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A REMARKABLE CONTRACTION OF SEMISIMPLE
LIE ALGEBRAS

by Dmitri I. PANYUSHEV & Oksana S. YAKIMOVA

Abstract. — Recently, E.Feigin introduced a very interesting contraction q of a
semisimple Lie algebra g (see arXiv:1007.0646 and arXiv:1101.1898). We prove that
these non-reductive Lie algebras retain good invariant-theoretic properties of g. For
instance, the algebras of invariants of both adjoint and coadjoint representations
of q are free, and also the enveloping algebra of q is a free module over its centre.
Résumé. — E. Feigin a introduit la contraction q d’une algèbre de Lie semi-

simple g dans arXiv :1007.0646 et arXiv :1101.1898. Nous démontrons que ces
algèbres de Lie non-réductives conservent quelque unes des propriétés de g. En
particulier, les algèbres des invariants des représentations adjointe et respective-
ment coadjointe de q sont libres, et l’algèbre enveloppante de q est un module libre
sur son centre.

Introduction

The ground field F is algebraically closed and char F = 0. Let G be a con-
nected semisimple algebraic group of rank l with Lie algebra g. Recently,
E. Feigin introduced a very interesting contraction of g [2]. His motiva-
tion came from some problems in Representation Theory [4], and making
use of this contraction he also studied certain degenerations of flag vari-
eties [3]. Our goal is to elaborate on invariant-theoretic properties of these
contractions of semisimple Lie algebras.
Fix a triangular decomposition g = u ⊕ t ⊕ u−, where t is a Cartan

subalgebra. Then b = u ⊕ t is the fixed Borel subalgebra of g. The corre-
sponding subgroups of G are B,U , and T . Using the vector space isomor-
phism g/b ' u−, we regard u− as a B-module. If b ∈ b and η ∈ u−, then

Keywords: Inönü-Wigner contraction, coadjoint representation, algebra of invariants,
orbit.
Math. classification: 13A50, 14L30, 17B40, 22E46.



2054 Dmitri I. PANYUSHEV & Oksana S. YAKIMOVA

(b, η) 7→ b ◦ η stands for the corresponding representation of b. That is, if
p− : g→ u− is the projection with kernel b, then b ◦ η = p−([b, η]).
Following [2, Sect. 2], consider the semi-direct product q = bn (g/b)a =

bn(u−)a, where the superscript ‘a’ means that the b-module u− is regarded
as an abelian ideal in q. We may (and will) identify the vector spaces g and
q using the decomposition g = b ⊕ u−. If (b, η), (b′, η′) ∈ q, then the Lie
bracket in q is given by

(0.1) [(b, η), (b′, η′)] = ([b, b′], b ◦ η′ − b′ ◦ η).

The corresponding connected algebraic group is Q = B n N , where N =
exp((u−)a) is an abelian normal unipotent subgroup of Q. The exponential
map exp: (u−)a → N is an isomorphism of varieties, and elements of Q are
written as product s· exp(η), where s ∈ B and η ∈ u−. If (s, η) 7→ s�η is the
representation of B in u−, then the adjoint representation of Q is given by

(0.2) AdQ(s· exp(η))(b, η′) = (Ad(s)b, s�(η′ − b ◦ η)).

In this note, we explicitly construct certain polynomials that generate the
algebras of invariants F[q]Q and F[q∗]Q, and thereby prove that these two
algebras are free. Furthermore, we also show that these polynomials gener-
ate the corresponding fields of invariants, F(q)Q and F(q∗)Q, and that F[q]
is a free F[q]Q-module and F[q∗] is a free F[q∗]Q-module. The last asser-
tion implies that the enveloping algebra of q, U(q), is a free module over
its centre. The Lie algebra q is an Inönü-Wigner contraction of g (see [15,
Ch. 7 § 2.5]), and we also discuss the corresponding relationship between
the invariants of G and Q.

Certain classes of non-reductive algebraic Lie algebras q such that F[q∗]Q
is a polynomial ring have been studied before. They include the centralisers
of nilpotent elements in sll+1 and sp2l [9], Z2-contractions of g [10], and
the truncated seaweed (biparabolic) subalgebras of sll+1 and sp2l [7]. Our
result enlarges this interesting family of Lie algebras.
Let q∗reg denote the set of regular elements of q∗, i.e., x ∈ q∗reg if and only

if dimQ·x is maximal. For many problems related to coadjoint representa-
tions, it is vital to have that codim(q∗rq∗reg) > 2 [10, 9]. However, we prove
that if g is simple and not of type Al, then q∗ r q∗reg contains a divisor.
Notation.

– the centraliser in g of x ∈ g is denoted by gx.
– κ is the Killing form on g.
– greg is the set of regular elements of g, i.e., x ∈ greg if and only if

dim gx = l.

ANNALES DE L’INSTITUT FOURIER



A REMARKABLE CONTRACTION OF SEMISIMPLE LIE ALGEBRAS 2055

– If X is an irreducible variety, then F[X] is the algebra of regular
functions and F(X) is the field of rational functions on X. If X is
acted upon by an algebraic group A, then F[X]A and F(X)A denote
the subsets of respective A-invariant functions.

