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A SIMPLER PROOF OF TOROIDALIZATION OF
MORPHISMS FROM 3-FOLDS TO SURFACES

by Steven Dale CUTKOSKY

Abstract. — We give a simpler and more conceptual proof of toroidalization of
morphisms of 3-folds to surfaces, over an algebraically closed field of characteristic
zero. A toroidalization is obtained by performing sequences of blow ups of nonsin-
gular subvarieties above the domain and range, to make a morphism toroidal. The
original proof of toroidalization of morphisms of 3-folds to surfaces is much more
complicated.
Résumé. — On présente une démonstration plus simple et plus conceptuelle de

la toroïdalisation des morphismes des variétés de dimension trois vers les surfaces,
sur un corps algébriquement clos de caractéristique zéro. On obtient la toroïda-
lisation par une série d’éclatements de sous-variétés non singulières au-dessus de
la source et de l’image, afin d’obtenir un morphisme torique. La démonstration
originale de la toroïdalisation des morphismes des variétés de dimension trois vers
les surfaces était beaucoup compliquée.

1. Introduction

Let k be an algebraically closed field of characteristic zero. If X is a
nonsingular variety, then the choice of a simple normal crossings divisor
(SNC divisor) on X makes X into a toroidal variety.
Suppose that Φ : X → Y is a dominant morphism of nonsingular k-

varieties, and there is a SNC divisor DY on Y such that DX = Φ−1(DY )
is a SNC divisor on X. Then Φ is torodial (with respect to DY and DX)
if and only if Φ∗(Ω1

Y (log DY )) is a subbundle of Ω1
X( log DX) (Lemma 1.5

[11]). A toroidal morphism can be expressed locally by monomials. All of
the cases are written down for toroidal morphisms from a 3-fold to a surface
in Lemma 19.3 [11].

Keywords: Morphism, toroidalization, monomialization.
Math. classification: 14E99, 14E15.



866 Steven Dale CUTKOSKY

The toroidalization problem is to determine, given a dominant morphism
f : X → Y of k-varieties, if there exists a commutative diagram

X1
f1→ Y1

Φ ↓ ↓ Ψ
X

f→ Y

such that Φ and Ψ are products of blow ups of nonsingular subvarieties,
X1 and Y1 are nonsingular, and there exist SNC divisors DY1 on Y1 and
DX1 = f∗(DY1) on X1 such that f1 is toroidal (with respect to DX1 and
DY1).
The toroidalization problem does not have a positive answer in positive

characteristic p, even for maps of curves; t = xp + xp+1 gives a simple
example.
In characteristic zero, the toroidalization problem has an affirmative an-

swer if Y is a curve and X has arbitrary dimension; this is really embedded
resolution of hypersurface singularities, so follows from resolution of singu-
larities [24] (some of the simplified proofs are [5], [4] [12], [19] and [22]).
Toroidalization is proven for morphisms from a 3-fold to a surface in [11]
and for the case of a 3-fold to a 3-fold in [14]. Detailed history and refer-
ences on the toroidalization problem are given in the introductions to [11]
and [14].
We consider the problem of toroidalization as a resolution of singularities

type problem. When the dimension of the base is larger than one, the
problem shares many of the complexities of resolution of vector fields ([30],
[6], [28]) and of resolution of singularities in positive characteristic (some
references are [1], [2], [25], [7], [8], [9], [3], [15], [18], [23], [20], [21], [26],
[27], [31]). In particular, natural invariants do not have a “hypersurface of
maximal contact” and are sometimes not upper semicontinuous.

Toroidalization, locally along a fixed valuation, is proven in all dimen-
sions and relative dimensions in [10] and [13].

The proof of toroidalization of a dominant morphism from a 3-fold to a
surface given in [11] consists of 2 steps.

The first step is to prove “strong preparation”. Suppose that X is a
nonsingular variety, S is a nonsingular surface with a SNC divisor DS , and
f : X → S is a dominant morphism such that DX = f−1(DS) is a SNC
divisor on X which contains the locus where f is not smooth. f is strongly
prepared if f∗(Ω2

S(log DS)) = IM where I ⊂ OX is an ideal sheaf, and
M is a subbundle of Ω2

X( log DX) (Lemma 1.7 [11]). A strongly prepared
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A SIMPLER PROOF OF TOROIDALIZATION 867

morphism has nice local forms which are close to being toroidal (page 7 of
[11]).
Strong preparation is the construction of a commutative diagram

X1
↓ ↘
X

f→ S

where S is a nonsingular surface with a SNC divisor DS such that DX =
f∗(DS) is a SNC divisor on the nonsingular variety X which contains the
locus where f is not smooth, the vertical arrow is a product of blow ups
of nonsingular subvarieties so that X1 → S is strongly prepared. Strong
preparation of morphisms from 3-folds to surfaces is proven in Theorem
17.3 of [11].
The second step is to prove that a strongly prepared morphism from a

3-fold to a surface can be toroidalized. This is proven in Sections 18 and
19 of [11].

This second step is generalized in [16] to prove that a strongly prepared
morphism from an n-fold to a surface can be toroidalized. Thus to prove
toroidalization of a morphism from an n-fold to a surface, it suffices to
proof strong preparation.
The proof of strong preparation in [11] is extremely complicated, and

does not readily generalize to higher dimensions. The proof of this result
occupies 170 pages of [11]. We mention that that the main invariant con-
sidered in this paper, ν, can be interpreted as the adopted order of Section
1.2 of [6] of the 2-form du ∧ dv.
In this paper, we give a significantly simpler and more conceptual proof

of strong preparation of morphisms of 3-folds to surfaces. It is our hope
that this proof can be extended to prove strong preparation for morphisms
of n-folds to surfaces, for n > 3. The proof is built around a new upper
semicontinuous invariant σD, whose value is a natural number or ∞. if
σD(p) = 0 for all p ∈ X, then X → S is prepared (which is slightly stronger
than being strongly prepared). A first step towards obtaining a reduction
in σD is to make X 3-prepared, which is achieved in Section 3. This is
a nicer local form, which is proved by making a local reduction to lower
dimension. The proof proceeds by performing a toroidal morphism above
X to obtain that X is 3-prepared at all points except for a finite number of
1-points. Then general curves through these points lying on DX are blown
up to achieve 3-preparation everywhere on X. if X is 3-prepared at a point
p, then there exists an étale cover Up of an affine neighborhood of p and a
local toroidal structure Dp at p (which contains DX) such that there exists

TOME 63 (2013), FASCICULE 3



868 Steven Dale CUTKOSKY

a projective toroidal morphism Ψ : U ′ → Up such that σD has dropped
everywhere above p (Section 4). The final step of the proof is to make these
local constructions algebraic, and to patch them. This is accomplished in
Section 5. In Section 6 we state and prove strong preparation for morphisms
of 3-folds to surfaces (Theorem 6.1) and toroidalization of morphisms from
3-folds to surfaces (Theorem 6.2). Important definitions along the way are:
prepared, Definition 2.4,
1-prepared, Definition 2.1,
2-prepared, after the proof of Proposition 2.7,
3-prepared, Definition 3.3.
The author thanks the referee for their helpful suggestions for improving

the readability of the article.

2. The invariant σD, 1-preparation and 2-preparation.

For the duration of the paper, k will be an algebraically closed field of
characteristic zero. A k-variety is an integral quasi projective k-scheme. We
will write curve (over k) to mean a 1-dimensional k-variety, and similarly
for surfaces and 3-folds. We will assume that varieties are quasi-projective.
This is not really a restriction, by the fact that after a sequence of blow ups
of nonsingular subvarieties, all varieties satisfy this condition. By a general
point of a k-variety Z, we will mean a member of a nontrivial open subset
of Z on which some specified good condition holds. When we say that “p
is a point of X” or “p ∈ X” we will mean that p is a closed point, unless
we indicate otherwise (for instance, by saying that “p is a generic point of
a subvariety Y of X”).
A reduced divisor D on a nonsingular variety Z of dimension n is a

simple normal crossings divisor (SNC divisor) if all irreducible components
of D are nonsingular, and if p ∈ Z, then there exists a regular system of
parameters x1, . . . , xn in OZ,p such that x1x2 · · ·xr = 0 is a local equation
of D at p, where r 6 n is the number of irreducible components of D
containing p. Two nonsingular subvarieties X and Y intersect transversally
at p ∈ X ∩ Y if there exists a regular system of parameters x1, . . . , xn
in OZ,p and subsets I, J ⊂ {1, . . . , n} such that IX,p = (xi | i ∈ I) and
IY,p = (xj | j ∈ J).

Definition 2.1. — Let S be a nonsingular surface over k with a reduced
SNC divisor DS . Suppose that X is a nonsingular 3-fold, and f : X → S

is a dominant morphism. X is 1-prepared (with respect to f) if DX =
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f−1(DS)red is a SNC divisor on X which contains the locus where f is not
smooth, and if C1, C2 are the two components of DS whose intersection is
nonempty, T1 is a component of X dominating C1 and T2 is a component
of DX which dominates C2, then T1 and T2 are disjoint.

The following lemma is an easy consequence of the main theorem on
resolution of singularities.

Lemma 2.2. — Suppose that g : Y → T is a dominant morphism of a
3-fold over k to a surface over k and DT is a 1-cycle on T such that g−1(DR)
contains the locus where g is not smooth. Then there exists a commutative
diagram of morphisms

Y1
g1→ T1

π1 ↓ ↓ π2

Y
g→ T

such that the vertical arrows are products of blow ups of nonsingular sub-
varieties contained in the preimage of DT , Y1 and T1 are nonsingular and
DT1 = π−1

1 (DT ) is a SNC divisor on T1 such that Y1 is 1-prepared with
respect to g1.

For the duration of this paper, S will be a fixed nonsingular surface over
k, with a (reduced) SNC divisor DS . To simplify notation, we will often
write D to denote DX , if f : X → S is 1-prepared.
Suppose that X is 1-prepared with respect to f : X → S. A nonsingular

curve C of X which is contained in DX makes SNCs with DX if either C is
a 2-curve, or C contains no 3-points, and if q ∈ C is a 2-point, then there
are regular parameters x, y, z in the local ring OX,q such that xy = 0 is a
local equation of DX at q, and x = z = 0 are local equations of C at q.
A permissible blow up of X is the blow up π1 : X1 → X of a point of DX

or a nonsingular curve contained in DX which makes SNCs with DX . Then
DX1 = π−1

1 (DX)red = (f ◦ π1)−1(XS)red is a SNC divisor on X1 and X1
is 1-prepared with respect to f ◦ π1. A permissible curve is a curve which
satisfies these conditions (so its blow up is permissible).
Assume that X is 1-prepared with respect to D. We will say that p ∈ X

is a n-point (for D) if p is on exactly n components of D. Suppose q ∈ DS

and u, v are regular parameters in OS,q such that either u = 0 is a local
equation of DS at q or uv = 0 is a local equation of DS at q. u, v are called
permissible parameters at q.
For p ∈ f−1(q), we have regular parameters x, y, z in ÔX,p such that
1) If p is a 1-point,

(2.1) u = xa, v = P (x) + xbF

TOME 63 (2013), FASCICULE 3



870 Steven Dale CUTKOSKY

where x = 0 is a local equation of D, x 6 | F and xbF has no terms
which are a power of x.

2) If p is a 2-point, after possibly interchanging u and v,

(2.2) u = (xayb)l, v = P (xayb) + xcydF

where xy = 0 is a local equation of D, a, b > 0, gcd(a, b) = 1,
x, y 6 | F and xcydF has no terms which are a power of xayb.

3) If p is a 3-point, after possibly interchanging u and v,

(2.3) u = (xaybzc)l, v = P (xaybzc) + xdyezfF

where xyz = 0 is a local equation of D, a, b, c > 0, gcd(a, b, c) = 1,
x, y, z 6 | F and xdyezfF has no terms which are a power of xaybzc.

regular parameters x, y, z in ÔX,p giving forms (2.1), (2.2) or (2.3) are
called permissible parameters at p for u, v.
Suppose that X is 1-prepared. We define an ideal sheaf

I = fitting ideal sheaf of the image of f∗ : Ω2
S → Ω2

X(log(D))

in OX . I = OX(−G)I where G is an effective divisor supported on D and
I has height > 2.

Suppose that E1, . . . , En are the irreducible components ofD. For p ∈ X,
define

σD(p) = orderOX,p/(
∑

p∈Ei
IEi,p)Ip

OX,p/ ∑
p∈Ei

IEi,p

 ∈ N ∪ {∞}.

Lemma 2.3. — σD is upper semicontinuous in the Zariski topology of
the scheme X.

Proof. — For a fixed subset J ⊂ {1, 2, . . . , n}, we have that the function

orderOX,p/(
∑

i∈J
IEi,p)Ip

(
OX,p/

∑
i∈J
IEi,p

)
is upper semicontinuous, and if J ⊂ J ′ ⊂ {1, 2, . . . , n}. we have that

orderOX,p/(
∑

i∈J
IEi,p)Ip

(
OX,p/

∑
i∈J
IEi,p

)

6 orderOX,p/(
∑

i∈J′
IEi,p)Ip

(
OX,p/

∑
i∈J′
IEi,p

)
.

�
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Thus for r ∈ N ∪ {∞},

Singr(X) = {p ∈ X | σD(p) > r}

is a closed subset of X, which is supported on D and has dimension 6 1 if
r > 0.

Definition 2.4. — A point p ∈ X is prepared if σD(p) = 0.

We have that σD(p) = 0 if and only if Ip = OX,p. Further,

Sing1(X) = {p ∈ X | Ip 6= OX,p}.

If p ∈ X is a 1-point with an expression (2.1) we have

(2.4) (Ip + (x))ÔX,p = (x, ∂F
∂y

,
∂F

∂z
).

If p ∈ X is a 2-point with an expression (2.2) we have

(2.5) (Ip + (x, y))ÔX,p = (x, y, (ad− bc)F, ∂F
∂z

).

If p ∈ X is a 3-point with an expression (2.3) we have

(2.6) (Ip + (x, y, z))ÔX,p = (x, y, z, (ae− bd)F, (af − cd)F, (bf − ce)F ).

If p ∈ X is a 1-point with an expression (2.1), then

σD(p) = ord F (0, y, z)− 1.

