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WELL-POSEDNESS FOR DENSITY-DEPENDENT
INCOMPRESSIBLE FLUIDS
WITH NON-LIPSCHITZ VELOCITY

by Boris HASPOT

ABSTRACT. — This paper is dedicated to the study of the initial value problem
for density dependent incompressible viscous fluids in RN with N > 2. We address
the question of well-posedness for large and small initial data having critical Besov
regularity in functional spaces as close as possible to the ones imposed in the
incompressible Navier Stokes system by Cannone, Meyer and Planchon (where ug €

Ny
B, with1<p < +400,1 <7 < +400). This improves the classical analysis where
N

ug is considered belonging in B ! such that the velocity u remains Lipschitz.
Our result relies on a new a priori estimate for transport equation introduce by
Bahouri, Chemin and Danchin when the velocity u is not necessary Lipschitz but
only log Lipschitz. Furthermore it gives a first kind of answer to the problem of
self-similar solution.

RESUME. — Ce papier est dédié a I’étude de Cauchy pour le systéme de Navier-
Stokes non homogene dans R avec N > 2. Nous adressons la question du caractére
bien posé pour des données initiales grandes et petites ayant une régularité critique
dans des espaces de Besov aussi proches que possible de ceux utilisés par Cannone,

N_q
Meyer et Planchon pour Navier Stokes incompressible (ott ug € B, avec 1 <

p < +00,1 < r < +00). Cela améliore analyse classique ol la vitesse initiale ug est
N

supposée appartenir a Bp’jl ! de telle maniére que la vitesse u reste Lipschitz. Notre
résultat utilise de nouvelles estimées pour ’équation de transport introduites par
Bahouri, Chemin et Danchin lorsque la vitesse u n’est pas nécessairement Lipschitz
mais seulement log Lipschitz. De plus, cela donne une premiére réponse de résultat
au probléme des solutions autosimilaires.

Keywords: Navier-Stokes equations Cauchy problem, Littlewood-Paley theory, losing
estimates for the transport equation.
Math. classification: 76D03, 76D05, 35S50.



1718 Boris HASPOT

1. Introduction

In this paper, we are concerned with the following model of incompress-
ible viscous fluid with variable density:

Op + div(pu) =0,

O(pu) + div(pu ® u) — div(2u(p) Du) + VIL = pf,

divu =0,

(p7 u)/t:O = (pOa UO).

Here u = u(t,z) € RY stands for the velocity field and p = p(t,z) € RF
is the density, Du = %(Vu +! Vu) is the strain tensor. We denote by u
the viscosity coefficients of the fluid, which is assumed to satisfy p > 0.
The term VII (namely the gradient of the pressure) may be seen as the

Lagrange multiplier associated to the constraint divu = 0. We supplement
the problem with initial condition (pg, ug) and an outer force f. Throughout

(1.1)

the paper, we assume that the space variable 2 € RY or to the periodic
box TY with period a;, in the i-th direction. We restrict ourselves to the
case N > 2

The existence of global weak solution for (1.1) under the assumption that
po € L°° is nonnegative and that |/pouy € L? has been studied by different
authors. It is based on the energy equality:
(1.2)

IVpult ||L2+/ I/ p(p) Du(r IIdeT:II\//Tow\linr/?(pJ‘*U)(T,x)defE-

Using (1.2) and the fact that the density is advected by the flow of u so that
the LP norms of p are (at least formally) conserved during the evolution,
it is then possible to use compactness methods for proving the existence
of global weak solution. This approach has been introduced by J. Leray in
1934 in the homogeneous case (i.e., p = 1) and no external force. For the
non-homogeneous equation (1.1), we refer to [3] and to [25] for an overview
of results on weak solution. Some recent improvements have been obtained
by B. Desjardins in [16]. In the sequel we shall only consider the case of
constant viscosity coefficients.

The question of unique resolvability for (1.1) has been first addressed
by O. Ladyzhenskaya and V. Solonnikov in the late seventies (see [23]).
The authors consider system (1.1) in a bounded domain © with homo-
geneous Dirichlet boundary conditions for w. Under the assumption that
up € W2 (¢ > N) is divergence-free and vanishes on 9Q and that
po € C*(Q) is bounded away from zero, the results are the following:

ANNALES DE L’INSTITUT FOURIER



WELL-POSEDNESS FOR DENSITY-DEPENDENT INCOMPRESSIBLE 1719

e global well-posedness in dimension N = 2,
e local well-posedness in dimension N = 3. If in addition ug is small
2
in W2~ 2 then global well-posedness holds true.

