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ASYMPTOTICS OF EIGENSECTIONS ON TORIC
VARIETIES

by A. HUCKLEBERRY & H. SEBERT

With an appendix by D. BARLET

Abstract. — Using exhaustion properties of invariant plurisubharmonic func-
tions along with basic combinatorial information on toric varieties, we prove con-
vergence results for sequences of densities |ϕn|2 = |sN |2/||sN ||2

L2 for eigensections
sN ∈ Γ(X, LN ) approaching a semiclassical ray. Here X is a normal compact toric
variety and L is an ample line bundle equipped with an arbitrary positive bundle
metric which is invariant with respect to the compact form of the torus. Our work
was motivated by and extends that of Shiffman, Tate and Zelditch.
Résumé. — En utilisant les propriétés d’exhaustion des fonctions plurisoushar-

moniques invariantes en combinaison avec les données combinatoires basiques des
variétés toriques, nous montrons des résultats de convergence pour des suites de
densités |ϕn| = |sN |2/||sN ||2

L2 des sections propres sN ∈ Γ(X, LN ) approchant un
rayon semi-classique. Ici X est une variété torique normale et L désigne un fibré
en droites ample muni d’une métriqué positive quelconque invariante par rapport
à l’action de la forme compacte du tore. Notre travail était motivé par ceux de
Shiffman, Tate et Zelditch et généralise ceux-ci.

1. Notation and statement of results

Let us begin by describing the basic setting of this paper. For this let X
be an m-dimensional connected normal compact complex space equipped
with an effective holomorphic action of a complex torus T ∼= (C∗)m. It
follows that T has a (unique, Zariski dense) open orbit T.x0 where the
base point x0 is fixed for the discussion. We consider a very ample line
bundle π : L → X to which the elements of T can be lifted in the sense
that for every t ∈ T there is a holomorphic bundle mapping t̂ : L → L

Keywords: asymptotics of eigensections, toric varieties, plurisubharmonic.
Math. classification: 34L20, 14M25, 22E70.



734 A. HUCKLEBERRY & H. SEBERT

with tπ = πt̂. If T̂ denotes the group of bundle transformations which
arise in this way, then T̂ ∼= (C∗)m+1 and π induces an exact sequence
1→ C∗ → T̂ → T → 1.
The group T̂ is naturally represented on the space Γ(X,L) of sections
by t̂(s) := t̂st−1. Since T̂ ∼= (C∗)m+1, this representation is completely
reducible. Note that if s1, s2 ∈ Γ(X,L) are eigensections which transform
by the same character, then s1s

−1
2 is a T -invariant meromorphic function on

X which, since T -has an open orbit, is constant. Hence the representation
is multiplicity-free.
In order to lift the T -action to L we fix a base eigensection s0 ∈ Γ(X,L)
and define the base point 1x0 := s(x0) in the fiber Lx0 over the base point
x0 in the open T -orbit. Now t̂(s0) = χ0(t̂)s0 for some character χ0 ∈ X(T̂ ).
Thus Ker(χ0) is identified with T by its orbit of 1x0 which is mapped
bijectively onto the open orbit in X. We choose this lifting of T as a group
of bundle transformations, i.e., T ∼= Ker(χ0) ↪→ T̂ . Since L is assumed to
be very ample and the associated embedding ϕL : X → P(Γ(X,L)∗) is
equivariant, it follows from the fact that every holomorphic representation
of T is algebraic that the T -action on X is algebraic. Consequently X is a
toric variety (see, e.g., [4] definitions and basic results).
Now let L be equipped with a smooth Hermitian bundle metric h which
is positive in the sense that for every local section s the function − log |s|2h
is strictly plurisubharmonic. A function on a complex space is said to be
smooth if it can be locally extended to a smooth function in a local embed-
ding space of X in a complex manifold. It is said to be strictly plurisubhar-
monic if the extended function is strictly plurisubharmonic. We also assume
that h is invariant with respect to the maximal compact subgroup TR of
T . This can be achieved by averaging. Of fundamental importance here is
the L2-norm ‖s‖2h :=

∫
X
|s|2hdλ. The measure dλ, which is normalized so

that X has unit volume, is chosen to be associated to the volume form ωm

of a Kähler metric. The latter is defined on a covering {Uα} by strictly
plurisubharmonic potential functions hα where the differences hβ − hα are
pluriharmonic on the intersections Uαβ . Thus ω is locally the (1, 1)-form
ωα = i

2∂∂̄hα.

The weight lattice

Having chosen 1 = 1x0 , in every isotypical component Vχ we have a
unique section s with s(x0) = 1. The character χ defines s on the open orbit
by t−1s(t.x0) = χ(t)s(x0) = χ(t) · 1. Since s0 is T -invariant, it follows that

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTICS OF EIGENSECTIONS 735

s(t.x0) = χ(t)s0(t.x0). Consequently, having fixed s0 all other eigensections
are determined by their characters and as a result we turn to the space of
characters on T .
Characters χ : T → C∗ restrict to characters χ : TR → S1 and conversely
such compact characters extend uniquely to characters of T . Thus it is
traditional to write a character as a compact character χ = e2πiα where
the linear function α ∈ t∗R is required to take on integral values on the
kernel of exp : tR → TR. Of course we implicitly also regard such linear
functions as being complex linear, i.e., in t∗ where they define the complex
characters χ. We denote the space of such functions by t∗Z and refer to it
as the (full) weight lattice. We define the dual lattice tZ by

tZ = {v ∈ t : u(v) ∈ Z for all u ∈ t∗Z}. (1)

and obtain the pairing

〈·, ·〉 : t∗Z × tZ → Z, 〈u, v〉 = u(v). (2)

Using the identification explained above, if the bundle L is equipped with
a lifting of the T -action, then Γ(X,L) is described as a T -representation
space by the set of weights in t∗Z which lie in a certain polygonal region
which is defined by the geometry of X as a T -space (see §2).

Sequences of eigensections

The purpose of our work is to explain certain asymptotic phenomena for
sequences (sN ) of sections where sN ∈ Γ(X,LN ). Having fixed the base
point s0 with s0(x0) =: 1, we have the base point sN0 for Γ(X,LN ) with
sN0 (x0) =: 1N . Thus we have the correspondence between eigensections and
linear functions in t∗Z at that level as well. Recall this is given by using the
lifting of the T -action via sN0 , noting that a given eigensection s satisfies
form s(tx0) = χ(t)sN0 (tx0) and expressing χ as e2πiα. The corresondence is
then defined by s 7→ α.
We wish to understand the asymptotic behavior of a sequence of eigen-
sections (sN ) where the individual elements sN ∈ Γ(X,LN ) are chosen so
that the associated weights approximate a ray R(ξ) := R>0.ξ defined by
ξ ∈ t∗Z. If αN is the integral weight associated to sN , then one says that
(sN ) approximates R(ξ) at infinity if

αN = N.ξ +O(1) .

It should be underlined that, while our discussion depends on the choice of
the lifting of the T -action to L, the results are hardly affected. For example,

TOME 63 (2013), FASCICULE 2



736 A. HUCKLEBERRY & H. SEBERT

if the action is lifted via another base eigensection ŝ0 which is associated
to s0 by the character χα̂, then a sequence (sN ) approximates the ray R(ξ)
with respect to the base section s0 if and only if it approximates the ray
R(ξ − α̂) with respect to the base section ŝ0.
Our main result states that for every ray R(ξ) and every sequence (sN )
which approximates R(ξ) at infinity the sequence

|ϕN |2h := |sN |2h
‖sN‖2L2

of probability densities converges with precise estimates of both |sN |2h and
‖sN‖2L2

to the integration current of a certain TR-orbit M . In fact M is
the set where a certain canonically associated strictly plurisubharmonic
function f : X → R>0 ∪̇ {∞} takes on its minimum. This function arises
as follows.
Given (sN ) one studies the strictly plurisubharmonic functions fN :=
− 1
N log |sN |2h. It is a simple matter to check that these converge (locally on

compact subsets) to a smooth strictly plurisubharmonic function f on the
open T -orbit. However, simple examples show that they do not necessarily
converge on X, even outside the zero sets of the sN . However, there exist
tame sequences s′N which approach the same ray at infinity so that the
polar sets of the associated functions f ′N stabilize for large N as one ample
divisor Y with f ′N → f ′ uniformly on compact subsets on the complement
X \Y . Since f ′ = f on the open orbit, we may define f independent of the
tame sequence by continuation to X simply by continuity. The role of f is
emphasized by the following result.