We have 0 6 σD(p) <∞ if p is a 1-point. If p ∈ X is a 2-point, we have

σD(p) =


0 if ord F (0, 0, z) = 0 (in this case, ad− bc 6= 0)
ord F (0, 0, z)− 1 if 1 6 ord F (0, 0, z) <∞
∞ if ord F (0, 0, z) =∞.

If p ∈ X is a 3-point, let

A =
(
a b c

d e f

)
.

we have

σD(p) =
{

0 if ord F (0, 0, 0) = 0 (in this case, rank(A) = 2)
∞ if ord F (0, 0, 0) =∞.

Lemma 2.5. — Suppose that X is 1-prepared and π1 : X1 → X is a
toroidal morphism with respect to D. Then X1 is 1-prepared and σD(p1) 6
σD(p) for all p ∈ X and p1 ∈ π−1

1 (p).

TOME 63 (2013), FASCICULE 3
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Proof. — Suppose that p ∈ X is a 2-point and p1 ∈ π−1
1 (p). Then

there exist permissible parameters x, y, z at p giving an expression (2.2).
In ÔX1,p1 , there are regular parameters x1, y1, z where

(2.7) x = xa11
1 (y1 + α)a12 , y = xa21

1 (y1 + α)a22

with α ∈ k and a11a22−a12a22 = ±1. If α = 0, so that p1 is a 2-point, then
x1, y1, z are permissible parameters at p1 and substitution of (2.7) into (2.2)
gives an expression of the form (2.2) at p1, showing that σD(p1) 6 σD(p).
If α 6= 0 ∈ k, so that p1 is a 1-point, set λ = aa12+ba22

aa11+ba21
and x1 = x1(y1 +α)λ.

Then x1, y1, z are permissible parameters at p1. Substitution into (2.2) leads
to a form (2.1) with σD(p1) 6 σD(p).
If p ∈ X is a 3-point and σD(p) 6= ∞, then σD(p) = 0 so that p is

prepared. Thus there exist permissible parameters x, y, z at p giving an
expression (2.3) with F = 1. Suppose that p1 ∈ π−1

1 (p). In ÔX1,p1 there
are regular parameters x1, y1, z1 such that

(2.8)
x = (x1 + α)a11(y1 + β)a12(z1 + γ)a13

y = (x1 + α)a21(y1 + β)a22(z1 + γ)a23

z = (x1 + α)a31(y1 + β)a32(z1 + γ)a33

where at least one of α, β, γ ∈ k is zero. Substituting into (2.3), we find
permissible parameters at p1 giving a prepared form. �

Suppose that X is 1-prepared with respect to f : X → S. Define

ΓD(X) = max{σD(p) | p ∈ X}.

Lemma 2.6. — Suppose that X is 1-prepared and C is a 2-curve of D
and there exists p ∈ C such that σD(p) < ∞. Then σD(q) = 0 at the
generic point q of C.

Proof. — If p is a 3-point then σD(p) = 0 and the lemma follows from
upper semicontinuity of σD.
Suppose that p is a 2-point. If σD(p) = 0 then the lemma follows from

upper semicontinuity of σD, so suppose that 0 < σD(p) < ∞. There exist
permissible parameters x, y, z at p giving a form (2.2), such that x, y, z are
uniformizing parameters on an étale cover U of an affine neighborhood of
p. Thus for α in a Zariski open subset of k, x, y, z = z − α are permissible
parameters at a 2-point p of C. After possibly replacing U with a smaller
neighborhood of p, we have

∂F

∂z
= 1
xcyd

∂v

∂z
∈ Γ(U,OX)
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and ∂F
∂z (0, 0, z) 6= 0. Thus there exists a 2-point p ∈ C with permissible

parameters x, y, z = z − α such that ∂F
∂z (0, 0, α) 6= 0, and thus there is an

expression (2.2) at p

u = (xayb)l

v = P1(xayb) + xcydF1(x, y, z)

with ord F1(0, 0, z) = 0 or 1, so that σD(p) = 0. By upper semicontinuity
of σD, σD(q) = 0. �

Proposition 2.7. — Suppose that X is 1-prepared with respect to f :
X → S. Then there exists a toroidal morphism π1 : X1 → X with respect
to D, such that π1 is a sequence of blow ups of 2-curves and 3-points, and

1) σD(p) <∞ for all p ∈ DX1 .
2) X1 is prepared (with respect to f1 = f ◦π1 : X1 → S) at all 3-points

and the generic point of all 2-curves of DX1 .

Proof. — By upper semicontinuity of σD, Lemma 2.6 and Lemma 2.5,
we must show that if p ∈ X is a 3-point with σD(p) =∞ then there exists
a toroidal morphism π1 : X1 → X such that σD(p1) = 0 for all 3-points
p1 ∈ π−1

1 (p) and if p ∈ X is a 2-point with σD(p) = ∞ then there exists
a toroidal morphism π1 : X1 → X such that σD(p1) < ∞ for all 2-points
p1 ∈ π−1

1 (p).
First suppose that p is a 3-point with σD(p) =∞. Let x, y, z be permis-

sible parameters at p giving a form (2.3). There exist regular parameters
x̃, ỹ, z̃ in OX,p and unit series α, β, γ ∈ ÔX,p such that x = αx̃, y = βỹ,
z = γz̃. Write F =

∑
bijkx

iyjzk with bijk ∈ k. Let I = (x̃iỹj z̃k | bijk 6= 0),
an ideal in OX,p. Since x̃ỹz̃ = 0 is a local equation of D at p, there exists
a toroidal morphism π1 : X1 → X with respect to D such that IOX1,p1

is principal for all p1 ∈ π−1
1 (p). At a 3-point p1 ∈ π−1

1 (p), there exist
permissible parameters x1, y1, z1 such that

x = xa11
1 ya12

1 za13
1

y = xa21
1 ya22

1 za23
1

z = xa31
1 ya32

1 za33
1

with Det(aij) = ±1. Substituting into (2.3), we obtain an expression (2.3)
at p1, where

u = (xa1
1 yb1

1 z
c1
1 )l

v = P1(xa1
1 yb1

1 z
c1
1 ) + xd1

1 y
e1
1 z

f1
1 F1

TOME 63 (2013), FASCICULE 3
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where P1(xa1
1 yb1

1 z
c1
1 ) = P (xaybzc) and

F (x, y, z) = xa1y
b
1z
c
1F1(x1, y1, z1).

with xa1yb1zc1 a generator of IÔX1,p1 and F1(0, 0, 0) 6= 0. Thus σD(p1) = 0.
Now suppose that p is a 2-point and σD(p) =∞. There exist permissible

parameters x, y, z at p giving a form (2.2). Write F =
∑
ai(x, y)zi, with

ai(x, y) ∈ k[[x, y]] for all i. We necessarily have that no ai(x, y) is a unit
series.
Let I be the ideal I = (ai(x, y) | i ∈ N) in k[[x, y]]. There exists a

sequence of blow ups of 2-curves π1 : X1 → X such that ÔX1,p1 is principal
at all 2-points p1 ∈ π−1

1 (p). There exist x1, y1 ∈ OX1,p1 so that x1, y1, z are
permissible parameters at p1, and

x = xa11
1 ya12

1 , y = xa21
1 ya22

1

with a11a22 − a12a21 = ±1. Let xa1yb1 be a generator of IOT1,q1 . Then
F = xa1y

b
1F1(x1, y1, z) where F1(0, 0, z) 6= 0, and we have an expression

(2.2) at p1, where
u = (xa1

1 yb1
1 )l1

v = P1(xa1
1 yb1

1 ) + xd1
1 y

e1
1 F1

where P1(xa1
1 yb1

1 ) = P (xayb). Thus σD(p1) <∞ and σD(q) <∞ if q is the
generic point of the 2-curve of DX1 containing p1. �

We will say thatX is 2-prepared (with respect to f : X → S) if it satisfies
the conclusions of Proposition 2.7. We then have that ΓD(X) <∞.
If X is 2-prepared, we have that Sing1(X) is a union of (closed) curves

whose generic point is a 1-point and isolated 1-points and 2-points. Further,
Sing1(X) contains no 3-points.

3. 3-preparation

Lemma 3.1. — Suppose that X is 2-prepared. Suppose that p ∈ X is
such that σD(p) > 0. Let m = σD(p) + 1. Then there exist permissible
parameters x, y, z at p such that there exist x̃, y ∈ OX,p, an étale cover U
of an affine neighborhood of p, such that x, z ∈ Γ(U,OX) and x, y, z are
uniformizing parameters on U , and x = γx̃ for some unit series γ ∈ ÔX,p.
We have an expression (2.1) or (2.2), if p is respectively a 1-point or a
2-point, with

(3.1) F = τzm + a2(x, y)zm−2 + · · ·+ am−1(x, y)z + am(x, y)
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where m > 2 and τ ∈ ÔX1,p = k[[x, y, z]] is a unit, and ai(x, y) 6= 0 for
i = m− 1 or i = m. Further, if p is a 1-point, then we can choose x, y, z so
that x = y = 0 is a local equation of a generic curve through p on D.
For all but finitely many points p in the set of 1-points of X, there is an

expression (3.1) where
(3.2)

ai is either zero or has an expression ai = aix
ri where ai is a unit

and ri > 0 for 2 6 i 6 m, and am = 0 or am = xrmam
where rm > 0 and ord(am(0, y)) = 1.

Proof. — There exist regular parameters x̃, y, z in OX,p and a unit γ ∈
ÔX,p such that x = γx̃, y, z are permissible parameters at p, with
ord(F (0, 0, z)) = m. Thus there exists an affine neighborhood Spec(A)
of p such that V = Spec(R), where R = A[γ 1

a ] is an étale cover of Spec(A),
x, y, z are uniformizing parameters on V , and u, v ∈ Γ(V,OX). Differenti-
ating with respect to the uniformizing parameters x, y, z in R, set

(3.3) z̃ = ∂m−1F

∂zm−1 = ω(z − ϕ(x, y))

where ω ∈ ÔX,p is a unit series, and ϕ(x, y) ∈ k[[x, y]] is a nonunit series, by
the formal implicit function theorem. Set z = z−ϕ(x, y). Since R is normal,
after possibly replacing Spec(A) with a smaller affine neighborhood of p,

z̃ = 1
xb
∂m−1v

∂zm−1 ∈ R.

By Weierstrass preparation for Henselian local rings (Proposition 6.1 [29]),
ϕ(x, y) is integral over the local ring k[x, y](x,y). Thus after possibly replac-
ing A with a smaller affine neighborhood of p, there exists an étale cover
U of V such that ϕ(x, y) ∈ Γ(U,OX), and thus z ∈ Γ(U,OX).
Let G(x, y, z) = F (x, y, z). We have that

G = G(x, y, 0) + ∂G

∂z
(x, y, 0)z + · · ·+ 1

(m− 1)!
∂m−1G

∂zm−1 (x, y, 0)zm−1

+ 1
m!

∂mG

∂zm
(x, y, 0)zm + · · ·

We have
∂m−1G

∂zm−1 (x, y, 0) = ∂m−1F

∂zm−1 (x, y, ϕ(x, y)) = 0

and
∂mG

∂zm
(x, y, 0) = ∂mF

∂zm
(x, y, ϕ(x, y))

is a unit in ÔX,p. Thus we have the desired form (3.1), but we must still
show that am 6= 0 or am−1 6= 0. If ai(x, y) = 0 for i = m and i = m− 1, we
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have that z2 | F in ÔX,p, since m > 2. This implies that the ideal of 2× 2
minors

I2

(
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

)
⊂ (z),

which implies that z = 0 is a component of D which is impossible. Thus
either am−1 6= 0 or am 6= 0.
Suppose that C is a curve in Sing1(X) (containing a 1-point) and p ∈ C

is a general point. Let r = σD(p). Set m = r+ 1. Let x, y, z be permissible
parameters at p with y, z ∈ OX,p, which are uniformizing parameters on
an étale cover U of an affine neighborhood of p such that x = z = 0 are
local equations of C and we have a form (2.1) at p with

(3.4) F = τzm + a1(x, y)zm−1 + · · ·+ am(x, y).

For α in a Zariski open subset of k, x, y = y−α, z are permissible parameters
at a point q ∈ C ∩ U . For most points q on the curve C ∩ U , we have that
ai(x, y) = xriai(x, y) where ai(x, y) is a unit or zero for 1 6 i 6 m − 1
in ÔX,q. Since σD(p) = r at this point, we have that 1 6 ri for all i. We
further have that if am 6= 0, then am = xrma′ where a′ = f(y) + xΩ where
f(y) is non constant. Thus

0 6= ∂am
∂y

(0, y) = ∂F

∂y
(0, y, 0).

After possibly replacing U with a smaller neighborhood of p, we have
∂F

∂y
= 1
xb
∂v

∂y
∈ Γ(U,OX).

Thus ∂am

∂y (0, α) 6= 0 for most α ∈ k. Since r > 0, we have that rm > 0, and
thus ri > 0 for all i in (3.4). We have

∂m−1F

∂zm−1 = ξz + a1(x, y),

where ξ is a unit series. Comparing the above equation with (3.3), we
observe that ϕ(x, y) is a unit series in x and y times a1(x, y). Thus x divides
ϕ(x, y). Setting z = z − ϕ(x, y), we obtain an expression (3.1) such that x
divides ai for all i. Now argue as in the analysis of (3.4), after substituting
z = z − ϕ(x, y), to conclude that there is an expression (3.1), where (3.2)
holds at most points q ∈ C ∩ U . Thus a form (3.1) and (3.2) holds at all
but finitely many 1-points of X. �

Lemma 3.2. — Suppose that X is 2-prepared, C is a curve in Sing1(X)
containing a 1-point and p is a general point of C. Let m = σD(p) + 1.
Suppose that x̃, y ∈ OX,p are such that x̃ = 0 is a local equation of D at p
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and the germ x̃ = y = 0 intersects C transversally at p. Then there exists
an étale cover U of an affine neighborhood of p and z ∈ Γ(U,OX) such that
x̃, y, z give a form (3.1) at p.

Proof. — There exists z ∈ OX,p such that x̃, y, z are regular parameters
in OX,p and x = z = 0 is a local equation of C at p. There exists a unit
γ ∈ ÔX,p such that x = γx̃, y, z are permissible parameters at p. We have
an expression of the form (2.1),

u = xa, v = P (x) + xbF

at p. Write F = f(y, z) +xΩ in ÔX,p. Let I be the ideal in ÔX,p generated
by x and

{ ∂
i+jf

∂yi∂zj
| 1 6 i+ j 6 m− 1}.