Let us mention by passing that for the dimension N = 2, O. Ladyzhenskaya
and V. Solonnikov use a quasi-conservation law for the H' norm of the
velocity and get global H' solutions. We would like also to point out that
the problem of the existence of global strong solution in dimension N = 2
is open when the viscosity coefficients are variable.

The case of unbounded domains has been investigate by S. Itoh and
A. Tani in [21]. In this framework, they show that the system (1.1) is locally
well-posed. In the present paper, we aim at proving similar qualitative
results in the whole space RY or in the torus TY under weaker regularity
assumptions.

Guided in our approach by numerous works dedicated to the incompress-
ible Navier-Stokes equation (see z.g [26]):

{Btv+v~Vv—uAv+VH:0,

(NS) .
dive =0,

we aim at solving in the case where the initial data (po, uo, f) have critical

regularity for the scaling of the equations and in particular when the ini-

tial velocity belongs to the same Besov spaces than Cannone, Meyer and

Planchon in [6] for the incompressible Navier-Stokes system. It means that

we would like to obtain strong solutions results when ug is in Bﬁr_l with
1 <p< 400, 1 <r < +4oo (we refer to the Section 2 for the definition
of Besov spaces). By critical, we mean that we want to solve the system
in functional spaces with norm is invariant by the changes of scales which
leaves (1.1) invariant. That approach has been initiated by H. Fujita and
T. Kato in [17]. In the case of incompressible fluids, it is easy to see that
the transformations:

v(t,z) — (%t 1z), VIER

have that property.
For density-dependent incompressible fluids, one can check that the ap-
propriate transformations are:

13) (po(x),uo(x)) — (po(lx), lug(lz)), VIeR.
' (p(t, ), u(t, x), T(t, ) — (p(I%t, Lx), lu(Pt, Lx), PTI(1%t, L2)).
The use of critical functional frameworks led to several new well-posedness

results for incompressible fluids (see [6], [22]). In the case of the density
dependent incompressible fluids we would like to cite recent improvements

TOME 62 (2012), FASCICULE 5



1720 Boris HASPOT

by R. Danchin in [10], [9], [13] , H. Abidi in [1] (when the viscosity co-
efficients are variable) and H. Abidi, M. Paicu in [2]. All these works
deal with the existence of strong solutions in critical spaces for the scal-
ing of the equations. More precisely R. Danchin shows the existence of
strong solution in finite time in [10], [9], [13] when the initial data check
(5" — Louo) € (BE, N L®) x B or (py' — 1,up) € By x B, with
1 < p < N. In addition R. Danchin needs a condition of smallness on the
initial density, it means that ||py " — 1||B x s assumed small. More recently

p,1

H. Abidi and M. Paicu in [2] improved these results by working with initial

data in Besov space with different Lebesgue index for the velocity and the

density (we would like to point out that this idea has also been used in

the context of compressible Navier-Stokes equations see [20]), in particu-
N

Ny
lar (pg — 1) and ug belong respectively to B‘”1 1 and B)?; with p; and po

suitably chosen. This enables them to get strong solution for initial data
N

Ug in Bg‘”l_l with 1 < po < 2N which extends the results of R. Danchin.
In the same way, they obtain in the same functional spaces the existence of
global strong solution with small initial data. All these results use in a cru-
cial way the fact that the solution are Lipschitz. In particular, it explains
the choice of the third index r = 1 for these different Besov space, indeed
it entailsNa Lipschitz control on the velocity u, more precisely Vu belongs
in LlT(Bg)l) which is embedded in L1.(L°°). This control is imperative in
these works in order to estimate via the transport equation the density.
However the scaling of (1.3) suggests to choose initial data (pg,ug) in

B;lr’ X B;’j, with (p1,p2) € [1,400)2 and (r,7') € [1,400]2. Indeed
it seems that it is not mandatory just by some scaling considerations to
impose a condition of type r, 7 =1 as in the works of H. Abidi, R. Danchin
and M. Paicu. The goal of this article is to reach the critical case with a
general third index for the Besov spaces r and . More precisely in the
sequel we will restrict our study to the case where the initial data (pg,uo)

and external force f are such that, for some positive constant p > 0:

N o4e N ~ N _q
(b0 —5) € Bjiioc NL™, up € B2, and f e L (R*,€ Bz, ).

with 7 € [1,+00], € > 0 and with p1, ps suitably chosen (for a definition of
L' we refer to the Section 2).
In this article we extend the result of H. Abidi, R. Danchin and M. Paicu
N
by working with initial data in Bp2, with the third index r in[1, +oc]. In
particular we generalize to the case of the Navier-Stokes incompressible

