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QUASI-PERIODIC AND PERIODIC SOLUTIONS OF
THE TODA LATTICE VIA THE HYPERELLIPTIC

SIGMA FUNCTION

by Yuji KODAMA,
Shigeki MATSUTANI & Emma PREVIATO

Abstract. — A lattice model with exponential interaction, was proposed and
integrated by M. Toda in the 1960s; it was then extensively studied as one of
the completely integrable (differential-difference) equations by algebro-geometric
methods, which produced both quasi-periodic solutions in terms of theta functions
of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the
Lax-pair method. In this work, we revisit Toda’s original approach to give solutions
of the Toda lattice in terms of hyperelliptic Kleinian (“sigma”) functions for arbi-
trary genus. We then show that periodic solutions of the Toda lattice correspond
to the zeros of Kiepert-Brioschi’s division polynomials, and note these are related
to solutions of Poncelet’s closure problem. The hyperelliptic curve of our approach
is related in a non-trivial way to the one given by the Lax pair.
Résumé. — M. Toda a donné la définition et l’intégration au moyen les fonc-

tions elliptiques de Jacobi d’un réseau dont les noeuds réagissent réciproquement
exponentiellement. La hiérarchie de Toda des équations (différentielles-différences)
ont été beaucoup étudiées via les fonctions thêta hyperelliptiques ; une matrice de
Lax donne l’intégration dans le cas périodique. Dans ce travail, utilisant la mé-
thode de Toda et les formules d’addition qu’on vienne d’établir pour les fonctions
(“sigma”) de Klein hyperelliptiques de n’importe quel genre, nous donnons la solu-
tion du réseau quasi-périodique qui est donc aussi une solution de la fermeture de
Poncelet. Les coefficients de la matrice de Lax peuvent être écrits comme fonctions
rationnelles des coordonnées affines de la courbe hyperelliptique que nous utilisons
pour la solution.

1. Introduction

The Toda lattice is an “algebraically completely integrable system”. As
such, it admits classes of solutions parametrized by Jacobi varieties of com-
pact Riemann surfaces (or algebraic curves), the “algebro-geometric soli-
tons” [21]. One advantage of the algebro-geometric solution is that the time

Keywords: Toda lattice equation, hyperelliptic sigma function.
Math. classification: 14H70, 37K20, 14H51, 37K60.



656 Yuji KODAMA, Shigeki MATSUTANI & Emma PREVIATO

flows become linear on a hyperelliptic Jacobian, and the difference operator
is translation on the Jacobian. These are the objects of concern here.
On the other hand, recent work [17, 38] on Kleinian σ-functions has fo-

cused on addition formulae on a certain stratification of the Jacobian; given
the relevance of this stratification in terms of the orbits of the Toda lattice
[2, 1, 12, 30], our program is to study the explicit relationship between the
two, with the result of an exchange of knowledge.
In this first paper we identify and study the (quasi-)periodic solutions

of the Toda lattice equation in terms of the hyperelliptic σ-functions. Our
approach is somewhat different from the one that exists in the literature,
and in particular it gives us a different ‘spectral curve’ and algebraic con-
ditions for periodicity. To give a sketch of our method and results, we first
say a few words about the history and the significance of the σ-function,
especially in the field of differential/difference equations. In the 19th cen-
tury, it was the study of Riemann-surface theory that led to the associated
algebraic (meromorphic) or analytic (θ-) functions and the (differential)
equations that they satisfy, apart some exceptional cases. In keeping with
such philosophy, Baker in [6] discovered the KdV hierarchy and KP equa-
tion(1) for every hyperelliptic curve of genus g as an application of Kleinian
σ-functions (1903) and posed this challenge:

These equations put a problem: To obtain a theory of dif-
ferential equations which shall shew from them why, if we
assume

℘λµ(u) = −∂2 log σ(u)/∂uλ∂uµ,

the function σ(u) has the properties which a priori we know
it to possess, and how far the forms of the equations are
essential to these properties.

Baker extensively studied the differential equations satisfied by the σ-
function. In the late 1960s and early 1970s, on the contrary, many au-
thors started from the (“completely integrable”) differential equations, and
arrived at a spectral curve which is a Riemann surface and carries a “Baker-
Akhiezer” eigenfunction for the (linearizing) “Lax-pair” equations. Mum-
ford in his book on theta functions [43] demonstrated the close relationship
between the differential equations and the algebraic approach, together
with the Abelian function theory of the 19th century based on Jacobi’s

(1)KP appears in the case when the affine model of the hyperelliptic curve has two
points at infinity [33].
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SIGMA-FUNCTION SOLUTION OF THE TODA LATTICE 657

theory; he gave an explicit dictionary between the θ-function for hyperel-
liptic curves and three polynomials in one variable, sometimes called the
Mumford triplet (whose definition he attributes to Jacobi), which param-
etrize the Jacobi variety, cf. Remark 5.7.
Recently the Kleinian σ-function was reexamined, generalized and stud-

ied by several authors [9, 15]. These authors showed that sigma is more
efficient than Riemann’s theta function (in fact, the σ-function approaches
the Schur polynomials in the limit when the curve becomes rational) to
solve differential equations. This is our point of view.
We add, as suggested by the referee, a comment on the geometric sig-

nificance of sigma: for more detail we refer to the aforementioned studies.
Since sigma vanishes on the (higher) Abel images of the curve Xg, it is
better suited to be expanded in the abelian variables which correspond
to the hyperosculating flows (Section 3) to the image of Xg, which are
the flows of the KP hierarchy. It is in these variables that sigma equals
a Schur polynomial(2) up to higher-order terms [44]. In fact expansions
and computer-algebra work have enabled guesses and proofs of the addi-
tion formulas which generalize (2.4) and are essential to solving integrable
equations. Lastly, sigma (unlike Riemann’s theta, cf. [43, II.5]) is invariant
under the action of the modular group on the period matrix of Xg.

We also comment on the fact that our addition formulae, which are
key to the solution as explained in the next paragraph, are particular to
hyperelliptic curves. Of course addition theorems hold for general curves, cf.
e.g. Theorems 9.1 and 10.1 in [16] for the trigonal case; however, they will
not be as expedient as the hyperelliptic ones, for example an expression in
terms of algebraic functions on the curve is as yet unwieldy, as perhaps can
be expected, since the non-hyperelliptic Neumann systems have polynomial
Hamiltonians of a very complicated type [46, 47, 48]. The basic reason why
the hyperelliptic case simplifies, and in fact was the one for which Baker
was able to study explicitly the σ-function, is the hyperelliptic involution
which lifts to the Jacobian in such a way that it acts on sigma only by a
sign.
In this article, we consider the solutions of the, one- and two-(time-

)dimensional, Toda one-(space-)dimensional lattice. Toda gave an exact
solution for the Toda lattice equation using an identity of elliptic-function
theory [50]. For an arbitrary hyperelliptic curve of genus g, we construct
a meromorphic function on the Jacobian of the curve that obeys the Toda
(2)Schur polynomials were used by Sato to define his τ -function and originally construct
the universal solution to the KP hierarchy. The relationship of sigma with tau is pursued
in [14].
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lattice equation linearly in time over the Jacobian, by using an identity
of hyperelliptic abelian functions (see Theorems 5.4 and 5.5 for the one-
and two-(time-)dimensional Toda lattice equations respectively.). Remark
5.7 shows that the two-(time-)dimensional Toda equation is equivalent to
a relation which generates Fay’s trisecant formula and Baker’s derivation
of the KdV hierarchy and the KP equation for every genus. Despite this
equivalence, we stress again here the geometric nature of sigma compared
to theta. That nature gives a dictionary between Abelian and algebraic
functions of the curve, specifically, the affine coordinates of its planar rep-
resentation, as well as algebraic coefficients for the relations in the ring of
differential operators that act on the Jacobian (more details are given in
Remarks 4.13 and 5.7(2)(b)). Weierstrass recognised this fact in his study
of hyperelliptic θ-functions [52]; in fact, he defined the al and Al functions
(named after Abel) which can be used to give solutions of finite-dimensional
Hamiltonian systems [36].
We obtain quasi-periodic(3) (hyperelliptic) solutions of the Toda lattice,

since a priori the discrete variable has no rational relation with the period
lattice of the curve. Finding periodic solutions is equivalent to giving a
torsion point of the curve, which satisfies a “division polynomial”, known as
Kiepert’s or Brioschi’s polynomial. Using a zero of the division polynomial
(if it exists), we construct a hyperelliptic solution of Toda of genus g with
period N(> g) in Theorems 6.3 and 6.11. We illustrate the g = 1 case as an
example and in that case point out that the relation between the division
polynomial and Toda lattice is the same as Poncelet’s closure (Appendix).

Acknowledgements. One of authors (S.M.) thanks Boris Mirman for
bringing Poncelet’s problem to his attention and Akira Ohbuchi who drew
his attention to Galois’s study on fifth elliptic cyclic point. Y.K. is par-
tially supported by NSF grants DMS-0806219 and DMS-1108813. E.P. ac-
knowledges very valuable partial research support under grant NSF-DMS-
0808708. We are indebted to the referee for corrections and suggestions.