The radical of I is the ideal (x, z), as x = z = 0 is a local equation of
Singm−1(X) at p. Thus z divides ∂i+j

∂yi∂zj for 1 6 i + j 6 m − 1 (with
m > 2). Expanding

f =
∞∑
i=0

bi(y)zi

(where b0(0) = 0) we see that ∂b0
∂y = 0 (so that b0(y) = 0) and bi(y) = 0

for 1 6 i 6 m − 1. Thus zm divides f(y, z). Since σD(p) = m − 1, we
have that f = τzm where τ is a unit series. Thus x, y, z gives a form (2.1)
with ord(F (0, 0, z)) = m. Now the proof of Lemma 3.1 gives the desired
conclusion. �

Let ω(m, r2, . . . , rm−1) be a function which associates a positive integer
to a positive integerm, natural numbers r2, . . . , rm−2 and a positive integer
rm−1. We will give a precise form of ω after Theorem 4.1.

Definition 3.3. — X is 3-prepared (with respect to f : X → S) at a
point p ∈ D if σD(p) = 0 or if σD(p) > 0, f is 2-prepared with respect to
D at p and there are permissible parameters x, y, z at p such that x, y, z
are uniformizing parameters on an étale cover of an affine neighborhood of
p and we have one of the following forms, with m = σD(p) + 1:

1) p is a 2-point, and we have an expression (2.2) with

(3.5) F = τ0z
m + τ2x

r2ys2zm−2 + · · ·+ τm−1x
rm−1ysm−1z + τmx

rmysm

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero), ri + si > 0
whenever τi 6= 0 and (rm + c)b− (sm + d)a 6= 0. Further, τm−1 6= 0
or τm 6= 0.
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2) p is a 1-point, and we have an expression (2.1) with

(3.6) F = τ0z
m + τ2x

r2zm−2 + · · ·+ τm−1x
rm−1z + τmx

rm

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero) for 2 6 i 6
m − 1, τm ∈ ÔX,p and ord(τm(0, y, 0)) = 1 (or τm = 0). Further,
ri > 0 if τi 6= 0, and τm−1 6= 0 or τm 6= 0.

3) p is a 1-point, and we have an expression (2.1) with

(3.7) F = τ0z
m + τ2x

r2zm−2 + · · ·+ τm−1x
rm−1z + xtΩ

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero) for 2 6 i 6
m − 1, Ω ∈ ÔX,p, τm−1 6= 0 and t > ω(m, r2, . . . , rm−1) (where we
set ri = 0 if τi = 0). Further, ri > 0 if τi 6= 0.

X is 3-prepared if X is 3-prepared for all p ∈ X.

Lemma 3.4. — Suppose that X is 2-prepared with respect to f : X →
S. Then there exists a sequence of blow ups of 2-curves π1 : X → X1 such
that X1 is 3-prepared with respect to f ◦ π1, except possibly at a finite
number of 1-points.

Proof. — The conclusions follow from Lemmas 3.1, 2.6 and 2.5, and the
method of analysis above 2-points of the proof of 2.7. �

Lemma 3.5. — Suppose that u, v ∈ k[[x, y]]. Let T0 = Spec(k[[x, y]]).
Suppose that u = xa for some a ∈ Z+, or u = (xayb)l where gcd(a, b) = 1
for some a, b, l ∈ Z+. Let p ∈ T0 be the maximal ideal (x, y). Suppose that
v ∈ (x, y)k[[x, y]]. Then either v ∈ k[[x]] or there exists a sequence of blow
ups of points λ : T1 → T0 such that for all p1 ∈ λ−1(p), we have regular
parameters x1, y1 in ÔT1,p1 , regular parameters x̃1, ỹ1 in OT1,p1 and a unit
γ1 ∈ ÔT1,p1 such that x1 = γ1x̃1, and one of the following holds:

1)
u = xa1

1 , v = P (x1) + xb1y
c
1

with c > 0 or
2) There exists a unit γ2 ∈ ÔT1,p1 such that y1 = γ2ỹ1 and

u = (xa1
1 yb1

1 )`1 , v = P (xa1
1 yb1

1 ) + xc1
1 y

d1
1

with gcd(a1, b1) = 1 and a1d1 − b1c1 6= 0.

Proof. — Let

J = Det
(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.
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First suppose that J = 0. Expand v =
∑
γijx

iyj with γij ∈ k. If u = xa,
then

∑
jγijx

iyj−1 = 0 implies γij = 0 if j > 0. Thus v = P (x) ∈ k[[x]]. If
u = (xayb)l, then

0 = J = lxla−1ylb−1(
∑
i,j

(ja− ib)γijxiyj)

implies γij = 0 if ja− ib 6= 0, which implies that v ∈ k[[xayb]].
Now suppose that J 6= 0. Let E be the divisor uJ = 0 on T0. There exists

a sequence of blow ups of points λ : T1 → T0 such that λ−1(E) is a SNC
divisor on T1. Suppose that p1 ∈ λ−1(p). There exist regular parameters
x̃1, ỹ1 in ÔT1,p1 such that if

J1 = Det
(

∂u
∂x̃1

∂u
∂ỹ1

∂v
∂x̃1

∂v
∂ỹ1

)
,

then

(3.8) u = x̃a1
1 , J1 = δx̃b1

1 ỹ
c1
1

where a1 > 0 and δ is a unit in ÔT1,p1 , or

(3.9) u = (x̃a1
1 ỹb1

1 )l1 , J1 = δx̃c1
1 ỹ

d1
1

where a1, b1 > 0, gcd(a1, b1) = 1 and δ is a unit in ÔT1,p1 . Expand v =∑
γij x̃

i
1ỹ
j
1 with γij ∈ k.

First suppose (3.8) holds. Then

a1x
a1−1
1

∑
i,j

jγij x̃
i
1ỹ
j−1
1

 = δx̃b1
1 ỹ

c1
1 .

Thus v = P (x̃1)+εx̃e1ỹ
f
1 where P (x̃1) ∈ k[[x̃1]], e = b1−a1+a, f = c1+1 and

ε is a unit series. Since f > 0, we can make a formal change of variables,
multiplying x̃1 by an appropriate unit series to get the form 1) of the
conclusions of the lemma.
Now suppose that (3.9) holds. Then

x̃a1l1−1
1 ỹb1l1−1

1

∑
ij

(a1l1j − b1l1i)γij x̃i1ỹ
j
1

 = δx̃c1
1 ỹ

d1
1 .

Thus v = P (x̃a1
1 ỹb1

1 )+εx̃e1ỹ
f
1 , where P is a series in x̃a1

1 ỹb1
1 , ε is a unit series,

e = c1 + 1− a1l1, f = d1 + 1− b1l1. Since a1l1f − b1l1e 6= 0, we can make a
formal change of variables to reach 2) of the conclusions of the lemma. �
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Lemma 3.6. — Suppose that X is 2-prepared with respect to f : X →
S. Suppose that p ∈ D is a 1-point with m = σD(p) + 1 > 1. Let u, v be
permissible parameters for f(p) and x, y, z be permissible parameters for
D at p such that a form (3.1) holds at p. Let U be an étale cover of an
affine neighborhood of p such that x, y, z are uniformizing parameters on
U . Let C be the curve in U which has local equations x = y = 0 at p.
Let T0 = Spec(k[x, y]), Λ0 : U → T0. Then there exists a sequence of

quadratic transforms T1 → T0 such that if U1 = U ×T0 T1 and ψ1 : U1 → U

is the induced sequence of blow ups of sections over C, Λ1 : U1 → T1 is the
projection, then U1 is 2-prepared with respect to f ◦ψ1 at all p1 ∈ ψ−1

1 (p).
Further, for every point p1 ∈ ψ−1

1 (p), there exist regular parameters x1, y1
in ÔT1,Λ1(p1) such that x1, y1, z are permissible parameters at p1, and there
exist regular parameters x̃1, ỹ1 inOT1,Λ1(p1) such that if p1 is a 1-point, x1 =
α(x̃1, ỹ1)x̃1 where α(x̃1, ỹ1) ∈ ÔT1,Λ1(p1) is a unit series and y1 = β(x̃1, ỹ1)
with β(x̃1, ỹ1) ∈ ÔT1,Λ1(p1), and if p1 is a 2-point, then x1 = α(x̃1, ỹ1)x̃1

and y1 = β(x̃1, ỹ1)ỹ1, where α(x̃1, ỹ1), β(x̃1, ỹ1) ∈ ÔT1,Λ1(p1) are unit series.
We have one of the following forms:

1) p1 is a 2-point, and we have an expression (2.2) with

(3.10)
F = τzm + a2(x1, y1)xr2

1 y
s2
1 z

m−2 + · · ·+ am−1(x1, y1)xrm−1
1 y

sm−1
1 z

+ amx
rm
1 ysm

1

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or zero)
for 2 6 i 6 m − 1, am = 0 or 1 and if am = 0, then am−1 6= 0.
Further, ri+si > 0 whenever ai 6= 0 and a(rm+c)b−(sm+d)a 6= 0.

2) p1 is a 1-point, and we have an expression (2.1) with

(3.11) F = τzm + a2(x1, y1)xr2
1 z

m−2 + · · ·+ am−1(x1, y1)xrm−1
1 z + xrm

1 y1

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or zero)
for 2 6 i 6 m− 1. Further, ri > 0 (whenever ai 6= 0).

3) p1 is a 1-point, and we have an expression (2.1) with

(3.12) F = τzm + a2(x1, y1)xr2
1 z

m−2 + · · ·+ am−1(x1, y1)xrm−1
1 z + xt1y1Ω

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or zero)
for 2 6 i 6 m − 1 and ri > 0 whenever ai 6= 0. We also have
t > ω(m, r2, . . . , rm−1). Further, am−1 6= 0 and Ω ∈ ÔU1,p1 .

Proof. — Let p = Λ0(p). Let T = {i | ai(x, y) 6= 0 and 2 6 i < m}.
There exists a sequence of blow ups ϕ1 : T1 → T0 of points over p such that
at all points q ∈ ψ−1

1 (p), we have permissible parameters x1, y1, z such that
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x1, y1 are regular parameters in ÔT1,Λ1(q) and we have that u is a monomial
in x1 and y1 times a unit in ÔT1,Λ1(q), where g =

∏
i∈T ai(x, y).

Suppose that am(x, y) 6= 0. Let v = xbam(x, y) if (2.1) holds and v =
xcydam(x, y) if (2.2) holds. We have v 6∈ k[[x]] (respectively v 6∈ k[[xayb]]).
Then by Theorem 3.5 applied to u, v, we have that there exists a further
sequence of blow ups ϕ2 : T2 → T1 of points over p such that at all points
q ∈ (ψ1◦ψ2)−1(p), we have permissible parameters x2, y2, z such that x2, y2
are regular parameters in ÔT2,Λ2(q) such that u = 0 is a SNC divisor and
either

u = xa2 , v = P (x2) + xb2y
c
2

with c > 0 or
u = (xa2yb2)t, v = P (xa2yb2) + xc2y

d
2

where ad− bc 6= 0.
If q is a 2-point, we have thus achieved the conclusions of the lemma.

Further, there are only finitely many 1-points q above p on U2 where the
conclusions of the lemma do not hold. At such a 1-point q, F has an ex-
pression
(3.13)
F = τzm + a2(x2, y2)xr2

2 y
s2
2 z

m−2 + · · ·+ am−1(x2, y2)xrm−1
2 y

sm−1
2 z + amx

rm
2 ysm

2

where am = 0 or 1, ai are units (or zero) for 2 6 i 6 m.
Let

J = I2

(
∂u
∂x2

∂u
∂y2

∂u
∂z

∂v
∂x2

∂v
∂y2

∂v
∂z

)
= xn( ∂F

∂y2
,
∂F

∂z
)

for some positive integer n. Since D contains the locus where f is not
smooth, we have that the localization Jp = (ÔU2,q)p, where p is the prime
ideal (y2, z2) in ÔU2,q.
We compute

∂F

∂z
= am−1x

rm−1
2 y

sm−1
2 + Λ1z

and
∂F

∂y2
= smamy

sm−1
2 xrm

2 + Λ2z

for some Λ1,Λ2 ∈ ÔU2,q, to see that either am−1 6= 0 and sm−1 = 0, or
am 6= 0 and sm = 1.
Let q be one of these points, and let ϕ3 : T3 → T2 be the blow up of Λ2(q).

We then have that the conclusions of the lemma hold in the form (3.10) at
the 2-point which has permissible parameters x3, y3, z defined by x2 = x3y3
and y2 = y3. At a 1-point which has permissible parameters x3, y3, z defined
by x2 = x3, y2 = x3(y3 + α) with α 6= 0, we have that a form (3.11) holds.
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Thus the only case where we may possibly have not achieved the conclusions
of the lemma is at the 1-point which has permissible parameters x3, y3, z

defined by x2 = x3 and y2 = x3y3. We continue to blow up, so that there
is at most one point where the conclusions of the lemma do not hold. This
point is a 1-point, which has permissible parameters x3, y3, z where x2 = x3
and y2 = xn3y3 where we can take n as large as we like. We thus have a
form

(3.14) u = xa3 , v = P (x3) + xb3F3

with F3 = τzm+b2xr2
3 z

m−2+· · ·+bm−1x
rm−2
3 z+xt3Ω, where either bi(x3, y3)

is a unit or is zero, bm−1 6= 0, and t > ω(m, r2, . . . , rm−1) if am−1 6= 0
and sm−1 = 0 which is of the form of (3.12), or we have a form (3.11)
(after replacing y3 with y3 times a unit series in x3 and y3) if am 6= 0 and
sm = 1. �

Lemma 3.7. — Suppose that X is 2-prepared with respect to f : X →
S. Suppose that p ∈ D is a 1-point with σD(p) > 0. Let m = σD(p)+1. Let
x, y, z be permissible parameters for D at p such that a form (3.1) holds at
p.
Let notation be as in Lemma 3.6. For p1 ∈ ψ−1

1 (p) let r(p1) = m+1+rm,
if a form (3.11) holds at p1, and

r(p1) =
{

max{m+ 1 + rm,m+ 1 + sm} if am = 1
max{m+ 1 + rm−1,m+ 1 + sm−1} if am = 0

if a form (3.10)holds at p1. Let r(p1) = m+ 1 + rm−1 if a form (3.12) holds
at p1.

Let r′ = max{r(p1) | p1 ∈ ψ−1
1 (p)}. Let

(3.15) r = r(p) = m+ 1 + r′.