Theorem 1.1. — The smooth strictly plurisubharmonic function f is
an exhaustion of X \Y which takes on its minimum exactly on the TR-orbit
M which is a strong deformation retract of X \ Y .

The TR-orbit M is contained in the closed T -orbit Oτ in X \ Y . Both
Y and Oτ are determined by ξ by the combinatorial polyhedral geometry
associated to X (§3.1). The location of M in Oτ varies in a explicitly
determined way as a function of ξ and the (positive) metric h (§3.2).
Normalizing f so that f |M = 0 it follows that the sequence of probabiliy
densities “localizes” on M . This statement is made precise in the following
theorem. Here dλ is the smooth probability measure introduced above and
dM is the invariant Haar measure on the torusM . It should be emphasized
that for this it is not required that (sN ) is tame, only that a semiclassical
ray is approximated.

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTICS OF EIGENSECTIONS 737

Theorem 1.2. — The sequence of measures |ϕN |2hdλ converges to the
Dirac measure δM on M in the weak sense. That is, we have∫

X

u |ϕN |2hdλ→
∫
M

u dM

for all continuous functions u : X → R.

For the proof of Theorem 1.1 it is necessary to estimate the pointwise
asymptotic behavior of the probability densities. This comes down to an
analysis of the L2-norms ‖sN‖2L2 . It is only necessary to carry out the
estimation locally nearM . This is possible because f is in fact a Bott-Morse
function with its minimum on M . If X is smooth, the relevant integrals
can be directly computed. In the singular case essentially the same estimate
holds, but the proof is more delicate (see the appendix). The final result is
of the form

|ϕN |2h ∼ Nκe−Nf . (3)
The speed of convergence, determined by the exponent κ, depends on the
position ofM in the stratification of X given by the T -action. Calculations
are straightforward when M lies in the open and dense orbit O0. In this
case κ equals 1

2 dimX. However, if M lies in some boundary component
Oτ , the behavior is more subtle and more technical effort is needed. Two
problems arise: The singularities of X play a role and, as compared to
the tame sequence, the sequence (sN ) may show a irregular behavior as it
approaches the semiclassical limit given byR(ξ). In fact, as we will illustrate
in an example later on, the pointwise asymptotic behavior of |ϕN |2h depends
on sN and is not uniquely determined by the ray R(ξ).
In §3 we derive a precise asymptotic formula for tame sequences and discuss
their relationship to arbitrary, possibly non-tame sequences. It turns out
that the tails of the distribution functions defined by a tame sequence give
upper estimates for the orginal ones. This is the content of the following
theorem:

Theorem 1.3. — Let (sN ) be a sequence of sections approximating a
ray R(ξ) at infinity and let

DN (t) := Vol{x ∈ X; |ϕN |2h > t}

be the tail of the associated distribution function. If (s′N ) is an associated
tame sequence, then

DN (t) 6 D′N (t) ∼
( logN

N

)κ
,

where κ = codimOτ + 1
2dimOτ .

TOME 63 (2013), FASCICULE 2



738 A. HUCKLEBERRY & H. SEBERT

It should be mentioned that for any given sequence the difference between
DN (t) and D′N (t) is only of finite order in N .

Previous results

In [13] the authors derive formulæ for the pointwise asymptotic behavior
of the probability densities |ϕN |2h and the distribution functions DN (t) in
the case of X being smooth and embedded in projective space with the
bundle metric h being the restriction of the Fubini-Study metric. Their
results are valid for arbitrary sequences in the case ξ is in the interior of
PD (see below for the definition). In this case every sequence approaching
R(ξ) is tame. If the localization manifold M is located on the boundary of
the open orbit they only consider asymptotic sequences of a special type:
The element ξ defining the ray R(ξ) is assumed to be integral and the
asymptotic sequence of characters αN is assumed to be αN = Nξ. This is
a special case of a tame sequence as it is considered in the present paper.
In the more recent paper [14] the authors also deal with the smooth case.
In particular, they derive asymptotic developments of the value of |ϕN |2N at
the momentum map preimage of αNN . This is carried out without reference
to a particular choice of a sequence (sN ) but instead depends on the location
of αNN in the momentum map image P . This is a delicate matter when αN

N

approaches a face of the boundary of P (see §6.3). In our relatively simple
considerations, a similar phenomenon arises. In our corresponding situation
where M ⊂ Oτ and τ 6= 0, the sequence (sN ) may or may not be tame.
If it is not tame one can not expect a universal scaled probability density.
It should be remarked that in the smooth case the limiting function f can
be explicitly computed in the relevant local coordinants. This done in the
course of the work in [14] (see also [12]).
In [3] the smooth case is also considered. There the authors take advantage
of the Delzant construction which realizes X as a certain GIT-quotient of
the set of stable points of a linear torus action on Cd. The flat metric on the
trivial bundle on Cd defines a positive Hermitian metric on the push-down
of the trivial bundle. In the toric setting they derive explicit formulas for the
stability function which compares the two metrics. In a general situation
(see §5) they make a quantitative comparison of the L2-norms. This allows
them to apply previously obtained results (Lemma 8.1) to derive a formula
for the universal scaled probability distribution under special conditions on
αN (see §8). For more general results in this direction see the work of Ma
and Zhang, e.g., Theorem 0.10 of ([10]).
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ASYMPTOTICS OF EIGENSECTIONS 739

2. Preparation on toric varieties

Here we begin by presenting certain background information for deal-
ing with the combinatorial side of the theory of toric varieties. Our main
observation is that associated to any ray there is a tame sequence.

One-parameter subgroups

Recall that by definition there is a open and dense T -orbit O0 in X. In
order to understand the structure of the boundary bd(O0) one considers
algebraic 1-parameter subgroups λ : C∗ → T . In a systematic way one
determines each boundary orbit as the orbit of a limit point

xτ0 := lim
z→0

λ(z)x0 ∈ X (4)

for λ appropriately chosen. Many considerations are in this way reduced
to the 1-dimensional case. Since T = (C∗)m, 1-parameter subgroups are in
1-1 correspondence with integral vectors v = (n1, . . . , nm) ∈ Zm by setting

λv : C∗ → T, λv(z) = (zn1 , . . . , znm).

We therefore may regard the integral lattice tZ defined in (1) as the space
of 1-parameter subgroups of T . Using the pairing 〈·, ·〉 : t∗Z × tZ → Z from
(2) we describe one-parameter groups by

χα(λv(z)) = z〈α,v〉

for a character χα = e2πiα with α ∈ t∗Z.

2.1. Orbit structure

In the theory of toric varieties (see [4]) one associates in a one-to-one
fashion to each T -orbit O ⊂ X a set τ ⊂ tR called a strongly convex ra-
tional polyhedral cone. Such a cone is by definition the set of all convex
combinations of a set of integral vectors v1, . . . , vr ∈ tZ, called the genera-
tors of τ , i.e.

τ = {λ1v1 + · · ·+ λrvr : λj > 0} =: 〈v1, . . . , vr〉R>0

such that τ ∩ (−τ) = {0}. The vectors vj are chosen in way such that the
one-parameter groups defined by Int(τ) ∩ tZ close up in the orbit Oτ ; that
is, if v ∈ tZ is in the relative interior of τ , then limz→0 λv(z)x0 = xτ0 is an
element of Oτ . The collection of all such cones τ constitute a fan Σ(X).