(3)As customary in the literature on the Toda lattice, cf. the monographs [3] and [51],
the word “periodic” does not refer to the time, but rather the space variable of the lattice
sites.
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2. Genus-one case

In this Section, we demonstrate how one gets an elliptic solution of the
Toda lattice [50, 27, 34]. Let X1 be an elliptic curve given by

X1 : y2 = x3 + λ2x
2 + λ1x+ λ0

= (x− e1)(x− e2)(x− e3),(2.1)

where the e’s are distinct complex numbers and λ2 = −(e1 + e2 + e3) = 0.
The Weierstrass elliptic σ function associated with the curve X1 is con-

nected with the Weierstrass ℘ and ζ functions by

(2.2) ℘(u) = − d2

du2 log σ(u), ζ(u) = d

du
log σ(u).

The Jacobian of the curve X1 is given by J1 = C/(Zω′ + Zω′′) using the
periods (ω′, ω′′), complete integrals of the first kind. The abelian coordinate
u, actually defined on the universal cover of the Jacobian J1 but used as
customary up to congruence when no ambiguity arises, is given by

(2.3) u =
∫ (x,y)

∞

dx

2y ,

with x(u) = ℘(u), 2y(u) = ℘′(u) and ∞ the infinity point of X1.
The key to obtain a ℘-function solution of the Toda lattice is the addition

formula,

(2.4) ℘(u)− ℘(v) = −σ(u+ v)σ(u− v)
[σ(v)σ(u)]2 .

By differentiating the logarithm of (2.4) with respect to u twice, we have

(2.5) − d2

du2 log[℘(u)− ℘(v)] = ℘(u+ v)− 2℘(u) + ℘(u− v).

Thus for a constant number u0 and any integer n, by letting u = nu0+t+t0,
v = u0,

(2.6) − d2

dt2
log[℘(nu0 + t+ t0)− ℘(u0)] = [℘((n+ 1)u0 + t+ t0)− ℘(u0)]

− 2[℘(nu0 + t+ t0)− ℘(u0)] + [℘((n− 1)u0 + t+ t0)− ℘(u0)].

Which, by letting Vn(t) := −℘(nu0 + t + t0), Vc := −℘(u0) and qn :=
− log[Vn(t)− Vc], becomes

(2.7) − d2

dt2
qn = e−qn+1 − 2e−qn + e−qn−1 (n ∈ Z).

This can be identified with the continuous Toda lattice equation, where qn
are the interaction potentials. Indeed, by letting qn = Qn−Qn−1, where Qn

TOME 63 (2013), FASCICULE 2
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is the displacement of the n-th particle and obeys the nonlinear differential
equation of the exponential lattice [50],

(2.8) − d2

dt2
Qn = eQn−Qn+1 − eQn−1−Qn (n ∈ Z).

To provide the connection between Toda’s original solution for e1, e2, e3 ∈ R
[50] and this elliptic solution derived from the addition formula (2.4) with
(2.2), we observe that, by letting t0 = −ω′′,

℘(t+ nu0 − ω′′)− ℘(t+ nu0) = (e1 − e3) ns2((e1 − e3)1/2(t+ nu0)) + e3,

where ns(u) = ksn(u+ıK ′) and the modulus of the Jacobi elliptic functions
is k2 = (e2 − e3)/(e1 − e3) [53, 22·351].

3. Hyperelliptic curve Xg and sigma functions

In this Section, we give background information on the hyperelliptic θ-
functions and the σ-function, a generalization to higher genus of the Weier-
strass elliptic σ function.

3.1. Geometrical setting for hyperelliptic curves

Let Xg be a hyperelliptic curve defined by

Xg : y2 = f(x) := x2g+1 + λ2gx
2g + · · ·+ λ0

where λj ’s are complex numbers, together with a smooth point∞ at infin-
ity. Let the affine ring related to Xg be Rg := C[x, y]/(y2 − f(x)). We fix
a basis of holomorphic one-forms

νI
i = xi−1dx

2y (i = 1, . . . , g).

We also fix a homology basis for the curve Xg so that

H1(Xg,Z) =
g⊕
j=1

Zαj ⊕
g⊕
j=1

Zβj ,

with the intersections given by [αi, αj ] = 0, [βi, βj ] = 0 and [αi, βj ] =

−[βi, αj ] = δij . We consider the half-period matrix ω =
[
ω′

ω′′

]
of Xg with

respect to the given basis where

ω′ = 1
2

[∮
αj

νI
i

]
, ω′′ = 1

2

[∮
βj

νI
i

]
,
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Let Λ be the lattice in Cg spanned by the column vectors of 2ω′ and
2ω′′. The Jacobian variety of Xg is denoted by Jg and is identified with
Cg/Λ. For a non-negative integer k, we define the Abel map from the k-
th symmetric product SkXg of the curve Xg to Cg by first choosing any
(suitable) path of integration(4) :

w : SkXg → Cg, w((x1, y1), . . . , (xk, yk)) =
k∑
i=1

∫ (xi,yi)

∞

ν
I
1
...
νI
g

 .

By letting the map κ be the natural projection,

κ : Cg −→ Jg,

the image of κ ◦w is denoted by Wk = κ ◦w(SkXg). The mapping κ ◦w is
surjective when k > g by Abel’s theorem, and is injective when k = g if we
restrict the map to the pre-image of the complement of a specific connected
Zariski-closed subset of dimension at most g−2 in Jg, by Jacobi’s theorem.

3.2. Sigma function and its derivatives

We define differentials of the second kind,

νII
j = 1

2y

2g−j∑
k=j

(k + 1− j)λk+1+jx
kdx, (j = 1, . . . , g)

and (half of) complete hyperelliptic integrals of the second kind

η′ = 1
2

[∮
αj

νII
i

]
, η′′ = 1

2

[∮
βj

νII
i

]
.

For this basis of a 2g-dimensional space of meromorphic differentials, the
half-periods ω′, ω′′, η′, η′′ satisfy the generalized Legendre relation

(3.1) M

(
0 −1g
1g 0

)
MT = ıπ

2

(
0 −1g
1g 0

)
.

where M =
(
ω′ ω′′

η′ η′′

)
. Let T = ω′

−1
ω′′. The theta function on Cg with

“modulus” T and characteristics Ta+ b for a, b ∈ Cg is given by

θ

[
a

b

]
(z;T) =

∑
n∈Zg

exp
[
2πi

{
1
2
t(n+ a)T(n+ a) + t(n+ a)(z + b)

}]
.

(4)The results presented below are independent of the particular choice.
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The σ-function ([4], p.336, [9]), an analytic function on the space Cg and
a theta-series having modular invariance of a given weight with respect to
M, is given by the formula

σ(u) = γ0 exp
{
−1

2
tuη′ω′

−1
u

}
θ

[
δ′′

δ′

](
1
2ω
′−1

u ; T
)
,

where δ′ and δ′′ are half-integer characteristics giving the vector of Riemann
constants with basepoint at ∞ and γ0 is a certain non-zero constant. The
σ-function vanishes exactly on κ−1(Wg−1) (see for example [4, XI.206]).
The Kleinian ℘ and ζ functions are defined by

℘ij = − ∂2

∂ui∂uj
log σ(u), ζi = ∂

∂ui
log σ(u).

Let {φi(x, y)} be an ordered set of C ∪ {∞}-valued functions over Xg

defined by

φi(x, y) =


xi for i 6 g,
xb(i−g)/2c+g for i > g and i− g even,
xb(i−g)/2cy for i > g and i− g odd.

(3.2)

We note that {φi(x, y)} give a basis of the (infinite-dimensional) C vector
space Rg.

Following [45, 37], we introduce a multi-index \n. For n with 1 6 n < g,
we let \n be the set of positive integers i such that n + 1 6 i 6 g with
i ≡ n+ 1 mod 2. Namely,

\n =
{
n+ 1, n+ 3, . . . , g − 1 for g − n ≡ 0 mod 2
n+ 1, n+ 3, . . . , g for g − n ≡ 1 mod 2

and partial derivatives over the multi-index \n

σ\n =
( ∏
i∈\n

∂

∂ui

)
σ(u).

For n > g, we define \n as empty and σ\n as σ itself. The first few examples
are given in Table 1, where we let ] denote \1 and [ denote \2.
For u ∈ Cg, we denote by u′ and u′′ the unique vectors in Rg such that

u = 2 tω′u′ + 2 tω′′u′′.

We define
L(u, v) = tu(2 tη′v′ + 2 tη′′v′′),
χ(`) = exp

{
2πi
(
t`′δ′′ − t`′′δ′ + 1

2
t`′`′′

)}
(∈ {1,−1})
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Table 3.1

genus σ] ≡ σ\1 σ[ ≡ σ\2 σ\3 σ\4 σ\5 σ\6 σ\7 σ\8 · · ·
1 σ σ σ σ σ σ σ σ · · ·
2 σ2 σ σ σ σ σ σ σ · · ·
3 σ2 σ3 σ σ σ σ σ σ · · ·
4 σ24 σ3 σ4 σ σ σ σ σ · · ·
5 σ24 σ35 σ4 σ5 σ σ σ σ · · ·
6 σ246 σ35 σ46 σ5 σ6 σ σ σ · · ·
7 σ246 σ357 σ46 σ57 σ6 σ7 σ σ · · ·
8 σ2468 σ357 σ468 σ57 σ68 σ7 σ8 σ · · ·
...