Suppose that x∗ ∈ OX,p is such that x = γx∗ for some unit γ ∈ ÔX,p
with γ ≡ 1 mod mr

pÔX,p.
Let V be an affine neighborhood of p such that x∗, y ∈ Γ(V,OX), and

let C∗ be the curve in V which has local equations x∗ = y = 0 at p.
Let T ∗0 = Spec(k[x∗, y]). Then there exists a sequence of blow ups of

points T ∗1 → T ∗0 above (x∗, y) such that if V1 = V ×T∗0 T
∗
1 and ψ∗1 : V1 → V

is the induced sequence of blow ups of sections over C∗, Λ∗1 : V1 → T ∗1 is
the projection, then V1 is 2-prepared at all p∗1 ∈ (ψ∗1)−1(p). Further, for
every point p∗1 ∈ (ψ∗1)−1(p), there exist x̂1, y1 ∈ ÔV1,p∗1

such that x̂1, y1, z

are permissible parameters at p∗1 and we have one of the following forms:
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1) p∗1 is a 2-point, and we have an expression (2.2) with

(3.16) F = τ0z
m + τ2x̂

r2
1 y

s2
1 z

m−2 + · · ·+ τm−1x̂
rm−1
1 y

sm−1
1 z + τmx̂

rm
1 ysm

1

where τ0 ∈ ÔV1,p∗1
is a unit, τ i ∈ ÔV1,p∗1

are units (or zero) for
0 6 i 6 m − 1, τm is zero or 1, τm−1 6= 0 if τm = 0, ri + si > 0 if
τ i 6= 0, and

(rm + c)b− (sm + d)a 6= 0.

2) p∗1 is a 1-point, and we have an expression (2.1) with

(3.17) F = τ0z
m + τ2x̂

r2
1 z

m−2 + · · ·+ τm−1x̂
rm−1
1 z + τmx̂

rm
1

where τ0 ∈ ÔV1,p∗1
is a unit, τ i ∈ ÔV1,p∗1

are units (or zero), and
ord(τm(0, y1, 0) = 1. Further, ri > 0 if τ i 6= 0.

3) p∗1 is a 1-point, and we have an expression (2.1) with

(3.18) F = τ0z
m + τ2x̂

r2
1 z

m−2 + · · ·+ τm−1x̂
rm−1
1 z + xt1Ω

where τ0 ∈ ÔV1,p∗1
is a unit, τ i ∈ ÔV1,p∗1

are units (or zero), Ω ∈
ÔV1,p∗1

, τm−1 6= 0 and t > ω(m, r2, . . . , rm−1). Further, ri > 0 if
τ i 6= 0.

Proof. — The isomorphism T ∗0 → T0 obtained by substitution of x∗ for
x and subsequent base change by the morphism T1 → T0 of Lemma 3.6,
induces a sequence of blow ups of points T ∗1 → T ∗0 . The base change ψ∗1 :
V1 = V ×T∗0 T ∗1 → V ∼= V ×T∗0 T ∗0 factors as a sequence of blow ups of
sections over C∗. Let Λ∗1 : V1 → T ∗1 be the natural projection.
Let p∗1 ∈ (ψ∗1)−1(p), and let p1 ∈ ψ−1

1 (p) ⊂ U1 be the corresponding
point.
First suppose that p1 has a form (3.11). With the notation of Lemma

3.6, we have polynomials ϕ,ψ such that

x = ϕ(x̃1, ỹ1), y = ψ(x̃1, ỹ1)

determines the birational extension OT0,p0 → OT1,Λ1(p1), and we have a
formal change of variables

x1 = α(x̃1, ỹ1)x̃1, y1 = β(x̃1, ỹ1)

for some unit series α and series β. We further have expansions

ai(x, y) = xri
1 ai(x1, y1)

for 2 6 i 6 m− 1 where ai(x1, y1) are unit series or zero, and

am(x, y) = xrm
1 y1.
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We have x = γx∗ with γ ≡ 1 mod mr
pÔX,p. Set y∗ = y. At p∗1, we have

regular parameters x∗1, y∗1 in OT∗1 ,Λ∗1(p∗1) such that

x∗ = ϕ(x∗1, y∗1), y∗ = ψ(x∗1, y∗1),

and x∗1, y∗1 , z̃ are regular parameters in OV1,p
∗
1
(recall that z = σz̃ in Lemma

3.1). We have regular parameters x1, y1,∈ ÔT∗1 ,Λ∗1(p∗1) defined by

x1 = α(x∗1, y∗1)x∗1, y1 = β(x∗1, y∗1).

We have u = xa = xa1
1 where a1 = ad for some d ∈ Z+. Since

[α(x̃1, ỹ1)x̃1]d = x, we have that [α(x∗1, y∗1)x∗1]d = x∗. Set x̂1 = γ
1
dx1 =

γ
1
dα(x∗1, y∗1)x∗1. We have that γ 1

dα(x∗1, y∗1) is a unit in ÔV1,p∗1
, and x = x̂d1.

Thus x1 = x̂1 (with an appropriate choice of root γ 1
d ). We have u = x̂ad1 ,

so that x̂1, y1, z are permissible parameters at p∗1.
For 2 6 i 6 m− 1, we have

ai(x, y) = ai(γx∗, y∗) ≡ ai(x∗, y∗) mod mr
pÔV,p

and
ai(x∗, y∗) = ai(ϕ(x∗1, y∗1), ψ(x∗1, y∗1))

= xri
1 ai(x1, y1)

≡ xri
1 ai(x1, y1) mod mr

pOV1,p∗1
.

We further have

am(x∗, y∗) ≡ xrm
1 y1 mod mr

pÔV1,p∗1
.

Thus we have expressions
(3.19)
u = xda1

v = P (xd1) + xbd1 P1(x1) + xbd1 (τzm + xr2
1 a2(x1, y1)zm−2 + · · ·+ xrm

1 y1 + h)

where τ ∈ ÔV1,p∗1
is a unit series and

h ∈ mr
pÔV1,p∗1

⊂ (x1, z)r.

Set s = r −m, and write

h = zmΛ0(x1, y1, z) + zm−1x1+s
1 Λ1(x1, y1) + zm−2x2+s

1 Λ2(x1, y1)

+ · · ·+ zx
(m−1)+s
1 Λm−1(x1, y1) + xm+s

1 Λm(x1, y1)

with Λ0 ∈ mp∗1
ÔV1,p∗1

and Λi ∈ k[[x1, y1]] for 1 6 i 6 m.
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Substituting into (3.19), we obtain an expression

u = xda1

v = P (xd1) + xbd1 P1(x1)

+ xbd1 (τ0z
m + xr2

1 τ2z
m−2 + · · ·+ x

rm−1
1 τm−1z + xrm

1 τm)

where τ0 ∈ ÔV1,p∗1
is a unit, τ i ∈ ÔV1,p∗1

are units (or zero), for 1 6 i 6 m−1
and τm ∈ k[[x1, y1]] with ord(τm(0, y1)) = 1.

We have τ0 = τ + Λ0, τi = ai(x1, y1) for 2 6 i 6 m− 1, and

τm = y1 + zm−1x1+s−rm
1 Λ1(x1, y1) + · · ·+ xm+s−rm

1 Λm(x1, y1)).

We thus have the desired form (3.17).
In the case when p1 has a form (3.12), a similar argument to the analysis

of (3.11) shows that p∗1 has a form (3.18).
Now suppose that p1 has a form (3.10). We then have

(3.20) mpOU1,p1 ⊂ (x1y1, z)OU1,p1 ,

unless there exist regular parameters x′1, y′1 ∈ OT1,Λ1(p1) such that x′1, y′1, z
are regular parameters in OU1,p1 and

(3.21) x = x′1, y = (x′1)ny′1

or

(3.22) x = x′1(y′1)n, y = y′1

for some n ∈ N. If (3.21) or (3.22) holds, then ÔV1,p∗1
= ÔU1,p1 , and (taking

x̂1 = x1, y1 = y1) we have that a form (3.16) holds at p∗1. We may thus
assume that (3.20) holds.
With the notation of Lemma 3.6, we have polynomials ϕ,ψ such that

x = ϕ(x̃1, ỹ1), y = ψ(x̃1, ỹ1)

determines the birational extension OT0,p0 → OT1,Λ1(p1), and we have a
formal change of variables

x1 = α(x̃1, ỹ1)x̃1, y1 = β(x̃1, ỹ1)ỹ1

for some unit series α and β. We further have expansions

ai(x, y) = xri
1 y

si
1 ai(x1, y1)

for 2 6 i 6 m− 1 where ai(x1, y1) are unit series or zero, and

am(x, y) = xrm
1 ysm

1 am,
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where am = 0 or 1. We have x = γx∗ with γ ≡ 1 mod mr
pÔX,p. Set y∗ = y.

At p∗1, we have regular parameters x∗1, y∗1 in OT∗1 ,Λ∗1(p∗1) such that

x∗ = ϕ(x∗1, y∗1), y∗ = ψ(x∗1, y∗1),

and x∗1, y∗1 , z̃ are regular parameters in OV1,p
∗
1
(recall that z = σz̃ in Lemma

3.1). We have regular parameters x1, y1,∈ ÔT∗1 ,Λ∗1(p∗1) defined by

x1 = α(x∗1, y∗1)x∗1, y1 = β(x∗1, y∗1)y∗1 .

We calculate

u = xa = (xa1
1 yb1

1 )t1 = [α(x̃1, ỹ1)x̃1]a1t1 [β(x̃1, ỹ1)ỹ1]b1t1

which implies

(x∗)a = [α(x∗1, y∗1)x∗1]a1t1 [β(x∗1, y∗1)y∗1 ]b1t1 = xa1t1
1 yb1t1

1 .

Set x̂1 = γ
a

a1t1 x1 to get u = (x̂a1
1 yb1

1 )t1 , so that x̂1, y1, z are permissible
parameters at p∗1.

For 2 6 i 6 m, we have

ai(x, y) = ai(γx∗, y∗) ≡ ai(x∗, y∗) mod mr
pÔV,p

and
ai(x∗, y∗) = ai(ϕ(x∗1, y∗1), ψ(x∗1, y∗1))

= xri
1 y

si
1 ai(x1, y1)

≡ x̂ri
1 y

si
1 ai(x̂1, y1) mod mr

pOV1,p∗1
.

Thus we have expressions
(3.23)
u = (x̂a1

1 yb1
1 )t1

v = P ((x̂a1
1 yb1

1 )
t1
a ) + (x̂a1

1 yb1
1 )

t1
a bP1(x̂a1

1 yb1
1 ) + (x̂a1

1 yb1
1 )

t1
a b(τzm

+ x̂r2
1 y

s2
1 a2(x̂1, y1)zm−2 + · · ·+ x̂rm

1 ysm
1 am + h)

where τ ∈ ÔV1,p∗1
is a unit series and

h ∈ mr
pÔV1,p∗1

⊂ (x̂1y1, z)r.

Set s = r −m, and write

(3.24) h = zmΛ0(x1, y1, z) + zm−1(x̂1y1)1+sΛ1(x̂1, y1)

+ zm−2(x̂1y1)2+sΛ2(x̂1, y1) + · · ·

+ z(x̂1y1)(m−1)+sΛm−1(x̂1, y1) + (x̂1y1)m+sΛm(x̂1, y1)

with Λ0 ∈ mp∗1
ÔV1,p∗1

and Λi ∈ k[[x̂1, y1]] for 1 6 i 6 m.
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First suppose that am = 1. Substituting into (3.23), we obtain an ex-
pression
u = (x̂a1

1 yb1
1 )t1

v = P ((x̂a1
1 yb1

1 )
t1
a ) + (x̂a1

1 yb1
1 )

t1
a bP1(x̂a1

1 yb1
1 )

+ (x̂a1
1 yb1

1 )
t1
a b(τ0z

m + x̂r2
1 y

s2
1 τ2z

m−2 + · · ·+ x̂rm
1 ysm

1 τm)

where τ0, τm ∈ ÔV1,p∗1
are units, τ i ∈ ÔV1,p∗1

are units (or zero) for 2 6 i 6
m− 1.
We have τ0 = τ + Λ0, τi = ai(x̂1, y1) for 2 6 i 6 m− 1, and

τm = am + zm−1x̂1+s−rm
1 y1+s−sm

1 Λ1(x̂1, y1) + · · ·

+ x̂m+s−rm
1 ym+s−sm

1 Λm(x̂1, y1).

We thus have the desired form (3.16).
Now suppose that am = 0. Then am−1 6= 0, and z divides h in (3.23), so

that Λm = 0 in (3.24). Substituting into (3.23), we obtain an expression

u = (x̂a1
1 yb1

1 )t1

v = P ((x̂a1
1 yb1

1 )
t1
a b) + (x̂a1

1 yb1
1 )

t1
a bP1(x̂a1

1 yb1
1 )

+ (x̂a1
1 yb1

1 )
t1
a b(τ0z

m + x̂r2
1 y

s2
1 τ2z

m−2 + · · ·+ x̂
rm−1
1 y

sm−1
1 τm−1z)

where τ0, τm−1 ∈ ÔV1,p∗1
are units, τ i ∈ ÔV1,p∗1

are units (or zero) for
2 6 i 6 m− 2.
We have τ0 = τ + Λ0, τi = ai(x̂1, y1) for 2 6 i 6 m− 2, and

τm−1 = am−1 + zm−1x̂
1+s−rm−1
1 y

1+s−sm−1
1 Λ1(x̂1, y1) + · · ·

+ x̂
m−1+s−rm−1
1 y

m−1+s−sm−1
1 Λm−1(x̂1, y1).

We thus have the form (3.16). �

Lemma 3.8. — Suppose that X is 2-prepared. Suppose that p ∈ X is a
1-point with σD(p) > 0 and E is the component of D containing p. Suppose
that Y is a finite set of points in X (not containing p). Then there exists
an affine neighborhood U of p in X such that

1) Y ∩ U = ∅.
2) [E − U ∩ E] ∩ Sing1(X) is a finite set of points.
3) U ∩D = U ∩E and there exists x ∈ Γ(U,OX) such that x = 0 is a

local equation of E in U .
4) There exists an étale map π : U → A3

k = Spec(k[x, y, z]).
5) The Zariski closure C in X of the curve in U with local equations

x = y = 0 satisfies the following:

TOME 63 (2013), FASCICULE 3



888 Steven Dale CUTKOSKY

i) C is a nonsingular curve through p.
ii) C contains no 3-points of D.
iii) C intersects 2-curves of D transversally at prepared points.
iv) C ∩ Sing1(X) ∩ (X − U) = ∅.
v) C ∩ Y = ∅.
vi) C intersects Sing1(X)− {p} transversally at general points of

curves in Sing1(X).
vii) There exist permissible parameters x, y, z at p, with x̃ = x, y =

y, which satisfy the hypotheses of lemma 3.1.

