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INVARIANT MEROMORPHIC FUNCTIONS
ON STEIN SPACES

by Daniel GREB & Christian MIEBACH (*)

Abstract. — In this paper we develop fundamental tools and methods to
study meromorphic functions in an equivariant setup. As our main result we con-
struct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically
by complex-reductive Lie groups and their algebraic subgroups. In particular, we
show that in this setup invariant meromorphic functions separate orbits in general
position. Applications to almost homogeneous spaces and principal orbit types are
given. Furthermore, we use the main result to investigate the relation between
holomorphic and meromorphic invariants for reductive group actions. As one im-
portant step in our proof we obtain a weak equivariant analogue of Narasimhan’s
embedding theorem for Stein spaces.
Résumé. — Dans ce travail nous développons des outils et des méthodes fon-

damentaux afin d’étudier les fonctions méromorphes invariantes sur les espaces de
Stein X munis d’une action holomorphe d’un groupe complexe-réductif G. Nous
construisons des quotients à la Rosenlicht pour l’action d’un sous-groupe algébrique
de G sur X. En particulier on montre que dans cette situation les fonctions méro-
morphes invariantes sous ce sous-groupe algébrique séparent ses orbites en position
générale. Nous donnons aussi des applications concernant les espaces presque ho-
mogènes et les types d’orbite principaux. De plus, le résultat principal est utilisé
afin de clarifier la relation entre les invariants holomorphes voire méromorphes de
G. Une étape importante de notre preuve consiste à montrer un analogue faible
équivariant du théorème de Narasimhan sur les plongements propres des espaces
de Stein.

1. Introduction

One of the fundamental results relating invariant theory and the geo-
metry of algebraic group actions is Rosenlicht’s Theorem [25, Thm. 2]: for
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any action of a linear algebraic group on an algebraic variety there exists
a finite set of invariant rational functions that separate orbits in general
position. Moreover, there exists a rational quotient, i.e., a Zariski-open
invariant subset on which the action admits a geometric quotient. It is
the purpose of this paper to study meromorphic functions invariant under
holomorphic group actions and to construct quotients of Rosenlicht-type
in the analytic category.
Examples of non-algebraic holomorphic actions of C∗ on projective sur-

faces with nowhere Hausdorff orbit space show that even in the compact
analytic case an analogue of Rosenlicht’s Theorem does not hold without
further assumptions. If a complex-reductive group actsmeromorphically on
a compact Kähler space (and more generally a compact complex space in
class C ), existence of meromorphic quotients was shown by Lieberman [16]
and Fujiki [5].

As a natural starting point in the non-compact case we consider group
actions on spaces with rich function theory such as Stein spaces. Actions of
reductive groups and their subgroups on these spaces are known to possess
many features of algebraic group actions. However, while the holomorphic
invariant theory in this setup is well understood, cf. [11], invariant mero-
morphic functions until now have been less studied.

In this paper we develop fundamental tools to study meromorphic func-
tions in an equivariant setup. We use these tools to prove the following
result, which provides a natural generalisation of Rosenlicht’s Theorem to
Stein spaces with actions of complex-reductive groups.

Main Theorem. — Let H < G be an algebraic subgroup of a complex-
reductive Lie group G and let X be a Stein G-space. Then, there exist an
H-invariant Zariski-open dense subset Ω in X and a holomorphic map
p : Ω→ Q to a Stein space Q such that

(1) the map p is a geometric quotient for the H-action on Ω,
(2) the map p is universal with respect to H-stable analytic subsets of

Ω,
(3) the map p is a submersion and realises Ω as a topological fibre

bundle over Q,
(4) the map p extends to a weakly meromorphic map (in the sense of

Stoll) from X to Q,
(5) for every H-invariant meromorphic function f ∈ MX(X)H , there

exists a unique meromorphic function f̄ ∈MQ(Q) such that f |Ω =
f̄ ◦ p, i.e., the map p : Ω → Q induces an isomorphism between
MX(X)H and MQ(Q), and
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(6) the H-invariant meromorphic functions on X separate the H-orbits
in Ω.

The idea of proof is to first establish a weak equivariant analogue of
Remmert’s and Narasimhan’s embedding theorem for Stein spaces [19].
More precisely, given a G-irreducible Stein G-space we prove the existence
of a G-equivariant holomorphic map into a finite-dimensional G-represen-
tation space V that is a proper embedding when restricted to a big Zariski-
open G-invariant subset, see Proposition 5.2. Since the G-action on V is
algebraic, we may then apply Rosenlicht’s Theorem to this linear action.
Subsequently, a careful comparison of algebraic and holomorphic geometric
quotients allows us to carry over the existence of a Rosenlicht-type quotient
from V to X.

The geometric quotient constructed in this paper provides us with a new
and effective tool to investigate invariant meromorphic functions on Stein
spaces. In the following we shortly describe two typical applications of our
main result.

Given a Stein G-space we show that every invariant meromorphic func-
tion is a quotient of two invariant holomorphic functions precisely if the
generic fibre of the natural invariant-theoretic quotient π : X → X//G con-
tains a dense orbit, see Theorem 3.5. An important class of examples for
this situation consists of representation spaces of semisimple groups G.

An important fundamental result of Richardson [24] states that in every
connected Stein G-manifold there exists an open and dense subset on which
all isotropy groups are conjugate in G. Under further assumptions on the
group action we use the Main Theorem to sharpen Richardson’s result by
showing that there exists a Zariski-open subset on which the conjugacy
class of stabiliser groups is constant, see Proposition 3.11. In particular,
for every effective torus action on a Stein manifold we find a Zariski-open
subset that is a principal fibre bundle over the meromorphic quotient, cf.
Remark 3.14.
This paper is organised as follows. In Section 2 we introduce the necessary

background on actions of complex-reductive groups and on related notions
of quotient spaces. Furthermore, we shortly discuss the main technical tools
used in this paper. In Sections 3 and 4 we give applications of the Main
Theorem as well as some examples which illustrate that the result does not
hold for non-algebraic subgroups of G. In Section 5 we establish the Weak
Equivariant Embedding Theorem, before we prove the Main Theorem in
the final Sections 6 and 7.
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2. Preliminaries: Definitions and Tools

In the following, all complex spaces are assumed to be reduced and to
have countable topology. If F is a sheaf on a complex space X, and U ⊂ X
is an open subset, then F (U) denotes the set of sections of F over U . By
definition, analytic subsets of complex spaces are closed. Furthermore, an
algebraic group is by definition linear algebraic, i.e., a closed algebraic
subgroup of some GLN (C).

2.1. Actions of Lie groups

If L is a real Lie group, then a complex L-space Z is a complex space with
a real-analytic action α : L × Z → Z such that all the maps αg : Z → Z,
z 7→ α(g, z) =: g • z are holomorphic. If L is a complex Lie group, a
holomorphic L-space Z is a complex L-space such that the action map
α : L × Z → Z is holomorphic. If X is at the same time a Stein space
and a holomorphic L-space, we shortly say that X is a Stein L-space. A
complex L-space is called L-irreducible if L acts transitively on the set of
irreducible components of X. Note that in this case X is automatically
pure-dimensional. If the set X/L of L-orbits can be endowed with the
structure of a complex space such that the quotient map p : X → X/L is
holomorphic, then X is L-irreducible if and only if X/L is irreducible. In
particular, under this condition MX/L(X/L) and MX(X)L are fields.

2.2. Geometric quotients

One of the main tasks in the proof of the Main Theorem is the construc-
tion of a geometric quotient for actions of complex Lie groups on complex
spaces in the sense of the following definition.

Definition 2.1. — Let L be a complex Lie group and let X be a holo-
morphic L-space. A geometric quotient for the action of L on X is a holo-
morphic map p : X → Q onto a complex space Q such that

(1) for all x ∈ X, we have p−1(p(x)
)

= L • x,
(2) Q has the quotient topology with respect to p,
(3) (p∗OX)L = OQ.