TOME 63 (2013), FASCICULE 2



740 A. HUCKLEBERRY & H. SEBERT

Fans and their exact relation to the orbit structure of X are studied in
detail, e.g., in [4]. What is important for us in the following are two basic
facts:

(1) Each T -invariant complex irreducible hypersurface Yj corresponds
to a one-dimensional cone τj = 〈vj〉R>0 with vj ∈ tZ.

(2) A cone σ of maximal dimension corresponds to a T -fixed point xσ.

Parameterization of eigensections

Let Y1, . . . , Y` be the irreducible T -invariant hypersurfaces in X. The
base section s0 chosen in §1 defines a T -invariant divisor

D =
∑
j

ajYj . (5)

Of course L = L(D). Each hypersurface Yj is given by a one-dimensional
cone τj = 〈vj〉R>0 in the fan of X. We define the set

PD = ∩`j=1{u ∈ t∗ : 〈u, vj〉 > −aj}. (6)

The following Proposition characterizes holomorphic eigensections in terms
of this polyhedron; it is standard in the theory of toric varieties.

Proposition 2.1. — The spaces of sections Γ(X,LN ) are given by

Γ(X,LN ) = ⊕αCsα, where α ∈ NPD ∩ t∗Z

and the sα are T -eigensections with t(sα) = χα(t)sα. Furthermore, if D is
ample, then PD is a strictly convex polytope. It is bounded precisely when
X is compact.

Remark. — Since in our case L is very ample, one can explicitly con-
struct the Kodaira embedding of X by using the polytope PD. This
is intially given by x 7→ [sα(x)] where the sα are the distinguished T -
eigensections in Γ(X,L). Recalling that sα(tx0) = χα(t)s0(tx0) on the
open orbit, the embedding can be written as t(x0) 7→ [χα(t)]. In other
words t(x0) is mapped to t[1 : . . . : 1] and X is identified with the closure
of the T -orbit T.[1 : . . . : 1]. In [13] toric varieties are actually defined
this way. To ensure smoothness when taking the closure they require the
polytope PD to be Delzant. �
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ASYMPTOTICS OF EIGENSECTIONS 741

2.2. Existence of asymptotic sequences

As an application of Proposition 2.1 we show that, given a ray R(ξ) there
exists a sequence of holomorphic eigensections sN approximating R(ξ) at
infinity if and only if ξ is an element of the polytope PD. The neccessity
can be proved as follows.

Proposition 2.2. — If (sN ) approximates R>0ξ at infinity, then ξ ∈
PD.

Proof. — From the definition of a sequence of characters approximating
a ray R(ξ) we have αN/N = ξ +O(N−1) . Since each sN is a holomorphic
eigensection in the bundle LN , the corresponding character αN must lie
in the polytope NPD, whose defining equations are given by (6). For the
vector ξ we now have

〈ξ, vj〉 = 〈αN
N
, vj〉 − 〈

αN
N
− ξ, vj〉 > −aj +O(N−1).

The last inequality is true for all N , thus 〈ξ, vj〉 > −aj for all j, and hence
ξ ∈ PD. �

The converse is also true but requires more effort.

Proposition 2.3. — If ξ ∈ PD, then there exists a sequence αN ∈
NPD ∩ t∗Z such that αN = Nξ +O(1) for all N ∈ N.

Since for every ξ ∈ Rm there exists a sequence (αN ) of integral points
with ‖Nξ − αN‖ < 1, the proposition is a consequence of the following
projection argument.

Lemma 2.4. — Let F be a face of the polytope PD and ξ be in the
relative interior of F . If αN ∈ t∗Z is any integral sequence such that αN =
Nξ+O(1), then there exists a sequence α′N having that same property but
in addtion α′N/N ∈ F ∩ t∗Z for almost all N .

Proof. — Suppose codimF = 0. Then ξ lies in the interior of PD which
is open. Since the sequence αN/N converges to ξ, the point αN/N will lie
in the interior of PD for big N and we can simply set α′N = αN . The other
extreme case is codimF = dimPD, which means that F is a vertex of PD.
In this case ξ is integral and we can set α′N = Nξ. The remaining case
is characterized by 0 < codimF < dimPD. Here we replace αN/N by its
projection onto the the face F . For this choose integral vectors w1, . . . , wk
and a vertex ασ of F such that F ⊂ ασ + spanR{w1, . . . , wk} and define

TOME 63 (2013), FASCICULE 2



742 A. HUCKLEBERRY & H. SEBERT

the projection

α′N = N(ασ +
k∑
j=1
〈αN
N
− ασ, wj〉wj).

By writing ξ = ασ +
∑
j〈ξ − ασ, wj〉wj one immediately sees

‖α
′
N

N
− ξ‖ 6 C

N

k∑
j=1
‖wj‖ = O( 1

N
).

Hence, the sequences αN and α′N approximate the same ray R>0ξ. Fur-
thermore, since ξ lies in the relative interior of F , the elements α′N/N will
also be in F for almost all N . �

3. Strictly plurisubharmonic limit functions

The goal of this section is to prove the existence of a certain strictly
plurisubharmonic limit function f : X → R ∪̇ {∞} which is canonically
associated to a semiclassical ray R(ξ). This function provides the main tool
for studying the asymptotic behavior of the probability densities |ϕN |2h and
the tails of the distribution functions DN (t).
On the open orbit we may simply define f = limN→∞− 1

N log |sN |2h. How-
ever, in order to extend f to X we need to know more about the behavior
of the sN at the boundary. The following example shows that this might
be quite irregular.

Example. — Let X = P1 and L = H be the hyperplane section bun-
dle equipped with its standard metric h. If [z0 : z1] are standard homoge-
neous coordinates and sections s ∈ Γ(X,L) are regarded as linear functions
`(z0, z1), then

|s|2h = |`(z0, z1)|2

|z0|2 + |z1|2
.

More generally if we equip LN which the associated tensor power metric
and a section s ∈ Γ(X,LN ) is represented by a homogeneous polynomial
P of degree N , then

|s|2 = |P (z0, z1)|2

(|z0|2 + |z1|2)N .

Let us begin with the sequence defined by sN = zN0 . It corresponds to the
sequence of characters αN = 0 for all N . For the probability density we use
the normalized Fubini-Study volume form and compute the integral∫

P1

|sN |2 =
∫
C

1
(1 + |z|2)N =

∫ ∞
0

1
(1 + r2)N rdr ∼

1
N − 1 .

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTICS OF EIGENSECTIONS 743

If we replace sN by the sequence defined by the homogeneous polynomials
zN−1

0 z1, belonging to the sequence of characters αN = 1 for all N , then∫
P1

|sN |2 =
∫
C

|z|2

(1 + |z|2)N ∼
1

(N − 1)(N − 2) .

Thus the integrals are asymptotically different. The situation is even worse
if we allow the sections to jump around like in the following example:

sN =
{
zN0 for N odd,
z1z

N−1
0 otherwise.

Nevertheless, in all of the above cases the probability density |sN |2/‖sN‖2L2

converges in measure to the Dirac measure of the point [1 : 0]. �

3.1. Tame sequences

We can avoid the kind of problems illustrated above by replacing the
sequence (sN ) by a new sequence (s′N ) that approximates the same ray,
but whose vanishing orders at the boundary can be better controlled. For
the construction of (s′N ) we first note that the asymptotic vanishing order
ordYj (sN ) along a boundary hypersurface Yj is well-defined and completely
determined by R(ξ).