ANNALES DE L’INSTITUT FOURIER



WELL-POSEDNESS FOR DENSITY-DEPENDENT INCOMPRESSIBLE 1721

dependent density the well-known result of existence of strong solution of
Cannone-Meyer-Planchon for incompressible Navier-Stokes equations (see

[6]) when wug is assumed belonging inBﬁfl with 1 < p < 400, 1 <7 <
+00). To do this, we need new estimates in order to control the density
via the transport equation when the velocity is not Lipschitz. We then use
some new a priori estimates on the transport equation when the velocity is
only assumed log Lipschitz. One of the main difficulty is to deal in this case
with the loss of regularity on the density, that is why to compensate this
loss we shall work with a bit more regularity on the density pg. The crucial
point consists in obtaining sufficient regularity on the density inasmuch as
this density remains in a good multiplier space for the velocity (indeed we
recall that the momentum equation is close from a Stoke equation with
variable coefficient in the density).

Furthermore we also extends the results of H. Abidi, R. Danchin and
M. Paicu inasmuch as we do not need to assume any condition of smallness
on the initial density. In [10], [9], [13], [1] and [2] , it is mandatory to

N

make the additional assumption that p — p is small in Bgr To do this,
we follow an idea of R. Danchin in [14] used for the case of compressible
Navier-Stokes equations, it consists in handling the elliptic operator in the
momentum equation of (1.1) as a constant coefficient second order operator
plus a perturbation introduced by p—p which, may be treated as a harmless
source term. It is precisely at this point of th(]ev proof that we need to control
the vacuum (it means %) in the space L (BE 5o NL*>) (which is embedded

N

N
in the multiplier space M (Bp’fr ) with p; and p suitably chosen) in order
to obtain regularizing effects on the velocity u. We recall that our choice

N
Xy
of (pp—1) € B;,ﬂ{oo8 (with € > 0) allows to compensate the eventual loss of
regularity on the density when the velocity is only assumed log Lipschitz.
N

Indeed by this way we are able to conserve the L (BE, o N L°°) of the
density.
As long as p does not vanish, the equations for (a = p~! — 1,u) read:

owa+u-Va=0,
Ou+u-Vu+ (1+a)(VII — pAu) = f,
divu =0,

(a, U)/t:o = (ag, uo).

(1.4)

TOME 62 (2012), FASCICULE 5



1722 Boris HASPOT

One can now state our main result which generalizes the work of Cannone,
Meyer, Planchon (see [6]) on the existence of strong solution for Navier-
Stokes equations to the density-dependent incompressible Navier-Stokes
equations.

THEOREM 1.1. — Let 1 <r <oo, 1 <p; <o00,1 <py<ooande>0

such that:

N N N N
—4+e< —+1 and ——-1< —.
P D2 D2 p1

N _1q ~ N _q
Assume that ug € Bp?, with divug = 0, f € L{ (R*,Bppj,r ) and

loc

N

Xt
ap € B,fll,ooe N L%, with 14 ao bounded away from zero and it exists ¢ > 0
such that:

llao|| <ec

Bl L

If p% + p% > %, there exists a positive time T such that system (1.4) has
a solution (a,u) with 1 4+ a bounded away from zero and:

£

~ N ~ LN N\ N
ae (0,71, Bia ), we (C(10,7): B3, ) NI (0., Bz ))
~ N _q

and VII € L' (O,T, BE, )

If in addition we assume that ag € LP', it exists a constant ¢ such that if:

P P FIAIL, e <em

P27 p1,00 NLoONLEL L (Bmf )

then T = +oco. This solution is unique when % < p% + p%.
Remark 1.2. — We can observe that we need additional information in

low frequencies for getting the global existence of strong solution, indeed
we ask that ag belongs in LP'. Furthermore we are working with homoge-
neous Besov spaces which is absolutely mandatory in order to obtain global
solution. The fact that we add the condition ag € LP* is due to the different
behavior in low and high frequencies when we are dealing with estimates
on the transport equation with loss of regularity. We will give additional
details on this fact in the proof of the Theorem 1.1 (see Section 8).

Remark 1.3. — In the present paper we did not strive for unnecessary
generality which may hide the new ideas of our analysis. Hence we focused
on the case of constant viscosity coefficients. We believe that our analysis
may be generalized to the case of variable viscosity coefficients.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.4. — As in the work of H. Abidi and M. Paicu in [2], we are

N
able to get strong solution when ug € BE . ! with 1 < ps < 2N, it improves
the result of R. Danchin in [10, 9] and [13].