ANNALES DE L’INSTITUT FOURIER
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If a geometric quotient p : X → Q for the action of L exists, we can
identify Q with the set of L-orbits in X and we will often write X/L

instead of Q. The map p : X → Q has the following universality property:
for any G-invariant holomorphic map φ : X → Y into a complex space Y
there exists a uniquely defined holomorphic map φ : Q → Y such that
φ = φ ◦ p. We call a geometric quotient p : X → Q universal with respect
to invariant analytic subsets if for every such set A ⊂ X the restriction
p|A : A → p(A) is a geometric quotient for the L-action on A. Note that
p(A) is always an analytic subset of Q, see Lemma 6.1.

Remark 2.2. — We also use the corresponding concepts in the algebraic
category. Note that in this case item (2) of Definition 2.1 requires the
quotient to have the quotient Zariski-topology with respect to the map p.

The following general existence result for geometric quotients in the al-
gebraic category by Rosenlicht is the starting point of this paper.

Theorem 2.3 (Thm. 2 of [25]). — LetH be a linear algebraic group and
X an H-irreducible algebraic H-variety. Then, there exists an H-invariant
Zariski-open dense subset U of X that admits a geometric quotient. Fur-
thermore, this quotient fulfills C(U/H) = C(X)H .

2.3. Analytic Hilbert quotients and slice-type stratification

Let G be a complex-reductive Lie group andX a holomorphic G-space. A
complex space Y together with a G-invariant surjective holomorphic map
π : X → Y is called an analytic Hilbert quotient of X by the action of G if

(1) π is a locally Stein map, and
(2) (π∗OX)G = OY holds.

An analytic Hilbert quotient of a holomorphic G-space X is unique up to
biholomorphism once it exists, and we will denote it by X//G. This is the
natural analogue of the concept of good quotient or categorical quotient in
Algebraic Geometry, cf. [2, Ch. 3]. Moreover, if X is an algebraic G-variety
with a good quotient π : X → X//G, then the associated map πh : Xh →
(X//G)h is an analytic Hilbert quotient, see [18]. If X is a Stein G-space,
then the analytic Hilbert quotient π : X → X//G exists, see [26], [11]. It
has the following properties, cf. [12]:

(1) Given a G-invariant holomorphic map φ : X → Z to a complex
space Z, there exists a unique holomorphic map φ̄ : X//G→ Z such
that φ = φ̄ ◦ π.

TOME 62 (2012), FASCICULE 5
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(2) For every Stein subspace A of X//G the inverse image π−1(A) is a
Stein subspace of X.

(3) If A1 and A2 are G-invariant analytic (in particular, closed) subsets
of X, then we have π(A1) ∩ π(A2) = π(A1 ∩A2).

(4) For a G-invariant closed complex subspace A of X, which is defined
by a G-invariant sheaf IA of ideals, the image sheaf (π∗IA)G en-
dows the image π(A) inX//G with the structure of a closed complex
subspace of X//G. Moreover, the restriction of π to A is an analytic
Hilbert quotient for the action of G on A.

It follows that two points x, x′ ∈ X have the same image in X//G if and
only if G • x ∩G • x′ 6= ∅. For each q ∈ X//G, the fibre π−1(q) contains a
unique closed G-orbit G • x. The orbit G • x is affine (see [26, Prop. 2.3
and 2.5]) and hence, the stabiliser Gx of x in G is a complex-reductive Lie
group by a result of Matsushima.
Let G be a complex-reductive Lie group and let X be a holomorphic

G-space with analytic Hilbert quotient. There exist two related important
stratifications of the quotient X//G. The main reference for these strati-
fications in the algebraic case is [17, Sect. III.2]. In the following we are
going to use the notion of orbit type and of slice type as defined in [10,
Sect. 4]: If X is a G-irreducible Stein G-space and q ∈ X//G, then there
exists a unique closed G-orbit G • x in the fibre π−1(q). We define the slice
type of q to be the type of the Gx-representation on the Zariski tangent
space TxX, i.e., the isomorphism class of the G-vector bundle G×Gx

(TxX).
Analogously, we denote by Type(G • x) the orbit type of x, i.e., the con-
jugacy class (Gx) in G of the isotropy subgroup Gx of G at x. Using the
holomorphic slice theorem and the corresponding results in the algebraic
category one obtains the following result.

Proposition 2.4. — Let X be a G-irreducible holomorphic G-space
with analytic Hilbert quotient π : X → X//G. The decomposition of X//G
according to slice types defines a complex analytic stratification of the
quotient X//G. In particular, in X//G there exists a maximal, Zariski-open
stratum Smax of the slice-type stratification. The orbit-type of closed orbits
is constant on this stratum. Furthermore, the restriction of π to Xmax :=
π−1(Smax) realises Xmax as a holomorphic fibre bundle over Smax.

2.4. (Weakly) meromorphic maps and functions

Recall from [22] and [4, sect. 4.6] that there is a natural correspondence
between meromorphic functions on a (pure-dimensional) complex space X
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and so-called meromorphic graphs, i.e., graphs of meromorphic maps from
X to P1 = C ∪ {∞} that do not map any irreducible component of X to
∞. For a meromorphic function f on X we denote by Pf the pole variety
of f . It is a nowhere dense analytic subset of X, and the smallest subset of
X such that f is holomorphic on X \Pf . We set dom(f) := X \Pf and we
call it the domain of definition of f .
Suppose now that a complex Lie group L acts on a complex space X.

Then we have an induced action of L on the algebra MX(X) of meromor-
phic functions as follows. Let f be a meromorphic function onX with graph
Γf ⊂ X×P1. The group L acts onX×P1 by the L-action on the first factor.
Given g ∈ L, we define a new meromorphic graph Γg • f := g • Γf ⊂ X×P1
and hence a meromorphic function g • f on X. In this way we obtain an
action of L on MX(X) by algebra homomorphisms. A meromorphic func-
tion f ∈MX(X) is L-invariant if and only if its graph Γf is an L-invariant
analytic subset of X×P1. In this case the pole variety of f is an L-invariant
analytic subset of X.
The following definition is taken from [27] and [28]. It is useful when

considering maps into (non-compactifiable) non-compact target spaces, as
we will do in the following.

Definition 2.5. — Let X be a complex space and let A be a nowhere
dense analytic subset of X. Let Y be a complex space. Then, a holomorphic
map φ : X \ A→ Y is called weakly meromorphic, if for any point p0 ∈ A
and any one-dimensional complex submanifold C ofX with C∩A = C∩A =
{p0} there exists at most one point q0 ∈ Y with the following property:
there exists a sequence (pn)n∈N ⊂ C \A with limn→∞ pn = p0 such that q0
is the accumulation point of

(
φ(pn)

)
n∈N.

Example 2.6. — A meromorphic map is in particular weakly meromor-
phic, see [27, Satz 3.3].

3. Applications

In the following sections we give applications of the Main Theorem to
almost-homogeneous spaces (Section 3.1), to the problem of realising mero-
morphic invariants as quotients of holomorphic invariants (Section 3.2),
to holomorphically convex spaces with actions of compact groups (Sec-
tion 3.3), to the existence of principal orbits types (Section 3.4), and to
actions of unipotent groups (Section 3.5).

TOME 62 (2012), FASCICULE 5
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3.1. Characterising almost-homogeneous spaces

Using Rosenlicht’s Theorem, we see that an algebraic variety is almost-
homogeneous for a group G acting on X if and only if every G-invariant
rational function on X is constant. As a corollary of our main result we
obtain the corresponding result in the complex-analytic category:

Proposition 3.1. — Let X be a Stein G-space and let H be an al-
gebraic subgroup of G. Then H has an open orbit in X if and only if
MX(X)H = C.

Remark 3.2. — Note that this can also be proven without using the
Main Theorem: in case MX(X)H = C, clearly also OX(X)G = C. A result
of Snow [26, Cor. 5.6] implies that X naturally carries the structure of
an affine algebraic G-variety. Consequently, X is almost-homogeneous by
Rosenlicht’s Theorem, see Theorem 2.3.

3.2. The connection between holomorphic and meromorphic
invariants

Let X be a G-irreducible Stein G-space with analytic Hilbert quotient
π : X → X//G. Then clearly the field of invariant meromorphic functions
MX(X)G contains the field MX//G(X//G) of meromorphic functions on
X//G via the pull-back morphism

(3.1) π∗ : MX//G(X//G) ↪→MX(X)G.

