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AN ANALOGUE OF THE VARIATIONAL PRINCIPLE
FOR GROUP AND PSEUDOGROUP ACTIONS

by Andrzej BIŚ

Abstract. — We generalize to the case of finitely generated groups of home-
omorphisms the notion of a local measure entropy introduced by Brin and Katok
[7] for a single map. We apply the theory of dimensional type characteristics of a
dynamical system elaborated by Pesin [25] to obtain a relationship between the
topological entropy of a pseudogroup and a group of homeomorphisms of a met-
ric space, defined by Ghys, Langevin and Walczak in [12], and its local measure
entropies. We prove an analogue of the Variational Principle for group and pseu-
dogroup actions which allows us to study local dynamics of foliations.
Résumé. — On généralise au cas des groupes d’homéomorphismes de type fini

la notion d’entropie mesure locale introduite par Brin et Katok [7] pour une seule
transformation. On applique la théorie des caractéristiques de type dimension d’un
système dynamique élaborée par Pesin [25] pour obtenir une relation entre l’en-
tropie topologique d’un pseudogroupe et d’un groupe d’homéomorphismes d’un
espace métrique, définie par Ghys, Langevin et Walczak dans [12], et ses entropies
mesure locale. On prouve un analogue du principe variationnel pour les actions de
groupe et de pseudogroupe qui nous permet d’étudier les dynamiques locales des
feuilletages.

1. Introduction

A classical discrete-time dynamical system consists of a non-empty set
X endowed with a structure and a cyclic group or a cyclic semigroup
G =< f > generated by a map f : X → X which preserves the struc-
ture of X. Topological dynamical system consists of topological space X
and continuous map f : X → X. A measure-preserving dynamical system
is a probability space X with a measure-preserving transformation on it.

Keywords: variational principle, topological entropy, Carathéodory structures,
Carathéodory measures and dimensions, local measure entropy, pseudogroups, foliations,
Hausdorff measure, homogeneous measure.
Math. classification: 37C85, 28D20, 37B40.



840 Andrzej BIŚ

A fundamental invariant of a continuous map f : X → X is its topological
entropy htop(f) which measures the complexity of the system in the sense
of the rate at which the action of the transformation disperses points. When
the entropy is positive, it reflects some chaotic behavior of the map f.
It is known that a continuous map f : X → X determines an f -invariant

measure µ and one can define a measure-theoretic entropy hµ(f) with
respect to µ. A relationship between topological entropy and measure-
theoretic entropy of a map f : X → X is established by the Variational
Principle, which asserts that

htop(f) = sup{hµ(f) : µ ∈M(X, f)}

i.e., topological entropy is equal to the supremum hµ(f), where µ ranges
over the set M(X, f) of all f-invariant Borel probability measures on X.
If an f-invariant Borel probability measure µ0 on X satisfies the equality
htop(f) = hµ0(f) then it is called a maximal entropy measure. Measures of
maximal entropy reflect the complexity of the dynamical systems and the
subset where the dynamics concentrates.
We obtain a generalized dynamical system by exchanging the cyclic group

G =< f >, generated by a single homeomorphism f : X → X of the metric
space X, for a finitely generated group of homeomorphisms or by a pseu-
dogroup of local homeomorphisms of a topological spaceX. Ghys, Langevin
and Walczak notice in [12] that a foliation of a compact manifold defines
a dynamics determined by a finitely generated holonomy pseudogroup of
the foliation. We apply the notion of topological entropy htop(G,G1) of a
finitely generated group or a pseudogroup G generated by a finite symmet-
ric set G1 of homeomorphisms (resp. local homeomorphisms) of a compact
metric space (X, d), introduced in [12]. If s(n, ε) denotes the maximal car-
dinality of any (n, ε)−separated subset of X then

htop(G,G1) := lim
ε→0

lim sup
n→∞

log(s(n, ε))
n

.

Recall that a subset A ⊂ X is (n, ε)−separated if for any two distinct points
x, y ∈ A there exists a map g ∈ G such that g is a composition of at most
n generators from G1 and d(g(x), g(y)) > ε.
We prove in Theorem 2.5 that any finitely generated group or pseu-

dogroup admits a point which the entropy concentrates on. As a result, we
are able to show that any two holonomy pseudogroups of a foliation of a
compact manifold have simultaneously either positive or vanishing topo-
logical entropy. The problem of defining good measure-theoretical entropy
for foliated manifolds which would provide an analogue of the Variational
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AN ANALOGUE OF THE VARIATIONAL PRINCIPLE 841

Principle for geometric entropy of foliations is still open. In general, there
are many examples of foliations that do not admit any non-trivial invariant
measure. Even in a case when an invariant measure exists, it is not clear
how to define its measure-theoretic entropy.
We introduce by Definition 4.5 a concept of a G-homogeneous measure

which is a natural generalization of f -homogeneous measures considered
by Bowen [5], for the case of a finitely generated group or a pseudogroup
of homeomorphisms of a compact metric space. We prove in Theorem 4.12
that if a group, or a pseudogroup, admits a G-homogeneous measure then
the G-homogeneous measure is the measure of maximal entropy.
Brin and Katok [7] consider a compact metric space (X, d) with a con-

tinuous mapping f : X → X preserving a Borel probability non-atomic
measure m. They define a local measure entropy hm(f, x) of f with respect
to m at a point x ∈ X by

hm(f, x) := lim
δ→0

lim inf
n→∞

− log(m(Bfn(x, δ)))
n

,

where Bfn(x, δ) denotes the dfn−ball centered at x of radius δ, with respect
to the metric dfn(x, y) := max{d(f i(x), f i(y)) : 0 6 i 6 n − 1}. They
prove (Theorem 1 in [7]) that for m−almost every x ∈ X the local entropy
hm(f, x) is f-invariant and

∫
X
hm(f, x)dm = hm(f).

Brin and Katok show in [7] the interrelations between a measure-theore-
tic entropy and dimension-like characteristics of smooth dynamical systems.
Ma and Wen [20] apply a dimensional type characteristic of the entropy
h(f, Y ) of f : X → X restricted to Y ⊂ X, in the sense of Bowen ([6]), to
obtain the following relation between local measure entropies of f and the
dimensional type entropy h(f, Y ) of f :

Theorem 1.1 (Theorem 1 in [20]). — Let µ be a Borel probability
measure on X, E be a Borel subset of X and 0 < s <∞.

(1) If hµ(f, x) 6 s for all x ∈ E, then h(f,E) 6 s.
(2) If hµ(f, x) > s for all x ∈ E and µ(E) > 0, then h(f,E) 6 s.