Moreover we get weak solution with initial data very close from (ag, ugp) €
By'S, x B, and (ag, ug) € BS, o, X BY .. It means that in the first case
we are not far away from the results of Koch-Tataru in [22] when the
initial data for the velocity ug is belonging in BMO™!; in the second case
the initial density ag is close from being only in L°°, which is of great
interest for the system multifluids. We refer also to the interesting work of

P. Germain in [18].

Remark 1.5. — It would be possible to improve in dimension N = 2
the existence of global strong solution by working close to a solution wu,
of incompressible Navier-Stokes equations when the initial data is ug. In-
deed in our case for simplicity we are working close to a solution uy, of the
heat equation (see the proof for more details). Indeed we would be able
in this case to obtain global strong solution in dimension N = 2 without
assuming smallness on the initial velocity. We could proceed similarly in
order to obtain global strong solution in dimension N = 3 with a family
of large initial velocity for the critical Besov norms (however there would
be a condition of smallness in low frequencies). We refer to the works of
J.-Y. Chemin, I. Gallagher and M. Paicu (see [7]) in the case of incompress-
ible Navier-Stokes equations. The idea of the proof consists in choosing ini-

~ N _q
tial data such that uz, - Vauy, is small in L'(B;?, ) in order to "cancel out"
in some sense the nonlinearity which requires in general smallness condition
on the initial data. Here uj, is solution of the Stokes equateion.

Remark 1.6. — 1In the previous theorem, we need a condition of small-
ness, because when ps # 2, we have extra term in our Proposition 4.1 which
requires a condition of smallness on a.

In the following theorem, we improve the previous result in the specific
case where po = 2. In this case we don’t need to impose condition of
smallness on the initial data.

THEOREM 1.7. — Let 1 <r < oo, 1 < p; < oo and € > 0 such that:

N N N N
—+e< —+1 and — <1+ —.
P1 2 2 P1
N_ ~ N_
Assume that ug € By, ' with divug = 0, f €L, (R*,B;’r 1) and ag €
No4e
Pl

Bploo NL*™, with 1+ ag bounded away from zero. There exists a positive

TOME 62 (2012), FASCICULE 5



1724 Boris HASPOT

time T such that system (1.4) has a solution (a,u) with 1 + a bounded
away from zero and:

£ ~ N _ ~ N N
aecQOT]&g+),ue(CQmImBﬁf)mL%Ongﬁﬁ)
~ N_q
deHEL(QﬂBﬁ )
If in addition we assume that ag € LP', it exists a constant ¢ such that if:

ool s ool e AL e

2,r p1,00 1 p2,T )

then T' = +oo. This solution is unique when % < p% + %

In the following theorems we want to deal with the case r = 400, we
have to treat the case of a linear loss of regularity on the density P which
~ i

depends on the behavior of the velocity u when u belongs in L} (Bppoo )

THEOREM 1.8. — Let 1 < p; < 00, 1 < ps < 00, and € > 0 such that:

N N N N
—4+e< —+4+1 and — <1+ —.
b1 D2 D2 P1

| ~ |
Assume that ug € By with divug = 0, f € L (R",Bj2o ) and

N
ap € 35117005 N L, with 1+ ag bounded away from zero and it exists ¢ > 0
such that:
laol » <
oo NL>®

If + 5, > W there exists a positive time T' such that system (1.4) has
a solutzon (a u) with 1 4+ a bounded away from zero and:

aEC([O T), B”(T)> u € (C’([O TY; B;joo ﬁLl(O T, sz’Jr ))

P1,00
~ N _q
wdvneL%mﬂBﬁm)

with: N
o(T) = — +¢e— Alul|
b1

N
(5222
for any A > 0 depending only on N, p; and po. If in addition we assume
that ag € LP, it exists a constant ¢ such that if:

uol| x .y +[laol| ~ Al a0 <cp
looll g5 s+ llooll g ””<pm3\’
then T' = +o00. This solution is unique When —i——

ANNALES DE L’INSTITUT FOURIER
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Remark 1.9. — We would like to point out that in the previous theorem
we can choose initial velocity such that ug is homogeneous of degree —1.
Indeed an important open problem concerns the existence of self similar
solutions, it means solutions such that pg is homogeneous of degree 0 and
up homogeneous of degree —1. Via the scaling of the equation, if we have
existence of strong solutions for such initial data, we have then for all [ € R:

(p(t,x),u(t,x),T(t,x)) = (p(I*t, lx), lu(1?t, 1x), I*TI(1%t, Ix)).