Using our main result, in this section we describe the image of π∗ in
MX(X)G and we characterise those spaces for which π∗ is an isomorphism.
Furthermore, we give examples why in general this cannot be expected. It
follows that in most situations the information encoded in the Rosenlicht-
type quotient constructed in the Main Theorem cannot be recovered from
the analytic Hilbert quotient X//G.
The following result characterises the image of π∗ in MX(X)G.

Proposition 3.3. — Let X be a G-irreducible Stein G-space with ana-
lytic Hilbert quotient π : X → X//G. A function f ∈MX(X)G is contained
in Im(π∗) if and only if there exist p, q ∈ OX(X)G, q 6= 0, such that f = p/q.

Proof. — If f = p/q for p, q ∈ OX(X)G, q 6≡ 0, then by the universal
properties of the analytic Hilbert quotient there exist holomorphic functions
p̄ and q̄ on X//G such p = π∗p̄ and q = π∗q̄, respectively. Consequently, f is

ANNALES DE L’INSTITUT FOURIER



INVARIANT MEROMORPHIC FUNCTIONS ON STEIN SPACES 1991

the pull-back of the meromorphic function p̄/q̄ ∈MX//G(X//G). Conversely,
assume that f = π∗f̄ for some f̄ ∈MX//G(X//G). Since X//G is Stein, the
Poincaré problem on X//G is universally solvable, see for example [6, Ch. 4,
§2, Thm. 4]; i.e., there exist holomorphic functions p̄, q̄ ∈ OX//G(X//G),
q 6≡ 0, such that f̄ = p̄/q̄. Then, f = π∗p̄/π∗q̄ is a quotient of holomorphic
invariants. �

The following example shows that the inclusion (3.1) is strict in general.

Example 3.4. — Consider the action of C∗ on C2 by scalar multipli-
cation. Then, the meromorphic function f(z, w) = z/w is C∗-invariant.
However, the analytic Hilbert quotient is π : C2 → {point}, so that f is not
the pull-back of a meromorphic function via π. In order to construct an ex-
ample for a semisimple group action from this one, let T < G = SL2(C) be
the maximal torus of diagonal matrices. Consider the diagonal action of T
on the product G×C2, where T ∼= C∗ acts on C2 by scalar multiplication as
above. The group G acts holomorphically on the quotient X := G×T C2 by
this T -action. By construction we have X//G ∼= C2//T = {point}. Further-
more, the G-invariant rational function on X defined by f

[
g, (z, w)

]
= z/w

is not a pull-back via the quotient map X → {point}.

The following result characterises those Stein G-spaces for which any
meromorphic invariant is a quotient of two holomorphic invariants, i.e.,
those spaces for which π∗ is an isomorphism.

Theorem 3.5. — Let X be a G-irreducible Stein G-space with analytic
Hilbert quotient π : X → X//G. Then, the following are equivalent:

a) There exists a non-empty open subset U ⊂ X//G such that for all
q ∈ U the fibre π−1(q) contains a dense G-orbit.

b) There exists a non-empty Zariski-open subset U ⊂ X//G such that
for all q ∈ U the fibre π−1(q) contains a dense G-orbit.

c) The pull-back map π∗ establishes an isomorphism between the fields
MX//G(X//G) and MX(X)G.

Before we prove Theorem 3.5 we list a few typical situations where it can
be applied.

Corollary 3.6. — Let X be a G-irreducible Stein G-space with ana-
lytic Hilbert quotient π : X → X//G. Assume that there exists a point
x ∈ X such that π−1(π(x)

)
= G • x. Then, the pull-back π∗ establishes an

isomorphism between MX//G(X//G) and MX(X)G.

TOME 62 (2012), FASCICULE 5
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Proof. — Under the hypotheses of the corollary, there exists a non-empty
Zariski-open subset U ⊂ X//G such that for all q ∈ U the fibre π−1(q)
consists of a single G-orbit. Hence, Theorem 3.5 applies. �

Corollary 3.7. — Let G be a semisimple algebraic group and let X
be a G-irreducible affine algebraic G-variety with factorial coordinate ring.
Then, MX//G(X//G) and MX(X)G are isomorphic via π∗.

Remark 3.8. — The assumptions of Corollary 3.7 are in particular ful-
filled for X = V a representation space of a semisimple group.

Proof of Corollary 3.7. — Under the hypotheses of the corollary the
generic fibre of the morphism π : X → Spec

(
C[X]G

)
to the invariant-

theoretic quotient contains a dense G-orbit, see for example [20, §3.2]. Since
the corresponding map πh : Xh →

(
Spec(C[X]G)

)h of complex spaces is the
analytic Hilbert quotient of the Stein space Xh, Theorem 3.5 applies. �

In the remainder of the present section we prove Theorem 3.5.
Proof of Theorem 3.5. — The implication b) ⇒ a) is clear. As a second

step we prove a)⇒ b). Let Smax ⊂ X//G be the maximal slice-type stratum,
cf. Section 2.3, and let Xmax = π−1(Smax). Since Smax is dense in X//G,
there exists a point q ∈ U ∩Smax. Recall from Proposition 2.4 that the map
π|Xmax realises Xmax as a holomorphic fibre bundle over Smax with typical
fibre π−1(q). It therefore follows from the assumption in a) that for every
q′ ∈ Smax the fibre π−1(q′) contains a dense G-orbit.
Next we prove c) ⇒ b). Suppose on the contrary that the fibre π−1(q)

does not contain a dense G-orbit for any q ∈ Smax. Let Ω be a Zariski-open
subset with geometric quotient whose existence is guaranteed by the Main
Theorem. We may assume that Ω is contained in Xmax. Since Ω is Zariski-
open and dense in Xmax, for generic q ∈ Smax the intersection Ω∩π−1(q) is
Zariski-open and dense in π−1(q). By assumption, this intersection there-
fore contains two distinct G-orbits G • x1 6= G • x2. By part (5) of the
Main Theorem, there exist an f ∈ MX(X)G whose values at x1 and x2
are well-defined and distinct. Consequently, f is not contained in Im(π∗),
a contradiction.
Finally, we prove implication b) ⇒ c). We first study the local geometry

of the quotient map π : X → X//G under the hypotheses of b). As in the
previous paragraph, let Ω be a Zariski-open subset with geometric quotient
p : Ω → Q. Without loss of generality we may assume that Ω ⊂ Xmax.
Let x0 ∈ Ω be chosen such that p(x0) and π(x0) are smooth points of
Q and X//G, respectively, and such that G • x0 is dense in π−1(π(x0)

)
.

Since π|Xmax : Xmax → Smax is a holomorphic fibre bundle there exists a
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INVARIANT MEROMORPHIC FUNCTIONS ON STEIN SPACES 1993

local holomorphic section σ : U → X of π|Xmax through x0, defined on a
neighbourhood U of π(x0) in X//G. Since x0 ∈ Ω, we may assume that
σ(U) ⊂ Ω. The situation is sketched in Figure 3.1.

( )

( )

π

U

σ

π(x0)

σ(U)

Smax

Xmax
x0

G • σ(U)

open orbit

closed orbit

Figure 3.1. The local geometry of the quotient map

Note that Ũ := G • σ(U) ⊂ Ω is open and that π|
Ũ

: Ũ → U parametrises
the G-orbits in Ũ set-theoretically. Since Q carries the quotient topology
with respect to p, the set p(Ũ) is an open neighbourhood of p(x) in Q. By
the choice of x0, shrinking U if necessary, we may assume that both U and
Ũ are smooth. Since π is a G-invariant holomorphic map, its restriction to
Ω induces a uniquely defined holomorphic map π : Q → X//G such that
the diagram

X

π

��

Ω? _oo

p

��
X//G Q

πoo

commutes. By construction, the induced map π|
p(Ũ) : p(Ũ)→ U is a holo-

morphic bijection between complex manifolds, hence biholomorphic.
Let now f ∈ MX(X)G be given, and let Γf ⊂ X × P1 be its graph. It

is our aim to show that f descends to a meromorphic function on X//G.
The idea of the proof is to show that the image π(Pf ) of the pole variety
Pf of f is nowhere dense in X//G in order to apply Proposition 5.2 of [8].
To this end, we consider the restricted functions f |

Ũ
∈MX(Ũ)G as well as

f |π−1(U) ∈MX(π−1(U))G.