We generalize in Definition 4.9 the notion of local measure entropy for
the case of a group or a pseudogroup of homeomorphisms of a metric space
and we introduce an upper local measure entropy hGµ (x) and a lower local
measure entropy hµ,G(x) of a group G with respect to the measure µ. We
apply the theory of C-structures, elaborated by Pesin in [25], to construct
a dimensional type entropy-like invariant and we prove that it coincides
with the topological entropy of groups and of pseudogroups. This approach
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842 Andrzej BIŚ

allows us to obtain an analogue of the variational principle for group and
pseudogroup actions which is stated in Theorem 5.2 and Theorem 5.3.
Theorem 5.2 relates the topological entropy of a homeomorphism group

of a closed manifold to the upper local measure entropies with respect to
the natural volume measure.

THEOREM 5.2. − Let (G,G1) be a finitely generated group of homeo-
morphisms of a compact closed and oriented manifold (M,d). Let E be a
Borel subset of M, s ∈ (0,∞) and µv the natural volume measure on M. If

hGµv
(x) 6 s for all x ∈ E then htop((G,G1), E) 6 s.

Theorem 5.3 relates the topological entropy of a pseudogroup of a com-
pact metric space to the common upper bound of lower local measure
entropies with respect to a Borel probability measure on the space.

THEOREM 5.3. − Let (G,G1) be a finitely generated pseudogroup on a
compact metric space (X, d). Let E be a Borel subset of X and s ∈ (0,∞).
Denote by µ a Borel probability measure on X. If

hµ,G(x) > s for all x ∈ E and µ(E) > 0 then htop((G,G1), E) > s.

Theorem 5.2 and Theorem 5.3 are a generalization of Theorem 1 of Ma
and Wen [20].

The concept of entropy of a finitely generated group is closely related
to entropy of a finitely generated semigroup which appears both in real
and complex dynamics. However, a few different definitions of entropy of a
semigroup are known ([11], [8], [26], [3], [4]) and most of them are unrelated.
For example, both Bufetov in [8] and Sumi in [26] apply the idea of skew-
product transformations. They assign a skew-product transformation

F :
∑
m

×X →
∑
m

×X

with a fibre X to the action of a semigroup G =< f1, ..., fm > where each
fi : X → X is a continuous map. The base space

∑
m := {1, ...,m}N con-

sists of one-sided sequences of m-symbols endowed with a product topology.
The transformation F is defined by

F (ω, x) = (σ(ω), fω1x),

where the shift map σ :
∑
m →

∑
m assigns (ω1, ω2, ...)→ (ω2, ω3, ...). This

method allows for reduction of the dynamics of semigroups to the dynamics
of single transformations.

ANNALES DE L’INSTITUT FOURIER
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2. Finitely generated pseudogroup
and its topological entropy

Given a topological space X, denote by Homeo(X) the family of all home-
omorphisms between open subsets of X. For g ∈ Homeo(X) denote by Dg

its domain and by Rg = g(Dg) its range.

Definition 2.1. — A pseudogroup Γ on X is a collection of homeomor-
phisms h : Dh → Rh between open subsets Dh and Rh of X such that:

(1) If g, f ∈ Γ, then g ◦ f : f−1(Rf ∩Dg)→ g(Rf ∩Dg) is in Γ.
(2) If g ∈ Γ, then g−1 ∈ Γ.
(3) idX ∈ Γ.
(4) If g ∈ Γ and W ⊂ Dg is an open subset, then g|W ∈ Γ.
(5) If g : Dg → Rg is a homeomorphism between open subsets of X

and if, for each point p ∈ Dg, there exists a neighbourhood N of p
in Dg such that g|N ∈ Γ, then g ∈ Γ.

For any set G ⊂ Homeo(X) which satisfies the condition⋃
g∈G
{Dg ∪Rg : g ∈ G} = X

there exists a unique smallest (in the sense of inclusion) pseudogroup Γ(G)
which containsG. Notice that g ∈ Γ(G) if and only if g ∈ Homeo(X) and for
any x ∈ Dg there exist maps g1, ..., gk ∈ G, exponents e1, ..., ek ∈ {−1, 1}
and an open neighbourhood U of x in X such that

U ⊂ Dg and g|U = ge1
1 ◦ ... ◦ g

ek

k |U .

The pseudogroup Γ(G) is said to be generated by G. If the set G is
finite, then we say that Γ(G) is finitely generated.
A concept of a pseudogroup is essential in the study of geometry and

dynamics of foliated manifolds. As we know, the notion was introduced
to foliation theory by Haefliger ([14] and [15]). The formal definition of a
Cr−foliation, where r = 1, 2, ...,∞, reads as follows:

Definition 2.2. — A p-dimensional Cr−foliation F of codimension q
on an n-dimensional manifold M is a decomposition of M into connected
submanifolds {Lα}α∈A, called leaves of the foliation F , such that for any
point x ∈ M there exist a neighbourhood U of x and a Cr−differentiable
chart φ = (φ1, φ2) : U → Rn = Rp × Rq and for any leaf Lα of F the
connected components of Lα∩U are described by the equation φ2 = const.

The connected components of Lα ∩ U are called plaques.

TOME 63 (2013), FASCICULE 3



844 Andrzej BIŚ

We say that a foliated manifold (M,F ) admits a “nice” foliated atlas
A (equivalently, the covering of M by the domains Dg of the charts g ∈ A
is “nice”) if

(1) the covering {Dg : g ∈ A} is locally finite,
(2) for any chart g ∈ A the range g(Dg) ⊂ Rn is an open cube,
(3) for any g, h ∈ A satisfying the condition Dg ∩Dh 6= ∅ there exists a

chart f distinguished by the foliation F such that: f(Df ) is an open
cube, Df contains the closure of Dg ∪Dh, and g = f |Dg

.

It is well known that any foliation of a compact manifold admits a finite
“nice covering” and any nice covering U determines a finitely generated
holonomy pseudogroup (see Chapter 1 in [29]).
Now, consider a finitely generated pseudogroup (G,G1) acting on a com-

pact metric space (X, d). Let G1 be a finite symmetric generating set of G
and

Gn := {gi1 ◦ ... ◦ gin : gij ∈ G1}.