Proof. — Let H be an effective, very ample divisor on X such that H
contains Y and D − E, but H does not contain p and does not contain
any one dimensional components of Sing1(X,D) ∩ E. There exists n > 0
such that E + nH is ample, OX(E + nH) is generated by global sections
and a general member H ′ of the linear system |E + nH| does not contain
any one dimensional components of Sing1(X,D)∩E, and does not contain
p. H + H ′ is ample, so V = X − (H + H ′) is affine. Further, there exists
f ∈ k(X), the function field of X, such that (f) = H ′ − (E + nH). Thus
x = 1

f ∈ Γ(V,OX) as X is normal and x has no poles on V . x = 0 is a local
equation of E on V . We have that V satisfies the conclusions 1), 2) and 3)
of the lemma.
Let R = Γ(V,OX). R = ∪∞s=1Γ(X,OX(s(H +H ′)) is a finitely generated

k-algebra. Thus for s � 0, R is generated by Γ(X,OX(s(H + H ′)) as a
k-algebra.
From the exact sequences

0→ Γ(X,OX(s(H +H ′))⊗ Ip)→ Γ(X,OX(s(H +H ′))→ OX,p/mp
∼= k

and the fact that 1 ∈ Γ(X,OX(s(H + H ′)), we have that R is generated
by Γ(X,OX(s(H +H ′))⊗ IP ) as a k-algebra for all s� 0.
For s � 0, and a general member σ of Γ(X,OX(s(H + H ′)) ⊗ Ip) we

have that the curve C = B ·E, where B is the divisor B = (σ)+s(H+H ′),
satisfies the conclusions of 5) of the lemma; since each of the conditions
5i) through 5vii) is an open condition on Γ(X,OX(s(H + H ′) ⊗ Ip)), we
need only establish that each condition holds on a nonempty subset. This
follows from the fact that H + H ′ is ample, Bertini’s theorem applied to
the base point free linear system |ϕ∗(s(H + H ′)) − A|, where ϕ : W → X

is the blow up of p with exceptional divisor A, and the fact that

ϕ∗(OW (ϕ∗(s(H +H ′)−A)) = OX(s(H +H ′))⊗ Ip.

For fixed s� 0, let x, y1, . . . , yn be a k-basis of Γ(X,OX(s(H+H ′))⊗Ip),
so that R = k[x, y1, . . . , yn]. We have shown that there exists a Zariski open
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set Z of kn such that for (b1, . . . , bn) ∈ Z, the curve C in X which is the
Zariski closure of the curve with local equation x = b1y1 + · · ·+ bnyn = 0
in V satisfies 5) of the conclusions of the lemma.
Let C1, . . . , Ct be the curves in Sing1(X) ∩ V , and let pi ∈ Ci be closed

points such that p, p1, . . . , pt are distinct. Let Q0 be the maximal ideal of p
in R, and Qi be the maximal ideal in R of pi for 1 6 i 6 t. We have that x
is nonzero in Qi/Q2

i for all i. For a matrix A = (aij) ∈ k2n, and 1 6 i 6 2,
let

LAi (y1, . . . , yn) =
n∑
j=1

aijyj .

There exist αjk ∈ k such that Qk = (y1−α1,k, . . . , yn−αn,k) for 0 6 k 6 t.
By our construction, we have α1,0 = · · · = αn,0 = 0. For each 0 6 k 6 t,
there exists a non empty Zariski open subset Zk of k2n such that

x, LA1 (y1, . . . , yn)−LA1 (α1,k, . . . , αn,k), LA2 (y1, . . . , yn)−LA2 (α1,k, . . . , αn,k)

is a k-basis of Qk/Q2
k+1. Suppose (a1,1, . . . , a1,n) ∈ Z and A ∈ Z0∩· · ·∩Zt.

We will show that x, LA1 , LA2 are algebraically independent over k. Sup-
pose not. Then there exists a nonzero polynomial h ∈ k[t1, t2, t3] such that
h(x, LA1 , LA2 ) = 0. Write h = H + h′ where H is the leading form of h, and
h′ = h − H is a polynomial of larger order than the degree r of H. Now
H(x, LA1 , LA2 ) = −h′(x, LA1 , LA2 ), so that H(x, LA1 , LA2 ) = 0 in Qr0/Q

r+1
0 .

Thus H = 0, since RQ0 is a regular local ring, which is a contradiction.
Thus x, LA1 , LA2 are algebraically independent. Without loss of generality,
we may assume that LAi = yi for 1 6 i 6 2.
Let S = k[x, y1, y2], a polynomial ring in 3 variables over k. S → R is

unramified at Qi for 0 6 i 6 t since

(x, y1 − α1,i, y2 − α2,i)RQi
= QiRQi

for 0 6 i 6 t.
Let W be the closed locus in V where V → Spec(S) is not étale. We

have that p, p1, . . . , pt 6∈W , so there exists an ample effective divisor H on
X such that W ⊂ H and p, p1, . . . , pt 6∈ H. Let U = V − H. U is affine,
and U → Spec(S) ∼= A3 is étale, so satisfies 4) of the conclusions of the
lemma. �

Lemma 3.9. — Suppose X is 2-prepared with respect to f : X → S,
p ∈ D is a prepared point, and π1 : X1 → X is the blow up of p. Then all
points of π−1

1 (p) are prepared.

Proof. — The conclusions follow from substitution of local equations of
the blow up of a point into a prepared form (2.1), (2.2) or (2.3). �
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Lemma 3.10. — Suppose that X is 2-prepared with respect to f : X →
S, and that C is a permissible curve for D, which is not a 2-curve. Suppose
that p ∈ C satisfies σD(p) = 0. Then there exist permissible parameters
x, y, z at p such that one of the following forms hold:

1) p is a 1-point of D of the form of (2.1), F = z and x = y = 0 are
formal local equations of C at p.

2) p is a 1-point of D of the form of (2.1), F = z and x = z = 0 are
formal local equations of C at p.

3) p is a 1-point of D of the form of (2.1), F = z, x = z + yrσ(y) = 0
are formal local equations of C at p, where r > 1 and σ is a unit
series.

4) p is a 2-point of D of the form of (2.2), F = z, x = z = 0 are formal
local equations of C at p.

5) p is a 2-point of D of the form of (2.2), F = z, x = g(y, z) = 0 are
formal local equations of C at p, where g(y, z) is not divisible by z.

6) p is a 2-point of D of the form of (2.2), F = 1 (so that ad− bc 6= 0)
and x = z = 0 are formal local equations of C at p.

Further, there are at most a finite number of 1-points on C satisfying
condition 3) (and not satisfying condition 1) or 2)).

Proof. — Suppose that p is a 1-point. We have permissible parameters
x, y, z at p such that a form (2.1) holds at p with F = z. There exists a
series g(y, z) such that x = g = 0 are formal local equations of C at p. By
the formal implicit function theorem, we get one of the forms 1), 2) or 3).
A similar argument shows that one of the forms 4), 5) or 6) must hold if p
is a 2-point.
Now suppose that p ∈ C is a 1-point, σD(p) = 0 and a form 3) holds

at p. There exist permissible parameters x, y, z at p, with an expression
(2.1), such that x = z = 0 are formal local equations of C at p and x, y, z
are uniformizing parameters on an étale cover U of an neighborhood of p,
where we can choose U so that

∂F

∂y
= 1
xb
∂v

∂y
∈ Γ(U,OX).

Since there is not a form 2) at p, we have that z does not divide F (0, y, z), so
that F (0, y, 0) 6= 0. Since F has no constant term, we have that ∂F∂y (0, y, 0) 6=
0. There exists a Zariski open subset of k such that α ∈ k implies x, y−α, z
are regular parameters at a point q ∈ U . There exists a Zariski open sub-
set of k of such α so that ∂F

∂y (0, α, 0) 6= 0. Thus x, y − α, z are permissible
parameters at q giving a form 1) at q ∈ C. �
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Lemma 3.11. — Suppose that X is 2-prepared. Suppose that C is a
permissible curve onX which is not a 2-curve and p ∈ C satisfies σD(p) = 0.
Further suppose that either a form 3) or 5) of the conclusions of Lemma 3.10
hold at p. Then there exists a sequence of blow ups of points π1 : X1 → X

above p such that X1 is 2-prepared and σD1(p1) = 0 for all p1 ∈ π−1
1 (p),

and the strict transform of C on X1 is permissible, and has the form 4) or
6) of Lemma 3.10 at the point above p.

Proof. — If p is a 1-point, let π′ : X ′ → X be the blow ups of p, and
let C ′ be the strict transform of C on X ′. Let p′ be the point on C ′ above
p. Then p′ is a 2-point and σD(p′) = 0. We may thus assume that p is a
2-point and a form 5) holds at p. For r ∈ Z+, let

Xr → Xr−1 → · · · → X1 → X

be the sequence of blow ups of the point pi which is the intersection of the
strict transform Ci of C on Xi with the preimage of p.
There exist permissible parameters x, y, z at p such that x = z = 0

are formal local equations of C at p, and a form (2.2) holds at p with
F = xΩ + f(y, z). We have that ord f(y, z) = 1, ord Ω(0, y, z) > 1, y does
not divide f(y, z) and z does not divide f(y, z).
At pr, we have permissible parameters xr, yr, zr such that

x = xry
r
r , y = yr, z = zry

r
r .

xr = zr = 0 are local equations of Cr at pr. We have a form (2.2) at pr
with

u = (xaryar+br )l

v = P (xaryar+br ) + xcry
cr+d+r
r F ′

where
F ′ = xrΩ + f(yr, zryrr)

yrr
,

if f(yr−1,zr−1y
r−1
r−1)

yr−1
r−1

is not a unit series. Thus for r sufficiently large, we have
that F ′ is a unit, so that a form 6) holds at pr. �

Lemma 3.12. — Suppose that X is 2-prepared and that C is a permis-
sible curve on X. Suppose that q ∈ C is a point with σD(q) = 0 which has
a form 1), 4) or 6) of Lemma 3.10. Let π1 : X1 → X be the blow up of C.
Then X1 is 3-prepared in a neighborhood of π−1

1 (q). Further, σD1(q1) = 0
for all q1 ∈ π−1

1 (q).

Proof. — The conclusions follow from substitution of local equations of
the blow up of C into the forms 1), 4) and 6) of Lemma 3.10. �
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Proposition 3.13. — Suppose that X is 2-prepared. Then there exists
a sequence of permissible blow ups π1 : X1 → X, such that X1 is 3-
prepared. We further have that σD(p1) 6 σD(p) for all p ∈ X and p1 ∈
π−1

1 (p).

Proof. — Let T be the points p ∈ X such that X is not 3-prepared at
p. By Lemmas 3.4 and 2.5, after we perform a sequence of blow ups of
2-curves, we may assume that T is a finite set consisting of 1-points of D.
Suppose that p ∈ T . Let T ′ = T \ {p}. Let U = Spec(R) be the affine

neighborhood of p in X and let C be the curve in X of the conclusions of
Lemma 3.8 (with Y = T ′), so that C has local equations x = y = 0 in U .

Let Σ1 = C ∩ Sing1(X). Σ1 = {p = p0, . . . , pr} is the union of {p} and a
finite set of general points of curves in Sing1(X), which must be 1-points.
We have that Σ1 ⊂ U . Let

Σ2 = {q ∈ C ∩ U | σD(q) = 0 and a form 2) of Lemma 3.10 holds at q}.

Σ2 is a finite set by Lemma 3.10. Let Σ3 = C \ U , a finite set of 1-points
and 2-points which are prepared.
Set U ′ = U \Σ2. There exists a unit τ ∈ R and a ∈ Z+ such that u = τxa.
By 5 vi), 5 vii) of Lemma 3.8 and Lemma 3.2, there exist zi ∈ ÔX,pi

such that for all pi ∈ Σ1, x = τ
1
ax, y, zi are permissible parameters at pi

giving a form (3.1).
Let t = max{r(pi) | 0 6 i 6 r}, where r(pi) are calculated from (3.15))

of Lemma 3.7. There exists λ ∈ R such that λ ≡ τ−
1
a mod mt

pi
ÔX,pi

for 0 6 i 6 r. Let x∗ = λ−1x, γ = τ
1
aλ. Then x = τ

1
ax = γx∗ with

γ ≡ 1 mod mt
pi
ÔX,pi

for 0 6 i 6 r. Let U ′ = U \ Σ2.
Let T ∗0 = Spec(k[x∗, y]), and let T ∗1 → T ∗0 be a sequence of blow ups

of points above (x∗, y) such that the conclusions of Lemma 3.7 hold on
U ′1 = U ′ ×T∗0 T

∗
1 above all pi with 0 6 i 6 r. The projection λ1 : U ′1 →

U ′ is a sequence of blow ups of sections over C. λ1 is permissible and
λ−1

1 (C ∩ (U ′ \ Σ1)) is prepared by Lemma 3.12.
All points of Σ2 ∪ Σ3 are prepared. Thus by Lemma 3.9, Lemmas 3.11

and Lemma 3.12, by interchanging some blowups of points above Σ2 ∪ Σ4
between blow ups of sections over C, we may extend λ1 to a sequence of
permissible blow ups over X to obtain the desired sequence of permissible
blow ups π1 : X1 → X such that X1 is 2-prepared. π1 is an isomorphism
over T ′, X1 is 3-prepared over π−1

1 (X1 \ T ′), and σD(p1) 6 σD(p) for all
p ∈ X1 \ T ′.
By induction on |T |, we may iterate this procedure a finite number of

times to obtain the conclusions of Proposition 3.13. �
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The following proposition is proven in a similar way.

Proposition 3.14. — Suppose that X is 1-prepared and D′ is a union
of irreducible components of D. Suppose that there exists a neighborhood
V of D′ such that V is 2-prepared and V is 3-prepared at all 2-points and
3-points of V .
Let A be a finite set of 1-points of D′, such that A is contained in

Sing1(X) and A contains the points where V is not 3-prepared, and let B
be a finite set of 2-points of D′. Then there exists a sequence of permissible
blow ups π1 : X1 → X such that

1) X1 is 3-prepared in a neighborhood of π−1
1 (D′).