– If F[X]A is finitely generated, then X//A := Spec(F[X]A) and
π : X → X//A is determined by the inclusion F[X]A ↪→ F[X]. If
F[X]A is graded polynomial, then the elements of any set of alge-
braically independent homogeneous generators will be referred to
as basic invariants.

– Si(V ) is the i-th symmetric power of the vector space V and S(V ) =
⊕i>0S

i(V ) is the symmetric algebra of V .

Acknowledgments. — During the preparation of this paper, the second
author benefited from an inspiring environment of the trimester program
“On the Interaction of Representation Theory with Geometry and Combi-
natorics” at HIM (Bonn). She is grateful to P. Littelmann for the invitation.
We would like to thank the anonymous referee for valuable comments.

1. On adjoint and coadjoint invariants
of Inönü-Wigner contractions

The algebra q = b n (u−)a is an Inönü-Wigner contraction of g. For
this reason, we recall the relevant setting and then describe a general pro-
cedure for constructing adjoint and coadjoint invariants of Inönü-Wigner
contractions. The Z2-contractions of g (considered in [10, 11]) are special
cases of Inönü-Wigner contractions, and for them such a procedure is ex-
posed in [10, Prop. 3.1]. However, the more general situation considered
here requires another proof.
For a while, we assume that G is any connected algebraic group. Let H

be an arbitrary connected subgroup of G and let m be a complementary
subspace to h = LieH in g. Using the vector space isomorphism g/h ' m,
we regard m as H-module. Consider the invertible linear map ct : g → g,
t ∈ F r {0}, such that ct(h+m) = h+ tm (h ∈ h, m ∈ m) and define the
Lie algebra multiplication [ , ](t) on the vector space g by the rule

[x, y](t) := c−1
t

(
[ct(x), ct(y)]

)
, x, y ∈ g .

Write g(t) for the corresponding Lie algebra. The operator (ct)−1 = ct−1 :
g→ g(t) yields an isomorphism between the Lie algebras g = g(1) and g(t),
hence all algebras g(t) are isomorphic. It is easily seen that limt→0 g(t) '
hn (g/h)a = hnma.

TOME 62 (2012), FASCICULE 6



2056 Dmitri I. PANYUSHEV & Oksana S. YAKIMOVA

The resulting Lie algebra k := h n ma is called an Inönü-Wigner con-
traction of g, cf. Example 7 in [15, Chapter 7, § 2]. The corresponding
connected algebraic group is K = H n exp(ma). We identify the vector
spaces g and k using the decomposition g = h⊕m.

Remark. — For g semisimple, the contraction g bn u− is presented
in a more lengthy way, using structure constants, in [2, Remark 2.3].

1.1. To construct invariants of the coadjoint representation of k, we pro-
ceed as follows. Let f ∈ S(g) = F[g∗] be a homogeneous polynomial of de-
gree n. Using the decomposition g = h⊕m, we consider the bi-homogeneous
components of f :

f =
∑
a6i6b

f (n−i,i),

where f (n−i,i) ∈ Sn−i(h) ⊗ Si(m) ⊂ Sn(g), and both f (n−a,a) and f (n−b,b)

are assumed to be nonzero. In particular, f (n−b,b) is the bi-homogeneous
component having the maximal degree relative to m. Since g(t) and k are
just the same vector spaces, we also can regard each f (n−i,i) as an element
of Sn(g(t)) or Sn(k).

Theorem 1.1. — If f ∈ Sn(g)G = F[g∗]Gn , then f (n−b,b) ∈ Sn(k)K =
F[k∗]Kn .

Proof. — The isomorphism of Lie algebras ct−1 : g → g(t) implies that∑
a6i6b t

−if (n−i,i) ∈ S(g(t))G(t) for all t 6= 0. It is harmless to replace the
last expression with the G(t)-invariant f(t) :=

∑
a6i6b t

n−if (n−i,i). Since
f(t) is killed by g(t) for all t 6= 0, its limit at 0, which is f (n−b,b), is killed
by limt→0 g(t) = k. Hence f (n−b,b) is K-invariant. �

Let us say that f• := f (n−b,b) is the highest component of f ∈ F[g∗]Gn
(with respect to the contraction g  k). Denote by L•(F[g∗]G) the linear
span of {f• | f ∈ F[g∗]G is homogeneous}. Clearly, it is a graded algebra,
and Theorem 1.1 implies that L•(F[g∗]G) ⊂ F[k∗]K . We say that L•(F[g∗]G)
is the algebra of highest components for F[g∗]G.
Invariants of the adjoint representation of k can be constructed in a

similar way. Set m∗ := h⊥, the annihilator of h in g∗. Likewise, h∗ = m⊥.
Then g∗ = m∗ ⊕ h∗, and the adjoint operator c∗t : g∗ → g∗ is given by
c∗t (m∗ + h∗) = t−1m∗ + h∗ (m∗ ∈ m∗, h∗ ∈ h∗). Having identified q∗ and
k∗, we can play the same game with homogeneous elements of S(g∗) = F[g].
If f̃ ∈ Sn(g∗), then f̃ (i,n−i) denotes its bi-homogeneous component that
belongs to Si(m∗)⊗ Sn−i(h∗). The resulting assertion is the following:

ANNALES DE L’INSTITUT FOURIER



A REMARKABLE CONTRACTION OF SEMISIMPLE LIE ALGEBRAS 2057

Theorem 1.2. — For f̃ ∈ Sn(g∗)G, let f̃ (a,n−a) be the bi-homogeneous
component with minimal a, i.e., having the maximal degree relative to
h∗ = m⊥. Then f̃ (a,n−a) ∈ Sn(k∗)K .