...
...

...
...

...
...

...
...

. . .

for u, v ∈ Cg and for ` (= 2 tω′`′ + 2 tω′′`′′) ∈ Λ. Then σ\n(u) for u ∈
κ−1(W1) satisfies the translational relation ([45], Lemma 7.3):

(3.3) σ\n(u+ `) = χ(`)σ\n(u) expL(u+ 1
2`, `) for u ∈ κ−1(W1).

Further for n 5 g, we note that σ\n(−u) = (−1)ng+ 1
2n(n−1)σ\n(u) for

u ∈ κ−1(Wn), especially,

(3.4)
{

σ[(−u) = −σ[(u) for u ∈ κ−1(W2)

σ](−u) = (−1)gσ](u) for u ∈ κ−1(W1)

by Proposition 7.5 in [45].

4. The addition formulae

In this Section, we give the addition formulae of the hyperelliptic σ-
functions which are the generalization of the addition formula (2.4). These
are essential to construct the hyperelliptic solution of the Toda lattice.

4.1. Generalized Frobenius-Stickelberger formula

We first recall the generalized Frobenius-Stickelberger formula which
gives a generalization of the addition formula (2.4).

TOME 63 (2013), FASCICULE 2
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Definition 4.1. — For a positive integer n> 1 and (x1, y1), . . . , (xn, yn)
in Xg, we define the Frobenius-Stickelberger determinant [38],

Ψn((x1, y1), . . . , (xn, yn))

:=

∣∣∣∣∣∣∣∣∣∣∣

1 φ1(x1, y1) · · · φn−2(x1, y1) φn−1(x1, y1)
1 φ1(x2, y2) · · · φn−2(x2, y2) φn−1(x2, y2)
...

...
. . .

...
...

1 φ1(xn−1, yn−1) · · · φn−2(xn−1, yn−1) φn−1(xn−1, yn−1)
1 φ1(xn, yn) · · · φn−2(xn, yn) φn−1(xn, yn)

∣∣∣∣∣∣∣∣∣∣∣
.

where φi(xj , yj)’s are the monomials defined in (3.2).

Then we have the following theorem (Theorem 8.2 in [45]):

Proposition 4.2. — For a positive integer n>1, let (x1,y1),. . . ,(xn,yn)
in Xg, and u(1), . . . , u(n) in κ−1(W1) be points such that u(i) = w((xi, yi)).
Then the following relation holds :

σ\n(
∑n
i=1 u

(i))
∏
i<j σ[(u(i) − u(j))∏n

i=1 σ](u(i))n
= εnΨn((x1, y1), . . . , (xn, yn)),(4.1)

where εn = (−1)g+n(n+1)/2 for n 6 g and εn = (−1)(2n−g)(g−1)/2 for n >
g + 1.

4.2. The algebraic addition formula

We first describe linear equivalence of divisors on the curve Xg (which
will result on the addition law on the Jacobian) by algebraic formulas [38]:

Definition 4.3. — For given P1, . . . , Pn ∈ Xg, we define

µn(P ;P1, . . . , Pn) = lim
Qi→Pi

Ψn+1(P,Q1, . . . , Qn)
Ψn(Q1, . . . , Qn)

for distinct Qi’s (the order in which the limits are taken is irrelevant).

Proposition 4.4. — For given P1, . . . , Pn ∈ Xg, we find Q1, . . . , Q`
with ` = g for n > g and ` = n otherwise, such that

P1 + P2 + · · ·+ Pn +Q1 +Q2 + · · ·+Q` − (n+ `)∞ ∼ 0

by taking the zero-divisor of µn(P ;P1, . . . , Pn). For each Qi = (xi, yi), by
letting −Qi = (xi,−yi), we have the addition property,

P1 + P2 + · · ·+ Pn − n∞ ∼ (−Q1) + (−Q2) + · · ·+ (−Q`)− (−`)∞.

ANNALES DE L’INSTITUT FOURIER



SIGMA-FUNCTION SOLUTION OF THE TODA LATTICE 665

As usual, the symbol of addition in the (free abelian) divisor group is
used as well for addition up to linear equivalence.

Remark 4.5. — We should note that the hyperelliptic involution ι :
(x, y) 7→ (x,−y) induces the [−1]-action on Jg, defined by u 7→ −u.

4.3. The analytic addition formula

We have the following addition formula for the hyperelliptic σ functions
(Theorem 5.1 in [17]):

Theorem 4.6. — Assume that (m,n) is a pair of positive integers. Let
(xi, yi) (i = 1, . . . ,m), (x′j , y′j) (j = 1, . . . , n) in Xg and u ∈ κ−1(Wm),
v ∈ κ−1(Wn) be points such that u = w((x1, y1), . . . , (xm, ym)) and v =
w((x′1, y′1), . . . , (x′n, y′n)). Then the following relation holds :

σ\m+n(u+ v)σ\m+n(u− v)
σ\m(u)2σ\n(v)2

= δ(g,m, n)
∏1
i=0 Ψm+n((x1, y1), . . . , (xm, ym), (x′1, (−1)iy′1), . . . , (x′n, (−1)iy′n))

(Ψm((x1, y1), . . . , (xm, ym))Ψn((x′1, y′1), . . . , (x′n, y′n)))2

×
m∏
i=1

n∏
j=1

1
Ψ2((xi, yi), (x′j , y′j))

(4.2)

where δ(g,m, n) = (−1)gn+ 1
2n(n−1)+mn.

Theorem 4.6 with m = g and n = 2 leads to the following Corollary:

Corollary 4.7. — Let (xi, yi) ∈ Xg (i = 1, . . . , g), (x′j , y′j) ∈ Xg (j =
1, 2), u ∈ Cg, v := v[1] + v[2] ∈ κ−1(W2), and v[j] ∈ κ−1(W1) (j = 1, 2)
be points such that u = w((x1, y1), . . . , (xg, yg)) and v[j] = w((x′j , y′j)),
(j = 1, 2). Then the following relation holds :

σ(u+ v)σ(u− v)
σ(u)2σ[(v)2 = −Ξ(u, v),(4.3)

where Ξ(u, v) is equal to

F (x′1)F (x′2)
(

g∑
i=1

yi
(xi − x′1)(xi − x′2)F ′(xi)

)2

− F (x′1)F (x′2)
( 2∑
i=1

(−1)iy′i
(x′1 − x′2)F (x′i)

)2

,
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and F (x) := (x− x1)(x− x2) · · · (x− xg) ≡ µg((x, y); (x1, y1), . . . , (xg, yg))
and F ′(x) := ∂F (x)/∂x.

Proof. — By letting ∆(x1, x2, . . . , x`) be the Vandermonde determinant,
i.e.,

∆(x1, x2, . . . , x`) =

∣∣∣∣∣∣∣∣∣
1 x1 · · · x`−1

1
1 x2 · · · x`−1

2
...

...
. . .

...
1 x` · · · x`−1

`

∣∣∣∣∣∣∣∣∣ =
∏̀

i,j=1,i<j
(xj − xi),(4.4)

we have
(4.5)

Ψg+2((x1, y1), . . . , (xg, yg), (x′1,±y′1), (x′2,±y′2)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 · · · xg1 y1
1 x2 · · · xg2 y2
...

...
. . .

...
...

1 xg · · · xgg yg
1 x′1 · · · x′

g
1 ±y′1

1 x′2 · · · x′
g
2 ±y′2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

g∑
i=1

∆(x1, . . . , x̌i, . . . , xg, x
′
1, x
′
2)yi ±

2∑
i=1

(−1)i∆(x1, . . . , xg, x
′
3−i)y′i.

Thus for the case m = g and n = 2, the right-hand side of the formula in
Theorem 4.6 is equal to (4.3). �

Baker [4, §11.217], [6, p. 138] proves the following:

Proposition 4.8. — Let (xi, yi) ∈ Xg (i = 1, . . . , g) and u ∈ Cg such
that u = w((x1, y1), . . . , (xg, yg)). The following relation holds for generic
x′i (i = 1, 2),

g∑
i=1

g∑
j=1

℘ij(u)x′1
i−1

x′2
j−1 = F (x′1)F (x′2)

(
g∑
i=1

yi
(x′1 − xi)(x′2 − xi)F ′(xi)

)2

− f(x′1)F (x′2)
(x′1 − x′2)2F (x′1) −

f(x′2)F (x′1)
(x′1 − x′2)2F (x′2) + f(x′1, x′2)

(x′1 − x′2)2 ,

(4.6)

where

f(x1, x2) =
g∑
i=0

xi1x
i
2(λ2i+1(x1 + x2) + 2λ2i).