The existence of such solution for incompressible Navier-Stokes equation
with dependent density is actually open (indeed the main difficulty consists
in dealing with “the a priori loss” of regularity on the initial density while
we assumed the initial density critical). For the classical incompressible
Navier-Stokes equations we refer to the book of Lemarié-Rieusset in [24]
and the works of Cannone, Meyer and Planchon [6].

However our result gives a first kind of answer to this problem. Indeed we
are able to choose initial homogeneous velocity of degree —1 (for example
Uy = ﬁ), more precisely we obtain a solution u which can be splitter in
a self-semilar solution plus a small perturbative term. Indeed following the
proof of Theorem 1.8, the solution is such that:

U =urp +u,

with uy, solution of the Stokes equation with initial data wug. uy is then
self-similar and u has to be considered as a smallperturbation. It means
that the solution u remains close to a self similar solution along the time.

In the following theorem, we generalize the previous result with large
initial data for the initial density when ps = 2.

THEOREM 1.10. — Let 1 < p; < oo and € > 0 such that:

N N N N
—+e< —+1 and — <1+ —.
D1 2 2 D1

N_ ~ N_
Assume that ug € BQfool with divug = 0, f € L. (R‘*‘,Bﬁwl) and ag €
N
Ny
Bﬁf,ooe N L*>, with 14 ag bounded away from zero. There exists a positive

time T such that system (1.4) has a solution (a,u) with 1 + a bounded
away from zero and:

we (0.1 55m), we (C(0.m:BE) 0B (0.1 ))

P1,00 2,00

and VIl € L'(0,T, Bfogl),

TOME 62 (2012), FASCICULE 5



1726 Boris HASPOT

with:
N
o(T)=—4¢e—Aull-
D1 L3

(s30)
for A > 0 depending only on N and p;. If in addition we assume that
ag € LP' | it exists a constant ¢ such that if:

Ug|l . x_; + ||ag|| ~x
ol g+ ool s

~ < cu,
o + ”f”Ll (Bﬁ—l) X CU

N[

then T = +oo. This solution is unique when % < +

1
P1

The key of the Theorems 1.1, 1.7, 1.8 and 1.10 is based on new estimates
for transport equation on the velocity u when it is is not considered Lips-
chitz. In this case we have to pay a loss of regularity on the density p. The
basic idea to deal with this loss of regularity is to add a little bit regularity
on the initial density ag in order to conserve a on a small interval (0,7T)

N
in éT (BE, +OO) N L which has good properties of multiplier for the term
Au.

Our paper is structured as follows. In the Section 2, we give a few notation
and briefly introduce the basic Fourier analysis techniques needed to prove
our result. Section 4 and 5 are devoted to the proof of key estimates for the
linearized system (1.4) in particular the elliptic operator of the momentum
equation with variable coefficients and the transport equation when the
velocity is not assumed Lipschitz. In Section 6, we prove the existence of
solutions for Theorem 1.1 whereas Section 7 is devoted to the proof of
uniqueness. In Section 8, we prove the part of Theorem 1.1 concerning
the global existence and the Theorem 1.7. Finally in Section 9, we briefly
show how to prove Theorem 1.8 and 1.10. Elliptic and technical estimates
commutator are postponed in an appendix.

2. Littlewood-Paley theory and Besov spaces

Throughout the paper, C' stands for a constant whose exact meaning
depends on the context. The notation A < B means that A < CB. For all
Banach space X, we denote by C([0,T], X) the set of continuous functions
on [0,7] with values in X. For p € [1,+0], the notation L?(0,T,X) or
L%.(X) stands for the set of measurable functions on (0,7) with values in
X such that t — || f(¢)||x belongs to L?(0,T).

ANNALES DE L’INSTITUT FOURIER
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2.1. Littlewood-Paley decomposition

Littlewood-Paley decomposition corresponds to a dyadic decomposition
of the space in Fourier variables. Let « > 1 and (i, x) be a couple of smooth
functions valued in [0, 1], such that ¢ is supported in the shell supported

in {¢£ € RN /a™! < |¢] < 2a}, x is supported in the ball {¢ € RV /|¢| < a}
such that:

VEERN, x(©+ ) w27 =1.
IEN
Denoting h = F~ !¢, we then define the dyadic blocks by:

Alu:O iflg—
A_ju=x(D)u =hxu with h=Fly,

A= (27! D)u = 2”\[/ h(2')u(z — y)dy with h = F 1y, if >0
RN
Sju = Z Agpu.
k<i—1

Formally, one can write that: v = ), ., Agu. This decomposition is called
nonhomogeneous Littlewood-Paley decomposition.