Usually, it is assumed that idX ∈ G1 which implies the inclusion Gm ⊂ Gn
for any m 6 n. We emphasize the generating set G1 of the pseudogroup
G writing (G,G1) instead of G. Following [12] we say that two points
x, y ∈ E ⊂ X are (n, ε, E)−separated by (G,G1) if there exists g ∈ Gn
such that x, y ∈ Dg and d(g(x), g(y)) > ε. Let s(n, ε, E) denote the maximal
number of (n, ε, E)−separated points of E. The quantity

htop((G,G1), E) := lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, E)

is called the topological entropy of G restricted to E, with respect to
G1. The topological entropy htop((G,G1), E) can be defined not only in
terms of (n, ε, E)−separated sets but also in terms of (n, ε, E)−spanning
sets. We say that a set F ⊂ E is (n, ε, E)-spanning whenever for any x ∈ E
there exists a point y0 ∈ F such that the inequality d(g(x), g(y0)) < ε holds
for any g ∈ Gn such that x, y0 ∈ Dg. The minimal cardinality of (n, ε, E)-
spanning subset of E is denoted by r(n, ε, E). It is known (see [12] or [29])
that

lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, E) = lim
ε→0

lim sup
n→∞

1
n

log r(n, ε, E).

Thus these two approaches to the topological entropy of pseudogroups are
equivalent.
It is known ([12]) that that the topological entropy of a finitely generated

pseudogroup depends on the generating set. However,

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3 ([12]). — If G1 and G′1 are two generating sets of the same
pseudogroup G and the topological entropy htop(G,G1) = 0, then the topo-
logical entropy htop(G,G′1) is vanishing as well.

Lemma 2.3 shows that one can distinguish pseudogroups with zero en-
tropy from non-zero topological entropy. In a similar way, we intend to
present a distinction of foliations with positive topological entropy from
those with vanishing entropy. To this end, we take a nice atlas A1 of a
p-dimensional foliation F of a compact manifold M. Compactness of M al-
lows us to consider a finite and nice subatlas A of A1. Then, for any g ∈ A
the range g(Dg) in an open cube in Rn, so it can be written in the form
U1(g) × U2(g), where U1(g) (resp., U2(g)) is an open cube in Rp (resp.,
in Rq). Therefore, each U1(g) × {y0}, where y0 ∈ U2(g), is isomorphic to
a plaque in Dg and the points of U2(g) parametrize the plaques in Dg.

If we select a point x0 ∈ U1(g), then g−1({x0} × U2(g)) is a submanifold
of Dg which intersects every plaque of Dg exactly once. The submanifold
g−1({x0} × U2(g)) is called a local transversal Tg of Dg.

The domains of the finite atlas A constitute a finite nice covering U =
{U1, ..., Uk} of M which determines a finitely generated holonomy pseu-
dogroup (HU , HU,1) described below.

Pick Ui, Uj ∈ U and choose local transversals Ti ⊂ Ui and Tj ⊂ Uj .

Assume that Ui ∩ Uj 6= ∅, then for any x ∈ Ui ∩ Uj there exists a unique
plaque Pi(x) ∈ Ui and there exists a unique plaque Pj(x) ∈ Uj such that
x ∈ Pi(x)∩Pj(x). The map hUi,Uj

transforming a plaque Pi(x) onto Pj(x)
is called a local holonomy transformation. Since Ti intersects every
plaque of Ui exactly once, we may identify a plaque Pi(x) with Ti ∩ Pi(x)
and view at hUi,Uj as a map defined on an open subset of Ti with range in
Tj . The finite set

HU,1 = {hUi,Uj : Ui, Uj ∈ U and Ui ∩ Uj 6= ∅}

generates a pseudogroup HU called the holonomy pseudogroup (deter-
mined by the nice covering U).

Definition 2.4. — We say that a finitely generated pseudogroup (G,G1)
acting on a compact metric space (X, d) admits an entropy point x0 if
for any open neighbourhood U of x0 the inequality htop((G,G1), U) =
htop((G,G1), X) holds.

Theorem 2.5. — For any finitely generated pseudogroup (G,G1) ⊂
Homeo(X), where X is a compact metric space, there exists a point x0 ∈ X

TOME 63 (2013), FASCICULE 3



846 Andrzej BIŚ

and an arbitrary small open neighbourhood U of x0 such that

htop((G,G1), X) = htop((G,G1), U).

Proof. — Let (G,G1) act on a compact metric space (X, d). The result is
obvious if htop((G,G1), X) = 0. Assume that htop(G,G1) > 0 and denote
by Bk(x) a closed ball in X, centered at x of radius r = 1/k. Let

X ⊂ Bk(x1) ∪Bk(x2) ∪ ... ∪Bk(xm)

for some points x1, x2, ..., xm ∈ X. Fix ε > 0. By definition s(n, ε,X) 6
s(n, ε,Bk(x1)) + ... + s(n, ε,Bk(xm)). Notice that for any positive integer
n there exists i(n, ε) ∈ N such that

s(n, ε,Bk(xi(n,ε))) = max{s(n, ε,Bk(xj)) : j = 1, 2, ...,m}.

Therefore, s(n, ε,X) 6 m · s(n, ε,Bk(xi(n,ε))).
Choose an increasing sequence of integers {nj}j∈N such that the sequence

{ 1
nj

log s(nj , ε,X)}j∈N tends to lim supn→∞ 1
n log s(n, ε,X) with j →∞. At

least one element of the set {Bk(x1), Bk(x2), ...Bk(xm)} appears infinitely
many times in the infinite sequence {Bk(xi(nj ,ε))}j∈N, say Bk(xi∗). The ball
Bk(xi∗) certainly depends on ε, therefore we write Bk(xi∗) = Bk(xi∗(ε)).
Again choosing a subsequence of the sequence {nj}j∈N, for simplicity de-
noting it again by {nj}j∈N, we may assume that Bk(xi(nj ,ε))) = Bk(xi∗(ε))
for any j ∈ N. It yields

lim
j→∞

1
nj

log s(nj , ε,X) 6 lim
j→∞

1
nj

log s(nj , ε, Bk(xi(nj ,ε)))(2.1)

= lim
j→∞

1
nj

log s(nj , ε, Bk(xi∗(ε))).

Now, take a sequence {εp}p∈N of positive real numbers, convergent to zero.
At least one ball of the set {Bk(x1), Bk(x2), ...Bk(xm)}, say Bk(x∗),

appears infinitely many times in the infinite sequence {Bk(xi∗)(εp)}p∈N, so
taking a subsequence {εpl

}l∈N we get the equality Bk(xi∗(εpl
)) = Bk(x∗),

which holds for any l ∈ N. By (2.1) we conclude that

htop((G,G1), X) = lim
l→∞

lim
j→∞

1
nj

log s(nj , εpl
, X)

6 lim
l→∞

lim
j→∞

1
nj

log s(nj , εpl
, Bk(x∗)) = htop((G,G1), Bk(x∗)).

