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INHOMOGENEOUS EXTREME FORMS

by Mathieu DUTOUR SIKIRIĆ,
Achill SCHÜRMANN & Frank VALLENTIN (*)

Abstract. — G.F. Voronoi (1868–1908) wrote two memoirs in which he de-
scribes two reduction theories for lattices, well-suited for sphere packing and cov-
ering problems. In his first memoir a characterization of locally most economic
packings is given, but a corresponding result for coverings has been missing. In
this paper we bridge the two classical memoirs.

By looking at the covering problem from a different perspective, we discover the
missing analogue. Instead of trying to find lattices giving economical coverings we
consider lattices giving, at least locally, very uneconomical ones. We classify local
covering maxima up to dimension 6 and prove their existence in all dimensions
beyond.

New phenomena arise: Many highly symmetric lattices turn out to give uneco-
nomical coverings; the covering density function is not a topological Morse function.
Both phenomena are in sharp contrast with the packing problem.
Résumé. — G.F. Voronoi (1868–1908) a écrit deux mémoires dans lesquels il

décrit deux théories de réduction pour les réseaux, l’une adaptée aux empilements
de sphères et l’autre aux recouvrements de sphères. Dans son premier mémoire
une charactérisation des empilements de sphères qui sont localement les plus éco-
nomiques est donnée. Dans cet article, nous relions ces deux mémoires classiques.

En considérant le problème sous un autre angle, nous faisons apparaître l’ana-
logue manquant. Au lieu de considérer les réseaux donnant des recouvrements lo-
calement économiques, nous considérons les réseaux qui sont localement les moins
économiques. Nous classifions ces réseaux jusqu’à la dimension 6 et nous prouvons
leur existence dans les dimensions suivantes.

De nouveaux phénomènes apparaissent : de nombreux réseaux de haute symétrie
donnent des réseaux non économiques ; la fonction de densité de recouvrement n’est
pas une fonction topologique de Morse. Ces deux phénomènes sont en contraste
frappant avec le cas des empilements de sphères.

Keywords: lattices, Delone polytopes, spherical t-designs, sphere packing, sphere cover-
ing, Voronoi reduction theory.
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1. Introduction

A basis of the n-dimensional Euclidean space Rn defines a lattice con-
sisting of all integer linear combinations. A lattice defines a sphere packing
in the following way: One centers congruent balls at the lattice points with
maximum radius such that interiors do not intersect. Similarly, it defines
a sphere covering: One places congruent balls with minimum radius such
that each point in Rn is covered by a ball.

The (lattice sphere) packing problem asks for a lattice which gives the
most economical packing, i.e., one which maximizes the fraction of space
covered by the balls. The (lattice sphere) covering problem asks for a lattice
which gives the most economical covering, i.e., one which minimizes the
average number of balls covering a point in Rn.
Many researchers were attracted by the packing problem. One important

reason for this is that low-dimensional lattices which give good packings are
often related to objects of exceptional beauty in combinatorics, geometry,
and number theory. A vivid account of this is the monograph [9] by Conway
and Sloane with over 100 pages of references which since the appearance
of its first edition in 1988 spurred a tremendous amount of activity.

Our computational studies in [36], [33], [34], [18] show that the covering
problem behaves very differently. Many of the best known coverings could
only be discovered with computer assistance. They were found by a numer-
ical convex continuous optimization procedure; some of them do not have
a rational representation, and their beauty is not immediately apparent.

Furthermore, in [33] it came as a surprise that the root lattice E8 does
not even give a locally optimal covering whereas the Leech lattice Λ24 does.
Both lattices are the unique optimum, up to scaling and isometries, for the
lattice packing problem which was proved by Blichfeldt [4] (optimality of
E8), Vetchinkin [38] (uniqueness of E8) and Cohn, Kumar [7] (optimality
and uniqueness of Λ24). In many respects both lattices behave similarly.
The shortest vectors of both lattices give spherical point configurations
which are optimal for many other extremal questions in geometry, like the
kissing number problem and more generally for potential energy minimiza-
tion which is proved in Cohn and Kumar’s work on universally optimal
point configurations on spheres [6].
From further experimental studies we saw that E8 is almost a local cov-

ering maximum, that is, the covering density decreases for almost all per-
turbations of E8. We say that E8 is a covering pessimum. This raised the
question: Do local covering maxima exist (although local packing minima
do not exist)? The first local covering maximum E6 is found in [32].

ANNALES DE L’INSTITUT FOURIER
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In this paper we develop the theory of local covering maxima. It turns out
that our theory gives a new link between Voronoi’s two classical memoirs
[39], [40].

We think that this new theory of local covering maxima is interesting for
several reasons: First of all it shows what happens to the “nice” lattices,
like D4, E6, E7, E8, K12, BW16, Λ24, in the theory of lattice coverings: With
the exception of the Leech lattice, all these “nice” lattices give locally very
uneconomical sphere coverings. Lattices which have large covering density
also come up in connection to Minkowski’s conjecture. It states that every
lattice L ⊆ Rn with detL = 1 satisfies

sup
x∈Rn

inf
y∈L
|(x1 − y1) · · · (xn − yn)| 6 2−n,

and equality holds only for L = diag(a1, . . . , an)Zn with |a1 · · · an| = 1.
Curtis T. McMullen [25] showed that Minkowski’s conjecture follows from
the following covering conjecture: The (normalized) covering density of
every n-dimensional lattice which is generated by its minimal vectors is
bounded above by

√
n/2 and equality holds only for lattices which are

similar to the standard lattice Zn. Based on the notions developed in this
paper, the second author describes an algorithm to decide the covering
conjecture for every fixed dimension n in [32, Chapter 5.7].
In Section 2 we start by formulating a characterization of local covering

maxima in the spirit of Voronoi. In [39] Voronoi gives a similar charac-
terization of local packing maxima extending earlier work of Korkine and
Zolotarev. Then, Section 3 contains a proof of our characterization. It is
based on using the Karush-Kuhn-Tucker condition from nonlinear opti-
mization.

In Section 4 we formulate and prove a sufficient condition for being a
local covering maximum in the spirit of Venkov’s theory of strongly perfect
lattices: It uses the t-design property of spherical point configurations. In
[37] Venkov gives a similar condition for local packing maxima. It turns out
that many interesting lattices satisfy this condition.
In Section 5 we show that there are only finitely many local covering

maxima in every dimension and we give a classification which is complete
up to dimension 6. For dimension 7 and 8 we give a list of all known local
covering maxima. There is strong numerical evidence that these lists are
complete.
One important difference between the packing problem and the covering

problem is discussed in Section 6: Ash [1] proved that the packing density

TOME 62 (2012), FASCICULE 6
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function is a topological Morse function. We show that the covering density
function does not have this property if the dimension is at least four.
In the last section we give and analyze a construction showing that there

are local covering maxima in all dimensions n > 6.