2.2. Nonhomogeneous Besov spaces and first properties

DEFINITION 2.1. — For s € R, p € [1,+], ¢ € [1,4+c0], and u €
S (RN) we set:

1

s, = (3@ I Awllzn))"

leZ
The Besov space B, , is the set of temperate distribution u such that
B:, < +00.
Remark 2.2. — The above definition is a natural generalization of the

nonhomogeneous Sobolev and Hélder spaces: one can show that B3, . is
the nonhomogeneous Hélder space C° and that B3 , is the nonhomogeneous
space H?.

PROPOSITION 2.3. — The following properties holds:
(1) there exists a constant universal C' such that:
C M ullz;, <174l
(2) If py < p and ry < ro then B | < B;w]«\,_i(l/pl 1/p2),

P1,71

pot < Clulls;,.

TOME 62 (2012), FASCICULE 5
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(3) (le BSQ) Bas1+(1 9)52

p,r Ppir)or p,r

Let now recall a few product laws in Besov spaces coming directly from
the paradifferential calculus of J-M. Bony (see [5]) and rewrite on a gener-
alized form in [2] by H. Abidi and M. Paicu (in this article the results are
written in the case of homogeneous sapces but it can easily generalize for
the nonhomogeneous Besov spaces).

PRrOPOSITION 2.4. — We have the following laws of product:
e Forall s € R, (p,7) € [1,+00]? we have:

(2.1) HUUH~; S C(llullzesllvlzs . + llvllzes llu] B;,T)~
o Let (p,p1,p2,7, A1, A2) € [1, +00)? bllCh that: = < =— —|— —, p1 < Ao,
< A, 1% < p% + % and % < 1,12 2. We have then the following
inequalities:
jf51—|-52—|—Ninf( 1—p—1——)>0 sl—i-/\ <fand52—|— <7
then:
(22) ||U’U| s1+s9—N Pl - U‘ B;;oo?
p,r
when 51+>\ﬂ = ﬂ (resp. SQJF% = P2 S}WHU”B%,M
(resp. [olpzz ) by ullper vl Bt o) if 51+
%:p—landsQ—i—)\ —p% Wetaker—l
N N .
If81+$2—0 516(71—172?1—72]ad 2§1then.
(2.3) Juoll wepenop S Ty ol

poo

If|s| < 3 N forp > 2andfﬂ,<s<ﬂe]se, we have:

(2.4)

< Cllul

B; IIUH
mem

Remark 2.5. — In the sequel p will be either p; or py and in this case

1 1

$ = =55 if P <pa,resp § = - — - if po < i

COROLLARY 2.6. — Let r € [1,4+00], 1 < p < p1 < 400 and s such
that:
N
.Se(—pflpfl)lf +* 17
el 1
ese(—-+N(; +——1) p—l) ifl4+ L >1,
then we have if u € B, ,. andveB;f,ooﬂLoo:

< Clul

.
B, |lvll
P1,00
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The study of non stationary PDE’s requires space of type L*(0,T,X)
for appropriate Banach spaces X. In our case, we expect X to be a Besov
space, so that it is natural to localize the equation through Littlewood-
Payley decomposition. But, in doing so, we obtain bounds in spaces which
are not type LP(0,T, X) (except if r = p). We are now going to define the
spaces of Chemin-Lerner in which we will work, which are a refinement of
the spaces Lf.(B; ).

DEFINITION 2.7. — Let p € [1,4+00], T € [1,+00] and s; € R. We set:
1
lullzy gy = (D227 N imy)
e ez
We then define the space E%(B;}T) as the set of temperate distribution u
over (0,T) x RN such that S ((0,T) x RY) [ullz, (B < 00
T p,T

We set Cr(B,1.) = LF¥(B,4) NC([0,T], ByL.).

Remark 2.8. — Let us emphasize that, according to Minkowski inequal-
ity, we have:

lellzy gy < Wellugapny 1 720, Nl oon ) 2 g s,y i 7 <.

Remark 2.9. — It is easy to generalize Proposition 2.4, to EPT(B;}T)
spaces. The indices s1, p, 7 behave just as in the stationary case whereas
the time exponent p behaves according to Holder inequality.