Subclaim. — There exists f̄ ∈MX//G(U) such that f |π−1(U) = π∗f̄ .
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Proof of the subclaim. — Denote the graph of f |π−1(U) by Γ′, and set
Γ̃ := Γ′ ∩ (Ũ ×P1). Note that Γ̃ coincides with the graph of f |

Ũ
. We define

Π := π|π−1(U)× idP1 : π−1(U)×P1 → U×P1 and P := p|
Ũ
× idP1 : Ũ×P1 →

p(Ũ)×P1. The map Π is an analytic Hilbert quotient, and P is a geometric
quotient for the respective G-actions on π−1(U)×P1 and Ũ×P1. With this
notation we summarise our setup in the following commutative diagram

Γ′ ⊂ π−1(U)× P1

Π
��

Ũ × P1
? _oo

P

��

⊃ Γ̃

U × P1 p(Ũ)× P1.∼=
Πoo

The function f |
Ũ

descends to a meromorphic function on p(Ũ) ⊂ Q with
graph P (Γ̃), cf. the proof of part (1) of Proposition 7.2. Furthermore, we
note that Π

(
P (Γ̃)

)
is analytic, hence closed in U × P1. From this and the

fact that Γ̃ is Zariski-open, hence dense in the G-irreducible space Γ′ it
follows that

Π(Γ′) = Π(Γ̃) = Π
(
P (Γ̃)

)
= Π

(
P (Γ̃)

)
.

Here, · denotes the topological closure in U × P1. Consequently, Π(Γ′)
is a meromorphic graph over U associated with a meromorphic function
f̄ ∈MX//G(U) fulfilling f |π−1(U) = π∗f̄ . �

Finally, we consider the pole variety Pf of f and its image π(Pf ) in
X//G. Note that π(Pf ) ∩ U coincides with the image under π of the pole
variety of f |π−1(U). The subclaim implies that f |π−1(U) = π∗f̄ for some
f̄ ∈MX//G(U). Consequently, π(Pf )∩U is nowhere dense in U . Since π(Pf )
is analytic in the irreducible complex space X//G, we deduce that π(Pf )
is nowhere dense in X//G. By Proposition 5.2 in [8], this implies that the
image of Γf under the map π× idP1 : X×P1 → X//G×P1 is a meromorphic
graph over X//G and that f descends to X//G. This completes the proof
of b) ⇒ c). �

3.3. Holomorphically convex K-spaces

In this section we consider applications of the main result to spaces
without actions of complex groups, e.g. bounded domains.

Proposition 3.9. — Let X be a K-irreducible complex K-space of
dimension n and set

m := max
x∈X
{dimC

(
Tx(K • x) + J · Tx(K • x)

)
}.
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Suppose that there exist a Stein K-space Y and an equivariant surjection
ϕ : X → Y which is injective outside a nowhere dense K-invariant analytic
set A ⊂ X. Then, there exist (n−m) analytically independent K-invariant
meromorphic functions on X.

Remark 3.10. — Proposition 3.9 in particular applies to strongly pseu-
doconvex (also called 1-convex) complex spaces or, more generally, to holo-
morphically convex spaces whose Remmert reduction is a proper modifica-
tion.

Proof of Proposition 3.9. — Let G = KC be the complexification of K.
According to the main result of [11] there exist a Stein G-space Y C and
a K-equivariant open embedding ı : Y → Y C such that Y C = G • ı(Y ).
Then, applying our Main Theorem we obtain a G-invariant Zariski-open
subset Ω ⊂ Y C such that the geometric quotient p : Ω→ Q = Ω/G exists.
Since ϕ is surjective and injective outside A, we have dimY C = n.

Moreover, the maximal dimension of the G-orbits in Y C is m; hence,
dim Ω/G = n − m. By part (5) of the Main Theorem the G-invariant
meromorphic functions separate the G-orbits in Ω. This implies there exist
at least n−m analytically independent G-invariant meromorphic functions
on Y C. Restricting these to Y and pulling them back to X via ϕ yields the
desired K-invariant meromorphic functions on X. �

3.4. Actions with reductive generic stabiliser

For G-connected Stein G-manifolds Richardson [24] proves the existence
of a principal orbit type in the following sense: in every such manifold there
exists an open and dense subset U such that the stabiliser groups of points
in U are conjugate in G. Here, we sharpen his result in the case of reductive
stabiliser groups and draw a few consequences.

Proposition 3.11. — Let G be a complex-reductive Lie group and let
X be a G-connected Stein G-manifold. Assume that the principal orbit
type is reductive. Then,

(1) in the statement of the Main Theorem the set Ω can be chosen
in such a way that for all x, y ∈ Ω there exists a g ∈ G with
Gy = gGxg

−1. In particular, there exists a G-invariant Zariski-open
dense subset of X consisting of orbits of principal orbit type;

(2) additionally, Ω can be chosen such that p : Ω → Q is an analytic
Hilbert quotient. In particular, Ω is Stein and p : Ω→ Q is a holo-
morphic fibre bundle with typical fibre G/Gx.
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Remark 3.12. — (1) The assumption on the stabiliser groups is equiva-
lent to the requirement that the normaliser NG(Gx) be reductive, see [21,
proof of Thm. 1.2(ii)].
(2) The assumption on the stabiliser groups is automatically fulfilled by

any commutative reductive group acting on a connected Stein manifold.

As a special case of Proposition 3.11 we explicitly note the result for the
case of generically free actions.

Corollary 3.13. — Let G be a complex-reductive Lie group and let X
be a G-connected Stein G-manifold. Assume that the action is generically
free. Then, in the statement of the Main Theorem the set Ω can be chosen
such that p : Ω→ Q is a G-principal fibre bundle.

Remark 3.14. — The additional assumption of Corollary 3.13 is auto-
matically fulfilled by any commutative reductive group acting effectively
on a connected Stein manifold, as can be seen using the holomorphic Slice
Theorem.

Proof of Proposition 3.11. — (1) Let φ : X → V be a map from X to
a G-representation space V of the form guaranteed by the Weak Equivari-
ant Embedding Theorem, Proposition 5.2. Let Y be the algebraic Zariski-
closure of φ(X) in V , cf. Section 6.3. Then, for any y ∈ Y , we let Gy =
LynUy be the Levi decomposition of the stabiliser Gy. By a further result
of Richardson [23, Thm. 9.3.1], there exists a G-invariant smooth Zariski-
open subset W of Y such that Ly′ is conjugate to Ly in G for all y, y′ ∈W
and such that (Uy)y∈W is an algebraic family of algebraic subgroups of G
in the sense of [23, Def. 6.2.1]. Owing to the definition of Y , the image
φ(X) intersects W non-trivially. By the assumption on the principal orbit
type there exists a point y0 ∈ W ∩ φ(Xmax) such that Gy0 = Ly0 and
Uy0 = {e}. Since the (Uy)y∈W form an algebraic family, we may assume
that the number of connected components of Uy is constant for all y ∈W .
Consequently, since y0 ∈ W , the group Uy is zero-dimensional and con-
nected for all y ∈ W , therefore trivial. It follows that Gy is conjugate to
Gy′ in G for all y, y′ ∈ W . Consequently, the same is true for any pair of
points in the Zariski-open G-invariant subset φ−1(W ) ∩Xmax of X. Inter-
secting the set guaranteed by the Main Theorem with φ−1(W ) ∩Xmax we
arrive at the desired result.
(2) We have seen that in the affine algebraic variety Y there exists a

Zariski-open and dense subset W such that Gx is reductive for all x ∈ W .
Hence, the existence of a Zariski-open subset Ω such that p : Ω → Q is
an analytic Hilbert quotient is a consequence of Lemma 3.15 below. The
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fact that the quotient map is a holomorphic fibre bundle then follows by
combining part (1) with the holomorphic Slice Theorem, cf. Proposition 2.4
and [17, Cor. 3.2.5]. �

Lemma 3.15. — Let X be an algebraic G-variety. Assume that for x ∈
X in general position the stabiliser Gx is reductive. Then, there exists a
non-empty Zariski-open affine G-invariant subset U in X such that the
action of G on U admits a good geometric quotient. The associated map
Uh → (U/G)h of complex spaces is an analytic Hilbert quotient.