2. Extremality = Perfectness and Eutaxy

In his first memoir Voronoi gives a characterization of locally optimal
packings, building on previous works by Korkine and Zolotarev. For this he
uses the notions of extremality, perfectness and eutaxy, which are naturally
defined in the language of positive definite quadratic forms (PQFs).

Some preliminaries: There is a one-to-one correspondence between lattice
bases up to orthogonal transformations and PQFs by taking the Gram
matrix of the lattice basis. We identity the space of quadratic forms in n
variables with the space of real symmetric n × n-matrices. It is an

(
n+1

2
)
-

dimensional Euclidean space with inner product 〈Q,Q′〉 = trace(QQ′),
where Q and Q′ are quadratic forms. By this identification we can evaluate
a quadratic form Q at a vector x ∈ Rn by

Q[x] = xtQx = 〈Q, xxt〉.

Now we review Voronoi’s characterization for the homogeneous pack-
ing case where we refer to the monographs [24] of Martinet and [32] of
Schürmann for proofs and further information. Then we present our char-
acterization for the inhomogeneous covering case.

2.1. Homogeneous case

Let Q be a positive definite quadratic form in n variables. The Hermite
invariant of Q is

γ(Q) = λ(Q)
(detQ)1/n ,

where
λ(Q) = min

v∈Zn\{0}
Q[v],

is the homogeneous minimum of Q. It is scale-invariant. Maximizing the
packing density among lattices is equivalent to maximizing the Hermite
invariant among PQFs.
Voronoi gave a characterization of the local maxima of the Hermite in-

variant using the geometry of the shortest vectors

MinQ = {v ∈ Zn : Q[v] = λ(Q)}.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — Let Q be a PQF.
(i) It is called extreme if it is a local maximum of the Hermite invariant.
(ii) It is called perfect if the linear space spanned by

{vvt : v ∈ MinQ}

has maximal possible rank
(
n+1

2
)
.

(iii) It is called eutactic if there are positive constants αv so that

Q−1 =
∑

v∈MinQ
αvvv

t.

It is called semieutactic if the constants are nonnegative, and weakly
eutactic if the constants are real, i.e., if they exist at all.

The extended notion of semieutaxy and weak eutaxy is due to Bergé and
Martinet [3]

Theorem 2.2 (Voronoi [39]). — A PQF is extreme if and only if it is
perfect and eutactic.

2.2. Inhomogeneous case

We define the inhomogeneous Hermite invariant of a PQF Q as

γi(Q) = µ(Q)
(detQ)1/n ,

where
µ(Q) = max

x∈Rn
min
v∈Zn

Q[x− v]

is the inhomogeneous minimum of Q. Like γ it is scale-invariant. Finding
extrema for the covering density among lattices is equivalent to finding
extrema for the inhomogeneous Hermite invariant among PQFs.
In the literature, so far only the local minima of the inhomogeneous

Hermite invariant have been considered, as they give economical coverings.
However, to link the homogeneous with the inhomogeneous case we have
to consider the local maxima.

In this paper we characterize local maxima of the inhomogeneous Her-
mite invariant using the geometry of closest vectors. For each point c ∈ Rn
attaining µ(Q) we define the closest vectors

MincQ = {v ∈ Zn : Q[v − c] = µ(Q)}.

Geometrically, the closest vectors give the vertices of the Delone (Cyrillic:
Delone, French: Delaunay) polytope defined by the PQF Q which has

TOME 62 (2012), FASCICULE 6
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center c: We have Q[v − c] = µ(Q) only for v ∈ MincQ and for all other
lattice points v ∈ Zn we have strict inequality Q[v − c] > µ(Q). The set
of all Delone polytopes is called the Delone subdivision of Q which is a
Zn-periodic polyhedral subdivision of Rn. The inhomogeneous minimum
of Q is at the same time the maximum squared circumradius of its Delone
polytopes.

Definition 2.3. — Let Q be a PQF.
(i) It is called inhomogeneous extreme if it is a local maximum of the

inhomogeneous Hermite invariant.
(ii) It is called inhomogeneous perfect, if for each c ∈ Rn attaining

µ(Q), the linear space spanned by{(
1
v

)(
1
v

)t
: v ∈ MincQ

}

has maximal possible rank
(
n+2

2
)
− 1.

(iii) It is called inhomogeneous eutactic, if for each c ∈ Rn attaining
µ(Q), there are positive constants αv so that(

1 ct

c cct + µ(Q)
n Q−1

)
=

∑
v∈MincQ

αv

(
1
v

)(
1
v

)t
.

It is called inhomogeneous semieutactic if the constants are non-
negative, and inhomogeneous weakly eutactic if the constants are
real, i.e., if they exist.

Now we are ready to state our principal result.

Theorem 2.4. — A PQF is inhomogeneous extreme if and only if it is
inhomogeneous perfect and inhomogeneous eutactic.

We prove this theorem in Section 3 after giving a reformulation in the
following subsection.

Let us contrast this characterization to the known characterization of
PQFs which give local minima. Barnes and Dickson [2] gave such a charac-
terization of PQFs in the case of generic PQF Q, i.e., if all Delone polytopes
of Q are simplices:
A generic PQF Q is local minimum for H if and only if one can write

Q−1 =
∑
c

λc

(
n∑
i=0

αiviv
t
i − cct

)
,

ANNALES DE L’INSTITUT FOURIER
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with nonnegative λc where the sum goes over all c attaining µ(Q) and
where Minc(Q) = conv{v0, . . . , vn} and where αi are so that

∑n
i=0 αi = 1

and c =
∑n
i=0 αivi.

Hence, this characterization resembles (semi-)eutaxy; there is no perfect-
ness here. This and the other non-generic cases where the Delone polytopes
are not all simplices are discussed in [32, Chapter 5.2.4].