The inequality htop((G,G1), Bk(x∗)) 6 htop((G,G1), X) is obvious. �

Corollary 2.6. — A pseudogroup (G,G1) admits an entropy point.
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Consider two pseudogroups (G,G1) and (H,H1) acting on topological
spaces X and Y , respectively. Following Haefliger ([16]) we say that an
étale morphism Φ : G→ H is a maximal collection Φ of homeomorphisms
of open subsets of X to open subsets of Y such that:

(1) If φ ∈ Φ, g ∈ G and h ∈ H, then h ◦ φ ◦ g ∈ Φ,
(2) domains Dφ of the elements of Φ form a covering of X, and
(3) if φ, ψ ∈ Φ, then φ ◦ ψ−1 ∈ H.

An étale morphism Φ is called an equivalence if the collection Φ−1 =
{φ−1 : φ ∈ Φ} is also an étale morphism of H into G. We say that an étale
morphism Φ : G→ H is generated by a subset Φ0 ⊂ Φ if

Φ = {h ◦ φ ◦ g : g ∈ G, h ∈ H, φ ∈ Φ0}.

Finally, the pseudogroups (G,G1) and (H,H1) are said to be equivalent
if there exists an equivalence Φ : G→ H. Moreover, G and H are finitely
equivalent if the equivalence Φ : G → H is generated by a finite collec-
tion Φ0.

Holonomy pseudogroups, acting on different transversals, of a given fo-
liation F are equivalent. Moreover, they are finitely equivalent when the
foliated space under consideration is compact.

Proposition 2.7. — Let (G,G1) and (H,H1) be holonomy pseudogroups
which correspond to nice coverings U andW of a compact foliated manifold
(M,F ). Then the inequality htop(G,G1) > 0 implies that htop(H,H1) > 0.

Proof. — Take an entropy point x∗ of (G,G1) and an equivalence Φ :
G→ H. Due to the compactness of (M,F ) the equivalence is generated by
a finite collection Φ0. Choose φ0 ∈ Φ0 such that x∗ belongs to the domain
Dφ0 of φ0. Take an open neighbourhood U of x∗ which closure U ⊂ Dφ0 .

Certainly, htop((G,G1), U) > 0. Denote by S a symmetric set of generators
of G that is closed under compositions. We may also assume (remark (ii) of
Definition 8.4 in [1]) that S is closed under restrictions to open sets, thus
each g ∈ G1 is a composition of maps from S.

Using the same arguments as in the proof of Lemma 8.8 in [1], it is
ascertained that the set

S′ := {φ ◦ g ◦ ψ−1 : g ∈ S, φ, ψ ∈ Φ0}

is symmetric, generates H1 and is closed under compositions. In particular,
(G,G1) restricted to U is conjugate by φ0 to a pseudogroup P generated by

S′′ := {φ0 ◦ g ◦ φ−1
0 : g ∈ S}

TOME 63 (2013), FASCICULE 3



848 Andrzej BIŚ

which is a subpseudogroup of (H,H1). Notice that φ0(x∗) is an entropy
point of (P, S′′), thus htop(H,H1) > htop(P, S′′) > 0, which completes the
proof. �

Therefore, we can distinguish foliations of compact foliated manifolds
with vanishing entropy from those with non-vanishing entropy.

3. Topological entropy and Hausdorff dimension

The notion of topological entropy can be introduced similarly to the
definition of Hausdorff dimension. We briefly recall this notion, one can
find a detailed introduction to Hausdorff dimension and its properties in
[10] or in [22].

A countable collection of subsets Ui ⊂ Rn is called a δ−cover of a set
E ⊂ Rn if for any i the diameter diam(Ui) 6 δ and E is covered by the
union of Ui. Let I denotes the family of all subsets of N. For a subset
E ⊂ Rn, s > 0 and δ > 0 we define

(3.1) Hsδ(E) = inf
{∑
i∈I

[diam(Ui)]s : (Ui)i∈I is a δ − cover of E, I ∈ I

}
.

As δ decreases, the collection of δ−covers of E is reduced, thus the infimum
increases and approaches a limit with δ tending to 0.

Definition 3.1. — The quantity

Hs(E) = lim
δ→0
Hsδ(E)

is called the s-dimensional Hausdorff measure of E.

Definition 3.2. — The real number dimH(E), called the Hausdorff
dimension of E, is such that Hs(E) =∞ if s < dimH(E) and Hs(E) = 0
if s > dimH(E).

A direct conclusion is obtained from the above definition

dimH(E) = inf{s : Hs(E) = 0} = sup{s : Hs(E) =∞}.

3.1. Carathéodory dimension structure

In this section, we present a general approach to a construction of α−mea-
sures on a metric space, elaborated by Pesin [24], which is a generalization of
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AN ANALOGUE OF THE VARIATIONAL PRINCIPLE 849

the Hausdorff measure and the classical Carathéodory construction. Pesin
introduced axiomatically a structure, called the Carathéodory structure (or
C-structure), by describing its elements and relation between them.
Let X be a set and F a collection of subsets of X. Following Pesin [25]

we assume that there exist two set functions η, ψ : F → R+ satisfying the
following conditions:

A1. ∅ ∈ F and η(∅) = 0 = ψ(∅); for any non-empty U ∈ F we get
η(U) > 0 and ψ(U) > 0.

A2. For any δ > 0 there exists ε > 0 such that η(U) 6 δ for any U ∈ F
with ψ(U) 6 ε.

A3. For any ε > 0 there exists a finite or countable subcolection G ⊂ F
which covers X and ψ(G) := sup{ψ(U) : U ∈ G} 6 ε.

Definition 3.3. — Let ξ : F → R+ be a set function. We say that the
collection of subsets F and the set functions ξ, η, ψ satysfying conditions
A1, A2 and A3, introduce a Carathéodory dimension structure or
C-structure τ on X and we write τ = (F, ξ, η, ψ).

Now, consider a set X endowed with a C-structure τ = (F, ξ, η, ψ). For
any subset Z ⊂ X, real number α and ε > 0 we define

MC(Z,α, ε) := inf
G

{∑
U∈G

ξ(U) · η(U)α
}
,

where the infimum is taken over all finite or countable subcollections G ⊂ F
which cover Z and satisfy the condition ψ(G) 6 ε. Therefore, the limit
mC(Z,α) = limε→0 MC(Z,α, ε) exists.
The set function mC(·, α) becomes an outer measure on X, according

to the general measure theory it induces a σ−additive measure called the
α-Carathéodory measure. Moreover

Lemma 3.4 (Proposition 1.2 in [25]). — There exists a critical value αC ,
−∞ 6 αC 6 ∞ such that mC(Z,α) = ∞ for α 6 αC and mC(Z,α) = 0
for α > αC .