Proof. — By a result of Reichstein and Vonessen [21] there exists a bi-
rational G-equivariant map φ : X 99K Y to an affine G-variety Y with the
following property: if πY : Y → Y//G denotes the categorical good quo-
tient, then the set Y st := {y ∈ Y | π−1

Y

(
πY (y)

)
= G • y} is non-empty.

Without loss of generality, we may assume that Y st is affine and that
φ−1|Y st : Y st → X is an isomorphism onto its image. This shows the first
claim. The second claim is a consequence of [18]. �

3.5. Unipotent groups

In this section we discuss consequences of our main result for actions of
unipotent groups.

Proposition 3.16. — Let H < G be a unipotent algebraic subgroup
of a complex-reductive Lie group and let X be a Stein G-space. Then,
every H-orbit in X is closed. Furthermore, the topological quotient X/H
is generically Hausdorff and there exists a H-invariant Zariski-open dense
subset U of X such that the restriction of the topological quotient p : X →
X/H to U is a geometric quotient in the category of complex spaces.

Proof. — Assuming that every H-orbit is closed, the remaining state-
ments follow directly from the Main Theorem. So, let H • x ⊂ X be any H-
orbit. Then, clearly H • x ⊂ G • x. However, the fibre π−1(π(x)

)
⊃ G • x

of the analytic Hilbert quotient π : X → X//G carries a natural affine al-
gebraic structure with respect to which the G-action is algebraic, see [26,
Cor. 5.6]. Since H < G is algebraic by assumption, by the correspon-
ding result in the affine algebraic case (which is proven for example in [3,
Appendix]) the orbit H • x is closed in π−1(π(x)

)
and hence in X. �

Example 3.17. — There exists a domain of holomorphy D in C2 en-
dowed with a free holomorphic action of H = C such that the topological
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closure of every H-orbit is a real hypersurface in D, cf. [14, Sect. 7-8].
In particular, there is no open C-invariant subset Ω in D such that Ω/C
is Hausdorff. Hence, we cannot expect holomorphic actions of algebraic
groups to have any of the properties stated in the Main Theorem if they
do not extend to holomorphic actions of some complex-reductive group.

4. Examples

In the analytic setup the question of existence of a Rosenlicht quotient
consists of the following two parts:

(1) Does there exist a Zariski-open subset on which the action of G
admits a geometric quotient?

(2) Do the invariant meromorphic functions separate the G-orbits in
general position?

In the following we are going to describe examples showing that the as-
sumptions made in the Main Theorem are indeed necessary to obtain a
positive answer to both questions.
In the Main Theorem it is assumed that the group H under discussion

is an algebraic subgroup of a reductive group acting on X. The following
examples show that this algebraicity assumption is indeed necessary in
order to obtain a geometric quotient. All these examples deal with actions
of discrete groups, which we denote by Γ instead of H.

Example 4.1. — Let G = C∗ × C∗ and let Γ ∼= Z2 be the discrete
subgroup generated by the elements e and e−π. Furthermore, consider the
subgroup M = diag(C∗). Then, the quotient X = G/M is isomorphic to
C∗ via the map [(z, w)] 7→ z/w, and the induced Z2-action is given by
(m1,m2) • z = em1+m2π. For this action there does not even exist an open
subset of C∗ that admits a Hausdorff topological quotient.

Note that the action of the ambient reductive group G is not effective in
the above example. The next example shows that even if the G-action is
effective geometric quotients for non-algebraic subgroups might not exist.

Example 4.2. — We consider the action of the discrete subgroup Γ :=
SL2(Z) of G := SL2(C) on the homogeneous Stein manifold X = G/T ,
where T is the maximal torus of diagonal matrices in G. We claim that
there does not exist a Γ-invariant Zariski-open subset U of X such that the
quotient U/Γ is Hausdorff. First, we consider an explicit realisation of this
action. Taking a regular element ξ ∈ t = Lie(T ) we have Ad(G)ξ ∼= G/T .
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Note that the ring of invariants C[g]G for the adjoint action of G on its
Lie algebra g is equal to C[det]. An element ξ ∈ g is regular if and only if
det(ξ) 6= 0. Therefore, G/T can be identified with{

(x, y, z) ∈ C3 ; det
(
x y

z −x

)
= −1

}
.

The Γ-action on X = G/T in this realization is induced by conjugation.
As an auxiliary tool, we are going to consider the induced action of C and
of the discrete subgroup Z < C on X given by the embedding of C into
SL2(C) as upper triangular matrices. Explicitly, for t ∈ C we obtain

(4.1) t • (x, y, z) = (x+ tz, y − 2tx− t2z, z).

Let now U be any Γ-invariant Zariski-open subset of X. Since there are
no Γ-invariant analytic hypersurfaces in G (see [1], or [15, §2.2, Ex.2] for
an elementary proof) there are no such hypersurfaces in X either. Conse-
quently, the complement A := X \U has pure codimension two in X, i.e., A
is a discrete set of points. The map p : X → C, p(x, y, z) = z is C-invariant,
the fibre p−1(a) for a 6= 0 consists of a single orbit. However, the fiber
p−1(0) is the union of the two C-orbits C • (1, 0, 0) = {(1, y, 0) ; y ∈ C}
and C • (−1, 0, 0) = {(−1, y, 0) ; y ∈ C}, which cannot be separated by
C-invariant open neighbourhoods. Hence, X/C is not Hausdorff.
We show by direct calculation that U/Γ is not Hausdorff, either. Since A

consists of isolated points, there exists y0 ∈ C \Q such that both (1, y0, 0)
and (−1, y0, 0) are contained in U . Using that y0 is irrational, one checks
by direct computation that these two points lie in different Γ-orbits. We
are going to show that the orbits Γ • (1, y0, 0) and Γ • (−1, y0, 0) cannot be
separated by invariant open sets. To this end, let V be any open Γ-invariant
neighbourhood of (1, y0, 0) in U . Since A is discrete, for all integers m� 0
the points pm := (1, y0,−2/m) are contained in V . Using (4.1) we compute

m • pm =
(

1 +m · −2
m
, y0 − 2m−m2 · −2

m
,
−2
m

)
=
(
−1, y0,

−2
m

)
∈ V.

If W is any open neighbourhood of (−1, y0, 0) in U , then by the above
computation m • pm ∈ W for m � 0. Since the Z-orbits of the pm are
contained in the corresponding Γ-orbits, every Γ-invariant neighbourhood
V of (1, y0, 0) thus intersects every open neighbourhood W of (−1, y0, 0),
so U/Γ cannot be Hausdorff.
As a concluding remark, note that by removing the fibre p−1(0) from X

we obtain a Zariski-open C-invariant subset of X on which the C-action
admits a Hausdorff quotient, in accordance with Rosenlicht’s Theorem and
with the main result of this paper.
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In the case of non-algebraic subgroups acting on Stein manifolds the
invariant meromorphic functions do not necessarily separate generic orbits,
even if a meromorphic quotient exists. This is exemplified in the following.

Example 4.3. — We consider the subgroup Γ := SL2(Z) of SL2(C) act-
ing on the Stein manifold X = SL2(C) by γ • g = gγ−1. Then, the action
is proper and free, and hence the geometric quotient X/Γ exists. Let U
be any Γ-invariant analytically Zariski-open subset of X. Then U/Γ exists
and is biholomorphic to the image of U in the quotient X/Γ. Using that
there are no Γ-invariant hypersurfaces in SL2(C) we see that the comple-
ment of U in X has no codimension-one components. It follows that every
Γ-invariant meromorphic function on U extends to a Γ-invariant meromor-
phic function on the whole of X by Levi’s Theorem. However, because of
the non-existence of invariant hypersurfaces, the pole variety of every Γ-
invariant meromorphic function on X is empty. Hence, every such function
is holomorphic, and therefore constant.