Here we recall a result of interpolation which explains the link of the
space B, ; with the space B, ., see [4].

p,007

PROPOSITION 2.10. — There exists a constant C' such that for all s € R,
e>0and 1< p<—+oo,

Jul Lte ”“'Z;w;,ti))

~ < CO—||ul|~
oy SO ”“'L?(Bz,od(l“og Jull

DEFINITION 2.11. — Let T be an increasing function on [1,4o00[. We
denote by Br(RY) the set of bounded real valued functions u over RN

such that:
[V Sjull =

I‘(2j) < +00.

lullBr = [lul[e + sup
j=0

We give here a proposition concerning these spaces showed by
J-Y. Chemin (it can be found in [4]).
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~ N
PROPOSITION 2.12. — Let ¢ > 0 and u € LlT(Bp‘frH) then we have
u € Ly (Br(RN)) with T'(t) = (—logt)'*~+ for 0 <t < 1.

3. Homogeneous Besov spaces

Littlewood-Paley decomposition corresponds to a dyadic decomposition
of the space in Fourier variables. We have then:
Yo7 =11if ££0.
lez
Denoting h = F ¢, we then define the dyadic blocks for [ € Z by:

A= (27 'Dyu = 2lN/ h(2')u(z — y)dy and Sju = Z Agu.
RN k<i—1

Formally, one can write that:
u = Z Aku
keZ

This decomposition is called homogeneous Littlewood-Paley decomposi-
tion. Let us observe that the above formal equality does not hold in S (RY)
for two reasons:

(1) The right hand-side does not necessarily converge in S (RY).

(2) Even if it does, the equality is not always true in S’ (RN) (consider

the case of the polynomials).

This motivates the following definition:

DEeFINITION 3.1. — We note by S;L the space of temperate distributions
u such that:
lim Sju:O in S
j——o00
DEFINITION 3.2. — For s € R, p € [1,400], ¢ € [1,400], and u €
S (RN) we set:

1

g, = (3@ A7)

1€z
The Besov space B; o 1s the set of temperate distribution u € S, such that
lullg;,, < +oo.

The properties of homogeneous Besov spaces are essentially the same
than in the case of the nonhomogeneous Besov spaces. For more details we
refer to [4].
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4. Estimates for parabolic system with variable coefficients

In this section, the following linearization of the momentum equation is
studied:

0w+ b(VIL — pAu) = f + g,
(4.1) divu = 0,
U/jt=0 = Uo

where b, f, g and ug are given. Above u is the unknown function. We assume
that ug € Bj, and f € L'(0,T;B; ), that b is bounded by below by a

p,T
N
positive constant b and that a = b — 1 belongs to L>® (07 T; BE;Q) N L.
In the present subsection, we aim at proving a priori estimates for (4.1) in
the framework of nonhomogeneous Besov spaces. Before stating our results
let us introduce the following notation:

(4.2) Ar =1 +@*1Hv1)||zw Ny With a>0.

(Br )

PROPOSITION 4.1. — Let v = by and (p,py) € [1, +00].

o If py >pweassumethats€(—pﬂl,pﬂl) if%—&-p%glandse

N 1,1 NY ¢l 4 1
(_PT+N(5+PT_1)’H) 1f5+a>1.
e [f p1 < p then we suppose that s € (f %,%) if p>2ands €
N N\ :
If p # 2 we need to assume than there exists ¢ > 0 such that:
||VG/HZOO(B%+G—1) < c.

p1,°

Let m € Z be such that b,, = 1+ S,,a satisfies:

4.3 inf b (t, ) 2
( ) (t,z)e[lg}T)X]RN ( x)

N IS

There exist three constants ¢, C' and k (with ¢, C, depending only on N
and on s, and k universal) such that if in addition we have:

(4.4) la — Smal_ & <cE
Lo (0,T;BpL oo )L !
then setting:
t
Zm®) =222yl [ ol dr,
0 BpLooNL>
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Let & > 0 checking o < min (1, i) We have for all t € [0,T] and

S .
R = !
«

(4.5)

ol ol gy < <P (ol + A5 (1P,

L 1 v(p - )) )
FF PGl ooy + 07 (55 ) Al ) )

Moreover we have VII = VII; + VII, with:
(4.6)

bl VIL | < AFPSIIz

L%.(Bgr Ll Bs )7

bIVIL|i7, . ) < A5 (l1Qgl

I (577 7)

+ pllall

N @
iz (s2rll)

||Au||~ (BS 2+%))~

P,

N
Remark 4.2. — Let us stress the fact that if a € Z“((O,T) X BEOO)
then Assumption (4.3) and (4.4) are satisfied for m large enough. This
will be used in the proof of Theorem 1.7 and 1.10. Indeed, according to
Bernstein inequality for m large enough 9 (4.3) and (4.4) are satisfied.