Lemma 3.1. — There exist non-negative real numbers k1, . . . , k` such
that for each boundary component Yj we have

lim
N→∞

1
N

ordYj (sN ) = kj . (7)

Proof. — A T -invariant hypersurface Yj is determined by a 1-dimensional
cone in the fan of X. Such a cone is generated by a vector vj ∈ tZ. Thus, Yj
determines a 1-codimensional face Hj of the polytope PD in the following
way (see also (6))

Hj = PD ∩ {u ∈ t∗ : 〈u, vj〉 = −aj}. (8)

Choosing a vertex ασ ∈ Hj it follows that the corresponding eigensection
sσ does not identically vanish on Yj . Here we write sN = sN,σs

N
σ where

sN,σ is a T -equivariant meromorphic function transforming by the character
χNχ

−N
σ . Its order along Yj is given by 〈αN −Nασ, vj〉. Since the sequence

αN/N converges to ξ we have
1
N

ordYj (sN ) = 〈αN
N
− ασ, vj〉 → 〈ξ − ασ, vj〉

= 〈ξ, vj〉+ aj =: kj .
(9)

TOME 63 (2013), FASCICULE 2



744 A. HUCKLEBERRY & H. SEBERT

This proves the existence of the numbers kj for any sequence sN approxi-
mating the ray R(ξ) at infinity. �

Proposition 3.2. — There exists a sequence (s′N ) such that if kj = 0,
then ordYj (s′N ) = 0 for almost all N ∈ N.

Proof. — From equation (9) we have kj = 〈ξ, vj〉 + aj , where the aj
are the coefficients defining PD, see (6). Thus, kj = 0 if and only if ξ lies
in the hyperplane Hj defined by equation (8). A collection {Hj} of such
hyperplanes determines a face of the polytope

ξ ∈ F = PD ∩H1 ∩ . . . ∩Hr. (10)

Hence, the condition that ordYj (sN ) = 0 whenever kj = 0 is equivalent
to saying that αN is an element of the same face as ξ. By Lemma 2.4
there exists a sequence α′N approximating the same ray R(ξ) but having
in addition the property α′N ∈ F ∩ t∗Z for allmost all N . This proves the
assertion. �

Definition. — A sequence (sN ) which approximates a ray at infinity
said to be tame if it fulfills the properties of Proposition 3.2. The union Y
of the hypersurfaces Yj with kj > 0 is called the limiting support of the
sequence.

Remarks. — 1. If ξ lies in the interior of the polytope PD, then every
asymptotic sequence approximating the ray R(ξ) is tame. 2. If α′N is the
tame sequence constructed from a given one αN , then the difference α′N −
αN is uniformly bounded in N .

By inspecting the proofs of Lemma 3.1 and Proposition 3.2 we can give
a description of the limiting support Y of a tame sequence in terms of the
polytope PD.

Proposition 3.3. — If {Hj} is the set of all 1-codimensional faces of
PD which do not contain ξ and {Yj} is the set of associated T -invariant
hypersurfaces, then the limiting support of a tame sequence is given by
Y = ∪jYj .

On the complex geometry of X \Y

If (sN ) is a tame sequence with asymptotic support Y , then, since L
is ample, the T -invariant open set X \ Y is an affine variety. Since T has
an open orbit in X \ Y , it follows it possesses only the constant invariant
holomorphic functions and as a result it possesses a unique closed orbit Oτ .

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTICS OF EIGENSECTIONS 745

Let us explain how ξ determines Oτ in the combinatorial language of toric
varieties. For this recall that the face F is defined by the condition that ξ
is in its relative interior. In the following way F is associated to a cone τ
in the fan Σ(X). By definition, F is the intersection of PD with a set of
supporting hyperplanes. That is, if I ⊂ {1, . . . , `} is an index set, then F
is defined by

F = PD ∩ ∩i∈IHi where Hi = {u ∈ t∗R : 〈u, vi〉 = −ai}. (11)

Since D is very ample, the vectors vk with k ∈ I define a cone τ in the fan
of X. This cone, regarded as a fan, defines the affine toric variety X \Y . In
particular, the relative interior of τ corresponds to the closed (dimension-
theoretically minimal) orbit in X \ Y . �

Again in the setting of a tame sequence we observe that for N sufficiently
large the functions fN = − 1

N log|sN |2 are TR-invariant strictly plurisub-
harmonic exhaustions of X \ Y . In the next section it is shown that they
converge to a function f which is likewise a smooth strictly plurisubhar-
monic exhaustion. Thus the following is relevant for our considerations.

Theorem 3.4. — Let Z be a Stein space equipped with a holomorphic
action of a reductive group G which is the complexification of a maximal
compact subgroup K and let ρ : X → R>0 be a smooth proper K-invariant
strictly plurisubharmonic exhaustion. Assuming thatO(Z)G ∼= C, it follows
that the minimum set M := {ζ ∈ Z; ρ(ζ) = min{ρ(z); z ∈ Z}} consists of
a single K-orbit which is contained in the closed G-orbit in Z.

This result is a special case of Corollary 1 in §5.4 of [5]. It is one of the
basic first steps for the construction of the analytic Hilbert quotient by the
method of Kählerian reduction (see [7]). It should also be mentioned that
using the gradient of the norm of the associated moment map one shows
that M is a strong deformation retract of Z ([6]). Although we apply these
results in the case of an affine variety, the plurisubharmonic functions at
hand are only smooth and are not of the type where the algebraic theory
can be applied (See [11] for basic results in the situation where Z is equiv-
ariantly embedded in a representation space and ρ is the restriction of a
K-invariant norm-function.).

Product structure of X \Y

Continuing in our special setting where Oτ is as above, we let Tτ be
the connected component at the identity of the isotropy group Txτ0 of any
base point in Oτ . This can be alternatively described as the connected
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component at the identity of the ineffectivity of the T -action on Oτ . Let
T ′ be a complementary complex torus in T , i.e., T = Tτ × T ′.
Let us choose xτ0 so that there is a 1-parameter subgroup λ with
limt→0 λ(t)(x0) = xτ0 . Clearly λ(C∗) ∈ Tτ and thus xτ0 is in the closure
cl(Tτ .x0) =: Στ . In fact {xτ0} is the unique closed orbit in this closure and
therefore the restriction to Στ of any TR-invariant strictly plurisubharmonic
exhaustion has exactly {xτ0} as its minimizing set.

Proposition 3.5. — The map α : T ′ × Στ → X \ Y , (t′, x) 7→ t′(x),
establishes an T -equivariant isomorphism Oτ × Στ → X \ Y .

Proof. — Linearizing the action of the maximal compact torus of Tτ
shows that the only Tτ -orbits which have xτ0 in its closure are those in
Στ . Thus if t′ ∈ T ′ fixes xτ0 , then t′(Στ ) = Στ . Since t′ centralizes Tτ , it
stablizes the open Tτ -orbit in Στ and, since this is contained in the open
T -orbit in X where T acts freely, it follows that t′ = Id. Hence, T ′ acts
freely on Oτ and Tτ is the full isotropy group at xτ0 .
The above shows in particular that we must only prove that α is an iso-
morphism. For the surjectivity of α we implement the Hilbert Lemma
which, given x ∈ X \ Y , provides a 1-parameter subgroup λ with x1 ∈
Oτ ∩ cl(λ(C∗).x). Choosing t′ ∈ T ′ with t′(x1) = xτ0 , since xτ0 is in the clo-
sure of λ(C∗)t′(x), it follows that t′(x) ∈ Στ and the surjectivity is proved.
For the injectivity, if x1, x2 ∈ Στ and t′1, t

′
2 ∈ T ′ are such that t′1(x1) =

t′2(x2), then, defining t = (t′1)−1t2, it follows that t′(x1) = x2. As we have
seen above, this implies that t′ stabilizes Στ and is consequently in Tτ , i.e.,
t′ = Id �

It should be mentioned that this product decomposition can be proved
by purely combinatorial means (see [4]).

3.2. Existence of the limit function

Recall that our goal is to understand the limiting properties of the prob-
ability density funtion |ϕN |2h. The following is the first main step in this
direction.

Proposition 3.6. — If (sN ) is a tame sequence which approximates a
ray R(ξ) at infinity with limiting support Y , then the associated sequence

fN = − 1
N

log |sN |2h
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converges uniformly on compact subsets of X \ Y to a smooth strictly
plurisubharmonic function f .