5. A weak equivariant embedding theorem

In the following let X be a G-irreducible Stein G-space for a complex-
reductive Lie group G. The main technical ingredient in the proof of our
main result is an equivariant version of the following result of Remmert
and Narasimhan:

Theorem 5.1 ([19]). — LetX be a finite-dimensional Stein space. Then
there exist a finite dimensional complex vector space V and a proper in-
jective holomorphic map φ : X → V that is an immersion on X \Xsing.

In this paper a holomorphic map φ : X → Y from a Stein space X into
an affine variety Y is called a Narasimhan map if φ is proper injective and
if φ|X\Xsing is an immersion.
In the following we will investigate to what extend there exists an equi-

variant version of this fundamental result.
Suppose that the Stein G-space X admits an equivariant Narasimhan

map φ : X → V into a finite-dimensional G-representation space V . In this
situation the stratification of X//G into orbit-types is necessarily finite. In
contrast, Heinzner [10, Sect. 3] has given an example of a Stein C∗-manifold
that contains a sequence of points {xn} lying in closed C∗-orbits and having
isotropy groups C∗xn

= Zpn , where {pn} is a sequence of prime numbers
such that limn→∞ pn =∞. Hence, the first guess for an equivariant version
of Theorem 5.1 does not lead to the desired result.
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The problems encountered in the above example are caused be the ap-
pearance of “too many” different isotropy groups and slice-representations
for our given action. However, recall from Proposition 2.4 that there exists
a maximal, Zariski-open stratum Smax in X//G over which the type of the
slice representation is constant. Using the methods of [10] we prove the
following equivariant version of Theorem 5.1.

Proposition 5.2 (Weak Equivariant Embedding Theorem). — Let X
be a G-irreducible Stein G-space with associated analytic Hilbert quotient
π : X → X//G. Let Smax be the maximal stratum of the slice-type stra-
tification, and Xmax := π−1(Smax). Then there exists a finite-dimensional
G-module V with analytic Hilbert quotient πV : V → V//G, and a holo-
morphic G-equivariant map φ : X → V with the following properties:

(1) The induced holomorphic map φ : X//G → V//G is a Narasimhan
map and

(2) the induced holomorphic map

φ|Xmax : Xmax → Vmax := V \ π−1
V

(
φ(Scmax)

)
is a closed embedding.

The main technical part in the proof of Proposition 5.2 is contained
in the following lemma, the proof of which is adapted from [10, Sect.4,
Lemma 1]. For the reader’s convenience we describe the arguments here in
some detail. In the following we write Amax := A ∩ Smax for any analytic
subset A ⊂ X//G.

Lemma 5.3. — Let X be a G-irreducible Stein G-space and let π : X →
X//G be its analytic Hilbert quotient. For any analytic subset A of X//G
that intersects the maximal slice-type stratum Smax non-trivially the fol-
lowing holds:

(1) There exists an analytic subset A′ of A fulfilling dim(A′max) <

dim(Amax), a complex G-module V1, and an equivariant holomor-
phic map φ : X → V1 that is an immersion along π−1(Amax \A′max).

(2) There exists an analytic subset A′′ of A fulfilling dim(A′′max) <

dim(Amax), a complex G-module V2, and an equivariant holomor-
phic map ψ : X → V2 whose restriction to every closed G-orbit in
π−1(Amax \A′′max) is a proper embedding.

Proof. — Let A ⊂ X//G be an analytic subset such that Amax 6= ∅.
Removing the irreducible components which are not of maximal dimension,
we may assume without loss of generality that Amax is pure-dimensional.
We denote the irreducible components of Amax by Ai, i ∈ I, and choose
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for every i ∈ I a point pi ∈ Ai \
⋃
j 6=iAj . For each i, let xi ∈ π−1(pi) be a

point lying in the unique closed G-orbit in this fibre.
The slice type of every point xi, i ∈ I, is equal to a fixed model G×HW .

This model admits an equivariant holomorphic embedding into a G-module
V1. By the holomorphic Slice Theorem ([26]), for each i ∈ I we can choose
a small neighbourhood Ui of pi in X such that π−1(Ui) has a G-equivariant
holomorphic embedding into a saturated open subset of the G-module V1.
Application of [10, Sect. 1, Prop. 1] to the induced map

⋃̇
i∈Iπ

−1(Ui)→ V1
yields a G-equivariant holomorphic map φ : X → V1 that is an immersion
along

⋃̇
i∈Iπ

−1(pi). The set

R := {x ∈ X | φ is not an immersion in x}

is a G-invariant analytic subset of X. It follows that A′ := π(R) ∩ A is an
analytic subset of A. Since the map φ is an immersion at every point in⋃
i∈I π

−1(pi), we conclude that dim(A′max) < dim(Amax), as desired.
Let us now prove the second claim. Since by definition the slice type is

constant on Smax, all orbits G • xi have the same orbit type (H), where H
is a complex-reductive subgroup of G. Since there is a proper equivariant
embedding of G/H into some G-module V2, there exists a proper holomor-
phic map

⋃̇
i∈IG • xi → V2. By [10, Sect. 1, Bemerkung 2] this map extends

to a G-equivariant holomorphic map ψ : X → V2 such that ψ|G • xi is a
proper embedding for each i ∈ I.

Let πV2 : V2 → V2//G be the analytic Hilbert quotient. For q ∈ V2//G we
set Type(q) := Type(G • q) and define

C :=
{
q ∈ V2//G | Type(q) < H

}
⊂ V2//G.

Then Ω := V2 \π−1
V2

(C) is an algebraically Zariski-open G-saturated subset
of V2, see [17, Ch. III]. Note that we have ψ(xi) ∈ Ω for all i ∈ I. Let
ψ : X//G→ V2//G be the induced map and set A′′ := ψ

−1(C), which is an
analytic subset of X//G. We want to show that for every x ∈ X such that
G • x is closed with π(x) ∈ Amax \ A′′max the restriction of ψ to G • x is a
proper embedding into V2.

For this suppose that ψ(G • x) = G • ψ(x) is not closed. Then there is
a unique closed G-orbit G • v ⊂ Ω in the closure of G • ψ(x) and for this
orbit we have Type(G • v) < Type

(
G • ψ(x)

)
6 Type(G • x) = (H), a

contradiction. Consequently, G • ψ(x) must be closed in V and, since it
lies in Ω, we have Type

(
G • ψ(x)

)
= (H). Therefore, ψ : G • x→ G • ψ(x)

is an isomorphism, hence ψ|G • x is a proper embedding. Finally, since all
the xi are contained in Amax \ A′′max, clearly dim(A′′max) < dim(Amax), as
claimed. �
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Now we are in the position to give the proof of Proposition 5.2.
Proof of Proposition 5.2. — LetX be a G-irreducible Stein G-space with

associated analytic Hilbert quotient π : X → X//G. Let ϕ0 : X//G → V0
be a Narasimhan map and φ0 : X → V0 the lifted map φ0 := ϕ0 ◦ π.
By a repeated application of the first part of Lemma 5.3 we obtain an
equivariant holomorphic map φ1 : X → V1 to a complex G-module V1 that
is an immersion at every point in π−1(Smax). Additionally, by a repeated
application of the second part of the same lemma we obtain an equivariant
holomorphic map ψ : X → V2 into a complex G-module whose restriction to
every closed orbit in π−1(Smax) is a closed embedding. Let V := V0⊕V1⊕V2
and let φ : X → V be the product map.
Let πV : V → V//G denote the invariant-theoretic quotient by the G-

action and let φ : X//G → V//G be the induced map. Since φ is proper
(we started with ϕ0 which was assumed to be a Narasimhan map), the
image of Scmax := (X//G)\Smax under φ is an analytic subset of V//G. The
restriction φ|Xmax : Xmax → V \π−1

V (φ(Scmax)) =: Vmax is an immersion and
a closed embedding when restricted to any closed orbit in Xmax. By [10,
Sect. 2, Prop. 2] the restriction of φ to every fibre of π is a closed embedding.
Hence, φ is an injective immersion, since φ separates the points of Smax.
It therefore remains to check that φ|Xmax is proper, which can be done the
same way as in the last paragraph in the proof of [9, Thm. 9.6]. �

6. Constructing geometric quotients

We continue to consider the action of a complex-reductive group G on
a Stein space X as well as the induced action of an algebraic subgroup H
of G. In this section we prove the existence of an H-invariant Zariski-open
dense subset Ω of X that admits a geometric quotient p : Ω→ Q with the
properties listed in parts (1) – (3) of the Main Theorem.
The idea of proof is to use the Weak Equivariant Embedding Theorem

established above in order to reduce to an algebraic situation. Then classi-
cal results on algebraic transformation groups and especially Rosenlicht’s
theorem will allow us to show the existence of geometric quotients for al-
gebraic subgroups H ⊂ G.

