′ , zσ) onto the torus Tσ′ , we can use a geometric part of Lo-
jaciewicz’s theorem (see, [18], [17]): being holomorphic on a neighborhood
of Tσ′ , function F0 has a zero set consisting of a finite union of analytic
manifolds of the dimensions strictly less than card(σ′), unless F0 = 0. The
latter property is impossible since it entails that F = 0. �

Corollary 3.6. — Let f ∈ H2
0 , and there exist fj (j = 1, 2, 3, 4) in

H2
0 such that Uf = Uf1 · Uf2 · Uf3 · Uf4, where fi for i = 1, 2, 3 satisfy

condition (i) of Theorem 3.3 and f4 satisfies (3) of Theorem 3.4. Then f is
(Tn) cyclic.

Indeed, let EUf be an (Mζ) invariant subspace of H2(D∞2 ) generated by
Uf . Then, it follows from the proof of Theorem 3.3 that Uf2 ·Uf3 ·Uf4 ∈
EUf , and next g =: Uf3 · Uf4 ∈ EUf . As to the function g, it is clear that
g1+ε ∈ H2(D∞2 ) (since (Uf3)1+ε ∈ H2(D∞2 )) and it follows from the proofs
of Theorem 3.3 and 3.4 (and Hölder inequality) that 1/gδ′ ∈ H2(D∞2 ) for
some 0 < δ′ < 1/N (N is from condition (3) of Theorem 3.3). Hence,
1/g1/N ′ ∈ H2(D∞2 ) for an integer N ′ > N , and by Theorem 3.3, 1 ∈ EUf ,
which completes the proof. �
We finish the Section showing that the reproducing kernels kλ are (Mζ)-

cyclic in H2(D∞2 ). In a different language and with a different proof, this
fact is proved in [14]. Wintner’s functions mentioned in the Introduction
correspond to a special choice of λ ∈ D∞2 .

Corollary 3.7. — Every reproducing kernel kλ, λ ∈ D∞2 , is a (Mζ)-
cyclic vector in H2(D∞2 ), or, equivalently, any function fλ =

∑
n>1 λ

α(n)zn

is (Tn)-cyclic in H2(D).

Indeed,
kλ(ζ) =

∑
α∈Z+(∞)

λ
α
ζα =

∏
s>1

Fλs(ζs)

where Fa(z) = (1− az)−1 (a, z ∈ D) (a computation similar to 2.3(4)). On
the other hand, ‖Fa‖pHp(T) = 1 + |pa/2|2(1 + o(1)) as a −→ 0 (∀p < ∞),
and hence

‖kλ‖pp =
∏
s>1
‖Fλs‖

p
Hp(T) <∞ for every λ, λ = (λs) ∈ D∞2 ;
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Similarly, ‖1/kλ‖22 =
∏
s>1 ‖1 − λsζs‖2H2(T) < ∞. Now, the cyclicity of kλ

follows from Theorem 3.3. �

Corollary 3.8 (Wintner, 1944). — Every function fa =
∑
k>1 k

−azk,
Re(a) > 1/2 is (Tn)-cyclic.

Indeed, Ufa = kλ where λ = (λs)s>1, λs = p−as (ps are primes). �

4. A few of examples

It is worth mentioning that the language of the U -transforms for (Tn)-
cyclicity criteria for f ∈ H2

0 is very natural but not as transparent (efficient)
as it seems to be. Speaking on "efficiency" we mean that given a function

f =
∑
k>1

akz
k

in H2
0 , we want to know its cyclicity properties just in terms of the Taylor

(Fourier) coefficients ak, and not of an extension of f to D∞2 . We show
some hidden effects on several examples. But we start with a corollary of
Theorem 3.3, which is essentially contained in [14], with a different proof.

Corollary 4.1. — (1) If |a1| >
∑
k>2 |ak|, then f =

∑
k>1 akz

k is
(Tn)-cyclic (f 6= 0).
(2) Conversely, suppose f is cyclic and its Fourier spectrum σ(f) is con-

tained in the set P of prime numbers. Then |a1| >
∑
k>2 |ak|.

Indeed, for (1), we assume, without loss of generality, a1 > 0. Then,
Re(Uf(ζ)) = a1 + Re

(∑
n>2 anζ

α(n)) > 0 for every ζ ∈ D∞2 , and The-
orem 3.3(2) implies the cyclicity of f . Conversely, if f ∈ H2

0 is cyclic,
then Uf(ζ) 6= 0 for ζ ∈ D∞2 . If we suppose |a1| <

∑
n>2 |an|, then

there exists z = (z1, . . . , zN , 0, 0, . . . ) with |zi| < 1 such that Uf(z) =
a1 +

∑N
k=1 apkzk = 0. Contradiction. �

4.1. Some cyclic polynomials and functions. (1) Let

f = a1z + a2z
2 + a3z

3

be a polynomial, deg(f) 6 3. Then, by Corollary 4.1, f is (Tn)-cyclic if
and only if |a1| > |a2|+ |a3|. �

(2) Let
f = a1z + a2z

2 + a3z
3 + a4z

4
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be a polynomial, deg(f) 6 4. Then, by Theorem 3.4(1), f is (Tn)-cyclic if
and only if Uf(ζ) 6= 0 for ζ ∈ D2, where

Uf(ζ1, ζ2) = a1 + a2ζ1 + a4ζ
2
1 + a3ζ2 = q(ζ1) + a3ζ2.