2) π1 is an isomorphism over X1 \D′.
3) π1 is an isomorphism in a neighborhood of B.
4) π1 is an isomorphism over generic points of 2-curves on D′ and over

3-points of D′.
5) Points on the intersection of the strict transform of D′ on X1 with

π−1
1 (A) are 2-points of DX1 .

6) σD(p1) 6 σD(p) for all p ∈ X and p1 ∈ π−1
1 (p).

4. Reduction of σD above a 3-prepared point.

Theorem 4.1. — Suppose that p ∈ X is a 1-point such that X is 3-
prepared at p, and σD(p) > 0. Let x, y, z be permissible parameters at p
giving a form (3.6) at p. Let U be an étale cover of an affine neighborhood
of p in which x, y, z are uniformizing parameters. Then xz = 0 gives a
toroidal structure D on U . Let I be the ideal in Γ(U,OX) generated by
zm, xrm if τm 6= 0, and by

{xrizm−i | 2 6 i 6 m− 1 and τi 6= 0}.

Suppose that ψ : U ′ → U is a toroidal morphism with respect to D such
that U ′ is nonsingular and IOU ′ is locally principal. Then (after possibly
replacing U with a smaller neighborhood of p) U ′ is 2-prepared and σD(q) <
σD(p) for all q ∈ U ′.
There is (after possibly replacing U with a smaller neighborhood of p)

a unique, minimal toroidal morphism ψ : U ′ → U with respect to D with
has the property that U ′ is nonsingular, 2-prepared and ΓD(U ′) < σD(p).
This map ψ factors as a sequence of permissible blowups πi : Ui → Ui−1
of sections Ci over the two curve C of D. Ui is 1-prepared for Ui → S. We
have that the curve Ci blown up in Ui+1 → Ui is in SingσD(p)(Ui) if Ci is
not a 2-curve of DUi

, and that Ci is in Sing1(Ui) if Ci is a 2-curve of DUi
.
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Proof. — Suppose that ψ : U ′ → U is toroidal for D and U ′ is nonsin-
gular. Let D′ = ψ−1(D).

The set of 2-curves of D′ is the disjoint union of the 2-curves of DU ′ and
the 2-curve which is the intersection of the strict transform of the surface
z = 0 on U ′ with DU ′ . ψ factors as a sequence of blow ups of 2-curves of
(the preimage of) D. We will verify the following three statements, from
which the conclusions of the theorem follow.

(4.1)
If q ∈ ψ−1(p) and IOU ′,q is principal, then σD(q) < σD(p).
In particular, σD(q) < σD(p) if q is a 1-point of D′.

(4.2)
If C ′ is a 2-curve of DU ′ , then U ′ is prepared at q = C ′ ∩ ψ−1(p)
if and only if σD(q) <∞
if and only if IOU ′,q is principal
if and only if U ′ is prepared at all q′ ∈ C ′ in a neighborhood of q.

(4.3)
If C ′ is the 2-curve of D′ which is the intersection of DU ′ with the
strict transform of z̃ = 0 in U ′, then σD(q) 6 σD(p) if q = C ′∩ψ−1(p),
and σD(q′) = σD(q) for q′ ∈ C ′ in a neighborhood of q.

Suppose that q ∈ ψ−1(p) is a 1-point for D′. Then IÔU ′,q is principal.
At q, we have permissible parameters x1, y, z1 defined by

(4.4) x = xa1
1 , z = xb1

1 (z1 + α)

for some a1, b1 ∈ Z+ and 0 6= α ∈ k. Substituting into (3.6), we have

u = xaa1
1 , v = P (xa1

1 ) + xba1
1 G

where

G = τ0x
b1m
1 (z1 + α)m + τ2x

a1r2+b1(m−2)
1 (z1 + α)m−2 + · · ·

+ τm−1x
a1rm−1+b1
1 (z1 + α) + τmx

a1rm
1 .

Let xs1 be a local generator of IÔU ′,q. Let G′ = G
xs

1
.

If zm is a local generator of IÔU ′,q, then G′ has an expansion

G′ = τ ′(z1 +α)m + g2(z1 +α)m−2 + · · ·+ gm−1(z1 +α) + gm + x1Ω1 + yΩ2

where 0 6= τ ′ = τ(0, 0, 0) ∈ k, g2, . . . , gm ∈ k and Ω1,Ω2 ∈ ÔU ′,q. We have
ord(G′(0, 0, z1)) 6 m − 1. Setting F ′ = G′ − G′(x1, 0, 0) and P ′(x1) =
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P (xa1
1 ) + xba1+b1m

1 G′(x1, 0, 0), we have an expression

u = xaa1
1 , v = P ′(x1) + xba1+b1m

1 F ′

of the form of (2.1). Thus U ′ is 2-prepared at q with σD′(q) < m − 1 =
σD(p).
Suppose that zm is not a local generator of IÔU ′,q, but there exists some

i with 2 6 i 6 m− 1 such that xrizm−i is a local generator of IÔU ′,q. Let
h be the smallest i with this property. Then G′ has an expression

G′ = gh(z1 + α)m−h + · · ·+ gm + x1Ω1 + y1Ω2

for some gi ∈ k with gh 6= 0 and Ω1,Ω2 ∈ ÔU ′,q. As in the previous case, we
have that U ′ is 2-prepared at q with σD(q) < m− h− 1 < m− 1 = σD(p).
Suppose that zm is not a local generator of IÔU ′,q and xrizm−i is not a

local generator of IÔU ′,q for 2 6 i 6 m− 1. Then xrm
1 is a local generator

of IOU ′,q, and we have an expression

G′ = Λ + x1Ω1,

where Λ(x1, y, z1) = τm(xa1
1 , y, xb1

1 (z1 + α)) and Ω1 ∈ ÔU ′,q. Then

ord Λ(0, y, 0) = ord τm(0, y, 0) = 1,

and we have that U ′ is prepared at q.
Now suppose that q ∈ ψ−1(p) is a 2-point for DU ′ . We have permissible

parameters x1, y, z1 in ÔU ′,q such that

(4.5) x = xa1
1 zb1

1 , z = xc1
1 z

d1
1

with a1, b1 > 0 and a1d1 − b1c1 = ±1. Substituting into (3.6), we have

u = xa1a
1 zb1a

1 , v = P (xa1
1 zb1

1 ) + xa1b
1 zb1b

1 G

where

G = τ0x
c1m
1 zd1m

1 + τ2x
r2a1+c1(m−2)
1 z

r2b1+d1(m−2)
1 + · · ·

+ τm−1x
a1rm−1+c1
1 z

b1rm−1+d1
1 + τmx

a1rm
1 zb1rm

1 .

Let C ′ be the 2-curve of DU ′ containing q. Since ord (τm(0, y, 0)) = 1
(if τm 6= 0) we see that the three statements σD(q) < ∞, σD(q) = 0 and
IOU ′,q is principal are equivalent. Further, we have that σD(q′) = σD(q)
for q′ ∈ C ′ in a neighborhood of q.
Suppose that IOU ′,q is principal and let xs1zt1 be a local generator of

IÔU ′,q. Let G′ = G/xs1z
t
1. We have that

u = (xa1
1 zb1

1 )a, v = P (xa1
1 zb1

1 ) + xa1b+s
1 zbb1+t

1 G′
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has the form (2.2), since we have made a monomial substitution in x and
z. If zm or xrizm−i for some i < m is a local generator of IÔU ′,q, then G′
is a unit in ÔU ′,q. If none of zm, xrizm−i for i < m are local generators of
IÔU ′,q, then

G′ = Λ + x1Ω1 + z1Ω2,

where
Λ(x1, y1, z1) = τm(xa1

1 zb1
1 , y, x

c1
1 z

d1
1 )

and Ω1,Ω2 ∈ ÔU ′,q. Thus

ord Λ(0, y, 0) = ord τm(0, y, 0) = 1.

We thus have that U ′ is prepared at q.
The final case is when q ∈ ψ−1(p) is on the 2-curve C ′ of D′ which is the

intersection of DU ′ with the strict transform of z = 0 in U ′. Then there
exist permissible parameters x1, y, z1 at q such that

(4.6) x = x1, z = xb1
1 z1

for some b1 ∈ Z+. The equations x1 = z1 = 0 are local equations of C ′ at
q. Let

s = min{b1m, ri + b1(m− i) with τi 6= 0 for 2 6 i 6 m− 1, rm if τi 6= 0}.

We have an expression of the form (2.1) at q,

u = xa1
v = P (xa1) + xab+s1 G′

with

G′ = τ0x
b1m−s
1 zm1 + τ2x

r2+b1(m−2)−s
1 zm−2

1 + · · ·

+ τm−1x
rm−1+b1−s
1 z1 + τmx

rm−s
1 .

We see that σD(q) 6 σD(p) (with σD(q) < σD(p) if s = ri + b1(m− i) for
some i with 2 6 i 6 m − 1 or s = rm) and σD(q′) = σD(q) for q′ in a
neighborhood of q on C ′.

Suppose that IOU ′,q is principal. Then xrm generates IÔU ′,q. We have
that G′ = xrm

1 Ω where Ω ∈ ÔU ′,q satisfies ord Ω(0, y, 0) = 1. Thus U ′ is
prepared at q. �

We will now construct the function ω(m, r2, . . . , rm−1) where m > 1,
ri ∈ N for 2 6 i 6 m− 1 and rm−1 > 0.

Let I be the ideal in the polynomial ring k[x, z] generated by zm and
xrizm−i for all i such that 2 6 i 6 m − 1 and ri > 0. Let m = (x, z) be
the maximal ideal of k[x, z]. Let Φ : V1 → V = Spec(k[x, z]) be the toroidal
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morphism with respect to the divisor xz = 0 on V such that V1 is the
minimal nonsingular surface such that

1) IOV1,q is principal if q ∈ Φ−1(m) is not on the strict transform of
z = 0.

2) If q is the intersection point of the strict transform of z = 0 and
Φ−1(m), so that q has regular parameters x1, z1, with x = x1, z =
xb1z1 for some b ∈ Z+, then ri + b1(m− i) < b1m for some 2 6 i 6
m− 1 with ri > 0.

Every q ∈ Φ−1(m) which is not on the strict transform of z = 0 has reg-
ular parameters x1, z1 at q which are related to x, z by one of the following
expressions:

(4.7) x = xa1
1 , z = xb1

1 (z1 + α)

for some 0 6= α ∈ k and a1, b1 > 0, or

(4.8) x = xa1
1 zb1

1 , z = xc1
1 z

d1
1

with a1, b1 > 0 and a1d1 − b1c1 = ±1. There are only finitely many val-
ues of a1, b1 occurring in expressions (4.7), and a1, b1, c1, d1 occurring in
expressions (4.8).
The point q on the intersection of the strict transform of z = 0 and

Φ−1(m) has regular parameters x1, z1 defined by

(4.9) x = x1, z = xb1
1 z1

for some b1 > 0.
Now we define ω = ω(m, r2, . . . , rm−1) to be a number such that

ω > max{ b1
a1
m, ri + b1

a1
(m− i) for 2 6 i 6 m− 1 such that ri > 0}.

For all expressions (4.7),

ω > max{ c1
a1
m,

d1

b1
m, ri + c1

a1
(m− i), ri + d1

b1
(m− i)

for 2 6 i 6 m− 1 such that ri > 0}

for all expressions (4.8), and

ω > max{b1m, ri + b1(m− i) for 2 6 i 6 m− 1 such that ri > 0}

in (4.9).

Theorem 4.2. — Suppose that p ∈ Sing1(X) is a 1-point and X is
3-prepared at p. Let x, y, z be permissible parameters at p giving a form
(3.7) at p. Let U be an étale cover of an affine neighborhood of p in which
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x, y, z are uniformizing parameters. Then xz = 0 gives a toroidal structure
D on U .
There is (after possibly replacing U with a smaller neighborhood of p)

a unique, minimal toroidal morphism ψ : U ′ → U with respect to D with
has the property that U ′ is nonsingular, 2-prepared and ΓD(U ′) < σD(p).
This map ψ factors as a sequence of permissible blowups πi : Ui → Ui−1
of sections Ci over the two curve C of D. Ui is 1-prepared for Ui → S. We
have that the curve Ci blown up in Ui+1 → Ui is in SingσD(p)(Ui) if Ci is
not a 2-curve of DUi

, and that Ci is in Sing1(Ui) if Ci is a 2-curve of DUi
.

Proof. — The proof is similar to that of Theorem 4.1, using the fact that
t > ω(m, r2, . . . , rm−1) as defined above. �

Theorem 4.3. — Suppose that p ∈ X is a 2-point and X is 3-prepared
at p with σD(p) > 0. Let x, y, z be permissible parameters at p giving a
form (3.5) at p. Let U be an étale cover of an affine neighborhood of p
in which x, y, z are uniformizing parameters on U . Then xyz = 0 gives a
toroidal structure D on U . Let I be the ideal in Γ(U,OX) generated by zm,
xrmysm if τm 6= 0 and

{xriysizm−i | 2 6 i 6 m− 1 and τi 6= 0}.

Suppose that ψ : U1 → U is a toroidal morphism with respect to D such
that U1 is nonsingular and IOU1 is locally principal. Then (after possibly
replacing U with a smaller neighborhood of p) U1 is 2-prepared for U1 → S,
with σD(q) < σD(p) for all q ∈ U1.

Proof. — Suppose that q ∈ ψ−1(p) is a 1-point for ψ−1(D). Then q is also
a 1-point for DU1 . Since ψ is toroidal with respect to D, there exist regular
parameters x̂1, ŷ1, ẑ1 in ÔX1,q and a matrix A = (aij) with nonegative
integers as coefficients such that Det A = ±1, and we have an expression

(4.10)
x = x̂a11

1 (ŷ1 + α)a12(ẑ1 + β)a13

y = x̂a21
1 (ŷ1 + α)a22(ẑ1 + β)a23

z = x̂a31
1 (ŷ1 + α)a32(ẑ1 + β)a33

with a11, a21, a31 6= 0 and 0 6= α, β ∈ k. Set

x1 = x̂1(ŷ1 + α)
a12
a11 (ẑ1 + β)

a13
a11 ∈ ÔX1,q.