Zusatz. Any sequence approximaiing the same ray at infinity converges
uniformly on compact subsets of the open orbit to f . Thus f could be al-
termatively defined as the extension by continuity to X \ Y of this limit
function.

Remarks. — As the reader will note in the proof, the convergence fN →
f is locally given by the convergence of the sequence (s1/N

N ) of holomorphic
functions. Thus the convergence in the C∞-topology is also guaranteed.
Finally, if ŝN is any sequence approximating R(ξ), then on the open orbit

fN − f̂N = 2Re
(βN
N

)
where βN is a sequence of linear functions which are contained in a bounded
set. Consequently, on the open orbit f and f̂ agree. As a result the limiting
function defined by a tame sequence is unique: Take any sequence which
approximates R(ξ) at infinity and define f to be the function on X which
is obtained by extending by continuity the uniquely defined function on
the open orbit to all of X. Below we will also show that that the limiting
measure of the probability densities |ϕN |2h also only depends on the ray
and not on the particular sequence which approximates it at infinity. This
result holds for every sequence approximating the ray. It should be reem-
phasized, however, that a precise asymptotic development only holds for
tame sequences. �

The following fact plays an essential role in our proof of Proposition 3.6.

Lemma 3.7. — Let Z be a compact toric variety of a group T ∼= (C∗)k
and z0 ∈ Z be a T -fixed point. If L is a very ample T -line bundle on Z,
it follows that up to constant multiples there is exactly one eigensection
which does not vanish at z0.

Proof. — For every point z of the (Zariski open) saturation S(z0) :=
{z ∈ X; z0 ∈ cl(T.z)} there is a 1-parameter group λ : C∗ → T with z0 in
the (compact) closure C = cl(λ(C∗).z0) in Z. Let Ĉ be the normalization
of such a curve. Note that Ĉ ∼= P1 and that the lifted action of C∗ has two
fixed points, one over z0 and another ẑ1 over some other point in C. The
pull-back L̂→ Ĉ of the restriction of L to C is isomorphic to some positive
power of Hk of the hyperplane section bundle. If s1, s2 ∈ Γ(Z,L) \ {0} are
eigensections, neither of which vanishes at z0, then the lifts ŝ1 and ŝ2 of
their restrictions to C are C∗-eigensections of L̂ on Ĉ which only vanish at
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ẑ1. Thus ŝ1 is a constant multiple of ŝ2 and consequently s1|C is a constant
multiple s2|C. Since this holds for every curve C constructed in this way
and the constant is uniquely determined by s1(z0) and s2(z0), the desired
result follows. �

We apply this Lemma to restrictions of eigensections to the closures of
fibers of the Tτ -invariant projection map q : Στ ×Oτ → Oτ .

Corollary 3.8. — If the base section s0 is chosen so that s0(xτ0) 6= 0
and sN is a T -eigensection in Γ(X,LN ) which also does not vanish at xτ0 ,
then the restrictions of s and sN0 to any q-fiber agree. In particular, the
group Tτ is in the kernel of the character χαN associated to sN by the base
eigensection sN0 . Furthermore, the relation s(txτ0) = χαN (t)s0(txτ0) holds
on Oτ

Proof. — This follows immediately from the above proposition by apply-
ing it in the case of the Tτ -action on the closure of a q-fibers. It is applicable
because the closed Tτ -orbit is its fixed point which is the intersection point
of the q-fiber with Oτ . Furthermore, sN (x0) = s0(x0)N ; so sN |Στ = cs0|Στ
with c = 1. Equality on the other fibers follows from the fact that T acts
transitively on the set of these fibers. �

Of course the original base section s0 may vanish at xτ0 . If it does, using
the fact that L is very ample, we know that there is a T -eigensection ŝ0
which does not vanish there. As we have already noted, changing from s0
to ŝ0 only has the effect of translating R(ξ) to R(ξ− α̂) where the character
associated to ŝ0 for the base point s0 is χα̂.
Proof of Proposition 3.6: It follows from the above corollary and the remark
that a base change has no influence on the discussion that we must only
prove this for the sequence (sN |Oτ ). In more detail, this is a consequence
of the product decomposition of X \ Y and the fact that on t′(Στ ) the
sections sN and sN0 for all t′ ∈ T ′. The convergence on Oτ is just the
(possibly lower-dimensional) case of the open orbit! In that case

fN = − 1
N

log |χαN |2 + log |s0|2h

and the desired convergence is guaranteed by the fact that αN
N = ξαN +

O(N−1).
Note that since− 1

N log |χαN |2 converges, given a point inOτ we may choose
a subsequence so that (sNk)

1
Nk converges locally uniformly. Since the local

limit section is holomorphic, it follows that the limit function f is smooth
and strictly plurisubharmonic. �
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Exhaustion property

As we have seen above the functions fN and the limit f are smooth
strictly plurisubharmonic exhaustions of X \ Y . Let M := {z ∈ X \
Y ; f(z) = min{f(x);x ∈ X \ Y }} and define MN to be the correspond-
ing set for fN . We know that MN = TR.xN and M = TR.x

τ
0 for points

xN , x
τ
0 ∈ Oτ . Here we fix xτ0 for the discussion and normalize f so that

f(xτ0) = 0. Let us underline that the functions fN |Oτ and f |Oτ have par-
ticularly strong convexity properties.

Proposition 3.9. — Let ρ is smooth (S1)k-invariant strictly plurisub-
harmonic function on (C∗)k which takes on a local minimum at a point
z0, then this is a global minimum, the set M := {z ∈ X \ Y ; ρ(z) =
min{ρ(x);x ∈ X \ Y }} is the (S1)k-orbit of z0 and ρ is an exhaustion of
(C∗)k.

Proof. — Using polar coordinates we write ρ = er(t) where r is a strictly
convex function on Rk which takes on a local minimum at log z0. �

Corollary 3.10. — The points xN can be chosen in MN so that that
they converge to xτ0 .

Proof. — If U = U(M) is an arbitrary TR-invariant relatively compact
neighborhood of M in X \ Y , then the restriction of f to the boundary of
U(M)∩T.xτ0 is strictly larger than 0. Since fN converges uniformaly to f on
U(M), this implies that for N sufficiently large fN attains a local minimum
in the interior of U(M). But the strong convexity of fN (see the argument
above) implies that this local minimum is global, i.e., MN ⊂ U(M). �

Dependency on the metric and the ray

The minimizing set M of f is contained in the closed T -orbit Oτ in
X \Y where Y and Oτ are completely determined by the face of PD which
contains ξ. The exact location of M in Oτ depends on the metric h and
ξ. With respect to metrics we underline that we only consider those which
are positive in the sense that − log |s|2h is strictly plurisubharmonic for any
nowhere zero local holomorphic section s. If ĥ = eφh is such a metric and
f̂ is the associated strictly plurisubharmonic limit function associated to
a ray, then a direct calculation shows that f̂ = −φ + f which is still a
TR-invariant strictly plurisubharmonic function on X \ Y . The translation
by −φ only changes the location of the minimizing set M̂ in Oτ .
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Concerning the dependence on ξ, recall that the convergence fN → f might
require a change of the base eigensection so that αN = N(ξ̂) +O(1) where
ξ̂ = ξ − α̂. Then, f |Oτ = − log |ŝ0|2h − δ where

δ = lim
N→∞

1
N

log |χαN |2 .

In order to interpret this correctly, we must identify Oτ with the subgroup
T ′ ∼= (C∗)k, use the T ′R-invariance of |ŝ0|2h and express these quantities in
polar coordinates as in Proposition 3.9. At that level, i.e., in logarithmic
coordinates, we see that f is the translate by the linear function 2πIm(−ξ̂)
of the strictly convex exhaustion of Rk determined by − log |ŝ0|2h. The influ-
ence of such a linear translation on the minimizing set of a strictly convex
function is easily understood. It also should be noted that M is just the
preimage of 0 under the moment map defined by the Kählerian potential
f on X \ Y (see, e.g.,[7]).