So, a necessary and sufficient condition for cyclicity is

q(D) ∩ a3D = ∅

Condition |a1| > |a2|+ |a3|+ |a4| is, of course, sufficient but not necessary.
For example, for a3 = 0, necessary and sufficient condition for cyclicity

is q(z) 6= 0 for |z| < 1 what is the case for every q(z) = (z − z1)(z − z2)
with |zj | > 1; and if |z1z2| < 1 + |z1 + z2|(as for z1 = z2 = t, 1 6 t 6 2),
we get a cyclic polynomial with |a1| < |a2|+ |a3|+ |a4|.

For a3 6= 0, the condition of cyclicity min|z|61 |q(z)| > |a3| is also com-
patible with |a1| < |a2|+ |a3|+ |a4|. �

(3) For a polynomial f of deg(f) 6 5, the condition Uf(ζ) 6= 0 for ζ ∈ D3

is also transparent:
q(D) ∩ (|a3|+ |a5|)D = ∅,

where f = a1z+ a2z
2 + a3z

3 + a4z
4 + a5z

5 and q(ζ) = a1 + a2ζ + a4ζ
2. �

For a generic polynomial f of deg(f) > 6, it is hardly possible to ex-
press Uf 6= 0 in reasonable terms explicitely depending on coefficients. We
consider, however, a special case.

(4) Let f = z(λ− z)N where |λ| > 1 and N ∈ N. We show that

N <
log 2

log(1 + 1
|λ| )
⇒ f is cyclic in H2

0 ;

N > |λ| ⇒ f is NOT cyclic in H2
0 .

If N > 3, the case N = |λ| is also non-cyclic.
Indeed, since f = z

∑N
n=0(Nn )λN−n(−z)n we have

Uf(ζ) = λN +
N∑
n=1

(
N

n

)
λN−n(−1)nζα(n+1).

In particular, for ζ ∈ D∞2 (of course, for the notation simplicity, we
assume that λ is real and λ > 1),

|Uf(ζ)| > λN −
N∑
n=1

(
N

n

)
λN−n = 2λN −

N∑
n=0

(
N

n

)
λN−n = 2λN − (λ+1)N .

Therefore, if 2λN > (λ+ 1)N , i.e. if

N <
log 2

log(1 + 1
λ )
,
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then f is a cyclic function. On the other hand, Uf(0) = λN , and assuming
s ∈ N such that 2s 6 N + 1 < 2s+1, we obtain for 0 < t < 1,

Uf(t, 0, 0, . . . ) = λN +
s∑

k=1

(
N

2k − 1

)
λN−2k+1(−1)2k−1tk < λN −NλN−1ts.

Therefore, if N > λ, there exists 0 < t0 < 1 making Uf negative
Uf(t0, 0, . . . ) < 0, and by continuity, we find t, 0 < t < t0 such that
Uf(t, 0, . . . ) = 0. Hence, f is not cyclic in H2

0 . In fact, taking into account
the term k = 2 of the expansion for Uf(t, 0, . . . ) (assuming N > 3), we
obtain the same conclusion also for λ = N . �
In particular, for λ = 3, the function f is cyclic iff N 6 2, for λ = 4 —

iff N 6 3, for λ = 5 — cyclic for N 6 3 but non-cyclic for N > 5, etc.
(5) Cyclic functions depending on a combination of variables.

Let ϕ ∈ H2(D), α ∈ Z+(∞) and F (ζ) = ϕ(ζα) for ζ ∈ D∞2 . Then, F
is cyclic in H2(D∞2 ) if and only if ϕ is an outer function. In particular,
whatever is n ∈ N \ {1}, a function f =

∑
k>0 akz

nk is (Tn) cyclic if and
only if ϕ =

∑
k>0 akz

k is outer.

Example. — Polynomials

p1 = a0z + a1z
2 + a2z

4 + a3z
8 + a4z

16

and
p2 = a0z + a1z

12 + a2z
144 + a3z

1728 + a4z
20736

are (Tn)-cyclic or not simultaneously (and if and only if ϕ =
∑4
k=0 akz

k is
outer, i.e. all roots are in C \ D), but — in general — this is not the case
for

p3 = a0z + a1z
2 + a2z

3 + a3z
4 + a4z

5.

Indeed, the claim immediately follows from Theorem 3.4(3) and property
(11), Section 2. For ϕ = (z − 1)2, we have p3 = z(z − 1)2, and it is easy
to see that Up3 vanish’ on D2(so, p3 is not (Tn)-cyclic, whereas p1 and p2
are). �
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