The Carathéodory dimension of a set Z ⊂ X with respect to the
C-structure τ, is defined as follows

dimC,τ Z = αC = inf{α : mC(Z,α) = 0}.
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3.2. Carathéodory capacity of sets

Assume that a C-structure τ = (F, ξ, η, ψ) satisfies Condition A3. It is
useful to require a slightly stronger condition. Pesin (p. 16 in [25]) intro-
duced another type of Carathéodory dimension characteristic of a set and
defined A3’ condition as follows:
A3’. There exists ε0 > 0 such that for any ε ∈ (0, ε0) one can find

subcollection G ⊂ F covering X such that ψ(U) = ε for any U ∈ G.
It is clear that Condition A3’ is stronger than Condition A3. For any

subset Z ⊂ X, real number α and ε > 0 we define

RC(Z,α, ε) := inf
G

{∑
U∈G

ξ(U) · η(U)α
}
,

where the infimum is taken over all finite or countable subcollections G ⊂ F
which cover Z and satisfy the condition ψ(U) = ε for all U ∈ G. Due to
A3’ the quantity RC(Z,α, ε) is well defined, it yields the existence of the
limits

rC(Z,α) = limε→0RC(Z,α, ε) and rC(Z,α) = limε→0RC(Z,α, ε).

The behaviour of rC(·, α) and rC(·, α) is described by the following result.

Proposition 3.5 (Proposition 2.1 in [25]). — For any Z ⊂ X, there
exist αC , αC ∈ R such that

(1) rC(Z,α) =∞ for α < αC and rC(Z,α) = 0 for α > αC ;
(2) rC(Z,α) =∞ for α < αC and rC(Z,α) = 0 for α > αC .

Given Z ⊂ X, the lower and the upper Carathéodory capacities of
a set Z are defined by

Cap
C
Z = αC = inf{α : rC(Z,α) = 0} = sup{α : rC(Z,α) =∞};

CapCZ = αC = inf{α : rC(Z,α) = 0} = sup{α : rC(Z,α) =∞}.

The upper Carathéodory capacity of a set has the following property.

Lemma 3.6 (Theorem 2.1 in [25]). — If Z1 ⊂ Z2 ⊂ X, then

CapCZ1 6 CapCZ2.

We will use the following properties of the lower and the upper Carathéo-
dory capacities of a set. For ε > 0 and any Z ⊂ X we define

Λ(Z, ε) := inf
G

{∑
U∈G

ξ(U)
}
,
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where the infimum is taken over all finite or countable subcollection G ⊂ F
covering Z for which the condition ψ(U) = ε holds for all U ∈ G.

Let us assume that the set function η satisfies the following condition:
A4. η(U1) = η(U2) for any U1, U2 ∈ F for which ψ(U1) = ψ(U2).

Then, the lower and upper Carathéodory capacities have the following
properties.

Lemma 3.7 (Theorem 2.2 in [25]). — If the set function η satisfies Con-
dition A4, then for any Z ⊂ X

CapCZ = limε→0
log Λ(Z, ε)
log( 1

η(ε) )
and Cap

C
Z = limε→0

log Λ(Z, ε)
log( 1

η(ε) )
.

Lemma 3.8 (Theorem 2.4 in [25]). — Under Condition A4 the equality

CapC(Z1 ∪ Z2) = max{CapC(Z1),CapC(Z2)}

holds for any subsets Z1, Z2 ⊂ X.

3.3. C-structures and topological entropy of a pseudogroup

An important application of C-structures is to illustrate the relationship
between topological entropy and dimensional characteristic of a dynami-
cal system. We apply Pesin’s theory to a finitely generated pseudogroup
(H,H1) acting on a compact metric space (X, d) to describe its topological
entropy. To this end, we construct a C-structure determined by (H,H1)
acting on X. First, recall that an n-ball of radius r, centered at x ∈ X, is
defined by

BHn (x, r) := {y ∈ X : d(h(x), h(y)) < r for any h ∈ Hn−1

such that x, y ∈ Dh}.

Fix δ > 0. Define the collection Fδ of subsets of X by

Fδ = {BHn (x, δ) : x ∈ X,n ∈ N}

and three set functions ξ, η, ψ : Fδ → R as follows

(3.2) ξ(BHn (x, δ)) ≡ 1, η(BHn (x, δ)) = exp(−n), ψ(BHn (x, δ)) = 1
n
.

It is easy to verify that Fδ and three set functions ξ, η, ψ satisfy condi-
tions A1, A2, A3 and A3’, therefore they determine a C-structure Γδ =
(Fδ, ξ, η, ψ) on X.
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The Carathéodory function rC(Z,α, δ), where Z ⊂ X and α ∈ R, de-
pends on the covering Fδ and is given by

rC(Z,α, δ)

= lim sup
N→∞

inf
G

 ∑
BH

N
(x,δ)∈G

e−η(BH
N (x,δ))·α : Z ⊂

⋃
BH

N
(x,δ)∈G

BHN (x, δ)

 .

The C-structure Γδ generates an upper Carathéodory capacity of Z, de-
noted here by CPZ(δ), specified by the covers Fδ and the pseudogroup
(H,H1). We have that

CPZ(δ) = inf{α : rC(Z,α, δ) = 0} = sup{α : rC(Z,α, δ) =∞}.

By Theorem 11.1 in [25] the limit CPZ := limδ→0 CPZ(δ) exists. Notice
that the functions η and ψ satisfy Condition A4, therefore by Lemma 3.6
and Theorem 11.1 in [25] we obtain.

Lemma 3.9. — For any Z ⊂ X there exists a limit

CPZ := lim
δ→0

lim sup
N→∞

1
N

log Λ(Z, δ,N),

where Λ(Z, δ,N) = infG{card(G)} and the infimum is taken over all finite
or countable collectionsG⊂Fδ of N-balls such that Z⊂

⋃
BH

N
(x,δ)∈GB

H
N (x,δ).

Corollary 3.10. — For any pseudogroup (H,H1) acting on X and
Z ⊂ X we get

CPZ = htop((H,H1), Z).