2.3. Quadratic functions

Before we go on, a remark why in the definition of inhomogeneous perfect
forms the maximal possible rank is

(
n+2

2
)
−1 instead of

(
n+2

2
)
is in order: It

is
(
n+2

2
)
−1 because the vectors v of MincQ satisfy the equation Q[v− c] =

µ(Q) which translates into one linear equation in the space of quadratic
functions. This observation, due to Erdahl and Ryshkov [20], [22], [30], will
be the key to the proof of our principal result. Let us elaborate on this.
Instead of using one quadratic form, which (implicitly) defines the inho-

mogeneous minimum µ(Q) and the points c ∈ Rn attaining µ(Q), we make
things explicit by using several quadratic functions; one for each c. We shall
explain the exact relation between a PQF and “its” quadratic functions in
Section 2.4 once we have all necessary definitions.
A quadratic function in n variables can be written as

f(x) = αf + 2bf · x+Qf [x],

where αf ∈ R, bf ∈ Rn, and Qf is a quadratic form in n variables. By bf ·x
we denote the standard inner product of the two n-dimensional vectors bf
and x. We equip the space of quadratic functions with the inner product

(f, g) = αfαg + 2bf · bg + 〈Qf , Qg〉.

For x ∈ Rn we define the quadratic function

evx(y) = (1 + x · y)2,

which can be used to evaluate a quadratic function f at x by (evx, f) =
f(x). We define the Erdahl cone by

E>0 = {f : f(v) > 0 for all v ∈ Zn}.

If a quadratic function f lies in the Erdahl cone, then Qf is positive semi-
definite (see e.g., [20, Proposition 1.3]). We define the positive Erdahl cone
by

E>0 = {f ∈ E>0 : Qf is positive definite}.

TOME 62 (2012), FASCICULE 6
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Let f be a quadratic function lying in the Erdahl cone. The zero set of
f is an ellipsoid whose interior is free of integral points, points lying in Zn.
The convex hull of the integral zeroes of f is called the Delone polyhedron
of f ,

Del f = conv{v ∈ Zn : f(v) = 0}.

Note that a Delone polyhedron might be empty, bounded or unbounded.
We define the function

µ(f) = − min
x∈Rn

f(x) = max
x∈Rn

−f(x).

We will make extensive use of the fact that µ is a convex function. This
follows because evaluation is linear in f . The function µ is negative exactly
for those f having an empty zero set so that the Delone polyhedron of f is
empty.
Let f be a quadratic function lying in the positive Erdahl cone. If the zero

set of f is a non-degenerate ellipsoid (i.e., it is non-empty and bounded),
then its center is cf = −Q−1

f bf and its squared circumradius (with respect
to Qf ) is µ(f). In this case one can write

f(x) = Qf [x− cf ]− µ(f), and µ(f) = Qf [cf ]− αf .

The Hermite invariant of f ∈ E>0 is

H(f) = µ(f)
(detQf )1/n .

Note that it is invariant under multiplication by positive scalars.

Definition 2.5. — Let f be a quadratic function lying in the positive
Erdahl cone.

(i) It is called extreme if it is a local maximum of the Hermite invariant.
(ii) It is called perfect, if the linear space spanned by evv, with v ∈

vert Del f , has maximal possible rank
(
n+2

2
)
− 1.

(iii) It is called eutactic if there are positive real numbers αv, with v ∈
vert Del f , so that the following conditions hold∑

v∈vert Del f
αv evv = evcf +µ(f)

n
Q−1
f .

It is called semieutactic if the constants are nonnegative, and weakly
eutactic if the constants are real, i.e., if they exist.

The equation in the definition of eutaxy (iii) has the following geometric
interpretation: A negative multiple of the gradient of the function H, which

ANNALES DE L’INSTITUT FOURIER
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is given on the right hand side (see Lemma 3.2), lies in the interior of the
inhomogeneous Voronoi cone

V(f) = cone{evx : f(x) = 0, x ∈ Zn}.

2.4. Relation between quadratic forms and functions

Let Q be a PQF and c ∈ Rn be a point attaining the inhomogeneous
minimum µ(Q). Then the closest vectors MincQ are the vertices of the
Delone polytope Del f of the quadratic function f given by Qf = Q, bf =
Q−1c, µ(f) = µ(Q). Hence, the inhomogeneous minimum of Q is

µ(Q) = max{µ(f) : f quadratic function with Qf = Q}.

A side remark: The convexity of f 7→ µ(f) immediately implies the con-
vexity of Q 7→ µ(Q), i.e., the main result of Delone, Dolbilin, Ryshkov,
Shtogrin in [11], see also [34, Proposition 7.1] or [32, Proposition 5.1].
We can reformulate the definition of inhomogeneous perfectness and eu-

taxy: A PQF Q is inhomogeneous perfect if all quadratic functions f with
Qf = Q and µ(f) = µ(Q) are perfect. A PQF Q is inhomogeneous eutactic
if all quadratic functions f with Qf = Q and µ(f) = µ(Q) are eutactic.
With this, Theorem 2.4 follows immediately from the following theorem.

Theorem 2.6. — A quadratic function lying in the positive Erdahl cone
is extreme if and only if it is perfect and eutactic.

2.5. Relation to lattices

It is well-known that there is a one-to-one correspondence between no-
tions for PQFs (up to unimodular transformations) and notions of lattices
(up to orthogonal transformations) which we briefly summarize in the fol-
lowing table:

PQF lattice
determinant volume of fundamental domain
homogeneous minimum packing radius
Hermite invariant packing density
inhomogeneous minimum covering radius
inhomogenous Hermite invariant covering density
The relation between quadratic functions and lattices is not that close.

Although we use quadratic functions to describe individual Delone poly-
topes (and so individual vertices of the Voronoi cell of a lattice), some
quadratic functions correspond to Delone polytopes, others do not.

TOME 62 (2012), FASCICULE 6
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3. Proof of Theorem 2.6

The proof of our principal theorem is an analysis of local maxima of a
differentiable function satisfying inequality constraints. We first recall some
background from nonlinear optimization: sufficient and necessary criteria
for a function to have a local maximum. Then we specialize this to our
situation of the Hermite invariant of a quadratic function.

3.1. Nonlinear optimization

We just state the result and refer to any book on nonlinear optimization
for more details, e.g., the book by Boyd and Vandenberghe [5, Chapter 5].

Let E be a Euclidean space with inner product x · y and let p : E → R
and q1, . . . , qk : E → R be differentiable functions. Assume, we want to
determine whether or not p has a local maximum x0 on the boundary of
the set

G = {x ∈ E : qi(x) > 0 for i = 1, . . . , k}.
In a sufficiently small neighborhood of x0, the functions p and qi can be
linearized and approximated by affine functions:

x 7→ p(x0) + (grad p)(x0) · (x− x0).

We define the normal cone of G at x0 by

N(x0) = cone{−(grad qi)(x0) : i = 1, . . . , k}.

Proposition 3.1. — Suppose x0 satisfies (grad p)(x0) 6= 0 and qi(x0) =
0, as well as (grad qi)(x0) 6= 0, for i = 1, . . . , k.