Likewise, we write f̃• := f̃ (a,n−a) and consider the algebra of highest
components, L•(F[g]G), which can be regarded as a graded subalgebra of
F[k]K .

Lemma 1.3. — The graded algebras F[g∗]G and L•(F[g∗]G) have the
same Poincaré series, i.e., dimF[g∗]Gn = dimL•(F[g∗]Gn ) for all n ∈ N; and
likewise for F[g]G and L•(F[g]G).

Proof. — Actually, the assertion concerns vector spaces. Let Ṽ = ⊕i∈ZṼi
be a finite-dimensional Z-graded vector space and V an arbitrary subspace
of Ṽ . For v ∈ V , let v• denote the highest component of v with respect to
the Z-grading. Set L•(V ) = span{v• | v ∈ V }. We claim that there is a
basis for V , say (v1, . . . , vm), such that (v•1 , . . . , v•m) is a basis for L•(V ).
(Left to the reader.) In particular, dimV = dimL•(V ).
Now, apply this claim to Ṽ = F[g∗]n =

⊕
i F[g∗](i,n−i) and V = F[g∗]Gn .

�

It is not always the case that L•(F[g∗]G) = F[k∗]K or L•(F[g]G) = F[k]K .
For instance, we will see below that, for g semisimple and q = bn(u−)a, such
an equality holds only for the invariants of the coadjoint representation. By
the very construction, the algebras L•(F[g∗]G) and L•(F[g]G) are bi-graded.
Moreover, it follows from [10, Theorem 2.7] that the algebras F[k∗]K and
F[k]K are always bi-graded.

1.2. If g is semisimple, then we may identify g and g∗ (and hence S(g)
and S(g∗)) using the Killing form κ. If h is also reductive, then κ is non-
degenerated on h and one can take m to be the orthocomplement of h

with respect to κ. Then h⊥ ' m and the decompositions of g and g∗

considered in the general setting of Inönü-Wigner contractions coincide.
Moreover, we can also identify the vector spaces k and k∗. However, to
obtain invariants of the adjoint and coadjoint representations of q, one has
to take the bi-homogeneous components of maximal degree with respect to
different summands in the sum g = h⊕m. In this situation, Theorems 1.1
and 1.2 admit the following simultaneous formulation:
Suppose that f ∈ F[g]Gn ' S(g)Gn and f =

∑
a6i6b f

(n−i,i) is the bi-
homogeneous decomposition relative to the sum g = h ⊕ m. (That is,
degh f

(n−i,i) = n− i, etc.) Then, upon identifications of vector spaces g,k,
and k∗, we have f (n−a,a) ∈ F[k]K and f (n−b,b) ∈ F[k∗]K .

TOME 62 (2012), FASCICULE 6



2058 Dmitri I. PANYUSHEV & Oksana S. YAKIMOVA

Such a phenomenon was already observed in the case of Z2-contractions
of semisimple Lie algebras, i.e., if h is the fixed-point subalgebra of an
involution, see [10, Prop. 3.1].

2. Invariants of the adjoint representation of Q

In this section, we describe the algebra of invariants of the adjoint rep-
resentation of Q.

To prove that a certain set of invariants generates the whole algebra of
invariants, we use the following lemma of Igusa [6].

Lemma 2.1 (Igusa). — Let A be an algebraic group acting regularly
on an irreducible affine variety X. Suppose that S is an integrally closed
finitely generated subalgebra of F[X]A and the morphism π :X→SpecS =:
Y has the properties:

(i) the fibres of π over a dense open subset of Y contain a dense A-
orbit;

(ii) Im π contains an open subset Ω of Y such that codim(Y r Ω) > 2.
Then S = F[X]A. In particular, the algebra of A-invariants is finitely gen-
erated.

Remark 2.2. — A proof of the Igusa lemma is given, for example, in [11,
Lemma 6.1]. This proof shows that the above condition (i) can be replaced
with the condition that S ⊂ F[X]A generates the field F(X)A. (In fact, it
is not hard to prove that (i) holds if and only if S separates A-orbits in a
dense open subset of X if and only if S generates F(X)A.)

Lemma 2.3. — If t ∈ t is regular and u ∈ u is arbitrary, then (i) t+ u

and t belong to the same Ad U -orbit; (ii) (t+ u) ◦ u− = u−.