3.3. Localization

In order to obtain estimates of integrals involving the functions fN we
will use information on their restrictions to orbits of 1-parameter subgroups
which close up to points on the closed orbit T.xτ0 . For this we use the
following fact.

Lemma 3.11. — If λ : C∗ → T is a 1-parameter subgroup and x ∈ X \Y
is such that the orbit λ(C∗).x is not closed, then the closure inX\Y consists
of the orbit plus one additional point b with fN (b) strictly less than fN (x)
for all N .

Proof. — Since X \ Y is affine, the closure C of such an orbit is not
compact and therefore contains exactly one additional point. Of course
C may be singular, but it is locally irreducible so that the normalization
Ĉ → C is injective and the pullback of fN to Ĉ ∼= C is an S1-invariant
plurisubharmonic exhaustion exhaustion which is strictly plurisubharmonic
outside of the preimage b̂ of b. If strictly inequality would not hold on
some circle S1.z for z ∈ Ĉ \ {b̂}, then the maximum principle would be
violated. �

After these preparations we are now in a position to prove the desired
estimates for tame sequences.

Proposition 3.12 (Localization Lemma). — If U(M) is a TR-invariant
neighborhood of M which is relatively compact in X \ Y , then there exists
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N0 and ε > 0 so that if N > N0 it follows that fN > ε on the complement
of U(M) in X \ Y .

Proof. — First recall that we have normalized the sections so that
fN (xτ0) = f(xτ0) = 0. Then choose N0 so that N > N0 implies that the
minimum set MN is contained in U(M). Since fN converges uniformly to
the strictly plurisubharmonic function f on U(M) we may also assume
that fN > ε > 0 on the boundary of U(M). Given x ∈ X \ Y the Hilbert
Lemma guarantees the existence of a 1-parameter group λ : C∗ → T whose
orbit λ(C∗).x closes up to the closed T -orbit T.xτ0 . By Lemma 3.11, if
x 6∈ T.xτ0 , then fN (x) > fN (b) where b is the additional point in the clo-
sure. If b 6∈ U(M), then by connecting b to MN by a real 1-parameter
group and using the strong convexity of fN along that orbit, we see that
fN (b) is larger than the value of fN at the intersection of that orbit with
the boundary of U(M). Thus, unless x is already in U(M), it follows that
fN (x) > ε. �

We refer to the above result as a Localization Lemma, because it implies
that integrals localize at M . Here is an example of what we mean by this.

Corollary 3.13. — For U(M), ε and N0 as above, given h ∈ L1(X)
it follows that∫

he−NfNdλ 6 ‖h‖L1e
−Nε +

∫
U(M)

he−NfNdλ .

Below we prove precise estimates which lead to the desired result that
the probability function |ϕN |2 converges to the Dirac measure of M .

3.4. Morse property

Here we show that f is a Bott-Morse function near M . For this the
essential point is to understand the behavior of the extension of f to a
smooth embedding space of Στ .

Extending from Στ

Recall that X \ Y is a naturally identifiable with the product Στ × Oτ
with M contained in Oτ as the TR-orbit TR.x1. We begin by analyzing the
local behavior of f on Στ . For this we first Tτ -equivariantly embed Στ in
a complex vector space W where xτ0 is mapped to the origin 0 ∈W .
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Now recall that since xτ0 is the Tτ -fixed point in Στ , there exists a 1-
parameter subgroup λ of Tτ with the property that limt→0 λ(t).x = xτ0 for
every x ∈ Στ . We refer to xτ0 as being attractive for λ. Any linearization
such asW splitsW = W−⊕W0⊕W+ with respect to any such 1-parameter
subgroup where W− are the points in W for which 0 is attractive for λ,
W0 is the set of λ-fixed points and W+ is the set of points for which 0 is
repulsive. In our case every point of Στ is in W−. So we have the following
remark.

Proposition 3.14. — There exists an equivariant embedding Στ ↪→W

so that 0 is attractive for λ for every point in W . In particular, if in its
linearization λ(t) := Diag(χ1(t), . . . , χn(t)), then the weights defining the
χj are all negative, e.g., it is never the case that χiχj = 1.

Since f is a smooth strictly plurisubharmonic function, it extends to a
neighborhood U of 0 in W as a smooth strictly plurisubharmonic function
which after averaging is invariant with respect to the compact form (Tτ )R.
We may assume that U is (Tτ )R-invariant and that λ(t)(U) ⊂ U as t→ 0.
For x ∈ U we consider the closure cl(λ(C∗).x and let C(x) be the connected
(irreducible) component containing 0 of its intersection with U .

Proposition 3.15. — The origin 0 ∈ U is the absolute minimum point
of f in U , i.e., if 0 6= x ∈ U , then 0 = f(0) < f(x).

Proof. — The normalization Ĉ(x) of C(x) may be identified with the
unit disk so that the pullback f̂ of f is plurisubharmonic and strictly
plurisubharmonic outside of the origin. Since f̂ is S1-invariant, the desired
result follows immediately from the meanvalue property and the maximum
principle. �

Now let us consider the Taylor development of f at 0,

f(z) = Q(z) +O(3) .

The second order terms are of the form Q(z) = z̄THz + R(z) where H is
a Hermitian matrix and R(z) = Re(

∑
aijzizj). We have implicitly chosen

the coordinates z where λ is linearized and therefore with the origin being
attractive for λ.

Proposition 3.16. — In the above coordinates R(z) ≡ 0.

Proof. — The function f is invariant with respect to the S1-action de-
fined by λ. Therefore R is invariant as well. On the other hand R(t(z)) =
Re(
∑
aijχi(t)χj(t)zizj) for t ∈ S1. Hence the desired result follows from

Proposition 3.14. �
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Corollary 3.17. — The extended strictly plurisubharmonic funtion f
is a (Tτ )R-invariant Morse function with absolute minimum at 0.

Morse property on the full neighborhood of M

Having shown that f |Στ can be regarded as the restriction of a (Tτ )R-
norm function we now deal with the restriction of f to the orbit Oτ . Let T ′
be a toral subgroup complementary to Tτ which acts freely and transitively
on Oτ . Using polar coordinates we regard the quotient Oτ/T ′R as a vector
space V with the image of M being the origin. The function f |Oτ is the
pullback of a strictly convex function on V which attains its minimum as
a nondegenerate critical point at the origin in V .
Now recall that the product structure X \ Y = Στ ×Oτ is defined by the
T ′-action as X \ Y = Στ × T ′. In this way we regard its quotient by T ′R by
as the product Στ × V and we embed this in W × V where Στ ↪→ W is
embedded as in the previous section. We regard f as being defined on this
quotient. For the following result recall that U is the neighborhood of 0 to
which f |Στ extends as a Morse function with 0 its absolute minimum as a
nondegenerate critical point.

Proposition 3.18. — The extended function f on U × V is a Morse
function with its only critical point being the origin which is its absolute
minimum.

Proof. — Locally near the origin it is clear df |U and df |V only vanish at
the origin. Thus the origin is an isolated critical point. The Hessian of f in
the vector space coordinates in U and V is positive definite, it follows that
the origin is a nondegenerate critical point which is (locally) an absolute
minimum for f . �

It is in the sense of this proposition that we refer to f as being a Bott-
Morse function with critical set M = TR.x

τ
0 .

4. Proofs of the main results

Here we apply the results of §3 to prove the theorems which are an-
nounced in §1. We begin by commenting on the difference between the
estimates for an an arbitrary sequence approximating a ray and a tame
sequence approximating the same ray.
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4.1. Arbitrary sequences

Recall that we replace a given sequence (sN ) by a tame sequence (s′N )
with f ′N converging to a strictly plurisubharmonic function f ′ on a certain
Zariski open set X \ Y which is canonically defined by the ray R(ξ). The
essential results for (s′N ) are proved in the following paragraphs of this
section. In particular it is shown that the probability density |s′N |/‖s′N‖2L2

converges in measure (with precise estimates) to the Dirac measure of a
canonically associated TR-orbit M . Here M is the set where f ′ takes on its
minimum.
To complete the project we return to our considerations of the original
sequence. Let (sN ) be a given sequence which approximates the ray R(ξ)
at infinity and let (s′N ) an associated tame sequence. It follows that there
exists a bounded sequence of linear functions βN ∈ t∗ so that∣∣∣sN

s′N

∣∣∣2 = e2Re(βN ) .