In order to avoid the corresponding technical difficulties we show in Sec-
tion 6.1 that it is sufficient to treat the H-irreducible case. In Section 6.2
we then discuss the universality properties of (algebraic) geometric quo-
tients before we prove the existence of geometric H-quotients in the final
subsection.
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6.1. Reduction to H-irreducible Stein G-spaces

Let X be a Stein G-space, and H an algebraic subgroup of G. Suppose
that the Main Theorem is proven under the additional asumption that X
is H-irreducible.
Let X =

⋃m
i=1Xi be the decomposition of X into its H-irreducible com-

ponents. Then, we may apply the Main Theorem to each of the components
Xi and obtain H-invariant Zariski-open dense subsets Ωi ⊂ Xi with geo-
metric quotients Ωi → Ωi/H. Note that we can choose Ωi to be contained in
Xi\

⋃
k 6=iXk. It follows that the disjoint union of the sets Ωi is H-invariant,

Zariski-open and dense in X. Furthermore, it admits a geometric quotient⋃̇m
i=1Ωi →

⋃̇m
i=1(Ωi/H) by the H-action with the properties listed in the

Main Theorem.

6.2. Universality of geometric quotients

First, we discuss the universality properties of geometric quotients with
respect to invariant analytic subsets.

Lemma 6.1. — Let L be a complex Lie group and let X be an L-
irreducible holomorphic L-space admitting a geometric quotient p : X →
X/L. If A ⊂ X is an L-invariant analytic subset of X, then p(A) is an
analytic subset of X/L.

Proof. — Since the geometric quotient p : X → X/L exists, we conclude
from [13, §3, Satz 7] that all L-orbits are analytic in X and have the same
dimension. Hence, the corollary in Section 3.7 of [4] applies to show that
p(A) is locally analytic in X/L. Since the image of an L-invariant closed
set under p is again closed, the set p(A) is analytic in X/L. �

More can be said if the quotient map p : X → X/L is assumed to be a
submersion:

Lemma 6.2. — Let L be a complex Lie group and let X be an L-
irreducible holomorphic L-space admitting a geometric quotient p : X →
X/L. Suppose that p is a submersion. Then, p is universal with respect to
L-invariant analytic sets of X.

Proof. — Given an L-invariant analytic subset A of X, we must show
that the map p|A : A → p(A) fulfills properties (1) – (3) of Definition 2.1.
We already know from Lemma 6.1 that p(A) is an analytic subset of X/L.
The fibres of p|A are G-orbits, since the same is true for p. Hence, it remains
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to show that p(A) carries the quotient topology with respect to p|A and
that the structure sheaf of p(A) as a reduced complex subspace of X/L is
isomorphic to the sheaf of L-invariant holomorphic functions on A.

Using thatX/L carries the quotient topology with respect to p one checks
directly that the same is true for A and p|A: Let U ⊂ A be an L-invariant
open subset. By definition of the subspace topology on A, there exists an
open subset Ũ in X such that Ũ ∩A = U . Then, Û := G • Ũ is G-invariant,
open, and still fulfills Û ∩ A = U . Consequently, p(Û) is open in X/L and
we have p|A(U) = p(Û) ∩ p(A). Hence, p|A(U) is open in p(A).
It remains to consider the structure sheaves. For this let U ⊂ A be an

L-invariant open subset and let f ∈ O(U)L. Then there is a continuous
function f̄ : p(U) → C with f = p∗f̄ and we must show f̄ ∈ Op(A)

(
p(U)

)
.

Since this assertion is local, we may apply [4, Thm. in §2.18] to p and
obtain, after possibly shrinking U , a commutative diagram

Ũ
ψ //

p
��>

>>
>>

>>
D × Ṽ

π
Ṽ||yy

yy
yy

yy
y

Ṽ ,

where Ũ is an open subset of X such that U = Ũ ∩A, where Ṽ is an open
subset of X/L such that p(Ũ) ⊂ Ṽ , and where D is a domain in CN for
N = dimX − dimX/L. In this picture we have ψ(A) = D × p(A) and
f ◦ψ−1(z, y) = f̄(y) for y ∈ p(A). Hence, f̄ is indeed holomorphic on p(U),
as was to be shown. �

Remark 6.3. — Lemma 6.2 can be used to prove the following observa-
tion which might be of independent interest: Let H be an algebraic group
and let X be an algebraic H-irreducible H-variety admitting an (algebraic)
geometric quotient p : X → X/H such that p is a submersion. If A ⊂ X

is an H-invariant analytic subset, then p|A : A → p(A) is a (holomorphic)
geometric H-quotient.

6.3. Existence of geometric quotients for algebraic
subgroups of G

Let G be complex-reductive and let X be an H-irreducible Stein G-space
where H is an algebraic subgroup of G. Note that X is also G-irreducible.
We want to combine the results of the previous two sections in order to
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prove that geometric quotients for the H-action exist on Zariski-open dense
subsets of X.
We introduce some notation in order to prepare the proof of statements

(1)–(3) of the Main Theorem. Let φ : X → V be the weak equivariant
embedding constructed in Proposition 5.2 and let Smax be the maximal
slice-type stratum in X//G. Since the induced map φ : X//G → V//G is
in particular proper, φ(Scmax) is an analytic subset of V//G and the set
Vmax = V \ π−1

V

(
φ(Scmax)

)
is analytically Zariski-open in V . Let Y be the

algebraic Zariski-closure of φ(X) in V . The preimage Xmax = π−1(Smax)
is analytically Zariski-dense in X, hence the algebraic Zariski-closure of
φ(Xmax) coincides with Y . Note furthermore that Y is H-irreducible.
In summary, we have found a G-equivariant map φ : X → Y into an

H-irreducible affine variety Y which is a proper embedding from Xmax into
Ymax := Y ∩ Vmax. Since the G-action on Y is algebraic we may now apply
classical results on algebraic transformation groups and transport them to
X via φ.
By Rosenlicht’s Theorem, see Theorem 2.3, there exists an algebraically

Zariski-open H-irreducible subset ΩY of Y that admits an algebraic geo-
metric quotient pY : ΩY → ΩY /H by the H-action. In the next step we will
shrink ΩY in order to improve the properties of pY and of ΩY /H. Note that
the set where pY is a submersion is an H-invariant algebraically Zariski-
open subset of ΩY ; shrinking ΩY we may assume that pY is a submersion.
Repeating this procedure if necessary we may also assume that ΩY and
ΩY /H are smooth and that ΩY /H is affine. Finally, using [29, Cor. 5.1]
we may furthermore suppose that pY : ΩY → ΩY /H is a topological fibre
bundle with respect to the complex topologies of ΩY and ΩY /H. Note that
we still have φ(Xmax)∩ΩY 6= ∅ since ΩY is algebraically Zariski-dense in Y .

After these preparations we are now in the position to prove the existence
of a geometric H-quotient on a dense Zariski-open subset of X:

Proposition 6.4. — Let X be an H-irreducible Stein G-space where
H is an algebraic subgroup of G. Then there exist a Zariski-open dense H-
invariant subset Ω of X and a holomorphic map p : Ω→ Q to an irreducible
Stein space Q that is a geometric quotient for the H-action on Ω and
additionally possesses the properties listed under (2) and (3) in the Main
Theorem.