(i) The function p attains an isolated local maximum on G at x0, if

(grad p)(x0) ∈ intN(x0),

where intN(x0) is the interior of the normal cone.
(ii) The function p does not attain a local maximum on G at x0, if

(grad p)(x0) 6∈ N(x0).

3.2. Proof of Theorem 2.6

First we compute the gradient of the Hermite invariant:

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.2. — The Taylor series of the Hermite invariant H at the
quadratic function f0 lying in the positive Erdahl cone is

1
(detQf0)1/n

(
µ(f0)−

(
evcf0

+µ(f0)
n

Q−1
f0
, f − f0

)
+ h.o.t.

)
,

where h.o.t. stands for higher order terms.

Proof. — The Taylor series of the functional µ at f0 is

µ(f0)− (evcf0
, f − f0) + h.o.t.,

and the gradient of the determinant is (grad det)(Q) = (detQ)Q−1. �

We need the following convexity result. It implies that local maxima
of the Hermite invariant can only be attained at the extreme rays of the
positive Erdahl cone. This and the existence of these local maxima, which
we will establish in the next section, shows that the interior of the Erdahl
cone is not equal to the positive Erdahl cone; although it is of course
contained in it.

Lemma 3.3. — Let f1 and f2 be two quadratic functions in the positive
Erdahl cone having positive Hermite invariants. Then, the maximum of the
Hermite invariant H on cone{f1, f2} is only attained at its extreme rays
cone{f1} or cone{f2}.

Proof. — We may assume that f1 and f2 are not collinear. Since H is
scale-invariant for positive scalars we may assume that µ(f1) = µ(f2). It is
sufficient to prove that

(3.1) H(tf1 + (1− t)f2) < tH(f1) + (1− t)H(f2)

holds for all 0 < t < 1. The convexity of the function µ and the convexity
of the function Q 7→ (detQ)−1/n, immediately give the inequality (3.1),
but only with “6” instead of “<”.

Since the function Q 7→ (detQ)−1/n is strictly convex (originally due to
Minkowski [26, §8]) we have equality in (3.1) if and only if both functions

t 7→ µ(tf1 + (1− t)f2), and t 7→ Qtf1+(1−t)f2

are constant for 0 6 t 6 1. Suppose this is the case, then

0 = µ(tf1 + (1− t)f2)− tµ(f1)− (1− t)µ(f2) = −t(1− t)Qf1 [bf1 − bf2 ],

and hence bf1 = bf2 . From this it follows that αf1 = αf2 , and hence f1,
tf1 + (1− t)f2 and f2 all coincide which contradicts the assumption. �

TOME 62 (2012), FASCICULE 6
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Note that the lemma and its proof show that the function H is strictly
convex on the line segment connecting f1 and f2 if µ(f1) = µ(f2) and if µ
is positive on the line segment.
Now we can finish the proof.
Proof of Theorem 2.6. — Suppose that f0 is perfect and eutactic. Since

the Hermite function is invariant with respect to positive scaling, we can
work with the Erdahl cone intersected with the affine hyperplane Hf0 or-
thogonal to f0 and containing f0. Consider the set

Gf0 = {f ∈ E>0 ∩Hf0 : (evv, f) > 0, v ∈ vert Del f0}.

Since f0 is perfect, the functions evv, with v ∈ vert Del f0, span a subspace
of codimension 1 in the

(
n+2

2
)
-dimensional space of quadratic functions.

Hence, for a sufficiently small neighborhood Nf0 of the point f0 we have

Nf0 ∩Gf0 = Nf0 ∩ (E>0 ∩Hf0).

Since f0 is eutactic and because of the gradient computation in Lemma 3.2
we have that −(gradH)(f0) lies in the interior of the inhomogeneous
Voronoi cone V(f0). Here we take the interior within the affine hyper-
plane Hf0 . Applying Proposition 3.1 (i) shows that f0 is a local maximum
of H.
Conversely, suppose that f0 is extreme. Then by Lemma 3.3 we know

that f0 has to lie on an extreme ray of the Erdahl cone, hence it is perfect.
Suppose that f0 is not eutactic. Proposition 3.1 (ii) shows that the only
situation which can occur is that −(gradH)(f0) lies on the boundary of
the inhomogeneous Voronoi cone V(f0). Then, by Farkas’ lemma (see e.g.,
Schrijver [31, Chapter 7.3]), there exists a quadratic function h in the affine
hyperplane Hf0 orthogonal to f0 and containing f0 so that{

(evv, h) > 0, for all v ∈ vert Del f0,
((gradH)(f0), h) = 0.

For λ > 0, consider the univariate function

ϕα(λ) = µ(f0 + λ(h+ αf0)).

We can choose α so that

0 = ∂ϕα
∂λ

(0) = ((gradµ)(f0), h+ αf0),

because ((gradµ)(f0), f0) = µ(f0) 6= 0. Since ϕα is convex and because
∂ϕα
∂λ (0) = 0, we have

ϕα(λ) > ϕα(0).
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For λ > 0 consider the univariate function

ψα(λ) = det(Qf0 + λ(Qh + αQf0))−1/n.

Since ψα is strictly convex, we have for λ > 0

ψα(λ) > ψα(0) + ∂ψα
∂λ

(0)λ.

Taking the product shows

H(f0 + λ(h+ αf0)) = ϕα(λ)ψα(λ) > ϕα(0)ψα(0) = H(f0),

because ∂ψα
∂λ (0) > 0. Hence, f0 is not extreme. �

4. Examples — Strongly inhomogeneous perfect forms

Venkov introduced strongly perfect forms in [37]. Strongly perfect forms
are PQFs in which the shortest vectors carry a spherical 4-design.

Theorem 4.1 (Venkov [37]). — Strongly perfect forms are extreme.

The notion of spherical designs is due to Delsarte, Goethals, Seidel [12].
Generally, finitely many points X in Rn carry a spherical t-design (with
respect to a PQF Q) if they lie on a sphere

SQ(c, r) = {x ∈ Rn : Q[x− c] = r2}, with c ∈ Rn, and r ∈ R,

and so that for all polynomials f up to degree t we have
1
|X|

∑
x∈X

f(x) =
∫
SQ(c,r)

f(x)dω(x),

where ω is the normalized surface measure on SQ(c, r). The maximal t for
which X carries a spherical t-design is called its strength which we denote
by s(X). An equivalent, alternative characterization of spherical t-designs
is the following: The points X carry a spherical t-design (with respect to
a PQF Q) if there exists c ∈ Rn and r ∈ R so that the following equalities
hold for all k 6 t and all y ∈ Rn:

∑
x∈X

〈
Q, (x− c)(y − c)t

〉k =


0, for all odd k,

1·3···(k−1)
n(n+2)···(n+k−2) |X|r

k/2Q[y − c]k/2,

for all even k.