Proving Proposition 4.1 in the case b = cste is not too involved as one
can easily get rid of the pressure by taking advantage of the Leray projector
P on solenoidal vector-fields. Then system (4.1) reduce to a linear DO
which may be easily solved by mean of energy estimates. In our case where
b is not assumed to be a constant, getting rid of the pressure will still be
an appropriate strategy. This may be achieved by applying the operator
div to (4.1). Indeed by doing so, we see that the pressure solves the elliptic
equation:

(4.7) div(bVII) = div F

with F' = f+ g+ paAu. Therefore denoting by H;, the linear operator F' —
VII, system (4.1) reduces to a linear ODE in Banach spaces. Actually, due
to the consideration of two forcing terms f and g with different regularities,
the pressure has to be split into two parts, namely II = II; + Il with:

(4.8) div(bIl,) = div f

(4.9) div(bIly) = divH and H = g+ paAu.
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Proof of Proposition 4.1. — Let us first rewrite (4.1) as follows:

Oy — by ppAu + bVIL = f+ g + By,
(4.10) divu =0,

Ut=0 = UQ

with E,, = pAu (Id — S,,)a and b, = 1 + S,,a. Note that by using Corol-
lary 2.6 and as —pﬂl <s< pﬂl for p > 2 or g <s< pﬂl else, the error term
1

FE,, may be estimated by:

s .
Bir

Py N

(4.11) [Emlls;, S lla—Small x |1 D?ul
BPl _NL>

P1,00

Now applying operator A, and next operator of free divergence yield P to
momentum equation (4.10) yields:

d -
(412) 2y = pdiv(bnVug) = Pfy + Py + AP Ey + Ry = AgP(aVID),

where we denote by uq, = Agu and with:

By = i+ 2
where:
]5;; = p(PA(bpAu) — P div(by, Vug)),
R2 = (P div(byn Vug) — div(bm, Vug)) = —pQ div(SmaVuy)
where Q is the gradient yield projector. a

Case p # 2

Next multiplying both sides by |u,|P~2u,, and integrating by parts in
the second, third and last term in the left-hand side, we get by using Bony
decomposition (for the notation see [4]):

(4.13)

1d _ _
- lluallzs +/~L/ bin | Vutg|?|uq|” 2d$+#/ b g [P~ |V |uf? P dz
p t RN RN

< gz (1P fall e + 1Pgqllze + I Rqllze + | Ag (Twall)l| o
+ 29| Ag(TuID) | 2o + 8 (Tona)llze + IPAGEn] 0.
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Indeed we have as divu = 0 and by using Bony’s decomposition and by
performing an integration by parts:

[ AaVIDlua 2y = [ Ay (Tena)lugugds
RN RN

7/ Aq(TVQH)|uq\p*2uqdac7/ A (T,I0) div(|ug [P~y )da.
RN RN
Next we have:

V(|“q|p_2) “ug = (p— 2)|uq|p_4 Z uf;aiuf;ué,
ik

and by Holder’s and Berstein’s inequalities:
_ -1
IV (lugP72) - ugll, 2 < Clp = 2)2 g7

Next from inequality (4.13), we get by using classical lemma on the heat
equation (see [4]):

v(p—1)
2

1d u(
el + 2% g,

< ”uqH]z;l(HPfq”Lp + ||7ng||LP + HPAqu”LP
+ 1A (Twall)| Lo + 29| Ag (T || 2o + |12 (Tona)llze + |1 Ryl zv)-

Therefore, elementary computation yield (at least formally):

v(p—1)
,%224151

K(P;l) 924y
(e T ugller) S IPSallze + IPgalle + IPAGEmllzs

F18(TvaID)|[ e + 29| Ag(TaID) [ Lr + [|Aq(Tona) | Lr + [|Bgl ze-

€

We thus have:

_zlp-D o2 t 1) ng,
lea@ler S 5 A guolzs + [ oGO
0

(1P fallLe + 1PgallLe + IPAGEm || e + [ Ag(Toall) || 1o + 29| Ag(TuIL)|| 1
+ Ay (Tona) || e + | Ryl 1o ) (7)dr,
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which leads for all ¢ > —1, after performing a time integration and using
convolution inequalities to:

(4.14)
(V(I;;l))m2if||Uq||L;ﬂ(Lp) S AguollLe + 1P fll 2y 2oy
+ [ 8¢(Tvall)|| L1 (zry + 27 Ag(TuIli)| L1 (Lry + HAQ(T’VH#)HL;(M)
+ 1 Rallcy oy + IPAGEm| 1 1oy + (u(pp;l));1
2

212 (| Ay (Twall) | 11 (1) + 270120 (Tall2) | 11 1)
+ 18¢(Tom,a)ll s ey + H’qu”L?(Lp)).

We are now inte