Proof.
(i) Clearly, (Ad U)t ⊂ t+u for all t ∈ t. If t is regular, then dim(Ad U)t =

dim u. It is also known that the orbits of a unipotent group acting on an
affine variety are closed. Hence (Ad U)t = t+ u.

(ii) This is obvious if u = 0. In general, this follows from (i).
�

Theorem 2.4. — We have F[q]Q ' F[t], and the quotient morphism
πQ : q→ t is given by (t+ u, η) 7→ t.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Clearly, F[q]Q = (F[q]N )B . We prove that 1) F[q]N ' F[b] and
2) F[b]B ' F[t].
1) Consider the projection πN : q→ q/(u−)a ' b. Clearly,N acts trivially

on q/(u−)a and πN is a surjective N -equivariant morphism. Hence F[b] ⊂
F[q]N . By Lemma 2.1, the equality F[b] = F[q]N will follow from the fact
that general fibres of πN are N -orbits.

If t ∈ t is regular and u ∈ u is arbitrary, then b = t + u is a regular
semisimple element of g. By (0.2) with s = 1, we have

AdQ(N)(b, η) = (b, η + b ◦ u−).

It then follows from Lemma 2.3 that AdQ(N)(b, η) = (b, u−). On the other
hand, π−1

N (b) = (b, u−), i.e., π−1
N (b) is a single N -orbit whenever b is regular

semisimple.
2) Consider the projection πB : b→ b/u ' t. Clearly, B acts trivially on

b/u and πB is a surjective B-equivariant morphism. Hence F[t] ⊂ F[b]B . By
Lemma 2.1, the equality F[t] = F[b]B will follow from the fact that general
fibres of πB are B-orbits. Again, it follows from Lemma 2.3 that if t ∈ t is
regular, then (Ad B)t = t+ u = π−1

B (t). �

Remark 2.5. — Theorem 2.4 can be proved in a less informative way.
Notice that [q, q] = u n (u−)a and therefore F[t] ⊂ F[q]Q. Let x ∈ t be
regular semisimple. Then qx ' gx = t, since g and q are isomorphic as T -
modules. The fibres of the morphism πQ : q→ t, defined in Theorem 2.4, are
linear spaces of dimension dim q − dim t = dim(Ad Q)x. Hence a general
fibre contains a dense Q-orbit and Lemma 2.1 applies. We also see that
the algebra F[t] separates Q-orbits in q in general position and therefore
F(q)Q = F(t).

Comparing with the adjoint representation of g, we see that, for q, the
algebra of invariants remains polynomial, but the degrees of basic invariants
drastically decrease! All the basic invariants in F[q]Q are of degree 1. This
clearly means that here L•(F[g]G) $ F[q]Q.

3. Invariants of the coadjoint representation of Q

In this section, we describe the algebra of invariants of the coadjoint
representation of Q. The coadjoint representation is much more interesting
since F[q∗] = S(q) is a Poisson algebra, S(q)Q is the centre of this Poisson
algebra, and S(q) is related to the enveloping algebra of q via the Poincaré-
Birkhoff-Witt theorem.

TOME 62 (2012), FASCICULE 6



2060 Dmitri I. PANYUSHEV & Oksana S. YAKIMOVA

Since q is isomorphic to b ⊕ g/b ' b ⊕ u− as vector space, the dual
vector space q∗ is isomorphic to (g/b)∗ ⊕ b∗. Using κ, we identify b∗ with
b−: = t ⊕ u− and (g/b)∗ with u. To stress that q∗ is regarded as a Q-
module and b− appears to be a Q-stable subspace, we write q∗ = u ∝ b−.
If (b, η) ∈ q and (u, ξ) ∈ q∗, i.e., u ∈ u and ξ ∈ b−, then the coadjoint
representation of q is given by the formula:

(3.1) (b, η)?(u, ξ) = ([b, u], φ(u, η) + b ? ξ).

Here (b, ξ) 7→ b ? ξ is the coadjoint representation of b, and

φ : u× u− ' u× u∗
ψ→ b∗ ' b−,

where ψ is the moment map associated with the b-module u. Upon our
identifications, the mapping φ is directly defined by

κ(b, φ(u, η)) := κ([b, u], η) = −κ(u, b ◦ η).

Recall some well-known properties of the B-module u:
• If ẽ ∈ u is regular nilpotent, then gẽ ⊂ u [8] and hence (Ad B)ẽ is

dense in u.
• For any e ∈ u, the irreducible components of (Ad G)e∩ u are called

orbital varieties and each of them has dimension 1
2 dim(Ad G)e [14,

4.3.11].
Let MorG(g, g) denote the F[g]G-module of polynomial G-equivariant

morphisms F : g → g. By work of Kostant [8], MorG(g, g) is a free graded
F[g]G-module of rank l. It was noticed by Th. Vust [16, Char. III, § 2] (see
also [12]) that a homogeneous basis of this module is obtained as follows. Let
f1, . . . , fl be homogeneous algebraically independent generators of F[g]G.
Each differential dfi determines a polynomial G-equivariant morphism (co-
variant) from g to g∗. Identifying g with g∗ via κ yields a homogeneous
covariant (or, vector field) Fi = gradfi : g→ g. Then F1, . . . , Fl form a ho-
mogeneous basis for MorG(g, g). If deg fi = di, then degFi = di − 1 =: mi.
It is customary to say that {m1, . . . ,ml} are the exponents of (the Weyl
group of) g. Recall that if g is simple and m1 6 · · · 6 ml, then m1 = 1,
m2 > 2, and mi +ml−i+1 is the Coxeter number of g.