Proof. — We use the notation introduced above. We first define the de-
sired set Ω. To this end, let π : Y → Y//G denote the Hilbert quotient of
the G-action on Y and note that, since Y//G is an affine variety and thus a
Stein space, we may find a non-constant function f ∈ OY//G(Y//G) which
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vanishes on φ(Scmax). Consequently, (Y//G) \ {f = 0} is an analytically
Zariski-open Stein subset of Y//G. Let U be its inverse image under π in
Y and define

Ω := ϕ−1(U ∩ ΩY ) ⊂ X.
By construction, Ω is an H-irreducible analytically Zariski-open dense sub-
set of X contained in Xmax. Moreover, we define

(6.1) p := pY ◦ (φ|Ω) : Ω→ Q := pY
(
φ(Ω)

)
⊂ ΩY /H.

Since φ : Xmax → Ymax is a closed embedding, its image is an analytic
subset of Ymax biholomorphic to Xmax. Since the analytically Zariski-open
subset Ω ⊂ X is contained in Xmax, the image φ(Ω) equals the analytic
subset φ(Xmax)∩U ∩ΩY of U ∩ΩY and φ|Ω : Ω→ φ(Ω) is biholomorphic.

By construction the map pY : ΩY → ΩY /H is a submersion, hence
Lemma 6.2 applies to show that pY

(
φ(Ω)

)
= Q is an analytic subset of

pY (U ∩ ΩY ) and that p : Ω → Q is a geometric quotient for the H-action
on Ω. Moreover, p : Ω→ Q is a submersion and a topological fibre bundle;
both properties are inherited from pY . Together with another application
of Lemma 6.2 this shows the properties listed under (2) and (3) in the Main
Theorem.
The proof is completed by showing that Q is a Stein space: Since Q is an

analytic subset of pY (U ∩ΩY ), for this it suffices to prove that pY (U ∩ΩY )
is a Stein open subset of ΩY /H. Recall that U = π−1({f 6= 0}) = {π∗f 6=
0} by definition. Since (π∗f)|ΩY

is H-invariant, there is a function f̄ ∈
OΩY /H(ΩY /H) such that π∗f |ΩY

= p∗Y f̄ . It follows that pY (U ∩ ΩY ) =
{f̄ 6= 0} ⊂ ΩY /H, and consequently pY (U ∩ ΩY ) is a Stein open subset of
the Stein space ΩY /H. �

Thus, we have shown the existence of a geometric H-quotient with the
properties listed in parts (1) – (3) of the Main Theorem under the assump-
tion that X is H-irreducible. Combining this with the observation noted
in Section 6.1, parts (1), (2), and (3) of the Main Theorem are proven.

7. Pushing down meromorphic functions

In this section we will prove that the geometric quotient p : Ω → Q

constructed in the previous section additionally has the properties stated
in parts (4)–(6) of the Main Theorem, thus completing its proof. Before we
do this in Section 7.2, we give a criterion in terms of meromorphic functions
for a densely defined holomorphic map to extend to a weakly meromorphic
map.
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7.1. Meromorphic functions and weakly meromorphic maps

The following lemma is concerned with the relation of Definition 2.5 to
meromorphic functions. It will be used in the proof of part (4) of the Main
Theorem in the next subsection.

Lemma 7.1. — Let X be a complex space, A ⊂ X a nowhere dense
analytic subset, Y ⊂ U ⊂ CN an analytic subset of an analytically Zariski-
open subset U in CN , and z1, . . . , zN linear coordinates on CN . Let φ : X \
A → CN be a holomorphic map with φ(X \ A) ⊂ Y . Assume that φ∗(zj)
extends to a meromorphic function on X for all j = 1, . . . , N . Then, φ : X \
A→ Y is weakly meromorphic.

Proof. — We consider the compactification ON = (P1)N of CN , the so-
called Osgood space. By assumption, ϕj := φ∗(zj) is a meromorphic func-
tion on X for all j = 1, . . . N . Hence, by [22, Satz 33] the map φ : X 99K ON
is a meromorphic map in the sense of Remmert and therefore in particular
also weakly holomorphic. Since φ(X \ A) ⊂ Y , the map ϕ is still weakly
meromorphic after restricting the range to Y , see [27, Satz 3.13]. �

7.2. Completing the proof of the Main Theorem

For the reader’s convenience we recall parts (4)–(6) of the Main Theorem
in the following

Proposition 7.2. — LetH < G be an algebraic subgroup of a complex-
reductive Lie group G and let X be an H-irreducible Stein G-space. Let
p : Ω → Ω/H be the geometric quotient constructed in Proposition 6.4.
Then,

(4) the quotient map p : Ω → Ω/H extends as a weakly meromorphic
map to X,

(5) for every f ∈ MX(X)H there exists a unique f̄ ∈ MΩ/H(Ω/H)
such that f |Ω = p∗f̄ , and

(6) the H-invariant meromorphic functions on X separate H-orbits
in Ω.

Remark 7.3. — Since p : Ω → Ω/H is an open holomorphic map, the
pull-back p∗ from MΩ/H(Ω/H) to MΩ(Ω)H is well-defined and, as the proof
of Proposition 7.2 will show, an isomorphism.
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Proof of Proposition 7.2. — In order to prove the first claim recall from
Section 6.3 that by construction Ω/H is an analytic subset of an analytically
Zariski-open subset of an affine variety Q and that pY : ΩY → Q is the
algebraic geometric quotient whose existence is guaranteed by Rosenlicht’s
theorem. In particular the quotient map pY extends as a rational map
to Y . Let us choose an embedding of Q into a finite dimensional complex
vector space V and let (z1, . . . , zN ) be linear coordinates in V . These induce
invariant rational functions p∗Y zj , j ∈ {1, . . . , N}, on Y . Since φ−1(A) is a
nowhere dense analytic set in X for every nowhere dense algebraic set A ⊂
Y , the pull-back φ∗p∗Y zj = p∗zj is a meromorphic function on X for every
j, see [7, Chapter 6.3.3]. Thus by Lemma 7.1 the map p = (p∗z1, . . . , p

∗zN )
extends as a weakly meromorphic map to X.

For the second claim let f ∈ MX(X)H be given. By abuse of notation
we denote by f also its restriction to Ω and thus have f ∈ MΩ(Ω)H .
Recall that f is holomorphic on dom f = Ω \ Pf . Applying Lemma 6.2 we
see that Pf := p(Pf ) is a nowhere dense analytic subset of Ω/H. Since
P := p × idP1 : Ω × P1 → (Ω/H) × P1 is a geometric quotient for the H-
action on Ω×P1, Lemma 6.2 implies that P (Γf ) =: Γf is an analytic subset
of (Ω/H)× P1. We will prove that it is a meromorphic graph.
We summarise our setup in the following diagram.

Ω× P1

P

��

Γf? _oo pΩ //

P |Γf

��

Ω

p

��
(Ω/H)× P1 Γf? _oo

pΩ/H // Ω/H.

First, we note that p−1
Ω/H(Pf ) = P

(
p−1

Ω (Pf )
)
is a nowhere dense analytic

subset of Γf . Moreover, the restriction of f to dom(f) is holomorphic,
and hence there exists a uniquely defined holomorphic function f̄ on the
open subset p(dom f) = (Ω/H) \ Pf such that p∗f̄ = f |dom f . It follows
from the construction that over p(dom f) the graph of f̄ coincides with Γf .
In summary we have shown that Γf is a meromorphic graph over Ω/H.
Consequently, there exists a meromorphic function f̄ ∈MΩ/H(Ω/H) such
that Γf̄ = Γf . By construction this function fulfills p∗f̄ = f ∈MΩ(Ω).
Finally, for the proof of property (6) let H • x and H • y be two orbits

in Ω. Then we have p∗zj(x) 6= p∗zj(y) for some j ∈ {1, . . . , N}. By the
same argument as above p∗zj yields an H-invariant meromorphic function
on X which separates H • x and H • y. �

Applying the observation from Section 6.1 in order to remove the assump-
tion of H–irreducibility finally completes the proof of the Main Theorem.
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