For the proof of Theorem 4.1 Venkov used Voronoi’s characterization of
extreme PQFs in Theorem 2.2. He shows that having a spherical 2-design
already implies eutaxy, and having a spherical 4-design implies perfectness.
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Theorem 4.1 gives a uniform way for showing that many remarkable
PQFs are extreme. It applies e.g., to the forms of the root lattices D4,
E6, E7, E8, the Coxeter-Todd lattice K12, the Barnes-Wall lattices BW2d ,
with d > 3, the laminated lattice Λ23, the shorter Leech lattice O23, the
Leech lattice Λ24, the Thompson-Smith lattice Λ248. All but the last case
are treated in Venkov [37]. The result that the Barnes-Wall lattices are
strongly perfect is due to Nottebaum [29]. For the Thompson-Smith lattice
see Lempken, Schröder, Tiep [23]. In the last two cases it is interesting to
note that one can show the strong perfectness of BW2d and Λ248 without
having the list of all minimal vectors (in fact at the time of writing not
even the inhomogeneous minimum is known) but using properties of the
automorphism group of BW2d and Λ248 only.
Now we adapt the concept of strong perfection to the inhomogeneous

case.

Definition 4.2. — Let Q be a PQF. It is called strongly inhomoge-
neous perfect, if for each c ∈ Rn attaining µ(Q), the closest vectors MincQ
carry a spherical 4-design.

Theorem 4.3. — Inhomogeneous strongly perfect forms are inhomoge-
neous extreme.

We also adapt the definitions to the setting of quadratic functions.

Definition 4.4. — Let f be a quadratic function lying in the posi-
tive Erdahl cone. It is called strongly perfect, if the vertices of its Delone
polytope carry a spherical 4-design.

Theorem 4.5. — Strongly perfect quadratic functions are extreme.

Like previously, Theorem 4.3 immediately follows from Theorem 4.5. The
proof of the second theorem uses our characterization of inhomogeneous
extreme forms in Theorem 2.2. It shows, like in the homogeneous case,
that having spherical 2-designs already implies eutaxy, and that having
spherical 4-designs implies perfectness.

Proof of Theorem 4.5. — Let f be a strongly perfect quadratic function.
The set X = vert Del f carries a spherical 4-design with respect to the
quadratic form Qf .

ANNALES DE L’INSTITUT FOURIER



INHOMOGENEOUS EXTREME FORMS 2241

We shall show that f is eutactic: If we unfold the equation in the defini-
tion of eutactic quadratic functions, we get

1 =
∑
x∈X

αx,

0 =
∑
x∈X

αx(x− cf ),
µ(f)
n Q−1

f =
∑
x∈X

αx(x− cf )(x− cf )t.

We set αx = 1
|X| with x ∈ X, so that the first condition in Definition 2.5

(iii) is satisfied. Then, by looking at the alternative definition of spherical
1- and 2-designs, we see that the other two conditions are satisfied, see e.g.,
[33, Lemma 5.1].
We shall show that f is perfect: Let g be a quadratic function which

satisfies the linear equations

(evx, g) = g(x) = 0 for all x ∈ X.

Since X carries a spherical 4-design, we have

0 = 1
|X|

∑
x∈X

g(x)2 =
∫
SQf (cf ,

√
µ(f))

g(x)2dω(x).

So, g vanishes on SQf (cf ,
√
µ(f)) = {x ∈ Rn : f(x) = 0}. Hence, it has to

be a multiple of f . So the space spanned by the functions evx, with x ∈ X,
has codimension 1 in the

(
n+2

2
)
-dimensional space of quadratic functions.

In other words, f is perfect. �

Using Theorem 4.5 one can show that the PQFs belonging to the lattices
E6,E7, BW16, Λ23, O23 are inhomogeneous strongly perfect and hence inho-
mogeneous extreme. Geometrically this says that these lattices yield local
covering maxima. These are all inhomogeneous strongly PQFs we know of.
In Table 4.1 we give some details about these PQFs and the Delone poly-
topes: The second column gives the number of orbits of Delone polytopes.
In all these cases there is only one orbit corresponding to points c where
µ(Q) is attained. In the last column we give a reference where a description
of the orbits can be found.
The PQFs belonging to the lattices Zn, Dn, E∗6, E∗7, E8, K12 are not

inhomogeneous perfect. However they are inhomogeneous eutactic. We will
get a geometrical interpretation from Theorem 6.1: These lattices yield
local covering pessima, i.e., the set of perturbations in which the covering
density decreases has measure zero. Section 6 is concerned with covering
pessima. In Table 4.2 we give some details about these PQFs and the Delone
polytopes.
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A PQF belonging to the Leech lattice is neither inhomogeneous perfect
nor inhomogeneous eutactic. In fact, geometrically, the Leech lattice gives
a local minimum for the covering density, see [33].

name # orbits |Minc(Q)| s(Minc(Q)) reference
E6 1 27 4 Conway, Sloane [8]
E7 2 56 5 CS [8]

BW16 4 512 5 Dutour Sikirić,
Schürmann, Vallentin [19]

O23 5 94208 7 DSV [19]
Λ23 709 47104 7 DSV [19]

Table 4.1. Lattices belonging to inhomogeneous strongly perfect forms.

name # orbits | Minc(Q)| s(Minc(Q)) reference
Zn 1 2n 3 Conway, Sloane [8]
D3 2 6 3 CS [8]
D4 1 8 3 CS [8]

Dn, n > 5 2 2n−1 3 CS [8]
E∗

6 1 9 2 CS [8]
E∗

7 1 16 3 CS [8]
E8 2 16 3 CS [8]
K12 4 81 3 Dutour Sikirić,

Schürmann, Vallentin [19]

Table 4.2. Lattices belonging to inhomogeneous eutactic forms.

We finish this section by posing several problems:
(i) Are there strongly perfect functions which do not define inhomoge-

neous strongly perfect forms?
(ii) Is a PQF of the Barnes-Wall lattice BW2d for d > 5 inhomogeneous

strongly perfect?
(iii) Is a PQF of the Thompson-Smith lattice Λ248 inhomogeneous

strongly perfect?
(iv) It would be interesting to classify strongly perfect quadratic func-

tions in low dimensions. So far only a classification up to dimen-
sion 6 is known. It is described in the next section. In the ho-
mogeneous case, strongly perfect forms have been classified up to
dimension 12 by Nebe and Venkov [28].
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5. Finiteness and classification

In this section we show that there are only finitely many inequivalent
perfect quadratic functions, respectively eutactic quadratic functions, in a
given dimension. Here, equivalence is defined using scaling and using the
action of the affine general linear group

AGLn(Z) = {u : Rn → Rn : u(x) = v+Ax, with v ∈ Zn and A ∈ GLn(Z)}.