Corollary 4.7 and Proposition 4.8 yield the key proposition in this article.
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Proposition 4.9. — For the variables in Corollary 4.7, the following
relation holds :

σ(u+ v)σ(u− v)
σ(u)2σ[(v)2 = f(x′1, x′2)− 2y′1y′2

(x′1 − x′2)2 −
g∑
i=1

g∑
j=1

℘ij(u)x′1
i−1

x′2
j−1

.(4.7)

This corresponds to Fay’s formula [19, (39)], which is the basis of “Fay’s
trisecant identity”.

Remark 4.10. — For the g = 1 case, f(x′1, x′2)− 2y′1y′2
(x′1 − x′2)2 = ℘(v1 + v2).

Thus if we let v3 = v1 + v2 and x′3 = ℘(v3), (4.7) recovers (2.4).

Corollary 4.11. — For the variables in Corollary 4.7, with v[1] = v[2],
we have

σ(u+ 2v[1])σ(u− 2v[1])
σ(u)2σ[(2v[1])2 = f1,2(x′1)−

g∑
i=1

g∑
j=1

℘ij(u)x′1
i+j−2

= − lim
x′2→x′1

Ξ(u, v).
(4.8)

where

f1,2(x) := ∂2
xf(x)
2f(x) −f

I
1,2(x), f I1,2(x) :=

g∑
i=0

(i2λ2i+1x
2i−1 + i(i−1)λ2ix

2i).

Belokolos, Enolskii, and Salerno gave the following relation [7, Theorem
3.2]:

Corollary 4.12. — For the variables in Corollary 4.7, with v[2] = 0
or (x′2, y′2) =∞, we have

σ(u+ v[1])σ(u− v[1])
σ(u)2σ[(v[1])2 = x′1

g −
g∑
i=1

℘gi(u)x′1
i−1

= F (x′1) = (x′1 − x1)(x′1 − x2) · · · (x′1 − xg)
≡ µg((x′1, y′1); (x1, y1), . . . , (xg, yg)).

(4.9)

Proof. — We divide both sides of (4.7) by x′2
g−1. By taking the appro-

priate limit, we obtain the equality. �

Remark 4.13. — We conclude this Section by elaborating on the geo-
metric properties of the σ-function which make the addition formulas par-
ticularly suited for integrating equations of dynamics. As stated in the
Introduction, originally the sigma function was defined by Weierstrass [52]
in order to express a symmetric function of the points of a hyperelliptic
curve, which he called “al” function, in terms of rational functions. The al
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function is a root function, equal to
√
F (ba) for a zero ba of f(x), giving one

of the branch points of Xg. The focus was on constructing a dictionary be-
tween Abelian and rational functions. In particular, a goal was the solution
of the “Jacobi inversion”, namely returning the symmetric functions of the
divisor from a point on the universal cover of the Jacobian, as in the genus-
2 case: ℘22 = x1 + x2, ℘21 = x1x2, where the points of the divisor P1 + P2
are Pi = (xi, yi), i = 1, 2. (see also Remark 5.7(2)(b)). The most natural
application is then the explicit realization of the group structure of the Ja-
cobian (the generalized Frobenius-Stickelberger relation in Proposition 4.2,
which gives the addition structure, shows a simple connection between the
affine coordinate ring Rg and the group law on the Jacobian Jg), reflecting
addition in the free Abelian divisor group, and this is achieved in Corollary
4.11, vis-à-vis Proposition 4.4.

5. The σ-function solution of the Toda lattice

In this Section, we give the σ-function solution of the Toda lattice equa-
tion.

First, we identify some algebraic identities that hold for vector fields on
the Jacobian. Vector fields on the Jacobian are understood to be transla-
tion invariant; equivalently, they are elements of the tangent space at the
origin. It is important that we use algebraic functions on the curve to write
their coordinates in the Abelian variables (ui), but in doing this, we make
the convention that we are on a suitable coordinate patch on the Jacobian,
where the Abel map from SgXg can be inverted; as explained in [43, §3],
there are choices involved and one has to check that the vector field in ques-
tion is well defined. Our formulas would hold on this suitable affine patch
anyway, since outside it, the Toda orbits become of smaller dimension, as
mentioned in the Introduction; that case will be addressed in our forth-
coming work. Moreover, as usual, we view the vector fields as derivations
on the universal cover, namely on the ring of functions in Γ(Cg,O(Cg)).

In order to give our solution of the Toda lattice equation, we need only
two vector fields on the Jacobian, each associated in the same way to a
fixed point (x′j , y′j) ∈ Xg, j = 1, 2; however, in order to relate our solution
to Baker’s differential equations (Remark 5.7), we distinguish two further
fixed points (x′j , y′j) ∈ Xg, j = 3, 4, for which we use Baker’s expression
of the derivatives in terms of algebraic functions on the curve as opposed
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to Abelian coordinates on the Jacobian; the dictionary between the two
expressions is given in Lemma 5.2 (b).

Definition 5.1. — For (xi, yi) ∈ Xg (i = 1, . . . , g), u =
w((x1, y1), . . . , (xg, yg)) ∈ Cg, and (x′j , y′j) ∈ Xg (j = 1, . . . , 4), we let

Dj :=
g∑
i=1

x′j
i−1 ∂

∂ui
.

Lemma 5.2. — Let (xi, yi) ∈ Xg (i = 1, . . . , g), (x′j , y′j) ∈ Xg (j =
1, . . . , 4), u ∈ Cg, and v[j] ∈ κ−1(W1) (j = 1, . . . , 4) be points such that
u = w((x1, y1), . . . , (xg, yg)) and v[j] = w((x′j , y′j)), (j = 1, . . . , 4). We have
the following expressions:

(a) For each j = 1, 2, 3, or 4,

Dj = 1
∆(x1, x2, . . . , xg)

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 · · · xg−1
1 2y1∂x1

1 x2 · · · xg−1
2 2y2∂x2

...
...

. . .
...

...
1 xg · · · xg−1

g 2yg∂xg

1 x′j · · · x′j
g−1 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

g∑
i=1

yiF (x′j)
F ′(xi)(x′j − xi)

∂

∂xi
,

and for each j, j′ = 1, . . . , 4,

[Dj , Dj′ ] = DjDj′ −Dj′Dj = 0.

(b) For v(j) = w(x′j , y′j) with j = 1, . . . , 4,

∂

∂x′j
= 1

2y′j

g∑
i=1

x′1
i−1 ∂

∂v
(j)
i

.

(c) For h ∈ Γ(Cg,O(Cg)) and j = 1, . . . , 4,

Dj′h(u+ v(j)) := 2y′j
∂

∂x′j
h(u+ v(j)) = Djh(u+ v(j)).

Proof. — A direct calculation gives the results. �

Lemma 5.3. — For the variables in Corollary 4.7, we have
(a)

D1 log σ(u+ v) = 1
2 (D1 log Ξ(u, v) +D1′ log Ξ(u, v))

+D1 log σ(u) +D1′ log σ[(v),

TOME 63 (2013), FASCICULE 2



670 Yuji KODAMA, Shigeki MATSUTANI & Emma PREVIATO

(b)

D1D2 log σ(u+ v)

= 1
2D1D2 log Ξ(u, v) + 1

2D1D2′ log Ξ(u, v) +D1D2 log σ(u)

= 1
2D1D2 log Ξ(u, v) + 1

2D2D1′ log Ξ(u, v) +D1D2 log σ(u).

Proof. — By taking the derivatives of the logarithm of (4.3), we obtain

D1 log Ξ(u, v) = D1 log σ(u+ v)− 2D1 log σ(u) +D1 log σ(u− v),
D1′ log Ξ(u, v) = D1′ log σ(u+ v)− 2D1′ log σ[(v) +D1′ log σ(u− v),

and Lemma 5.2 (c) yields the claims. �

Now we can give the σ-function solution of the Toda lattice equation:

Theorem 5.4. — Let (xi, yi) ∈ Xg (i = 1, . . . , g), (x′1, y′1) ∈ Xg u ∈ Cg,
and v[1] ∈ κ−1(W1) be points such that u = w((x1, y1), . . . , (xg, yg)) and
v[1] = w((x′1, y′1)). We define c := 2v[1], D̃1 = σ[(c)D1,

V(u) := V(u, v[1]) :=
g∑
i=1

g∑
j=1

℘ij(u)x′1
i+j−2

, Vc(c) := f1,2(x′1),

and t := (t11, t12, . . . , t1g) ∈ Cg with

t1j := (x′1)1−j
g∑
i=1

∫ (xi,yi)

∞
νI
j , (j = 1, 2, . . . , g).

Then with the coordinate change u = nc + t⊥ + t (which defines t⊥), we
have

(1)

−D2
1 log

(
V(t+ nc+ t⊥)− Vc(c)

)
= V(t+ (n+ 1)c+ t⊥)− 2V(t+ nc+ t⊥) + V(t+ (n− 1)c+ t⊥).

(5.1)

(2) The Hirota bilinear equation,

(5.2)σ(t+ nc+ t⊥)D̃2
1σ(t+ nc+ t⊥)− D̃1σ(t+ nc+ t⊥)D̃1σ(t+ nc+ t⊥)

− Vc(c)σ(t+ nc+ t⊥)2 − σ(t+ (n+ 1)c+ t⊥)σ(t+ (n− 1)c+ t⊥) = 0.