In other words there are characters χN belonging to a finite set so that

|sN |2 = |χN |2|s′N |2

on the open orbit. In the example at the beginning of §3, using the coordi-
nate z = z1z

−1
0 the coefficient |χN |2 is just |z|2.

Thus for ‖sN‖2 we must compute the integral∫
X

|χN |2e−Nf
′
.

The key is that the characters χN which arise here belong to a finite set.
Furthermore, except on arbitrarily small neighborhoods of the minimizing
orbit M of f ′, the term e−Nf

′ kills the effect of the these coefficients.
Finally, the χN extend to holomorphic functions mN on X \Y . These have
a certain vanishing order which contributes to the integral ‖sN‖2 just as
in the case of the example of P1. In order to show that the probability
densities converge to the Dirac measure on M it is enough to show that
they do so for a subsequence where the coefficient characters are constant
with vanishing order d along a divisor containing M . In this case, when
computing ‖sN‖2 we have a correction term of order N−d. However, this
only has an effect on the speed of convergence to δM . Of course the function
DN (t) := Vol{|ϕN |2h > t} will be affected, but the upper estimate for this
will be given by the tame sequence.
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4.2. Pointwise asymptotics of probability densities

In this paragraph only tame sequences (sN ) are considered. Using the
global product structure of X \Y we introduce a local basis of TR-invariant
neigbhorhoods U(M) of M in X \Y which is appropriate for our purposes.
For this let V (M) be an arbitrarily small TR-invariant neighborhood of M
in Oτ and ∆ an arbitrarily small Tτ -inariant neighborhood of the fixed
point xτ0 ∈ Στ . Using the map α we regard U(M) := V (M) × ∆ as an
arbitrarily small T -invariant neighborhood of M in X \ Y . Recall that we
are only dealing with a tame sequence with defines the strictly plurisub-
harmonic function f which takes on its minimum exactly on M and that
this minimum value has been normalized to be zero.
Since fN → f uniformly on U(M), it is a simple matter to make pointwise
estimates of |sN |2 = e−NfN . This is due to the fact that f is a smooth
strictly plurisubharmonic function which takes on its minimum along M
and is a Bott-Morse function there. In the orbit direction of V (M) we can
choose coordinates so that it is realized as the pullback of a Morse function
from Oτ and in the slice ∆ we can write it as a Morse function at the fixed
point. Combining estimates using these quadratic forms, we will determine
precise estimates for DN (t).
In order to provide the necessary estimates for the probability density func-
tion we must approximate the L2-norm ‖sN‖2. Using localization and the
fact that fN → f uniformly on compact subsets of X \ Y it is sufficient to
obtain estimates for

IN =
∫
U(M)

e−Nf

where U(M) = V (M)×∆ is an arbitrarily small product neighborhood of
M .

Proposition 4.1. — There exists a positive constant c such that

IN ∼ cN−κ

where κ is the sum of the complex dimension of Στ and one-half the complex
dimension of Oτ .

The notation here means that limN→∞NκIN = c. It should be remarked
that by using the asymptotic development in §5 and an elementary asymp-
totic development of the integral along V (M), it would be possible to give
a more complete asymptotic development of IN .

TOME 63 (2013), FASCICULE 2



756 A. HUCKLEBERRY & H. SEBERT

Proof of Proposition 4.1. We write IN as a double integral

IN =
∫
x∈V (M)

e−Nf(x)
∫

∆x

ef−f(x)

where ∆x is the fiber over x of the production V (M)×∆→ V (M) and f(x)
denotes the value of f at the point in ∆x where it takes on its minimum, i.e.,
at the intersection of that fiber with Oτ . Of course we view x ∈ V (M) ⊂
Oτ . For each fiber ∆x we may apply Corollary 5.5 which implies that there
is a positive continuous function c = c(x) so that∫

∆x

ef−f(x) ∼ c(x)N−d

where d is the complex dimension of ∆x. Thus it remains to compute∫
x∈V (M)

c(x)e−Nf(x) . (12)

As noted above we may assume that V (M) is the product of the torus T ′
and a ball B so that f = f(x) is the lift from the ball of a positive definite
quadratic form. The orbitM is the preimage of the origin in the projection
T ×B → B. Explicit computation of an integral of the form∫

y∈B
e−N‖y‖

2

shows that the integral in (12) is just a constant times N− d2 where d is the
complex dimension of V (M). �

Corollary 4.2. — For a tame sequence {sN} the pointwise asymptotic
behavior of the associated probability functions |ϕN |2h is given by

|ϕN |2h ∼ Nκe−Nf (13)

where κ = dim Στ + 1
2 dimOτ .

4.3. Distribution functions

In §3.4 we showed hat f can be regarded as a smooth Morse function in
the appropriate embedding space for Στ . Using this, the estimate for the
volume DN (t) in the tails of the distribution follows from known estimates
for the volume of an analytic set embedded in a ball in Cn. It should again
be emphasized that this can only be carried out for tame sequences.
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The volume estimate

Recall that we are interested in computing

DN (t) := Vol{x ∈ X; |ϕN |2h > t} .

Since we have localized the integral to an arbitrarily small neighborhood of
M and since the free T ′R-action leaves all relevant quantities invariant, it is
enough to compute DN (t) in the local T ′-quotient of X in U×V where the
quotient of X is realized as (Στ ∩ U) × V . Now, using the Morse Lemma
we choose coordinates for U and V so that the extended function f is a
sum of norm functions: f = ‖ ‖2U + ‖ ‖2V =: ‖ ‖2. For the computation of
DN (t) it is then enough to compute Vol{x ∈ (Στ ∩U)×V =: A; ‖x‖2 < r}.
In other words we consider the ball B(r) and compute the volume of the
(pure dimensional) analytic subset A∩B(r). It is known that this is c(r)rd
where c(r) is a continuous function bounded from above and below, which
is closely related to the degree of A, and d is the (real) dimension of A.
In other words this volume is asymptotically the same as the volume of a
linear submanifold of the same dimension. This allows us to immediately
compute DN (t)

Proposition 4.3. — The unscaled volume for a tame sequence {sN}
is given by

DN (t) ∼
( logN

N

)κ
.

Proof. — For N >> 0 we may replace fN by f and |ϕN |2h by Nκe−Nf .
We then note that Nκe−Nf > t is the same as

f <
κ logN
N

− log t
N

t ∼ logN
N

=: r

where we compute Vol({f < r}) as above. �

This completes the proof of Theorem 1.3.

Remarks. — 1. If (sN ) is not tame, then (localized near M) the norm
|sN |2h may become smaller than that of an associated tame sequence. Thus
the above precise asymptotic expression for DN (t) would become an esti-
mate from above. 2. In [13] asymptotic expressions for DN (t) are obtained
in certain situations (see Theorem 1.3 of that paper).

4.4. Convergence of measures

Our goal here is to prove Theorem 1.2. As in the the statement of that
theorem we do not assume that the given sequence of eigensections is tame.
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However, as is pointed out in §4.1 it is sufficient to prove the result, i.e.,
|ϕN |2h converges weakly to the Dirac measure on M , for (sN ) tame. More
precisely, for any continuous function u∫

X

u |ϕN |2hdλ→
∫
M

u dM

where dλ is a smooth probability measure on X and dM is the invariant
probability measure on the TR-orbit M which is the critical set of f . It
suffices to show this for a smooth, compactly supported function u (see,
e.g., Chpt. II in [8]).
For the proof recall that U(M) is a TR-invariant neighborhood of M on
which the functions − 1

N log |sN |2h converge uniformly to the strictly pluri-
subharmonic limit function f discussed in §3. Outside this neighborhood
the functions |ϕN |2h = |sN |2h/‖sN‖2L2 are rapidly converging to zero (see
Corollary 3.13). Combining this with the asymptotic formula for the prob-
ability densities (see Corollary 4.2) we obtain∫

X

u |ϕN |2hdλ = Nd

∫
U(M)

u e−Nfdλ+O(e−εN ).