Proof. — One can directly verify that Λ(Z, δ,N) coincides with s(N, δ,Z),
the maximal cardinality of (N, δ, Z)−separated subset of Z, with respect
to (H,H1). The claim follows from the definition of the topological entropy
of (H,H1) restricted to Z. �

It is known (see [29]) that the topological entropy of any finitely gener-
ated group of homeomorphisms H (w.r. t.H1), of a compact metric space X,
coincides with the entropy of the pseudogroup generated by H1. Therefore:

Corollary 3.11. — For a finitely generated group (H,H1) of home-
omorphisms of a compact metric space (X, d) and a subset Z ⊂ X we
have

CPZ = htop((H,H1), Z).
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4. Local measure entropy of a pseudogroup

4.1. G-homogeneous measure

Let (G,G1) be a finitely generated pseudogroup acting on a compact
metric space (X, d) equipped with a Borel measure µ. Denote by Bd(x, r)
an open ball with center x ∈ X and radius r. Our main goal here is to
show the relationship between local µ-measure entropy of (G,G1) and the
topological entropy htop(G,G1).

Definition 4.1. — A Borel probability measure m defined on a com-
pact metric space (X, d) satisfies the doubling property provided that
there exists a constant D > 0 such that

(4.1) m(Bd(x, 2 · r)) < D ·m(Bd(x, r))

for all x ∈ X and r > 0. We say that m is a doubling measure.

It is known (Theorem 5.2.2 in [2]) that the doubling property of the
measure m implies the density lower bound, i. e. there are constants C > 0
and s > 0 such that the inequality

m(Bd(x, r))
m(Bd(y,R)) > C ·

( r
R

)s
holds for all 0 < r < R <∞ and all x ∈ Bd(y,R).

Definition 4.2. — A metric space (X, d) has the doubling property
if any ball B(x, 2r) in X may be covered by finitely many, say N(x, r) balls
of radius r, and there exists a finite upper bound N of the set {N(x, r) :
x ∈ X and r ∈ R} which is independent of x and r.

Coifman and Weiss [9] observed that a space admitting a doubling mea-
sure has the doubling property, Vol’berg and Konyagin [27], [28] proved that
any compact subset of Rn with induced metric admits a doubling measure.
In 1998 Luukkainen and Saksman [19] showed that every complete doubling
metric space carries a doubling measure.
An important class of doubling measures is formed by so called s-regular

measures. For an s-regular measure there exist C > 0 and s > 0 such that
the condition

1
C
rs 6 µ(B(x, r)) 6 C · rs

holds for x ∈ X and 0 < r < diam(X). The s-regular measures are closely
related to the Hausdorff measure Hs due to the following result.
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Proposition 4.3 (Theorem 4.6 in [17]). — If µ is an s-regular measure,
then there is a constant C > 1 so that C−1µ(E) 6 Hs(E) 6 Cµ(E) for
every E ⊂ X. In particular Hs is s-regular too.

Now, we consider a sequence of metrics dn on a set X and assume that all
of (X, dn) carry a common doubling measure µ, i.e., there exists a sequence
{Dn}n∈N of positive numbers such that for any n ∈ N

(4.2) µ(Bdn(x, 2 · r)) < Dn · µ(Bdn(x, r))

for all x ∈ X and r > 0. If there exists a finite upper bound D for
the sequence {Dn}n∈N, the asymptotic behavior of the sequence of met-
ric measure spaces (X, dn, µ) seems to be interesting. A dynamical system
f : X → X determines a sequence of metrics

dn(x, y) = {d(f i(x), f i(y)) : 0 6 i 6 n− 1},

then an open ball Bdn(x, r) has the following form

Bdn
(x, r) =

n−1⋂
i=0

f−iBd(f i(x), r).

For simplicity we write Bn(x, r) := Bdn(x, r).

Definition 4.4 (Definition 6 in [5]). — We say that a Borel probability
measure µ on X is a homogeneous measure with respect to a dynamical
system f : X → X if :

(1) there exists E0 ⊂ X with µ(E0) > 0 and
(2) for any ε > 0 there exist δ > 0 and c > 0 such that the inequality

µ(Bn(y, δ)) 6 c · µ(Bn(x, ε))

holds for all n ∈ N and all x, y ∈ X.

Bowen [5] observed that Haar measures on some homogeneous spaces are
invariant under affine transformations and have such properties. The reader
may also find the general approach to homogeneous measures in analysis
and geometry of metric measure spaces with no priori smooth structure
in [18] or [2]). The notion of a homogeneous measure (or f-homogeneous
measure) was very fruitful in dynamics of a single continuous map f :
X → X. It can be adopted to a finitely generated pseudogroup (G,G1) of
a metric space (X, d). Let

BGn (x, ε) :=
⋂
g∈Gx

n

g−1Bd(g(x), ε),

where Bd(z, r) = {y ∈ X : d(z, y) < r} and Gxn := {g ∈ Gn : x ∈ Dg}.
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Definition 4.5. — We say that a Borel measure µ on a metric space
(X, d) is G−homogeneous with respect to a finitely generated pseudogroup
(G,G1) if

(1) µ(K) <∞ for any compact K ⊂ X,
(2) there exists a compact K0 ⊂ X such that µ(K0) > 0, and
(3) for any ε > 0 there exist δ > 0 and c > 0 such that the inequality

µ(BGn (y, δ)) 6 c · µ(BGn (x, ε))

holds for all n ∈ N and all x, y ∈ X.

4.2. Examples of G-homogeneous measures

We describe two examples of G-homogeneous measures.
1) The canonical volume form dV on a closed, compact and oriented

Riemannian manifold M, determines a G-homogeneous measure µ with
respect to a finitely generated group G of isometries of M. Indeed, for
µ(A) :=

∫
A
dV and finitely generated group G of isometries of M we get

BGn (x, ε) =
⋂
g∈Gn

g−1(B(g(x), ε)) = B(x, ε).

Since M is compact, then for any δ < ε, arbitrary n ∈ N and x, y ∈ M,

we have
µ(BGn (y, δ)) 6 C · µ(BGn (x, ε)),

where
C = sup{µ(B(z, ε)) : z ∈M}

inf{µ(B(z, ε)) : z ∈M} .

2) Let X be a locally compact topological group endowed with a right
invariant Haar measure µ. It is known (see [23]) that X admits a right
invariant metric d. Choose a homeomorphisms A : X → X which is an
isomorphism of the group X onto itself. Fix g1, g2, ..., gk ∈ X and denote
by Ti = Rgi

◦ A, where Rgi
(x) = x · gi, for x ∈ X and i = 1, 2, ...k. We

claim that:

Proposition 4.6. — The group G generated by the finite set of homeo-
morphisms G1 = {idX , T1, T

−1
1 , T2, T

−1
2 , ..., Tk, T

−1
k } of the locally compact

topological group X, admits µ as its G-homogeneous measure.