(3) The Toda-lattice equation, by letting Vn(t+ t⊥) := −V(t+nc+ t⊥)
and qn(t) := − log

(
Vn(t+ t⊥)− Vc(c)

)
,

−D2
1qn(t) = e−qn+1 − 2e−qn + e−qn−1 .(5.3)
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Proof. — The claims follow from Corollary 4.11, by direct verification,
as in the genus-1 case, using the definition of the vector fields. �

We also have the σ-function solutions of the two-(time-)dimensional
Toda lattice equation [25, 3.5.1, (3.107-108)], ∂2qn/∂t1∂t2 = Vn+1− 2Vn +
Vn−1, qn = log(1 + Vn), n any integer:

Theorem 5.5. — Let (xi, yi) ∈ Xg (i = 1, . . . , g), (x′j , y′j) ∈ Xg (j =
1, 2), u ∈ Cg, v := v[1] + v[2] ∈ κ−1(W2), and v[j] ∈ κ−1(W1) (j = 1, 2)
be points such that u = w((x1, y1), . . . , (xg, yg)) and v[j] = w((x′j , y′j)),
(j = 1, 2). We define c := v[1] + v[2],

V̂(u, v[1], v[2]) :=
g∑
i=1

g∑
j=1

℘ij(u)x′1
i−1

x′2
j−1

,

V̂c(v[1], v[2]) := 2y′1y′2 − f(x′1, x′2)
(x′1 − x′2)2 ,

and tj := (tj1, tj2, . . . , tjg) ∈ Cg with

tjk := (x′j)1−k
g∑
i=1

∫ (xi,yi)

∞
νI
k, (j = 1, 2, and k = 1, 2, . . . , g).

Then with u = nc+ t⊥ + t1 + t2, we have

−D1D2 log(Ṽ(nc+ t1 + t2 + t⊥)− Ṽc(c)) = Ṽ(t1 + t2 + (n+ 1)c+ t⊥)

− 2Ṽ(t1 + t2 + nc+ t⊥) + Ṽ(t1 + t2 + (n− 1)c+ t⊥).

Proof. — The claims follow from Proposition 4.9 by direct verification.
�

Remark 5.6. — As Hirota notes, a two-(space-)dimensional version of
the Toda system ought to have two independent discrete variables, but
at the time, he had only found solitons for the two-times case [25, §3.5.1,
Remark]. Instead of Theorem 5.5, as a different type of generalization of
Theorem 5.4 involving the σ-function on the Jacobian, implementing a
second spatial (discrete) variable would entail choosing another z[1] ∈ W1
say, and adding to the argument of the σ-function a vector mc1 +nc2, with
c1 = 2v[1] and c2 = 2z[1], and “considering a two-dimensional version of the
force term on the right-hand side” of (1) in Theorem 5.4 [ibid.]. We would
need a different kind of addition formula, which we have not yet developed.

Remark 5.7. — We would like to stress that a single formula underlies
the validity of the integrable hierarchies: the differential operators that
Baker used to obtain what we call the KdV and KP equations are always
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of the type D1 we defined, namely a linear combination of the Abelian
coordinates given by the basis of holomorphic differentials which involve
the equation of the plane curve, against coefficients that are powers of the
x-coordinate of one point of the curve; generically, distinct points yield
independent vector fields. Specific to our situation:

(1) Corollary 4.7, Baker’s formula (4.6) in [4, p. 328] and [6, p. 138], and
Fay’s formula (4.7) in [19, (39) in p. 26] are essentially the same.
We notice the following two facts:
(a) Baker derived the KdV hierarchy and KP equation by using his

formula (4.6), using the vector fields D3 and D4, cf. Definition
5.1 [33].

(b) Fay derived his famous trisecant identity, which is equivalent
to the KP hierarchy, by using formula (4.7), which is the hy-
perelliptic σ-function version.

(2) The following relationships hold among the formulae:
(a) The two-dimensional Toda equation in Theorem 5.5 is the same

as formula (4.7).
(b) When v[1] = v[2] in Theorem 5.5, we obtain the Toda lattice

equation of Theorem 5.4, and when v[2] = 0, the Toda equa-
tions are obtained by differentiating F (x′1) (Corollary 4.12).
The function F (x′1) is a polynomial of degree g in the variable
x′1. By applying the vector field D3, we obtain the “Mumford
triple” (which is called (U, V,W ) in [43], three polynomials that
parametrize the Jacobian outside a theta divisor (excluded are
certain g-tuples of points (xi, yi) in special position). We note
that the coefficients of Mumford’s (U, V,W ) involve only the
Abelian functions ℘gi, i > 0 [43, §10]. The KdV hierarchy
follows again using formula (4.7).

(3) We stress again the connection between algebraic and Abelian func-
tions: the differential operator Dj has an expression that involves
only (and acts upon) the xi’s (cf. Lemma 5.2). On the other hand,
(4.3) is also given by the affine coordinates of points of Xg. Hence
the Toda lattice equation is an identity defined over SgXg. It can
also be regarded as a relation among the functions over Jg and
SgXg.

Remark 5.8. — We conclude by comparing our solution to some of the
methods that were used to obtain algebro-geometric Toda flows.
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(1) van Moerbeke [41], following his work with Kac on the Toda lattice
and Jacobi matrices, reported below in Section 6, gave a description
of the isospectral flows in terms of linear flows on a Jacobian, and
with Mumford [42], the algebraic coordinates for the flows and the
solutions in terms of θ-functions. The flows are linear combinations
of, essentially, the Di defined above, for (x′i, y′i) a branchpoint of the
hyperelliptic involution. Fay’s trisecant identity and its derivatives
along the Di are used [42, §5, Proposition] to show that the flows
are Hamiltonian vector fields that preserve the spectrum of the
matrices.

(2) Algebro-geometric solutions to the Toda lattice can be found in [21].
These authors in their extensive work also used the spectral curve
of the tridiagonal matrices whose deformations, equivalent to the
Toda lattice, are given below in Section 6. To solve them, using the
divisors given by auxiliary spectra and via eigenvectors expressed
in terms of theta functions, the authors work out a “discrete Flo-
quet theory” (as had done Kac and van Moerbeke) and solve the
“Dubrovin equations” on the expansion of the Green’s function by
Abelian functions.

6. Periodicity of the Toda-lattice solution

In this section we turn to the problem of periodic solutions of the Toda
lattice. Spatial periodicity is of physical interest, in the lattice case, so the
requirement amounts to finding a point of finite orderN on the hyperelliptic
curve: c = 2w((x′1, y′1)) such that for u ∈ Cg,

u+Nc = u modulo Λ.

Hyperelliptic curves that admit such a point are special, and were called
“Toda curves” by McKean and van Moerbeke [39], who proved that they
are dense in moduli space. For the same reason, points of finite order in
the Jacobian that come from the curve, or from the sum of a specific num-
ber of points on the curve, give periodic orbits in the billiard (completely
integrable Hamiltonian) system in the ellipsoid [13], and are related to
Poncelet’s closure (cf. Appendix).
The finite-point condition was investigated by Cantor and Ônishi [45,

11] using the division polynomial ψ2N , an element of Rg. Similarly, we
investigate the periodic solutions of the Toda lattice.

TOME 63 (2013), FASCICULE 2



674 Yuji KODAMA, Shigeki MATSUTANI & Emma PREVIATO

6.1. Division polynomials ψ2N

Traditionally, division polynomials Fn(x, y) arise in expressing the coor-
dinates of nP in terms of those of P , a point of an elliptic curve in Weier-
strass form. In particular, given our present interest, we call “the division
polynomial” an element of the ring of functions on the affine curve, whose
solutions are points of finite order in the Jacobian (where the Abel map is,
as usual, based at ∞). The division polynomial for the genus-one case was
studied by Kiepert [28] and Brioschi [8]. We call Kiepert-type polynomial
and Brioschi-type polynomial the genus-one version of the division polyno-
mial ψn, a polynomial whose zeros P satisfy the condition nP ≡ 0, more
precisely, nw(P ) ≡ 0 modulo Λ.

Referring to [45, Definition 9.2], the hyperelliptic version of the ψn func-
tion for genus Xg over w(Xg) = κ−1W1 is defined by

ψn(u) = σ\n(nu)
σ](u)n2 .

A zero u(6= 0) of ψn has the property that nu ∈ κ−1Wg−1. The trans-
formation law under translation (3.3) allows one to check that ψn belongs
to Rg. Thus it is a natural generalization of the classical Kiepert formula,
or the division polynomial. By taking limits of Proposition 4.2 along the
Abelian variables, we can give an expression for ψn in terms of φi’s in Rg
[45, Theorem 9.3]. In [38], we proved the following:

Theorem 6.1. — Let n > 1 be a positive integer. For

ψn(u) = εn,g
1!2! · · · (n− 1)!

∣∣∣∣∣∣∣∣∣∣

∂φ1
∂u1

∂φ2
∂u1

· · · ∂φn−1
∂u1

∂2φ1
∂u12

∂2φ2
∂u12 · · · ∂2φn−1

∂u12

...
...

. . .
...