Recall that for a tame sequence the exponent d in the above equation is
precisely given by κ in Corollary 4.2. For a non-tame sequence it might be
bigger since the vanishing order of the sN increase (see remarks in §4.1).
However, this only improves the convergence of the measures.
We continue by using the Morse property of f as explained in §4.3. For this
we write U(M) = T ′R × U × V , where U × V is the product neighborhood
provided by Proposition 3.18. Expressing u in the respective coordinates
we obtain∫

U(M)
u e−Nfdλ = C

∫
T ′R

∫
U×V

u(ϑ, z, µ) e−N(‖z‖2+‖µ‖2)dλ dϑ

Finally, using the Taylor expansion of u(ϑ, ·) we see that the right-hand
side of the above equation converges to∫

T ′R

u(ϑ, 0, 0)dϑ = δM (u).

This completes the proof of Theorem 1.2.

5. Appendix

The aim of this Appendix is to prove the following theorem :
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Theorem 5.1. — Let X ⊂ U be an analytic set in open neighbourhood
U of the origin in Rm which is assumed to be of pure dimension n + 1.
Let f : U → R+ be a real analytic function which is strictly positive on X
outside {0}, and let ω be a smooth compactly support (n+ 1)−form on U .
Define the function F : R+ → R by putting for t ∈ R+

F (t) :=
∫
X

e−t.f .ω.

Then as t → ∞ the function F admits an infinitely differentiable asymp-
totic expansion of the following form:

F (t) '
∑
i∈[1,p]

∑
j∈[1,n]

∑
ν∈N∗

cji,ν .t
−(αi+ν).(Log t)j (1)

where α1, . . . , αp are rational numbers strictly bigger than −1.
Moreover, the rational numbers α1, . . . , αp and the exponents of Log t have
to be present in the asymptotic expansion at s→ 0+ for the fiber integral

ϕ(s) :=
∫
X∩{f=s}

ω
/
df.

For the proof we begin with the remark that the Fubini theorem gives

F (t) =
∫ +∞

0
e−t.sϕ(s).ds (2)

where ϕ is the fiber-integral of the statement. Now it known(1) that ϕ
admits an infinitely differentiable asymptotic expansion when s → 0+ of
the form

ϕ(s) '
∑
i∈[1,p]

∑
j∈[1,n]

∑
ν∈N

γji,ν s
αi+ν .(Log s)j (3)

so the proof of the theorem is a consequence of the following proposi-
tion �

Proposition 5.2. — Let ϕ : ]0,+∞[→ R be a continuous function with
support in ]0, A], which admits, when s → 0+, an asymptotic expansion
of the type (3). Then the function defined in (2) admits when t → +∞
an infinitely differentiable asymptotic expansion of the form (1). Moreover,
the rational numbers αi which appear in the expansion of F have to appear
in the expansion (3). For each i ∈ [1, p], the maximal power of Log which
appears in (1) with some sαi+ν in front is bounded by its analog in (3).

The proof of this proposition is contained in the following elementary
results.
(1)See [9], [1] or [2] for more information on the exponents in the case of an isolated
singularity.
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Lemma 5.3. — For any α > −1 and any j ∈ N there is a monic poly-
nomial Pj of degree j such that∫ A

0
e−t.s.sα.(Log s)jds ' (−1)j

Γ(α+ 1) .Pj(Log t). 1
tα+1 + 0(e−ε.t)

for any given ε > 0 small enough and for t� 1.

Proof. — Let us first show that∫ +∞

0
e−t.s.sα.(Log s)jds = (−1)j

Γ(α+ 1) .Pj(Log t). 1
tα+1

where Pj is a monic polynomial of degree j. This formula is easy for j = 0.
The general case is obtained by j derivations in α.
Now, as the function e−u/2.uα.(Log u)j is decreasing for u � 1, it follows
that for t� 1 the function

∫ +∞
t.A

e−u.uα.(Log u)j is 0(e−ε.t) for any given
ε > 0 small enough. �

Remark. — The preceding proof gives a more precise relation between
the expansions (3) and (1).

Now the following elementary lemma allows one to cut asymptotic ex-
pansions.

Lemma 5.4. — In the same situation as in the previous lemma assume
that
|ϕ(s)| 6 C.sN for s ∈]0, A]. Then

|
∫ A

0
e−t.s.ϕ(s).ds| 6 C. (N + 1)!

tN+1 .

Remark. — Assume that in the situation of the theorem the function
f is no longer real analytic, but still continuous and with an isolated zero
on X at the origin. If we have two analytic functions g− and g+ such that
they satisfy the hypothesis of the theorem and the inequalities :

g− 6 f 6 g+

near 0 in X, then we may deduce some estimation for F (t) when t→ +∞.
For instance if f is a positive Morse function of class C3 near 0 in Rm such
that f(0) = 0 and df0 = 0, we may use g−(x) = (1 − ε).q(x) and g+(x) =
(1 + ε).q(x) where q := d2f0 is a non degenerate positive quadratic form to
obtain, at least, the first term of an expansion of F (t) when t→ +∞.
In the case X is a complex analytic subset of dimension pure n near the
origin in CN we obtain the following corollary.
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Corollary 5.5. — Let X ⊂ U be a complex analytic subset of pure
dimension n in an open neighbourhood U of the origin in CN . Assume that
0 ∈ X and that f : U → R+ is a C3 Morse function on U with only one
critical point at 0. Let ω be any C∞ Kähler form on U and ρ : U → R+ be
a C0 function with compact support which is equal to 1 in a neighbourhood
of the origin. Then the limit

lim
t→+∞

tn.

∫
X

e−t.f .ρ.ω∧n

exists and is finite and strictly positive.

Proof. — First we remark that the choice of ρ is irrelevant, because the
change of ρ will add a 0(e−ε.t) for some ε > 0. The observation made before
this corollary now implies that for any ε > 0, the inequalities∫

X

e−t.g+ .ρ.ω∧n 6
∫
X

e−t.f .ρ.ω∧n 6
∫
X

e−t.g− .ρ.ω∧n

and if the result is proved for f = q, we deduce the result for f .
Now we may use the local parametrization theorem for the complex analytic
set X near zero and see that if X ⊂ P × B where P is a polydisc in Cn
such the projection on P gives a proper and finite map π : X → P , which
is also proper and finite on the Zariski tangent cone of X at the origin,
the result is true for f(u, x) = ||u||2 + ||x||2, ω a Kähler form on P and
ρ = π∗(σ) with σ a C0 function with compact support in P which is equal
to 1 in a neighbourhood of the origin.
In this case, the inequality ||x|| 6 C.||u|| which is true for (u, x) ∈ X near
enough (0, 0), thanks to the tranversality of {0} ×B to CX,0, gives

k.

∫
P

e−t.(1+C2).||u||2 .σ.ω∧n 6
∫
X

e−t.f .ρ.ω∧n 6 k.
∫
P

e−t.||u||
2
.σ.ω∧n

where k is the degree of X on P .
Finally, we reach the case where ω is a Kähler form on U = P × B using
the fact that we may find a finite number of projections such that the given
Kähler form is bounded by the sum of the pull back of the Kähler form on
P by these projections. Because we know that the asymptotic expansion
exists, this again shows that there exists a non-zero limit when we multiply
by a suitable factor tα

/
(Log t)j and that we have α = n and j = 0 as in

the case where X = P, f = ||u||2 and ω∧n = (−2i)n.du ∧ dū. �
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