The covariants Fi have the following properties:
(i) Fi(x) ∈ gx for all i ∈ {1, 2, . . . , l} and x ∈ g;
(ii) The vectors F1(x), . . . , Fl(x) ∈ g are linearly independent if and

only if x ∈ greg [8, Theorem 9].
It follows that (F1(x), . . . , Fl(x)) is a basis for gx if and only if x ∈ greg.

Lemma 3.1. — If x ∈ b, then Fi(x) ∈ b. If y ∈ u, then Fi(y) ∈ u.

ANNALES DE L’INSTITUT FOURIER
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Proof. — If x ∈ b∩greg, then gx ⊂ b. (Indeed, [b, x] ⊂ u, hence dim bx >
rk g. On the other hand, bx ⊂ gx and dim gx = rk g.) Hence Fi(x) ∈ gx ⊂ b.
Since b ∩ greg is open and dense in b, the assertion follows.
If y ∈ u∩ greg, i.e., y is regular nilpotent, then gy ⊂ u [8]. The rest is the

same. �

Consequently, letting Pi := Fi|u, we obtain the covariants P1, . . . , Pl ∈
MorB(u, u). Actually, we consider the Pi’s as B-equivariant morphisms
Pi : u→ u ⊂ b. Using these covariants, we define polynomials P̂i ∈ F[q∗] =
F[u ∝ b−] by the formula

(3.2) P̂i(u, ξ) = κ(Pi(u), ξ), i = 1, . . . , l,

where u ∈ u and ξ ∈ b−.

Lemma 3.2. — We have P̂i ∈ F[q∗]Q.

Proof. — Since Q = B nN , it suffices to verify that P̂i is both B- and
N -invariant.

1) P̂i is B-invariant, since Pi is B-equivariant.
2) For polynomials obtained from covariants Pi as in (3.2), the invariance

with respect to the commutative unipotent group N is equivalent to
that [Pi(u), u] = 0, u ∈ u. Indeed, for η ∈ u−, the coadjoint action of
exp(η) ∈ N is given by exp(η)?(u, ξ) = (u, ξ + φ(u, η)). Then

P̂i(exp(η)·(u, ξ)) = κ(Pi(u), ξ + φ(u, η))
= κ(Pi(u), ξ)) + κ(Pi(u), φ(u, η))

= P̂i(u, ξ) + κ([Pi(u), u], η).

Hence P̂i(exp(η)·(u, ξ)) = P̂i(u, ξ) for all η if and only if [Pi(u), u] = 0.
The latter follows from the corresponding property (i) for Fi.

�

Remark. — We prove below that P̂i is the highest component of fi ∈
F[g∗]G. In view of Theorem 1.1, this also implies that P̂i is Q-invariant.

Theorem 3.3. — The algebra F[q∗]Q is freely generated by P̂1, . . . , P̂l,
and F(q∗)Q is the fraction field of F[q∗]Q.

Proof. — Consider the morphism

π : q∗ = u ∝ b− → Al,

given by π(u, ξ) = (P̂1(u, ξ), . . . , P̂l(u, ξ)). As in Section 2, to prove that π
is the quotient by Q, we are going to apply Lemma 2.1 to π.

TOME 62 (2012), FASCICULE 6
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If e ∈ u is regular, then P1(e), . . . , Pl(e) are linearly independent and
form a basis for ge = ue. Therefore, (3.2) implies that π is onto, and
condition (ii) in Lemma 2.1 is satisfied.
Let us prove that F(q∗)Q = F(P̂1, . . . , P̂l). Consider the morphism

π̃ : q∗ → (q∗/b−)× Al = u× Al

defined by π̃(u, ξ) = (u, P̂1(u, ξ), . . . , P̂l(u, ξ)). If e ∈ u∩greg, then Eq. (3.2)
shows that π̃−1(e, a) is an affine subspace of q∗ for any a ∈ Al, and
dim π̃−1(e, a) = dim b − l = dim u. As in the proof of Theorem 2.4, this
implies that π̃−1(e, a) is a sole N -orbit. Thus, the coordinate functions on
u and P̂1, . . . , P̂l separate generic N -orbits of maximal dimension. By the
Rosenlicht theorem [1, 1.6], this implies that all these functions generate
the field of N -invariants on q∗, i.e., F(q∗)N = F(u)(P̂1, . . . , P̂l). Since B has
an open orbit in u, we have F(u)B = F. Hence

F(q∗)Q = (F(u)(P̂1, . . . , P̂l))B = F(P̂1, . . . , P̂l).