∂n−1φ1
∂u1n−1

∂nφ2
∂u1n−1 · · · ∂n−1φn−1

∂u1n−1

∣∣∣∣∣∣∣∣∣∣
,

with ψ1 ≡ 1, the vanishing of ψn at a point P of the hyperelliptic curve
Xg is a necessary and sufficient condition for ω(n · P ) to belong to Wg−1,
where ω is the Abel map ω : Xg → Jg. Here εn,g is a plus or minus sign.
Further let n(> g), k(< g) and ` := g − k − 1 be non-negative integers.

For a hyperelliptic curve Xg, the vanishing of ψn+`, . . ., ψn+1, ψn, ψn−1,
. . ., ψn−`, at a point P of Xg is a necessary and sufficient condition for
ω(n · P ) to belong to Wk.
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Cantor gave a Brioschi-type expression for the ψn-function [11, 35],

ψn(u) =

 ε′n,g(2y)n(n−1)/2 · T (g+2)
(n−g−1)/2(y, ddx ) for n 6≡ g mod 2

ε′n,g(2y)n(n−1)/2 · T (g+1)
(n−g)/2(y, ddx ) for n ≡ g mod 2.

Here ε′n,g is a plus or minus sign and T (m)
n is a Toeplitz determinant [35],

T (m)
n

(
g(s), d

ds

)
=

∣∣∣∣∣∣∣∣∣∣∣

g[m+n−1] g[m+n−2] · · · g[m+1] g[m]

g[m+n] g[m+n−1] · · · g[m+2] g[m+1]

...
...

. . .
...

...
g[m+2n−3] g[m+2n−4] · · · g[m+n−1] g[m+n−2]

g[m+2n−2] g[m+2n−3] · · · g[m+n] g[m+n−1]

∣∣∣∣∣∣∣∣∣∣∣
,

and T
(m)
`

(
g(s), d

ds

)
≡ 1 when m is a non-negative integer and ` is a

negative integer, g(s) is a function of an argument s and

g[n](s) := 1
n!

dn

dsn
g(s).

We note for y2 = f(x) that y2n−1dny/dxn is a polynomial in x and
coprime (in the sense of not vanishing together on a point of the curve) to
f(x) in general. Hence the function yn(2m+2n−3)T

(m)
n (y, ddx ), that is,∣∣∣∣∣∣∣∣∣∣∣

y2m+2n−3y[m+n−1] y2m+2n−5y[m+n−2] · · · y2m+1y[m+1] y2m−1y[m]

y2m+2n−1y[m+n] y2m+2n−3y[m+n−1] · · · y2m+3y[m+2] y2m+1y[m+1]

...
...

. . .
...

...
y2m+4n−7y[m+2n−3] y2m+4n−9y[m+2n−4] · · · y2m+2n−3y[m+n−1] y2m+2n−5y[m+n−2]

y2m+4n−3y[m+2n−2] y2m+4n−7y[m+2n−3] · · · y2m+2n+1y[m+n+1] y2m+2n−3y[m+n−1]

∣∣∣∣∣∣∣∣∣∣∣
is an element of C[x] and coprime to y2 = f(x). Hence ψn(u) can be
expressed by

ψn =


(2y)g(g+1)/2αn(x) for n− g = odd, n > g + 1

(2y)g(g−1)/2αn(x) for n− g = even, n > g + 1

(2y)n(n−1)/2αn(x) otherwise,

where αn(x) is a polynomial of x and coprime of y for n > g + 1, and
αn = ε′n,g1 for n 6 g+1. As shown in [11], the degree of αn(x), (n > g+2)
is

deg(αn) =


g(n+ g)(n− g)− g(2g + 1)

2 for n− g = odd

g(n+ g)(n− g)
2 for n− g = even.
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Definition 6.2. — We define

Φn := {P ∈ Xg | P is a zero of αn},

and for n > g,

Ξn := Φn−g+1 ∩ . . . ∩ Φn−1 ∩ Φn ∩ Φn+1 ∩ . . . ∩ Φn+g−1.

One should note here that there is no guarantee that Ξn is not empty.

Theorem 6.3. — Let 2N > 2g + 1. For a hyperelliptic curve of genus
g which has a point (x′1, y′1) ∈ Ξ2N , V(u) in Theorem 5.4 is the periodic
solution of the Toda lattice equation such that V(u) = V(u + Nc) with
c = 2w(x′1, y′1).

Remark 6.4. — (1) In the g = 1 case, since an elliptic curve is a
divisible group, there exist a point (x′1, y′1) which is a zero of a ψN ;
as mentioned in Remark 4.10, for every point (x′1, y′1) we have a
point (x′2, y′2) = 2(x′1, y′1). Thus, V in Theorem 5.4, is a periodic
solution of the Toda lattice equation, provided V(u) = V(u + Nc)
with c = w(x′2, y′2).

(2) We do not address in the present work the important problem of
finding real-valued solutions V(u).

Example 6.5. — Case g = 1, N = 3 and N = 4.
We consider the elliptic curve y2 = x3−x (which has an extra automor-

phism of order two – a property that is not related to points of finite order
but is usually accompanied by a large number of exact solutions for the
coordinates of points on the curve that satisfy algebraic conditions). The
division polynomials are given by

ψ1 = 1,
ψ2 = −2y,

ψ3 = 34y2(x4 − 6x2 − 1),

ψ4 = −2y(x2 + 1)(x2 + 2x− 1)(x2 − 2x− 1),

ψ5 = 32x14 − 187x12 − 64x11 + 2x10 + 320x9 − 233x8

+ 320x7 − 52x6 − 64x5 − 61x4 + 50x2 + 1.

For x′3 = (1/3)
√

9 + 6
√

3, we have N = 3 and for x′3 =
√

2 + 1 or a zero of
ψ4 we have N = 4.

Lemma 6.6. — Let 2N > 2g+1. If P := (x′1, y′1) ∈ Ξ2N has the property
that `P are distinct for different ` ∈ {1, 2, · · · , 2N}, then

(x− x′1)(x− x′2) · · · (x− x′2N )|ψ2N+m(x, y)

ANNALES DE L’INSTITUT FOURIER



SIGMA-FUNCTION SOLUTION OF THE TODA LATTICE 677

where (x′`, y′`) := `(x′1, y′1) and m = −g + 1, . . . , 0, . . . , g − 1.

Proof. — By assumption, ±`P are exactly the points of the set Ξ2N . �

6.2. A periodic Toda lattice

In this subsection, we consider the relation between Theorem 6.3 and an
algebraically completely integrable system(5) originally studied by Kac and
van Moerbeke [27]. Using the solution given in Section 5, we find the explicit
form of Flaschka’s coordinates for the Toda lattice. The Hamiltonian of the
Toda lattice equation is

H = 1
2

N∑
k=1

P 2
k +

N∑
k=1

exp(Qk −Qk+1),

where Pk = Pk+N and Qk = Qk+N . For Flaschka’s coordinates, ak =
exp(Qk −Qk+1) and bk = −Pk, the equations of motion under H become

d

dt
ak = ak(bk+1 − bk),

d

dt
bk = ak − ak−1.

(k = 1, 2, . . . , N).

Remark 6.7. — The Toda Hamiltonian system admits the time inversion
t 7→ −t, and this corresponds to the hyperelliptic involution on Xg.

For brevity, we introduce the notation

σ(n)(t; t⊥) := σ(t+ nc+ t⊥), σ(c) := σ[(c),

ζ(n)(t; t⊥) :=
g∑
i=1

x′1
i−1

ζi(t+ nc+ t⊥), ζ(c) := 1
2D1′ log σ[(c),

℘(n)(t; t⊥) :=
g∑

i,j=1
x′1
i+j−2

℘ij(t+ nc+ t⊥), ℘(c)(t⊥) := f1,2(x′1).

Proposition 6.8. — Using the σ-function solution of the Toda lattice
equation in Theorem 5.4 (2), the Flaschka coordinates for the Toda lattice

(5)Different systems have been variously referred to in the literature as “periodic (gen-
eralized) Toda systems”; for extensive information on definitions and solutions we refer
to the monographs [3, 51].
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are expressed as follows:

an = ℘(n)(t; t⊥)− ℘(c)(t⊥) = σ(n+1)(t; t⊥)σ(n−1)(t; t⊥)
σ(n)(t; t⊥)2σ(c)2 ,

bn−1 = Dt log σ(n)(t; t⊥)
σ(n−1)(t; t⊥)

− ζc = ζ(n)(t; t⊥)− ζ(n−1)(t; t⊥)− ζ(c).

Proof. — By definition of Pk = −bk,

Pn−1 − Pn = ζ(n+1)(t; t⊥)− 2ζ(n)(t; t⊥) + ζ(n−1)(t; t⊥),
· · · · · ·

P2 − P3 = ζ(4)(t; t⊥)− 2ζ(3)(t; t⊥) + ζ(2)(t; t⊥),

P1 − P2 = ζ(3)(t; t⊥)− 2ζ(2)(t; t⊥) + ζ(1)(t; t⊥),

P0 − P1 = ζ(2)(t; t⊥)− 2ζ(1)(t; t⊥) + ζ(0)(t; t⊥),

with

−Pn = ζ(n+1)(t; t⊥)− ζ(n)(t; t⊥)− (ζ(1)(t; t⊥)− ζ(0)(t; t⊥))− P0.