Substituting into (4.10), we have

(4.11)

x = xa11
1

y = xa21
1 (ŷ1 + α)a22− a21a12

a11 (ẑ1 + β)a23− a21a13
a11

z = xa31
1 (ŷ1 + α)a32− a31a12

a11 (ẑ1 + β)a33− a31a13
a11 .
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Let B = (bij) be the adjoint matrix of A. Let α = α
b33
a11 β−

b23
a11 , β =

α−
b32
a11 β

b22
a11 . Set

y1 = y

xa21
1
− α, z1 = z

xa31
1
− β.

We will show that x1, y1, z1 are regular parameters in ÔX1,q. We have that

(ŷ1 + α)a22− a21a12
a11 (ẑ1 + β)a23− a21a13

a11

= α+ b33

a11
α

b33
a11
−1β−

b23
a11 ŷ1 −

b23

a11
α

b33
a11 β−

b23
a11
−1ẑ1 + · · ·

(ŷ1 + α)a32− a31a12
a11 (ẑ1 + β)a33− a31a13

a11

= β − b32

a11
α−

b32
a11
−1β

b22
a11 ŷ1 + b22

a11
α−

b32
a11 β

b22
a11
−1ẑ1 + · · ·

Let

C =
(

b33
a11
α

b33
a11
−1β−

b23
a11 − b23

a11
α

b33
a11 β−

b23
a11
−1

− b32
a11
α−

b32
a11
−1β

b22
a11 b22

a11
α−

b32
a11 β

b22
a11
−1

)
.

We must show that C has rank 2. C has the same rank as(
b33β −b23α

b32β −b22α

)
=
(
b33 b23
b32 b22

)(
β 0
0 −α

)
.

Since α, β 6= 0, C has the same rank as

B′ =
(
b33 b23
b32 b22

)
.

Since B has rank 3, (
b21 b22 b23
b31 b32 b33

)
has rank 2. Since(

b21
b31

)
= −a21

a11

(
b22
b32

)
+ a31

a11

(
b23
b33

)
,

we have that B′ has rank 2, and hence C has rank 2. Thus x1, y1, z1 are
regular parameters in ÔX1,q. We have

x = xa11
1 , y = xa21

1 (y1 + α), z = xa31
1 (z1 + β).

We have that u = (xayb)`. Let

t = − b

a11a+ a21b
,
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and set x1 = x1(y1 + α)t. Define y1 = y1, α̃ = α, β̃ = αta31β and z1 =
(y1 + α)ta31(z1 + β) − β̃. Then x1, y1, z1 are permissible parameters at q,
with u = x

(aa11+ba21)l
1 ,

x = xa11
1 (y1 + α̃)ta11 , y = xa21

1 (y1 + α̃)ta21+1, z = xa31
1 (z1 + β̃).

Thus we have shown that there exist (formal) permissible parameters
x1, y1, z1 at q such that

x = xe1
1 (y1 + α̃)λ1 , y = xe2

1 (y1 + α̃)λ2 , z = xe3
1 (z1 + β̃)

where e1, e2, e3 ∈ Z+, α̃, β̃ ∈ k are nonzero, λ1, λ2 ∈ Q are both nonzero,
and u = xb1l

1 , where b1 = ae1 + be2, aλ1 + bλ2 = 0. We then have an
expression

v = P (xae1+be2
1 ) + xce1+de2

1 G,

where

G = (y1 + α̃)cλ1+dλ2 [τ0xe3m
1 (z1 + β̃)m

+ τ2x
r2e1+s2e2+(m−2)e3
1 (y1 + α̃)r2λ1+s2λ2(z1 + β̃)m−2 + · · ·

+ τm−1x
rm−1e1+sm−1e2+e3
1 (y1 + α̃)rm−1λ1+sm−1λ2(z1 + β̃)

+ τmx
rme1+sme2
1 yrmλ1+smλ2

1 ].

Let τ ′ = τ0(0, 0, 0). Let xs1 be a generator of IÔU1,q. Let G′ = F
xs

1
.

If zm is a local generator of IÔU1,q, then G′ has an expression

G′ = τ ′α̃ϕ(z1 + β̃)m+g2(z1 + β̃)m−2 + · · ·+gm−1(z+ β̃)+gm+x1Ω1 +y1Ω2

for some gi ∈ k and Ω1,Ω2 ∈ ÔU1,q, where ϕ = cλ1 + dλ2. Setting F ′ =
G′−G′(x1, 0, 0), and P ′(x1) = P (xae1+be2

1 )+xce1+de2+s
1 G′(x1, 0, 0), we have

that
u = xb1l

1 , v = P ′(x1) + xce1+de2+s
1 F ′

has the form (2.1) and σD(q) 6 ord F ′(0, 0, z1)−1 6 m−2 < m−1 = σD(p)
since 0 6= β̃.
Suppose that zm is not a local generator of IÔU1,q, but there exists some

i with 2 6 i 6 m− 1 such that τixriysizm−i is a local generator of IÔU1,q.
Let h be the smallest i with this property. Then G′ has an expression

G′ = gh(z1 + β̃)m−h + · · ·+ gm−1(z1 + β̃) + gm + x1Ω1 + y2Ω2

for some gi ∈ k with gh 6= 0 As in the previous case, we have

σD(q) 6 m− h− 1 < m− 1 = σD(p).
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Suppose that zm is not a local generator of IÔU1,q, and τix
riysizm−i

is not a local generator of IÔU1,q for 2 6 i 6 m. Then xrsyrs is a local
generator of IÔU1,q, and G′ has an expression

G′ = τ ′m(y1 + α̃)ϕ+rmλ1+smλ2 + x1Ω

where τ ′m = τm(0, 0, 0) for some Ω ∈ ÔU1,q. Suppose, if possible, that
ϕ+ rmλ1 + smλ2 = 0. Since ϕ+ rmλ1 + smλ2 = (c+ rm)λ1 + (d+ sm)λ2,
we then have that the nonzero vector (λ1, λ2) satisfies aλ1 + bλ2 = (c +
rm)λ1 + (d+ sm)λ2 = 0. Thus the determinant a(d+ sm)− b(c+ rm) = 0,
a contradiction to our assumption that F satisfies (2.2).
Now since ϕ+rmλ1+smλ2 6= 0 and α̃ 6= 0, we have 1 = ord G′(0, y1, 0) <

m, so that σD(q) = 0 < m− 1 = σD(p).
Suppose that q ∈ ψ−1(p) is a 2-point of ψ−1(D). Then there exist (for-

mal) permissible parameters x̂1, ŷ1, ẑ1 at q such that
(4.12)
x = x̂e11

1 ŷe12
1 (ẑ1 + α̂)e13 , y = x̂e21

1 ŷe22
1 (ẑ1 + α̂)e23 , z = x̂e31

1 ŷe32
1 (ẑ1 + α̂)e33

where eij ∈ N, with Det(eij) = ±1, and α̂ ∈ k is nonzero. We further have

e11 + e12 > 0, e21 + e22 > 0 and e31 + e32 > 0.

First suppose that e11e22 − e12e21 6= 0. Then q is a 2-point of DU1 .
There exist λ1, λ2 ∈ Q such that upon setting

x̂1 = x1(z1 + α̂)λ1 and ŷ1 = y1(z1 + α̂)λ2 ,

we have
x = xe11

1 ye12
1 , y = xe21

1 ye22
1 , z = xe31

1 ye32
1 (z1 + α̂)r,

where  e11 e12 e13
e21 e22 e23
e31 e32 e33

 λ1
λ2
1

 =

 0
0
r

 .

By Cramer’s rule,
r = ± 1

e11e22 − e12e21
6= 0.

Now set z1 = (z1 + α̂)r − α̂r and α = α̂r to obtain permissible parameters
x1, y1, z1 at q with

x = xe11
1 ye12

1 , y = xe21
1 ye22

1 , z = xe31
1 ye32

1 (z1 + α).

We have an expression

u = ((xe11
1 ye12

1 )a(xe21
1 ye22

1 )b)` = (xt11 y
t2
1 )`1

where t1, t2, `1 ∈ Z+ and gcd(t1, t2) = 1.
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We then have an expression

v = P ((xt11 y
t2
1 )

`1
` ) + xce11+de21

1 yce12+de22
1 G,

where

G = [τ0xme31
1 yme32

1 (z1 + α)m

+ τ2x
r2e11+s2e21+(m−2)e31
1 y

r2e12+s2e22+(m−2)e32
1 (z1 + α)m−2 + · · ·

+ τm−1x
rm−1e11+sm−1e21+e31
1 y

rm−1e12+sm−1e22+e32
1 (z1 + β)

+ τmx
rme11+sme21
1 yrme12+sme22

1 ].

Let τ ′ = τ0(0, 0, 0). Let xs1yt1 be a generator of IÔU1,q. Let G′ = G
xs

1y
t
1
.

If zm is a local generator of IÔU1,q, then G′ has an expression

G′ = τ ′(z1 +α)m + g2(z1 +α)m−2 + · · ·+ gm−1(z−α) + gm + x1Ω1 + y1Ω2

for some gi ∈ k and Ω1,Ω2 ∈ ÔU1,q. Let

(4.13) P (xt11 y
t2
1 ) =

∑
t2i−t1j=0

1
i!j!

∂(xce11+de21
1 yce12+de22

1 G)
∂xi1∂y

j
1

(0, 0, 0)xi1y
j
1

and F ′ = G′ − P (xt1
1 y

t2
1 )

x
ce11+de21+s
1 y

ce12+de22+t
1

. Set P ′(xt11 y
t2
1 ) = P ((xt11 y

t2
1 )

`1
` ) +

P (xt11 y
t2
1 ). We have that

u = (xt11 y
t2
1 )`1 , v = P ′(xt11 y

t2
1 ) + xce11+de21+s

1 yce12+de22+t
1 F ′

has the form (2.2), and σD(q) = ord F ′(0, 0, z1) − 1 6 m − 2 < m − 1 =
σD(p) since 0 6= α.
Suppose that zm is not a local generator of IÔU1,q, but there exists some

i with 2 6 i 6 m− 1 such that τixriysizm−i is a local generator of IÔU1,q.
Let h be the smallest i with this property. Then G′ has an expression

G′ = gh(z1 + β)m−h + · · ·+ gm + x1Ω1 + y2Ω2

for some gi ∈ k with gh 6= 0 As in the previous case, we have σD(q) 6
m− h− 1 < m− 1 = σD(p).
Suppose that zm is not a local generator of IÔU1,q, and τixriysizm−i is

not a local generator of IÔU1,q for 2 6 i 6 m− 1. Then xrmyrm is a local
generator of IÔU1,q, and then G′ has an expression

G′ = 1 + x1Ω1 + y1Ω2

for some Ω1,Ω2 ∈ ÔU1,q.
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We now claim that after replacing G′ with

F ′ = G′ − P (xt11 y
t2
1 )

xce11+de21+s
1 yce12+de22+t

1
,

where P is defined by (4.13), we have that F ′(0, 0, 0) 6= 0. If this were not
the case, we would have

0 = Det
(

(c+ rm)e11 + (d+ sm)e21 (c+ rm)e12 + (d+ sm)e22
ae11 + be21 ae12 + be22

)
= Det

(
c+ rm d+ sm
a b

)
Det

(
e11 e12
e21 e22

)
.

Since e11e22 − e21e12 6= 0 (by our assumption), we get

0 = Det
(
c+ rm d+ sm
a b

)
which is a contradiction to our assumption that F satisfies (2.2). Since
F ′(0, 0, 0) 6= 0, we have that σD(q) = 0 < m− 1 = σD(p).
Now suppose that q is a 2-point of ψ−1(D) with e11e22 − e21e12 = 0 in

(4.12).
We make a substitution

x̂1 = x1(z1 + α)ϕ1 , ŷ1 = y1(z1 + α)ϕ2 , ẑ1 = z1

where α = α̂ and ϕ1, ϕ2 ∈ Q satisfy
0 = a(ϕ1e11 + ϕ2e12 + e13) + b(ϕ1e21 + ϕ2e22 + e23)

= ϕ1(ae11 + be21) + ϕ2(ae12 + be22) + ae13 + be23.

We have ae11 + be21 > 0 and ae12 + be22 > 0 since a, b > 0 and by the
condition satisfied by the eij stated after (4.12).
Let

λ1 = ϕ1e11 +ϕ2e12 +e13, λ2 = ϕ1e21 +ϕ2e22 +e23, λ3 = ϕ1e31 +ϕ2e32 +e33.

Then x1, y1, z1 are permissible parameters at q such that

(4.14) x = xe11
1 ye12

1 (z1+α)λ1 , y = xe21
1 ye22

1 (z1+α)λ2 , z = xe31
1 ye32

1 (z1+α)λ3

with λ1, λ2, λ3 ∈ Q, and aλ1 + bλ2 = 0.
Now suppose that e11 > 0 and e12 > 0, which is the case where q is a

2-point of DU1 . Write

u = ((xe11
1 ye12

1 )a(xe21
1 ye22

1 )b)` = (xt11 y
t2
1 )`1

where t1, t2, `1 ∈ Z+ and gcd(t1, t2) = 1.
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We then have an expression

v = P ((xt11 y
t2
1 )

`1
` ) + xce11+de21

1 yce12+de22
1 G,

where

G =(z1 + α)cλ1+dλ2 [τ0xme31
1 yme32

1 (z1 + α)mλ3

+ τ2x
r2e11+s2e21+(m−2)e31
1 y

r2e12+s2e22+(m−2)e32
1 (z1 + α)r2λ1+s2λ2+(m−2)λ3 + · · ·

+ τm−1x
rm−1e11+sm−1e21+e31
1 y

rm−1e12+sm−1e22+e32
1 (z1 + α)λ1rm−1+λ2sm−1+λ3

+ τmx
rme11+sme21
1 yrme12+sme22

1 (z1 + α)rmλ1+smλ2 ].

Let xs1yt1 be a generator of IÔU1,q. Let G′ = F
xs

1y
t
1
.

We will now establish that, with our assumptions, there is a unique
element of the set S consisting of zm, and

{xriysizm−i | 2 6 i 6 m and τi 6= 0}

which is a generator of IÔU1,q; that is, is equal to xs1yt1 times a unit in
ÔU1,q. Let r0 = 0 and s0 = 0. Suppose that xriyrizm−i (with 0 6 i 6 m)
is a generator of IÔU1,q. We have xriysizm−i = xs1y

t
1(z1 + α)γi where

rie11 + sie21 + (m− i)e31 = s

rie12 + sie22 + (m− i)e32 = t

riλ1 + siλ2 + (m− i)λ3 = γi.