More precisely, we say that two quadratic functions f and g are equivalent
if there exists a positive scalar λ and u ∈ AGLn(Z) so that f(x) = λg(u(x)).

Theorem 5.1. — In any dimension there are only finitely many inequiv-
alent perfect quadratic functions, respectively weakly eutactic quadratic
functions.

Proof. — From the work of Voronoi [40, §98] (see also Deza, Laurent [13,
Chapter 13.3]) it follows that, up to AGLn(Z) equivalence, there are only
finitely many Delone polytopes of quadratic functions. This implies that
there are only finitely many inequivalent perfect quadratic functions.
Now we argue that every Delone polytopeD determines up to equivalence

at most one eutactic quadratic function. For this we define the cone

(5.1) ∆(D) = {f ∈ E>0 : Del f = D}.

Since the function µ is strictly positive on it, Lemma 3.3 and its proof show
that H has at most one critical point, which is a minimum of H.

If f is weakly eutactic, then for all g ∈ ∆(D) we have

(−(gradH)(f), g) = 1
(detQf )1/n

(
evcf +µ(f)

n
Q−1
f , g

)

= 1
(detQf )1/n

 ∑
v∈vert Del f

αv evv, g


= 0,

and hence f is a critical point of H. �

Perfect quadratic functions have been classified up to dimension 6; the
known lists in dimension 7 and 8 seem to be complete:

Dimension 2, . . . , 5: Erdahl [20, Theorem 5.1] showed that there
are no perfect quadratic functions in dimension n = 2, . . . , 5.

Dimension 6: Dutour [15] showed that up to equivalence there is
exactly one perfect quadratic function in dimension 6: It is defined
by the Schläfli polytope 221 in dimension 6 having 27 vertices (see
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e.g., [10, Chapter 11.8]). It is strongly perfect since the vertices of
221 carry a spherical 4-design.

Dimension 7: In dimension 7 there are two perfect quadratic func-
tions known. The list is given in Dutour, Erdahl, Rybnikov [17,
Section 7]: One is defined by the Gosset polytope 321 in dimen-
sion 7 having 56 vertices (see e.g., [10, Chapter 11.8]). It is strongly
perfect since the vertices of 321 carry a spherical 5-design. The other
one is defined by the 35-tope constructed by Erdahl, Rybnikov [21].
It is eutactic, but it is not strongly perfect (the strength of the
design is 0).

Dimension 8: In dimension 8 there are 27 perfect quadratic func-
tions known. They are described in Dutour, Erdahl, Rybnikov [17,
Section 8]. 21 of them are eutactic, among them there is no strongly
perfect quadratic function.

It would be interesting to understand the asymptotics of the number of
perfect quadratic functions and the number of eutactic quadratic functions.
At the moment it is not even clear whether the number grows with every
dimension. This appears to be extremely likely: In dimension 9 we found
more than 100, 000 perfect quadratic functions.

6. Pessima and topological Morse functions

In this section we study inhomogeneous eutactic forms. First we consider
inhomogeneous eutactic forms which are not inhomogeneous perfect. They
can be almost local maxima for the inhomogeneous Hermite invariant. By
this we mean the following: A PQF is called a pessimum, if it is not a
local maximum of the inhomogeneous Hermite invariant, but for which al-
most all local perturbations decrease it. Note that there does not exist an
analogue of pessima for the homogeneous Hermite invariant: There is no
PQF for which almost all local perturbations increase the Hermite invari-
ant. However, it is known (S̆togrin [35]) that when a PQF is eutactic then
the Hermite invariant decreases in almost every direction.

Theorem 6.1. — Let Q be an inhomogeneous eutactic PQF which is
not inhomogeneous extreme. Suppose for all quadratic functions f lying
in the positive Erdahl cone with Q = Qf and µ(Q) = µ(f), the Delone
polyhedron Del f is not a simplex. Then Q is a pessimum.

Proof. — Let Q′ be a generic perturbation of Q so that all Delone poly-
topes of Q′ are simplices. Let ∆ be a Delone simplex contained in a Delone
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polytope D = Del f of Q. Let f ′ be the quadratic function with Del f = ∆
and Qf ′ = Q′. Then we have the expansion

H(f ′) = H(f)−
∑

v∈vertD
αv(f ′ − f)(v) + h.o.t.,

because f is eutactic. Since D is not a simplex, there is a v ∈ vertD so that
(f ′− f)(v) > 0. This implies that the second summand of the expansion is
negative. �

This situation occurs for instance for the PQFs belonging to lattices in
Table 4.2.

As a second application we show that the inhomogeneous Hermite invari-
ant is generally not a topological Morse function. We recall the following
definition from Morse [27].

Definition 6.2. — Let M be an m-dimensional topological manifold
and let f be a real valued continuous function on M .

(i) A point q ∈M is called topologically ordinary if there exist neigh-
borhoods U of q and V of 0 ∈ Rm and a homeomorphism φ : V → U

such that for all x ∈ V

φ(0) = q, f(φ(x)) = x1 + f(q).

Otherwise, it is called topologically critical.
(ii) A topologically critical point is called topologically non-degenerate

of index r if there exist U , V , φ as above such that for all x ∈ V

φ(0) = q, f(φ(x)) = −x2
1 − · · · − x2

r + x2
r+1 + · · ·+ x2

m + f(q).

(iii) A function is called topological Morse function if all points are either
ordinary or topologically non-degenerate.

Note that at a topological non-degenerate point the directions of decrease
are homotopically equivalent to the sphere Sr−1 = {x ∈ Rr : ‖x‖ = 1}. The
directions of increase are homotopically equivalent to the sphere Sm−r−1.

Since H is scale invariant, it is not a topological Morse function for
trivial reasons; the same is true for the homogeneous Hermite invariant γ.
Ash [1] showed that γ is a topological Morse function on the cone of positive
semidefinite n×n-matrices where we mod out by positive scaling: Sn>0/R>0.
As the following theorem shows, this is in general not the case for H.

Theorem 6.3. — The inhomogeneous Hermite invariant is a topological
Morse function on Sn>0/R>0 if and only if n is at most three.