Since the total momentum should be invariant, we set

P0 = −(ζ(1)(t; t⊥)− ζ(0)(t; t⊥)) + p0.

where p0 is a constant corresponding to ζ(c). Then the equation dbk/dt =
ak − ak−1 holds by Lemma 5.3 and Corollary 4.7, equation dak/dt =
ak(bk+1 − bk) by Theorem 5.4. �

Proposition 6.9. — The an’s and bn’s given in Proposition 6.8 are
rational functions of xi, yi (i = 1, . . . , g) and x′1, y′1.

Proof. — The translation law (3.3) for the σ\n functions shows that an
and bn are meromorphic functions over the Jacobian Jg; Lemma 5.2 gives bn
as a meromorphic function over SgXg ×Xg, derived using algebraic vector
fields whose coordinates are rational functions of xi, yi (i = 1, . . . , g), x′1,
y′1.
On the other hand, using Theorem 4.6, an is given by

σ(u+ 2nv[1] + 2v[1])σ(u+ 2nv[1] − 2v[1])
σ(u+ 2nv[1])2σ\n(2v[1])2

= lim
(x′

i
,y′

i
)→(x′1,y′1)

[∏1
i=0 Ψg+2n((x1, y1), . . . , (x′2n+2, y

′
2n+2), (x′1, (−1)iy′1), (x′2, (−1)iy′2))

(Ψg+2n((x1, y1) . . . , (x′2n+2, y
′
2n+2))Ψ2((x′1, y′1), (x′2, y′2)))2

×
g∏
i=1

2∏
j=1

1
Ψ2((xi, yi), (x′j , y′j))

2n+2∏
i=3

2∏
j=1

1
Ψ2((x′i, y′i), (x′j , y′j))

 .
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Here ((x1, y1), . . . , (x′2n+2, y
′
2n+2)) in both numerator and denominator of

the equation is an abbreviation for

((x1, y1), . . . , (xg, yg), (x′3, y′3), . . . , (x′2n+2, y
′
2n+2)).

This completes the proof of the statement. �

Remark 6.10. — To exemplify Proposition 6.9 we write bn in the g = 1
case:

ζ(u+ v)− ζ(u)− ζ(v) = y(u)− y(v)
x(u)− x(v) .

Now we give an inverse of Theorem 6.3; together, they constitute our
main result relating the periodic Toda lattice to the σ-function solution:

Theorem 6.11. — Let 2N > 2g + 1. If a hyperelliptic curve of genus
g has a point (x′1, y′1) ∈ Xg \ ∞ such that V(u) in Theorem 5.4 is the
periodic solution of the Toda lattice equation, i.e., V(u) = V(u+Nc) with
c = 2w(x′1, y′1), then (x′1, y′1) belongs to Ξ2N .

Proof. — The periodicity condition V(u) = V(u+Nc) is equivalent to the
periodicity of an and bn due to Kac and van Moerbeke [27]. The expression
for the Flaschka coordinates in Proposition 6.8 allows for a prefactor etβu

of σ(u), β a constant vector in Cg, in terms of which the periodicity of an
and bn, (an = an+N , bn = bn+N ), is equivalent to the equality:

(6.1) e2Ntβv[1]
σ(u+ 2Nv[1]) = σ(u)

for every ±u ∈ Wk (k = 0, . . . , g), where v[1] = w(x′1, y′1) 6= 0 (by as-
sumption). Noting 2N − (g − 1) > g, this implies in particular, setting
u = ±kv[1] 6= 0,

e2Ntβv[1]
σ((2N ± k)v[1]) = σ(±kv[1]).

The right-hand side vanishes for (k = 0, . . . , g−1) since u = ±kv[1] belongs
to the (translated) theta divisor, whereas σ](v[1]) does not vanish.
Moreover, we recall that a point (x, y) in Xg with y = 0 is such that

2w(x, y) ∈ Wg−1, which still satisfies the conclusion since N > 1. Hence
(6.1) implies that (x′1, y′1) ∈ Ξ2N . �

Remark 6.12. — Given the connection between Theorem 6.3 and theory
of Kac and van Moerbeke provided by Theorem 6.11, we note in addition:
since it is known that for certain multi-indices γ = (γ1, ..., γg) and for
±u ∈ κ−1Wk (k = 1, . . . , g − 1), letting ∂γ := ∂γ1

u1
. . . ∂

γg
ug , the derivative

∂γσ(u) vanishes [45, 37], by differentiating the equation, the σ function
satisfies (k = 1, . . . , `) for a suitable `,

∂γσ((2N − `)v[1]) = ∂γσ((2N − `− 1)v[1]) = . . . = ∂γσ((2N + `)v[1]) = 0.
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As we have assumed that v[1] ∈ Ξ2N does not vanish, the vanishing of
sigma and its derivatives on multiples of v[1] is a condition of flag-variety
type (cf. [2, 1, 20, 12, 30]). Studying the topology of these Toda orbits of
smaller (than generic) dimension was the original motivation for our work,
which we plan to use for a sequel to this paper.

6.3. Hyperelliptic curve X̂g,N−1 for the periodic Toda lattice

The Lax matrix for the periodic Toda lattice is now given by

L :=


b1 1 0 · · · aN ŵ

−1

a1 b2 1 · · · 0
...

. . . . . . . . .
...

0 · · · aN−2 bN−1 1
ŵ · · · · · · aN−1 bN

 .

The characteristic equation for L defines the hyperelliptic spectral curve:

det(L − z) = −
(
ŵ +

∏N
i=1 ai
ŵ

− P(z)
)

= 0,

which gives the affine curve (ŵ, z) of genus N − 1,

(6.2) X̂g,N−1 : ŵ2 − P(z)ŵ +
N∏
i=1

ai = 0.

Here P is given by

P(z) := ∆per
1,N (z)−∆per

2,N−1(z),

where

∆per
n,m :=

∣∣∣∣∣∣∣∣∣∣∣

bm − z 1 0 · · · 0
am bm+1 − z 1 · · · 0
...

. . . . . . . . .
...

0 · · · an−2 bn−1 − z 1
0 · · · · · · an−1 bn − z

∣∣∣∣∣∣∣∣∣∣∣
.

P(z) := (−1)NzN +
∑
k=1

N(−1)N+kIkzN−k.
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The coefficients of the powers of z are given by

I1 =
N∑
i=1

bi, I2 =
∑
i>j

bibj −
N∑
i=1

ai, . . . . . .

· · · · · · · · · · · ·

IN = ∆per
1,N (0)− aN∆per

2,N−1(0), IN+1 =
N∏
i=1

ai.

(6.3)

We refer to X̂g,N−1 as the periodic Toda curve. Since the characteristic
polynomial det(L − z) is invariant under the Toda flow, these coefficients
give the Hamiltonians, i.e.

(6.4) ∂

∂t
Ij = 0 (j = 1, 2, . . . , N + 1).

The set {Ij : j = 1, . . . , N + 1} gives an involutive, complete family of
integrals of motion, which guarantees the complete integrability of the Toda
lattice. In particular, I1 and IN+1 can be expressed as follows:

Example 6.13. — From the formulae of (an, bn) in Proposition 6.8, the
following expression for two Hamiltonians in terms of Abelian functions
follows directly:

I1 =
∑
i

bi = Nζ(c), IN+1 =
N∏
i=1

ai = (σ(c))−2N .

Lemma 6.14. — Ij (j = 1, . . . , N + 1) can be expressed as rational
functions of (x′1, y′1) only.

Proof. — Condition (6.4) shows that Ij (j = 1, . . . , N + 1) does not
depend upon (xj , yj), j = 1, . . . , g. �

Proposition 6.15. — The hyperelliptic curve X̂g,N−1 of (6.2) admits
a morphism to the curve:

w2 =
2N∏
i=1

(z − zi) = P(z)2 − 4
N∏
i=1

ai,

with w := 2ŵ−P(z). The coordinates of the Weierstrass points of X̂g,N−1
are rational functions of x′1 and y′1.