In view of Remark 2.2, this is sufficient for using Lemma 2.1, and we con-
clude that P̂1, . . . , P̂l generate the algebra of Q-invariants on q∗. �

Remark 3.4. — Although we have proved that F(q∗)N =F(u)(P̂1, . . . , P̂l),
it is not true that F[q∗]N = F[u][P̂1, . . . , P̂l]. The reason is that the mor-
phism π̃ defined in the previous proof does not satisfy condition (ii) of
Lemma 2.1. That is, the closure of the complement of Im π̃ contains a
divisor. One can prove that this divisor is equal to D × Al, where D =
u r (Ad B)ẽ = u r (u ∩ greg). Actually, we can explicitly point out a
function in F[q∗]N rF[u][P̂1, . . . , P̂l]. Let v be a non-zero vector in the one-
dimensional space bU . We can regard v as a linear function on b− and
hence on q∗. Making use of Eq. (0.1), it is not hard to check that the sub-
algebra (u−)a ⊂ q commutes with v, i.e., v is a required N -invariant in the
symmetric algebra S(q).

Recall that, for an algebraic group A with Lie algebra a, the index of a,
ind a, is defined as the minimal codimension of an A-orbit in the coadjoint
representation. By the Rosenlicht theorem, one has ind a = trdegF(a∗)A.
It is easily seen that the index cannot decrease under contractions, hence
ind q > ind g = l. The above description of the field of Q-invariants implies
that

Corollary 3.5. — ind q = l.

Theorem 3.6. — The polynomial ring F[q∗] is a free F[q∗]Q-module.
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Proof. — Since it is already known that F[q∗]Q is a polynomial alge-
bra (of Krull dimension l), it suffices to prove that the quotient morphism
π : q∗ → q∗//Q ' Al is equidimensional [13, Prop. 17.29]. This, in turn,
will follow from the fact that the null-cone N = π−1(π(0)) is of dimension
dim q−l. To estimate the dimension ofN , consider the projection p : N → u

and partition u into finitely many orbital varieties (the irreducible compo-
nents of (Ad G)ei∩u), where {ei} runs over a finite set of representatives of
all nilpotent G-orbits. Let Zi be an irreducible component of (Ad G)ei ∩ u.
Since π = (P̂1, . . . , P̂l), Eq. (3.2) shows that

dim p−1(Zi) = dimZi + dim b− dim span{P1(ei), . . . , Pl(ei)}.

As dimZi = 1
2 dim(Ad G)ei, the condition that dim p−1(Zi) 6 dim q − l

can easily be transformed into

(3.3) dim gei + 2 dim span{P1(ei), . . . , Pl(ei)} > 3l.

Recall that P1, . . . , Pl are just the restrictions to u of basic covariants
F1, . . . , Fl, and Fj = grad fj . Consequently, dim span{P1(ei), . . . , Pl(ei)}
equals the rank of the differential at e of the quotient morphism πg,G : g→
g//G. Therefore, (3.3) is precisely the inequality proved in [11, Theorem
10.6]. �

Corollary 3.7. — The enveloping algebra U(q) is a free module over
its centre Z(q).

Proof. — This is a standard consequence of the fact that F[q∗] = S(q) is
a free module over S(q)Q, S(q)Q is the centre of the Poisson algebra S(q),
and gr Z(q) = S(q)Q, cf. [8, Theorem 21], [5, Theorem 3.3]. �

Remark 3.8. — By Theorem 3.6, the irreducible components of all fibres
of π : q∗ → q∗//Q ' Al are of dimension dim q − l. However, unlike the
case of the (co)adjoint representation of g, the zero fibre of π is highly
reducible. For, if dim gei + 2 dim span{P1(ei), . . . , Pl(ei)} = 3l, then every
irreducible component of (Ad G)ei∩u gives rise to an irreducible component
of π−1(π(0)). A complete classification of nilpotent elements of g satisfying
this equality is contained in [11, § 10].

Theorem 3.9. — We have L•(S(g)G) = S(q)Q. The polynomials
P̂1, . . . , P̂l ∈ F[q∗]Q = S(q)Q are the highest components of f1, . . . , fl ∈
S(g)G in the sense of Subsection 1.1.
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Proof.
1) Since deg P̂i = deg fi for all i, it follows from Lemma 1.3 and The-

orem 3.3 that L•(S(g)G) and S(q)Q have the same Poincaré series. Hence
these algebras coincide.
2) Recall that deg fi = di = mi + 1. According to Theorem 1.1, we

have to take the decomposition g = b ⊕ u− and pick the bi-homogeneous
component of fi of maximal degree with respect to u−.

If the component f (0,di)
i ∈ Sdi(u−) were non-trivial, then it would be a

Q-invariant in S(q) and in particular a B-invariant (Theorem 1.1). Recall
that if we work in q, then u− ' g/b as B-module. Since S(g/b) ' F[u] and
F[u]B = F, we get a contradiction. Hence f (0,di)

i = 0.
Then next possible component is f (1,mi)

i ∈ b⊗ Smi(u−). Using the iden-
tifications b∗ ' b− and u∗ ' u−, we have f

(1,mi)
i ∈ F[b−]1 ⊗ F[u]mi .