We need the following lemma:

TOME 62 (2012), FASCICULE 6



2246 Mathieu DUTOUR SIKIRIĆ, Achill SCHÜRMANN & Frank VALLENTIN

Lemma 6.4. — Let Q be an inhomogeneous eutactic form. Then Q is
a topologically critical point for H in Sn>0/R>0. It is a topologically non-
degenerate point if and only if there exist one Delone polytope D attaining
the maximum circumradius such that for all Delone polytopes D′ attaining
the maximum circumradius we have

lin ∆(D′) ⊆ lin ∆(D),

where ∆ was defined in (5.1).

Proof. — Let D1, . . . , Dr be the translation classes of Delone polytopes
attaining the maximum circumradius. The argument in the proof of The-
orem 6.1 shows that H increases in the direction of

U =
r⋃
i=1

lin ∆(Di)/R>0.

It decreases in all other directions. So it is a topologically critical point.
If U = lin ∆(Di) for some Di, then Q is a topologically non-degenerate
point. If U is a union of subspaces which is not contained in lin ∆(Di) for
one Di, then U is not homotopically equivalent to a sphere, so Q is not a
topologically non-degenerate point. �

Proof of Theorem 6.3. — There is at most one critical point in the
secondary cone of a fixed Delone decomposition up to the action of GLn(Z).
If n equals two, there are two critical points: The PQF corresponding to

the lattice Z2 and the one corresponding to the lattice A2. They are both
inhomogeneous eutactic. In both cases there is only one Delone polytope
up to translations and antipodality. So both PQFs are topologically non-
degenerate by the previous lemma.
If n equals three, there are five types of Delone subdivisions (due to

the Russian crystallographer E.S. Fedorov, see also Vallentin [36]). In all
but the generic case one can check the following facts by inspection and
elementary hand calculation: For every Delone subdivision which is not
a triangulation there is a inhomogeneous eutactic PQF in which the De-
lone polytopes attaining the maximum circumradius are equivalent up to
translations and antipodality. So we can apply the previous lemma, show-
ing that these four points are topologically non-degenerate. In the generic
case, where the subdivision is a triangulation, there is a PQF (associated
to the lattice A∗3) where H attains a local minimum.

If n equals four, we consider the PQF which corresponds to the root lat-
tice D4. It is inhomogeneous eutactic. There are three translation classes
of Delone polytopes D1, D2, D3 which are all regular cross polytopes real-
izing the circumradius. Their linear subspaces lin ∆(Di) are not contained
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in each other, so by the preceding lemma the PQF is not topologically
non-degenerate.
For n greater than four, we take the PQF which corresponds to the lattice

D4 × Zn−4. �

7. An infinite series of inhomogeneous extreme forms

In this section we construct a series of inhomogeneous extreme forms
for dimensions n > 6. The first two PQFs in the series correspond to the
lattices E6 and E7. These PQFs were originally introduced in [16].
For giving the construction and for its analysis it is convenient not to

work with the standard lattice but with the lattice Ln which is spanned
by the root lattice (Dn−1, 0) and the vector (−1/2, (1/2)n−2, 1). It comes
with the PQF

Qn[x] =
{
x2

1 + · · ·+ x2
n−1 + (n− 3)/4x2

n if n even,
x2

1 + · · ·+ x2
n−1 + (n− 5)/4x2

n if n odd.
We denote this pair by [Ln, Qn]. We have |Aut([Ln, Qn])| = |Aut(Dn−1)|.

Theorem 7.1. — For n > 6, the lattice [Ln, Qn] are local covering
maxima.

The main step of the computation is to prove that the big Delone poly-
tope Pn defined in the next section is the only one attaining the maximum
circumradius. In order to show this we enumerate all Delone polytopes up
to symmetry. We shall prove that our list is complete by a volume argu-
ment.
In the remaining part of this section will be used to give a proof of the

theorem which is largely computational. The idea of the proof is based on
the algorithms given in [19] which are implemented in [14].

In the proof we heavily rely on the computation of volumes of polyhedra:
Let P be a non-necessarily full dimensional polytope of Rn. By vol(P ) we
denote the volume of P for the volume form induced by the scalar product
on the affine space aff(P ) defined by P . If v /∈ aff(P ), we will then have
the relation

(7.1) vol(conv(P, v)) = 1
dim(conv(P, v)) dist(v, aff(P )) vol(P ),

where conv(P, v) denotes the convex hull of the polytope P and the point
v, and where dist(v, aff(P )) denotes the Euclidean distance between v and
aff(P ). An easy consequence of this formula is that if aff(P ) is a hyperplane
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of dimension n− 1 defined by an affine equality φ(x) = 0, then we have for
v, v′ /∈ aff(P ) the relation

(7.2) vol(conv(P, v)) = |φ(v)|
|φ(v′)| vol(conv(P, v′)).

Relation (7.1) admits a generalization: If P , Q are a p-, q-dimensional
polytopes, then the 1 + p+ q-dimensional polytope P ×Q defined as

P ×Q = conv((0, P, 0q), (1, 0p, Q))

has volume

(7.3) vol(P ×Q) = vol(P ) vol(Q) p!q!
(1 + p+ q)! .

In the following we use the notation

1
2Hn =

{
x ∈ {0, 1}n :

n∑
i=1

xi even
}
.

for the half cube.

7.1. The big Delone polytope

As we shall prove later, there is only one Delone polyope of [Ln, Qn]
where the maximum circumradius is attained. It is the polytope Pn which
is defined as follows. If n is even then Pn has the vertices

((1/2)n−1, 1)± ei, i = 1, . . . , n− 1, ((1/2)n−1,−1), (1
2Hn−1, 0),

If n is odd, then Pn has the vertices

((1/2)n−1,±1)± ei, i = 1, . . . , n− 1, (1
2Hn−1, 0).

The squared circumradius of Pn is

µPn =
{

(n− 2)2/(4(n− 3)), if n even,
(n− 1)/4, if n odd.

The center of Pn is

cPn =
{

((1/2)n−1, 1/(n− 3)), if n even,
((1/2)n−1, 0), if n odd.

It is proved in [16] that Pn uniquely determines [Ln, Qn] if n > 6. So the
quadratic function fn corresponding to Pn is inhomogeneous perfect. It is
also inhomogenous extreme:

Lemma 7.2. — The quadratic function fn is inhomogeneous eutactic.
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Proof. — The polytope Pn has three orbits of vertices if n is even which
can be distinguished by considering the last coordinate: −1, 0, +1. Then,
the following coefficients satisfy the eutaxy condition

a−1 = (n− 2)/(2n(n− 3)2),

a0 = ((n− 2)(n2 − 5n+ 2))/(2n−2n(n− 3)2),

a1 = 2/(n(n− 3)2).