Proof. — The Weierstrass points have z-coordinates which correspond to
w = 0. The coefficients of the corresponding polynomial in z are rational
functions of x′1 and y′1 by Lemma 6.14, and the fundamental theorem of
elementary symmetric functions gives the conclusion. �
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Example 6.16. — For g = 1, we consider again the curve y2 = x3 − x
or ŷ2 = 4(x3 − x). Then,

a0(t) = x− x′3,

a1(t) = (3xx′3
2 − x− x′3

3 − 2ŷŷ′3 − x′3)
(x− x′3)2 ,

a2(t) = 2(x− x′3)
( (ŷ′3

4 + 8ŷŷ′3
3 + (−36xx′3

2 + (2(12 + 9x2))x′3 − 12x)ŷ′3
2

(−3x′3
3 + x′3 + 2ŷ′3

2 − 2ŷŷ′3 + 3xx′3
2 − x)2

+ x2 + 9x′3
6 − 6x′3

4 + x′3
2 + 12xx′3

3 − 2xx′3 − 18xx′3
5 − 6x2x′3

2 + 9x2x′3
4

(−3x′3
3 + x′3 + 2ŷ′3

2 − 2ŷŷ′3 + 3xx′3
2 − x)2

)
,

(6.5)

b0(t) = ŷ − ŷ′3
x− x′3

, b1(t) = ηŷ,1 − ŷ′3
ηx,1 − x′3

, b2(t) = ηŷ,2 − ŷ′3
ηx,2 − x′3

,(6.6)

where (ηx,1, ηŷ,1) and (ηx,2, ηŷ,2) are the solutions of the equations
µ1((z, w); (x, ŷ), (x′3, ŷ

′
3)) = 0 and µ2((z, w); (x, ŷ), 2(x′3, ŷ

′
3)) = 0 in the

variables (z, w), with:

µ1((z, w); (x, ŷ), (x′3, ŷ′3)) := (x′3w − ŷ
′
3z + zŷ1 − xw + xŷ′3 − ŷx′3)

(x′3 − x) ,

µ2((z, w); (x, ŷ), 2(x′3, ŷ′3)) := −zx
2 + xz2 + 2xx′3wŷ

′
3 − 2zŷx′3ŷ

′
3 − zx′3

2 − 3xz2x′3
2

x − 3xx′3
2 + x′3

3 + 2ŷ ŷ′3 + x′3

+ 3zx2x′3
2 + xx′3

2 + xx′3
4 − zx′3

4 − 2wx2ŷ′3 + 2ŷz2ŷ′3 + z2x′3
3 − x2x′3

3 + x′3z
2 − x′3x2

x − 3xx′3
2 + x′3

3 + 2ŷ ŷ′3 + x′3
.

6.4. Remark on a relation between X̂g,N−1 and Xg

Even though the Toda time flows have been linearized on both the Ja-
cobians of the curves Xg and X̂g,N−1 (cf. Remark 5.8), and solutions have
been expressed in terms of hyperelliptic abelian functions on each, the
relationship between these curves is non-trivial. To name only one other
example, the Kowalevski solution of the top has been compared by several
authors with the Lax-pair solution, and the classical Arithmetic-geometric
Mean has been shown to relate the (genus-2) curves [31], the Jacobian of
the one is the quotient of the Jacobian of the other by a group of order
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4. A different Lax pair provides a curve of genus 3, which covers an ellip-
tic curve: the Prym variety of the cover is again isogenous to the genus-2
Jacobian [32].
In our case, we make some observations. The coefficients of X̂g,N−1 are

given by hyperelliptic ζ- and σ- functions, which are transcendental func-
tions of their arguments (points of the Jacobian). However, Propositions
6.8 and 6.9 show that they are rational functions of xi’s and yi’s; moreover,
these coefficients are Hamiltonians of motion, so the t-dependence of the
an and bn fixes the curve X̂g,N−1, associated to a point on the Jacobian of
Xg.
We note that the cyclic group CN acts on the sets of a’s and b’s by:

an 7→ an+1 and bn 7→ bn+1, via the addition on 2P (the image of the point P
in the Jacobian has order 2N): 2`P 7→ (2`+2)P and (2`+1)P 7→ (2`+3)P ,
and that the curve X̂g,N−1 is invariant under this action, although this
does not guarantee that X̂g,N−1 admits a CN action. There could be a
relationship of Kowalevski type between the two Jacobians (which have
different dimensions in general), such as quotienting by the group CN . We
plan to investigate this relationship, starting with small-genus examples.
For example, in genus 1, the relation between X1 and X̂1,N−1 could give

another solution to Poncelet’s closure problem (for Cayley’s solution, cf. [13,
22]): as we review in the Appendix, the periodic Toda flow corresponding
to a point of order 2N on a given elliptic curve, which plays the role of our
Xg, also corresponds to a closed Poncelet polygon with 2N sides; in this
case, as we saw in subsection 6.3 the periodic Toda curve has genus N − 1,
and could be viewed as an algebraic solution to the porism.
We conclude the Appendix by a reference to another classical problem

solved in terms of transcendental functions over an algebraic curve, which
therefore could play the role of Xg, a construction similar to ours yielding
algebraic solutions over X̂g,N−1.

A. Appendix: Toda lattice and Poncelet’s closure problem

Poncelet’s porism (cf. [13, 22]) can be stated as follows:

Theorem A.1. — (Poncelet) Let C and D be two smooth conics in the
real affine plane, such that C includes D. For an integer N > 2, if there
exists a closed N -polygon inscribed in C and circumscribed about D, for
every point P in C there exists a polygon whose vertices are in C and
includes P , and segments are tangent to D.

TOME 63 (2013), FASCICULE 2



684 Yuji KODAMA, Shigeki MATSUTANI & Emma PREVIATO

More generally, in the complex projective plane, the existence of such
an N -sided Poncelet polygon corresponds to a point of order N on the
elliptic curve determined by the two conics, and a point in the incidence
correspondence of points of C and tangents to D. This interpretation in
terms of a transcendental problem is one of the deeper ways to prove the
theorem (cf. [23]), whereas Poncelet used elementary projective geometry,
a subject that did not exist at the time.
As can be expected, a point of finite order gives rise to many applications

in the theory of periodic motion, and recently in [10] it was applied in a
novel way to give a condition of Fritz John type on a Dirichlet problem
for a planar domain bounded by an ellipse; in the same paper, the authors
give the following explicit parametrization of the conics, and show that the
vertices of a Poncelet N -gon give a solution to the N -periodic Toda chain,
which we reproduce below.
Without loss of generality, we assume the conic C to be given by the

equation x2 = yz and parametrize it by (x, x2, 1). Let the vertices of the
Poncelet polygon be the N -points (x(0)

i , x
(0)
i

2
, 1) (i = 1, . . . , N). Let D be

defined by:
(x, y, z)At(x, y, z) = 0,

where

A =

a1 a2 a3
a4 a5 a6
a7 a8 a9

 .

Assume a5 = 0. The dual conicD∗ ofD is given by (X,Y, Z)A−1t(X,Y, Z) =
0. A pair (P,L) ∈ C ×D∗ such that P ∈ L satisfies

xX + yY + zZ = 0,

for P = (x, y, z) and L = (X,Y, Z). The relation is reduced to the elliptic
curve E1

w2 = 1
a2 + a4

(x, x2, 1)At(x, x2, 1),

where

w = 1√
detA

(
h1(x)Y

X
− h2(x)

)
,

and the h1, h2 are polynomials in x. Poncelet’s closure is equivalent to
finding a matrix A as above and a point (x,w) belonging to E1 such that
it satisfies the equation of Kiepert and Brioschi,

ψN ((x,w)) = 0,
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a criterion attributed to Cayley and proved in [22]. We regard the equation
of ψN ((x,w)) = 0 as the moduli equation for a given x.
For such an A, Poncelet’s theorem means that the vertex Pn ≡

(xn, x2
n, 1) ∈ C (n = 1, 2, . . . , N) satisfies the periodic Toda lattice, xn =

℘((n− 1)u0 + t) [10, §7.1],

− d2

dt2
log[℘(nu0 + t)− ℘(u0)] = [℘((n+ 1)u0 + t)− ℘(u0)]

− 2[℘(nu0 + t)− ℘(u0)] + [℘((n− 1)u0 + t)− ℘(u0)],
(A.1)

where

(A.2) u0 =
∫ (x(0)

1 ,w
(0)
1 )

∞

dx

2w

(in the previous notation, x(0)
n = ℘((n− 1)u0)).

Lastly, we cite the problem of finding the general solution of the fifth-
degree algebraic equation with Galois group PSL(2,F5) = A5, alternating
group on five elements. While the solution cannot be algebraic in the coeffi-
cients of the polynomial equation, classical authors such as Jacobi, Galois,
and Klein [29], gave a solution in terms of the zeros of ψ5 for an elliptic
curve X1

(6) . In the classical, fifth-degree case, Humbert [26] expressed the
period-5 condition in terms of a Poncelet pentagon, but in addition proved
that it is equivalent to the curve y2 = (x−x1) · · · (x−x5) having real mul-
tiplication by the quadratic order of discriminant 5. Hashimoto and Sakai
[24] expressed the general condition for a hyperelliptic curve of genus 2,
H1,2, y2 = (x− x1) · · · (x− x5) · (x− x6) to have real multiplication of dis-
criminant 5 again translating it into a condition for the existence of closed
Poncelet pentagons. Mestre [40] generalized the condition of real multipli-
cation to genus g. Lemma 6.6 gives a criterion for the points of order 2N
in Xg in terms of the (genus-g) division polynomial; by analogy H1,2 might
be replaced by a hyperelliptic curve Hg,N−1,

ỹ2 = (x− x′1)(x− x′2) · · · (x− x′2N ).

Proposition 6.15 gives an algebraic relation betweenHg,N−1 and the moduli
of X̂g,N−1.

(6)More recently, H. Umemura [43, Chapter III.c] gave a solution of an algebraic equation
of any degree n in terms of theta constants of a hyperelliptic curve of genus n, in other
words, in terms of a Siegel modular function.
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