To prove the claim we need two auxiliary lemmas. Let e stand for the
identity element of X.
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Lemma 4.7. — For each Ti ∈ G1, x ∈ X and r > 0 the equality

T−1
i (B(Ti(x), r)) = A−1[B(e, r)] · x

holds.

Proof. — Choose any two points x, y ∈ X and let y′ := A−1(y), then

(4.3) A−1[y ·A(x)] = A−1[A(y′ · x)] = A−1(y) · x.

Notice that due to the right invariant metric d we get the second equality

T−1
i [B(Ti(x), r)] = A−1{R−1

gi
[B(A(x) · gi, r)]} = A−1[B(A(x), r)].

Since A is the group homomorphism and d is the right invariant metric, we
obtain

A−1[B(A(x), r)] = A−1[B(A(x) ·A(e)), r)] = A−1[B(A(e), r) ·A(x)]

= A−1[B(e, r)] · x,

where the last equality is due to (4.3). �

Lemma 4.8. — For any Ti, Tj ∈ G1 the equality

(Ti ◦ Tj)−1(B((Ti ◦ Tj)(x), r)) = A−2[B(e, r)] · x

holds for all x ∈ X and r > 0.

Proof. — Applying Lemma 4.7 we arrive at

(Ti ◦ Tj)−1{B((Ti ◦ Tj)(x), r)} = T−1
j {T

−1
i [B((Ti(Tj(x)), r)]}

= T−1
j {A

−1[B(e, r)] · Tj(x)} = (A−1 ◦R−1
gj

){A−1[B(e, r)] ·A(x) · gj}

= A−1{A−1[B(e, r)] ·A(x)} = A−2[B(e, r)]x

which proves our claim. �

Proof of Proposition 4.6. — For any T ∈ G we write ord(T ) = m if and
only if m = min{n : T ∈ Gn \Gn−1}. In the view of Lemma 4.8 we get

BGn (x, r) =
⋂

T∈Gn

T−1[B(T (x), r)] =
⋂

T∈Gn

A− ord(T )[B(e, r)] · x

Thus the right invariance of the Haar measure µ yields

µ[BGn (x, r)] = µ

{ ⋂
T∈Gn

A− ord(T )[B(e, r)]
}
,

so for any points x, y ∈ X we have

µ[BGn (x, r)] = µ[BGn (y, r)].

The proof is complete. �
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4.3. G-homogeneous measures and topological entropy

Brin and Katok [7] introduced a notion of the local measure entropy for a
single continuous map f : X → X. We adapt a notion of the local measure
entropy to a finitely generated pseudogroup (G,G1) acting on X in the
following way:

Definition 4.9. — For any x ∈ X and a Borel probability measure µ
on X the quantity

hGµ (x) = lim
ε→0

lim sup
n→∞

− 1
n

logµ(BGn (x, ε))

is called a local upper µ−measure entropy at the point x, with respect
to (G,G1), while the quantity

hµ,G(x) = lim
ε→0

lim inf
n→∞

− 1
n

logµ(BGn (x, ε))

is called a local lower µ−measure entropy at the point x, with respect
to (G,G1).

Lemma 4.10. — If µ is a G-homogeneous measure on X, then the equal-
ities hGµ (x) = hGµ (y) and hµ,G(x) = hµ,G(y) hold for any x, y ∈ X.

Proof. — By definition of a G-homogeneous measure, for ε > 0 there
exist 0 < δ(ε) < ε and c > 0 such that

µ(BGn (y, δ(ε))) 6 c · µ(BGn (x, ε)).

Thus
1
n

logµ(BGn (y, δ(ε))) 6 log(c)
n

+ 1
n

logµ(BGn (x, ε)),
so

lim sup
n→∞

− 1
n

logµ(BGn (y, δ(ε))) > lim sup
n→∞

− 1
n

logµ(BGn (x, ε))

and

lim inf
n→∞

− 1
n

logµ(BGn (y, δ(ε))) > lim inf
n→∞

− 1
n

logµ(BGn (x, ε)).

Taking the limit as ε → 0 we arrive at hGµ (y) > hGµ (x) and hµ,G(y) >
hµ,G(x). Similarly, for ε′ > 0 there exist δ′(ε′) > 0 and c′ > 0 such that

µ(BGn (x, δ′(ε′))) 6 c′ · µ(BGn (y, ε′)).

Applying the same arguments, we obtain the inequalities hGµ (x) > hGµ (y)
and hµ,G(x) > hµ,G(y). �

Definition 4.11. — If µ is a G-homogeneous measure on X, then the
common value of local upper measure entropies is denoted by hGµ .
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Theorem 4.12. — For a finitely generated pseudogroup (G,G1) acting
on a compact metric space X, and admitting a G− homogeneous measure
µ on X, we have

htop(G,G1) = hGµ .

Proof. — Take an (n, ε)−separated subset E⊂X, with respect to (G,G1),
with maximal cardinality equal to s(n, ε, (G,G1)). Then,

BGn (x, ε/2) ∩BGn (y, ε/2) = ∅,

for any distinct points x, y ∈ E. So

s(n, ε, (G,G1)) · µ(BGn (x, ε/2)) 6 µ(X).

The G − homogenity of the measure µ allows us to choose 0 < δ(ε) < ε

and c > 0 so that

µ(BGn (y, δ(ε))) 6 c · µ(BGn (x, ε/2))

for all x and y. Thus

s(n, ε, (G,G1)) · µ(BGn (y, δ(ε))) 6 c · µ(X)

and

lim sup
n→∞

1
n

log s(n, ε, (G,G1)) 6 lim sup
n→∞

− 1
n

logµ(BGn (y, δ(ε))).

Taking the limit as ε→ 0 we obtain

htop(G,G1) 6 hGµ .

Now take an (n, δ)−spanning subset F ⊂ X, with respect to (G,G1),
with minimal cardinality equal to r(n, δ, (G,G1)). Notice that X ⊂

⋃
x∈F

BGn (x, 2δ). Given ε > 0 choose 0 < δ(ε) < ε and c > 0 so that

µ(BGn (x, 2δ(ε))) 6 c · µ(BGn (y, ε))

for all x, y ∈ X and n ∈ N. Then the inequality

c · µ(BGn (y, ε)) · r(n, δ(ε), (G,G1)) > µ(X) > 0

yields that

lim sup
n→∞

1
n

log r(n, δ(ε), (G,G1)) > lim sup
n→∞

− 1
n

logµ(BGn (y, ε)).

Finally, as ε→ 0 we obtain

htop(G,G1) > hGµ .