The polytope Pn has only two orbits of vertices if n is odd which can be
distinguished by considering the last coordinate: ±1, 0. Then, the following
coefficients satisfy the eutaxy condition

a±1 = 1/(4n(n− 5)),

a0 = (n2 − 6n+ 1)/(2n−2n(n− 5)).

�

The following lower bound on the volume of Pn will turn out to be tight.

Lemma 7.3. — The volume of Pn is at least Vn where

Vn = 2(n− 1) 1
n(n− 1)

(
1− 2n−3

(n− 2)!

)
+ 2n−22n−3n− 3

n!

+
n−3∑
j=3

2n−2(n− 1)!
(i+ 1)!2j−1j! (j!− 2j−1)n− j − 1

2n!

+ 2n−1

n! + 2n−2n− 1
2n! + 2n−2n− 3

2n! ,

if n is even, and

Vn = 2(n− 1)(n− 2) 4
n(n− 1)(n− 2)

(
1− 2n−4

(n− 3)!

)
+ 2n−1n− 1

2n!

+
n−4∑
j=3

2n−1(n− 1)!
(i+ 1)!2j−1j! (j!− 2j−1)n− j − 1

2n!

+ 2n−12n−3n− 3
n! + 22n−1

n! + 2n−2(n− 1)n− 4
n! ,

if n is odd.

Proof. — Denote by F(P ) the set of facets of P and by c the point
((1/2)n−1, 0). We have

vol(Pn) =
∑

F∈F(Pn)

vol(conv(F, c)).
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Since c is invariant under the automorphism group of Pn, the above sum
can be grouped by orbits of facets of Pn.

Below, we list the facets F of Pn. The first line gives the separating
hyperplane, the second line contains the list of incident vertices, the third
line contains the volume vol(conv(F, c)) and the last line contains the size
of the orbits. We frequently make use of the transformation g defined by

g(x1, x2, . . . , xn) = (1− x1, x2, . . . , xn).

• Facet F1: a cross polytope
–
∑n−1
j=1 xj + (n− 5)/2xn > 1,

– g(ej), g(((1/2)n−1, 1)− ej) for 1 6 j 6 n− 1,
– 2n−3/n!(n− 3),
– 2n−2.

• Facet F2: a cross polytope
– xn 6 1,
– ((1/2)n−1, 1)± ej for 1 6 j 6 n− 1,
– 2n−1/n!,
– 1 if n even, 2 if n odd.

• Facet F3: simplex
–
∑n−1
i=1 xi + (n− 3)/2xn > 0,

– 0, ((1/2)n−1, 1)− ej for 1 6 j 6 n− 1,
– (n− 1)/2n!,
– 2n−2 if n even, 2n−1 if n odd.

• Facet F4: only if n even
– 2x1 − xn > 0,
– ((1/2)n−1, 1), (0, 1

2Hn−2, 0) and (−1/2, (1/2)n−2,−1),
– 1/n(n− 1)

(
1− 2n−3/(n− 2)!

)
.

– 2(n− 1).
• Facet F5: simplex, only if n even

–
∑n−1
i=1 xi + (n− 1)/2xn > 1,

– ((1/2)n−1,−1), g(ej) for 1 6 j 6 n− 1,
– (n− 3)/2n!,
– 2n−2.

• Facet F6: only if n odd
– x1 + x2 > 0,
– ((1/2)n−1,±1)− ej for j = 1, 2, (0, 0, 1

2Hn−3, 0),
– 4/(n(n− 1)(n− 2))

(
1− 2n−4/(n− 3)!

)
,

– 2(n− 1)(n− 2).
• Facet F7: simplex, only if n odd

–
∑n−2
i=1 xi + (n− 4)xn−1 > 1,
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– g(ej) for 1 6 j 6 n− 2, ((1/2)n−2,−1/2,±1),
– (n− 4)/n!,
– 2n−2(n− 1).

• Facet Fi,j : for i+ j = n− 2, j > 3 and i > 1 for n even, i > 2 for n
odd
–
∑n−1
k=j+1 xj + (1− i)/2xn > 0,

– ( 1
2Hj , 0i+1, 0), ((1/2)n−1, 1)− ek for j + 1 6 k 6 n− 1,

–
(
j!− 2j−1) (n− j − 1)/2(n!),

– (i+ 1)!2j−1j!.
�

7.2. Proof of Theorem 7.1

We only have to show that for every Delone polytope P of [Ln, Qn] which
is not equivalent to Pn we have µP < µPn .

We now construct the remaining classes of Delone polytopes of [Ln, Qn]:
If n is even we have one additional class and if n is odd we have two
additional classes.

• If i+ j = n− 1 and 3 6 i 6 j, we denote by Hi,j the polytope with
vertices(1

2Hi, 0j−1, 0
)
,
(

(1/2)i, (1/2)j − g
(1

2Hj

)
, 1
)
.

The size of the stabilizer is

|Stab(Hi,j)| =
{

2i−1i!2j−1j!, if i 6= j,

2× 2i−1i!2j−1j!, if i = j.

Using the formula for the product polytope we get

vol(Hi,j) =
(

1− 2i−1

i!

)(
1− 2j−1

j!

)
i!j!
n! = (i!− 2i−1)(j!− 2j−1) 1

n! .

We set C = n− 3 if n is even and C = n− 5 if n is odd. The center
of Hi,j is

cHi,j = ((1/2)i, 0j , α), with α = C + j − i
2C .

The squared radius of the sphere around Hi,j is

µHi,j = C2 + 2C(n− 1) + (j − i)2

16C < µPn .
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• If n is odd, then the simplex Sn with vertex set

0, (0n−1, 2), ((1/2)n−1, 1)− ej , with j = 1, . . . , n− 1,

is a Delone polytope. We have

|Stab(Sn)| = 2(n− 1)!,

vol(Sn) = n− 3
n! ,

cSn = ((1/(n− 3))n−1, 1),

µSn = n− 5
4 + n− 1

(n− 3)2 < µPn .

Now we finish the proof by a volume computation showing that our list
of orbits is complete. Denote by O(D1), . . . , O(Dr) the orbits of Delone
polytope of [Ln, Qn] of representative Di. On the one hand, we have

2 =
r∑
i=1
|O(Di)| vol(Di).

On the other hand, we have the equality

2 =
n−2

2∑
i=1
|O(Hi,j)| vol(Hi,j) + 2Vn,

if n is even, and

2 = |O(Sn)| vol(Sn) +
n−1

2∑
i=1
|O(Hi,j)| vol(Hi,j) + Vn,

if n is odd. This implies that vol(Pn) = Vn and that the list of orbits of
Delone polytopes is complete. This finishes the proof of the theorem.
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