That is, if considered as a function on g = b− ⊕ u, it can be written
as f (1,mi)

i (ξ, u) = κ(P̄i(u), ξ) for some morphism P̄i : u → b of degree mi.
As we have already proved that f (0,di)

i = 0, P̄i(u) is nothing but the value
of grad fi at u. Hence P̄i = Pi, and we are done. �

4. Further properties of the coadjoint representation

4.1. For the classical Lie algebras, the basic covariants Fi : g → g (and
hence Pi) have a simple description:

• if x ∈ sll+1, then Fi(x) = xi, i = 1, 2, . . . , l;
• if x ∈ sp2l or so2l+1, then Fi(x) = x2i−1, i = 1, 2, . . . , l;
• if x ∈ so2l, then Fi(x) = x2i−1, i = 1, 2, . . . , l − 1. The covariant
Fl that is related to the pfaffian is described as follows. Let x be a
skew-symmetric matrix of order 2l. For i 6= j, let x[ij] be the skew-
symmetric sub-matrix of order 2l − 2 obtained by deleting ith and
jth row and column. Set aij = Pf(x[ij]) if i 6= j, and aii = 0. Then
Fl(x) = (aij)2l

i,j=1. Clearly, degFl = l − 1, as required.
Results of Sections 2 and 3 explicitly yield the bi-degrees of basic in-

variants for q = b n (u−)a. For F[q]Q, all the basic invariants have bi-
degrees (1, 0). For F[q∗]Q, the basic invariants have bi-degrees (mi, 1), i.e.,
P̂i ∈ Smi(u−)⊗ b. In particular, for the coadjoint representation, the total
degrees of the basic Q-invariants remain the same as for G.

4.2. Hereafter we assume that g is simple and the basic invariants
f1, . . . , fl ∈ F[g]G are numbered such that di 6 di+1. Then dl = h is
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the Coxeter number of g. We show that the corresponding Q-invariant P̂l
has a rather simple form. In fact, it turns out to be a product of linear
forms.
Let ∆ be the root system of (g, t) and ∆+ the subset of positive roots

corresponding to u. Let Π = {α1, . . . , αl} (resp. θ) be the set of simple roots
(resp. the highest root) in ∆+. Then θ =

∑l
i=1 aiαi and

∑l
i=1 ai = h− 1.

For any γ ∈ ∆, gγ denotes the corresponding root subspace, and we fix a
nonzero vector eγ ∈ gγ .

Lemma 4.1. — Up to a scalar multiple, we have P̂l = ea1
−α1
· · · eal

−αl
eθ ∈

S(q)Q.

Proof. — Recall that q = b ⊕ u− as vector space, and here eθ ∈ b and
e−αi

∈ u−. By the very construction, P̂ := ea1
−α1
· · · eal

−αl
eθ is a T -invariant

in S(q). Then, using Eq. (0.1), one readily verifies that P̂ is both U -invariant
and N -invariant. Hence P̂ is a polynomial in P̂1, . . . , P̂l. Since bi-deg P̂ =
(h−1, 1) andmi < ml for i < l, the subspace of bi-degree (ml, 1) = (h−1, 1)
in S(q)Q is one-dimensional and spanned by P̂l. Hence the assertion. �

Since dim q = dim g, ind q = ind g, and the (total) degrees of the basic
invariants of the coadjoint representations for G and Q coincide, we have
the equality

(4.1)
l∑
i=1

deg P̂i = dim q + ind q

2 ,

which is very useful in the study of the coadjoint representation, see e.g. [10,
Theorem 1.2]. Unfortunately, q does not always possess another important
ingredient, the so-called codim-2 property. Recall that x ∈ q∗ is said to be
regular if dimQ·x is maximal. The set of all regular elements is denoted by
q∗reg. It is an open subset of q∗, and we say that q has the codim-2 property
if codim(q∗ r q∗reg) > 2.

Theorem 4.2. — The algebra q does not have the codim-2 property if
g is not of type Al.

Proof. — Suppose that q has the codim-2 property. Since (4.1) is sat-
isfied, it follows from [10, Theorem 1.2] that the differentials (dP̂i)x, i =
1, . . . , l, are linearly independent if and only if x ∈ q∗reg. In particular, any
divisor D̃ ⊂ q∗ contains a point where the differentials of P̂1, . . . , P̂l are
linearly independent.
On the other hand, Lemma 4.1 shows that if ai > 2 for some i, then dP̂l

vanishes at the hyperplane {e−αi
= 0}, where e−αi

is regarded as a linear
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function on u and hence on q∗. Thus, q cannot have the codim-2 property
unless ai = 1 for all i, i.e., g is of type Al. �

To prove the converse of this theorem, we need some preparations. For
αi ∈ Π, let ui ⊂ u denote the kernel of the linear form u 7→ κ(e−αi

, u).
By [8], ur u ∩ greg = ∪iui. Set
(4.2)
Y = Y(q∗) =

{
x ∈ q∗ | (dP̂1)x, . . . , (dP̂l)x are linearly independent

}
.