�
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Corollary 4.13. — For a finitely generated group (G,G1) of homeo-
morphisms of a compact metric space X, which admits a G−homogeneous
measure µ on X, we have

htop(G,G1) = hGµ .

5. Partial variational principle

Let Bj denote an open ball of radius r centered at x in a metric space
(X, d). Then m · Bj , where m ∈ N, denotes the open ball of radius m · r
centered at x. The diameter of the set A ⊂ X is denoted by diam(A). A
metric space X is called boundedly compact if all bounded closed subsets of
X are compact. In particular Rn and Riemannian manifolds (see Gromov
[13], p. 9) are boundedly compact.

Lemma 5.1 (Vitali Covering Lemma, Theorem 2.1 in [21]). — Let X be
a boundedly compact metric space and B a family of closed balls in X such
that

sup{diam(B) : B ∈ B} <∞.
Then there is a finite or countable sequence Bi ∈ B of disjoint balls such
that ⋃

B∈B
B ⊂

⋃
i

5 ·Bi.

Any oriented Riemannian manifold M has a natural volume form dV

which gives rise to a natural volume measure µv on the Borel sets defined as

µv(A) =
∫
A

dV.

Theorem 5.2. — Let (G,G1) be a finitely generated group of homeo-
morphisms of a compact closed and oriented manifold (M,d). Let E be a
Borel subset of M, s ∈ (0,∞) and µv the natural volume measure on M. If

hGµv
(x) 6 s for all x ∈ E then htop((G,G1), E) 6 s.

Proof. — Assume that hGµv
(x) 6 s, for any x ∈ E. Fix ε > 0. For k ∈ N

we define a set

Ek :=
{
x ∈ E : lim sup

n→∞

− logµv(BGn (x, r))
n

< s+ ε for all r ∈ (0, 1/k]
}
,

then clearly
E =

⋃
k∈N

Ek.
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For any fixed r ∈ (0, 1
5·k ] and arbitrary point x ∈ Ek there exists n(x) ∈ N

such that for any N > n(x) the inequality

µv(BGN (x, r)) > e−(s+ε)·N

holds. Since M has bounded geometry each function fm : Ek → R, defined
by fm(x) := µv(BGm(x, r)), is continuous which implies that

N0 := sup{n(x) : x ∈ Ek} <∞.

Due to Vitaly Covering Lemma for any N > N0 we can choose from the
cover CN := {BGN (x, r) : x ∈ Ek} of Ek a family DN := {BGN (x, r) : x ∈
FN} of disjoint balls such that

Ek ⊂ Ek ⊂
⋃
x∈FN

5 ·BGN (x, r) ⊂
⋃
x∈FN

6 ·BGN (x, r)

and
µv(BGN (x, r)) > e−(s+ε)·N , for x ∈ FN .

Therefore

card(FN ) · e−(s+ε)·N 6
∑
x∈FN

e−(s+ε)·N 6
∑
x∈FN

µv(BGN (x, r)) 6 1,

which gives the upper bound for the Carathéodory function

rC(Ek, s+ ε, r) = lim sup
N→∞

inf
FN

{
card(FN ) · e−(s+ε)·N

: Ek ⊂
⋃
x∈FN

6 ·BGN (x, r)
}
6 1.

The above estimation implies that

CapEk
6 s+ ε.

Since {Ek}k∈N is an ascending sequence of sets, by Lemma 3.6 and Lemma
3.8, we obtain

CapE = max
{

CapEk
,CapE\Ek

}
6 sup

k∈N
CapEk

and due to Corollary 3.11

htop((G,G1), E) = CapE 6 sup
k∈N

CapEk
6 s+ ε.

Finally, since ε is arbitrary small we get the inequality

htop((G,G1), E) 6 s.

�
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Theorem 5.3. — Let (G,G1) be a finitely generated pseudogroup on a
compact metric space (X, d). Let E be a Borel subset of X and s ∈ (0,∞).
Denote by µ a Borel probability measure on X. If

hµ,G(x) > s for all x ∈ E and µ(E) > 0 then htop((G,G1), E) > s.

Proof. — For any fixed ε > 0 we have the equality E =
⋃
k∈NEk, where

Ek :=
{
x ∈ E : lim inf

n→∞

− logµ(BGn (x, r))
n

> s− ε/2 for all r ∈ (0, 1/k)
}
.

The inequality
0 < µ(E) 6

∑
k∈N

µ(Ek)

yields that µ(Ek0) > 0 for some k0 ∈ N. Notice that Ek0 =
⋃
N∈NEk0,N ,

where

Ek0,N =
{
x ∈ Ek0 : − logµ(BGn (x, r))

n
> s− ε, for all n > N

and r ∈ (0, 1/k)
}
.

Again since µ(Ek0) > 0 and Ek0 =
⋃
N∈NEk0,N , we conclude that µ(Ek0,N0)

> 0, for some N0 ∈ N. This condition is equivalent to the following inequal-
ity

(5.1) µ(BGn (x, δ)) 6 e−(s−ε)·n

which holds for any point x ∈ Ek0,N0 , radius δ ∈ (0, 1
k0

) and n > N0.

For any positive integer N > N0 we consider a cover FN = {BGN (x, δ) :
x ∈ Ek0,N0} of Ek0,N0 . Applying (5.1) to a subcover C of FN we obtain the
following estimations

inf
C

 ∑
BG

N
(x,δ)∈C

e−N ·(s−ε) : Ek0,N0 ⊂
⋃

BG
N

(x,δ)∈C

BGN (x, δ)


> inf

C

 ∑
BG

N
(x,δ)∈C

µ(BGN (x, δ))

 > µ(Ek0,N0) > 0.

Thus for any δ ∈ (0, 1
k0

) the Carathéodory function rC(Ek0,N0 , s − ε, δ)
is positive and therefore CP (Ek0,N0 ) > s − ε. Applying Lemma 3.6 and
Corollary 3.10 we obtain

htop((G,G1), E) = CPE > CPEk0,N0
> s

since ε is arbitrarily small. �
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Corollary 5.4. — Let (G,G1) be a finitely generated group on a com-
pact metric space (X, d). Let E be a Borel subset of X and s ∈ (0,∞).
Denote by µ a Borel probability measure on X. If

hµ,G(x) > s for all x ∈ E and µ(E) > 0 then htop((G,G1), E) > s.

Remark 5.5. — The proof of Theorem 5.3 was inspired by Theorem 1
in [20] by Ma and Wen who related the lower measure entropy of a single
continuous map f : X → X of a compact metric space (X, d) with a
dimensional type characteristic of the dynamical system f : X → X.
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