Proposition 4.3. — If g = sll+1, then codim(q∗ r Y) > 2.

Proof. — Let a = (e, ξ) and a′ = (e′, ξ′) be typical elements of q∗, where
e, e′ ∈ u and ξ, ξ′ ∈ b−. According to formulae of Subsection 4.1, P̂i(e, ξ) =
κ(ei, ξ). Recall that (dP̂i)a ∈ q and 〈(dP̂i)a, a′〉 is the coefficient of t in the
expansion of P̂i(a+ ta′). Consequently,〈

(dP̂i)a, a′
〉

= κ(ei, ξ′) + κ

( ∑
k+m=i−1

eke′em, ξ

)
.

The vector (dP̂i)a has the b- and u−-components, and this equality shows
that:

• the b-component of (dP̂i)a equals ei;
• the u−-component of (dP̂i)a, say (dP̂i)a{u−}, is determined by the
equation κ((dP̂i)a{u−}, e′) = κ(

∑
k+m=i−1 e

ke′em, ξ).
Let Oreg and Osub denote the regular and subregular nilpotent orbits

in sll+1, respectively. Then Osub ∩ u = ∪juj . If e ∈ Oreg ∩ u, then the b-
components of (dP̂i)(e,ξ), i = 1, . . . , l, are linearly independent, regardless
of ξ. Hence (Oreg ∩ u)× b− ⊂ Y.

If e ∈ Osub ∩ u, then the b-components of (dP̂i)(e,ξ), i = 1, . . . , l − 1, are
still linearly independent for any ξ, but el = 0. However, if e is sufficiently
general, then the u−-component of (dP̂l)(e,ξ) appears to be nonzero for all
ξ that belong to a dense open subset of b−. More precisely, suppose that
e ∈ uj and κ(e, e−αi

) 6= 0 for i 6= j. Taking e′ = eαj
, one readily computes

that
∑
k+m=l−1 e

ke′em = ej−1eαi
el−j is a nonzero multiple of eθ. Hence,

one can take any ξ such that κ(ξ, eθ) 6= 0.
Thus, there is a dense open subset Ω ⊂ ∪iui × b− such that Ω ⊂ Y, and

the assertion follows. �

It turns out that Proposition 4.3 together with (4.1) is sufficient to con-
clude that for g = sll+1, q has the codim-2 property. This follows from the
following general assertion:
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Theorem 4.4. — Let R be a connected algebraic group with Lie al-
gebra r. Suppose that (i) F[r∗]R = F[p1, . . . , pm] is a graded polynomial
algebra, (ii) ind r = m, and (iii)

∑m
i=1 deg pi = (dim r + ind r)/2. Then the

following conditions are equivalent:
(1) codim(r∗ r r∗reg) > 2;
(2) codim(r∗rY(r∗)) > 2, where Y(r∗) is defined as in (4.2) via the pi’s.

If these conditions are satisfied, then actually r∗reg = Y(r∗).

Proof. — The implication (1) ⇒ (2) is already proved in [10, Theo-
rem 1.2].
To prove the converse, one can slightly adjust the proof given in [10], see

also the proof of Theorem 1.2 in [9]. Set n = dim r. Let T (r∗) denote the
tangent bundle of r∗. The main part of that proof consists in a construction
of two homogeneous polynomial sections of ∧n−mT (r∗), denoted V1 and
V2. Write (Vi)x for the value of Vi at x ∈ r∗. These sections have the
following properties:

(a) There exist nonzero polynomials F1, F2 ∈ F[r∗] such that
F1V1 = F2V2;

(b) (V1)x 6= 0 if and only if x ∈ r∗reg
(c) (V2)x 6= 0 if and only if x ∈ Y(r∗);
(d) degV1 = (n−m)/2 and degV2 =

∑m
i=1(deg pi − 1).

This only requires assumptions (i) and (ii). If (iii) is also satisfied, then
degV1 = degV2. Therefore either of conditions (1),(2) implies the other.
Moreover, properties (a) and (b) imply that if (1) is satisfied, then degF2 =
0, i.e., F2 ∈ F×. Likewise, (a) and (c) imply that if (2) is satisfied, then
degF1 = 0. This yields the last assertion. �

Since q = bn u− does not have the codim-2 property if g is not of type
Al, we cannot immediately conclude that in all cases x ∈ q∗reg if and only
if (dP̂1)x, . . . , (dP̂l)x are linearly independent. Nevertheless, the fact that
P̂1, . . . , P̂l are the highest components of the basic G-invariants f1, . . . , fl
allows to circumvent this difficulty. It can be shown in general (see [17])
that the coadjoint representation (Q : q∗) has the following property:

Claim 4.5. — For x ∈ q∗ the following conditions are equivalent:
• The orbit Q·x is of maximal dimension, which is dim q − l in this

situation;
• The differentials (dP̂i)x, i = 1, . . . , l, are linearly independent.

This generalise a result of Kostant obtained for semisimple Lie alge-
bras [8, Theorem 9].
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