Let

(4.15) A =

 e11 e21 e31
e12 e22 e32
λ1 λ2 λ3

 .

We have

(4.16) A

 ri
si
m− i

 =

 s

t

γi

 .

Let ω = Det(A).

A =

 1 0 0
0 1 0
ϕ1 ϕ2 1

 e11 e21 e31
e12 e22 e32
e13 e23 e33


implies ω = Det(A) = ±1.
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By Cramer’s rule, we have

ω(m− i) = Det

 e11 e21 s

e12 e22 t

λ1 λ2 γi


= sDet

(
e12 e22
λ1 λ2

)
− tDet

(
e11 e21
λ1 λ2

)
+ γiDet

(
e11 e21
e12 e22

)
.

Since e11e21 − e12e22 = 0 by assumption, we have that

i = m− 1
ω

(
sDet

(
e12 e22
λ1 λ2

)
− tDet

(
e11 e21
λ1 λ2

))
.

In particular, there is a unique element xriyrizm−i ∈ S which is a generator
of IÔU1,q. We have xriysizm−i = xs1t

t
1(z1 + α)γi .

We thus have that G = xs1y
t
1[g(z1 +α)γi+cλ1+dλ2 +x1Ω1 +y1Ω2] for some

Ω1,Ω2 ∈ ÔU1,q and 0 6= g ∈ k.
We now establish that we cannot have that γi + cλ1 + dλ2 = 0 and

xce11+de21+s
1 yce12+de22+t

1 is a power of xt11 y
t2
1 . We will suppose that both of

these conditions do hold, and derive a contradiction. Now we know that
xayb = xae11+be21

1 yae12+be22
1 is a power of xt11 y

t2
1 . By (4.15), (4.16) and our

assumptions, we have that

A

 a

b

0


and

A

 c+ ri
d+ si
m− i


are rational multiples of  t1

t2
0

 .

Since ω = Det(A) 6= 0, we have that (c+ri, d+si,m−i) is a rational multiple
of (a, b, 0). Thus xcydxriysizm−i is a power of xayb, a contradiction to our
assumption that F satisfies (2.2).
Let

P (xt11 y
t2
1 ) =

∑
t2i−t1j=0

1
i!j!

∂(xce11+de21
1 yce12+de22

1 G)
∂xi1∂y

j
1

(0, 0, 0)xi1y
j
1,

and F ′ = G′ − P (xt1
1 y

t2
1 )

x
ce11+de21+s
1 y

ce12+de22+t
1

. Set
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P ′(xt11 y
t2
1 ) = P ((xt11 y

t2
1 )

`1
` ) + P (xt11 y

t2
1 ). We have that

u = (xt11 y
t2
1 )`1 , v = P ′(xt11 y

t2
1 ) + xee11+fe21

1 yce21+de22
1 F ′

has the form (2.2) and σD(q) = 0 6 m− 2 = σD(p).
Now suppose that q ∈ ψ−1(p) is a 2-point of ψ−1(D), e11e22−e12e21 = 0

in (4.12), and e11 = 0 or e12 = 0. Without loss of generality, we may assume
that e12 = 0. q is a 1-point of DU1 , and we have permissible parameters
(4.14) at q. Since Det(eij) = ±1, we have that e32 = 1, and e11e23−e21e13 =
±1. Replacing y1 with y1(z1+α)λ3 in (4.14), we find permissible parameters
x1, y1, z1 at q such that

(4.17) x = xe11
1 (z1 + α)λ1 , y = xe21

1 (z1 + α)λ2 , z = xe31
1 y1,

with e11, e21 > 0 and aλ1 + bλ2 = 0. We have

u = x
(ae11+be21)l
1 = xl11

v = P (xae11+be21
1 ) + xce11+de21

1 G

where

G = (z1 + α)cλ1+dλ2 [τ0xme31
1 ym1

+ τ2x
r2e11+s2e21+(m−2)e31
1 ym−2

1 (z1 + α)r2λ1+s2λ2 + · · ·

+ τm−1x
rm−1e11+sm−1e21+e31
1 y1(z1 + α)rm−1λ1+sm−1λ2

+ τmx
rme11+sme21
1 (z1 + α)rmλ1+smλ2 ].

Since I ˆOU1,q is principal and τm or τm−1 6= 0, we have that xrme11+sme21
1 is

a generator of IÔU1,q if τm 6= 0, and xrm−1e11+sm−1e21+e31
1 y1 is a generator

of IÔU1,q if τm = 0 and τm−1 6= 0.
First suppose that τm 6= 0 so that

G = xrme11+sme21
1 [gm(z1 + α)(c+rm)λ1+(d+sm)λ2 + x1Ω + y1Ω2]

with 0 6= gm ∈ k, Ω1,Ω2 ∈ ÔU1,q. Since λ1, λ2 are not both zero, aλ1+bλ2 =
0 and a(d+ sm)− b(c+ rm) 6= 0, we have that (c+ rm)λ1 + (d+ sm)λ2 6= 0.
Let P (x1) = G(x1, 0, 0), and P ′(x1) = P (xae11+be21

1 ) + P (x1). Let

F ′ = 1
xce11+de21

1
(G− P (x1)).

Then
u = xl11

v = P ′(x1) + xce11+de21
1 F ′

is of the form (2.1) with ord F ′(0, y1, z1) = 1. Thus σD(q) = 0 < σD(p).
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Now suppose that τm = 0, so that

G = x
rm−1e11+sm−1e21+e31
1 [gm−1y1(z1 + α)(c+rm−1)λ1+(d+sm−1)λ2 + x1Ω1]

with 0 6= gm−1 ∈ k and Ω1 ∈ ÔU1,q. Thus σD(q) = 0 < σD(p).
The final case is when q is a 3-point for ψ−1(D), so that q is a 3-point or

a 2-point of DU1 . Then we have permissible parameters x1, y1, z1 at q such
that

x = xe11
1 ye12

1 ze13
1 , y = xe21

1 ye22
1 ze23

1 , z = xe31
1 ye32

1 ze33
1

with ω = Det(eij) = ±1. Thus there is a unique element of the set S
consisting of zm and

{xriysizm−i | 2 6 i 6 m and τ i 6= 0}

which is a generator xs1
1 y

s2
1 z

s3
1 of IÔU ′,q. Thus σD(q) = 0 if q is a 3-point

of DU1 . If q is a 2-point of DU1 , we may assume that e13 = e23 = 0. Then
e33 = 1. Since τm 6= 0 or τm−1 6= 0, we calculate that σD(q) = 0. �

5. Global reduction of σD

Lemma 5.1. — Suppose that X is 2-prepared and p ∈ X is 3-prepared.
Suppose that r = σD(p) > 0.

a) Suppose that p is a 1-point. Then there exists a unique curve C in
Sing1(X) containing p. The curve C is contained in Singr(X). If
x, y, z are permissible parameters at p giving an expression (3.6) or
(3.7) at p, then x = z = 0 are formal local equations of C at p.

b) Suppose that p is a 2-point and C is a curve in Singr(X) containing
p. If x, y, z are permissible parameters at p giving an expression
(3.5) at p, then x = z = 0 or y = z = 0 are formal local equations
of C at p.

Proof. — We first prove a). Let I ⊂ OX be the ideal sheaf defining
the reduced scheme Sing1(X). Then IpÔX,p =

√
(x, ∂F∂y ,

∂F
∂z ) = (x, z) is

an ideal on U defining Sing1(U). Thus the unique curve C in Sing1(X)
through p has (formal) local equations x = z = 0 at p. At points near p on
C, a form (3.6) or (3.7) continues to hold with m = r + 1. Thus the curve
is in Singr(X).

We now prove b). Suppose that C ⊂ Singr(X) is a curve containing p.
By Theorem 4.3, there exists a toroidal morphism Ψ : U1 → U where U is
an étale cover of an affine neighborhood of p, and D is the local toroidal
structure on U defined (formally at p) by xyz = 0, such that all points q

TOME 63 (2013), FASCICULE 3



908 Steven Dale CUTKOSKY

of U1 satisfy σD(q) < r. Hence the strict transform on U1 of the preimage
of C on U must be empty. Since Ψ is toroidal for D and X is 3-prepared
at p, C must have local equations x = z = 0 or y = z = 0 at p. �

Definition 5.2. — Suppose thatX is 3-prepared. We define a canonical
sequence of blow ups over a curve in X, under the following conditions:

1) Suppose that C is a curve in X such that t = σD(q) > 0 at the
generic point q of C, and all points of C are 1-points of D. Then
we have that C is nonsingular and σD(p) = t for all p ∈ C by
Lemma 5.1. By Lemma 5.1 and Theorem 4.1 or 4.2, there exists a
unique minimal sequence of permissible blow ups of sections over
C, π1 : X1 → X, such that X1 is 2-prepared and σD(p) < t for all
p ∈ π−1

1 (C). We will call the morphism π1 the canonical sequence
of blow ups over C.

2) Suppose that C is a permissible curve in X which contains a 1-point
such that σD(p) = 0 for all p ∈ C, and a condition 1), 4) or 6) of
Lemma 3.10 holds at all p ∈ C. Let π1 : X1 → X be the blow up
of C. Then by Lemma 3.12, X1 is 3-prepared and σD(p) = 0 for
p ∈ π−1

1 (C). We will call the morphism π1 the canonical blow up of
C.

Theorem 5.3. — Suppose that X is 2-prepared. Then there exists a
sequence of permissible blowups ψ : Y → X such that Y is prepared.

Before proving this theorem, we introduce some notation, and give some
idea of the main difficulty of the proof.

Suppose that p ∈ X is a 2-point such that X is 3-prepared at p and
σD(p) = r > 0. We can then define (Up, Dp, Ip, ν

1
p , ν

2
p) as in Theorem 4.3,

where νtp are valuations on Up which dominate the two curves C1, C2 which
are the intersection of Ep with DUp on Up (where Dp = DUp + Ep), and
which have the property that if π : V → Up is a birational morphism, then
the center C(V, νtp) of νtp on V is the unique curve on the strict transform
of Ep on V which dominates Ct. We will call (Up, Dp, Ip, ν

1
p , ν

2
p) a local

resolver. We will think of Up as a germ, so we will feel free to replace Up
with a smaller neighborhood of p whenever it is convenient.
If π : Y → X is a birational morphism, then we define C(Y, νip) to be

the closed curve in Y which is the center of νtp on Y . We define Λ(Y, νtp) to
be the point C(Y, νtp)∩π−1(p). This defines a valuation which is composite
with νtp.
We define W (Y, p) to be the germ in Y of the image of points in

π−1(Up) = Y ×X Up such that IpOY | π−1(Up) is not invertible. W (Y, p)
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is a subset of the union of the set of generic points of 2-curves for Dp in
Y ×X Up, and the set of all points of π−1(p).
If π : Y → X is a morphism, define Preimage(Y,Z) = π−1(Z) for Z a

subset of X.
Suppose that π : Y → X is a composition of permissible blow ups which

is toroidal for Dp above Y := π−1(Up). The blow up of a three point for
Dp or of a 2-curve for Dp which π contracts to p extends readily to a
permissible blow up of Y , as does a permissible blow up of a 2-curve of D.
The only remaining case of the blow up of a 3-point or 2-curve of Dp on
Y is the blow up of one of the two curves C(Y, ν1

p) or C(Y, ν2
p). Of course

such a curve may only be permissible over Up.
We can principalize Ip above Up by the following algorithm: First perform

any sequence Y → Up consisting of blow ups of 3-points of Dp and 2-curves
of Dp, with the restriction that the map is an isomorphism over the generic
points of C(Up, ν1

p) and C(Up, ν2
p). Now construct Y 1 → Y be blowing up

C(Y , νtp) for some t, such that IpOY ,η is not principal, where η is the
generic point of C(Y , νtp). Then once again perform any sequence of blow
ups Y 2 → Y 1 consisting of blow ups of 3-points of Dp and 2-curves of Dp,
with the restriction that the map is an isomorphism over the generic points
of C(Y 1, ν

1
p) and C(Y 2, ν

2
p). Now we define Y 3 → Y 2 to be the blow up

of C(Y 2, ν
t
p) for some t, such that IpOY 2,ξ

is not principal, where ξ is the
generic point of C(Y 2, ν

t
p). A chain of blowups of this type will eventually

produce a Y n such that IpOY n,ηt
is principal, where ηt is the generic point

of C(Y n, νtp) for t = 1, 2. If this has been accomplished, then we may
perform a final sequence of blowups Y n+1 → Y n, consisting of blow ups of
3-points of Dp and 2-curves of Dp, with the restriction that the map is an
isomorphism over the generic points of C(Y 1, ν

1
p) and C(Y 2, ν

2
p), such that

IpOY n+1
is locally principal. We thus have that σD(q) < r for all points

q ∈ Y n+1 (by Theorem 4.3).
The essential difficulty in extending this local argument to a proof of

Theorem 5.3 is to extend the local blow ups of C(Y i, νtp) to permissible
global blow ups aboveX, which do not interfere with the the local resolution
procedures above other points of X.
We will construct sequences

(5.1) Yn → Yn−1 → · · · → Y0 = X

where each Yi has an associated finite set S(Yi), which we will often abbre-
viate as S(i). We require that S(0) = ∅, and that

S(i) is contained in the disjoint union of the Yj with j < i.
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Each morphism Yi+1 → Yi is a permissible blow up, or the identity map
with Yi+1 = Yi and S(i + 1) = S(i) ∪ {p} for some p ∈ Yi, which is a
2-point for D with σD(p) > 0, such that Yi is 3-prepared at p, and we
introduce a local resolver (Up, Dp, ν

1
p , ν

2
p) at p, or Yi+1 = Yi and S(i + 1)

is a subset of S(i). We require that S(i) be contained in the disjoint union
of the Yj with j < i, and p ∈ S(i) ∩ Yj implies p is a 3-prepared 2-point in
Yj \

(
∪p′∈S(j)W (Yj , p′)

)
, with σD(p) > 0, and there is a given local resolver

(Up, Dp, ν
1
p , ν

2
p) in Yj for p. Let W (Yi) = ∪p′∈S(i)W (Yi, p′). We will often

write W (i) = W (Yi). We require that each morphism Yi+1 → Yi be an
admissible blow up, which we define to be a permissible blow up such that
for all p ∈ S(i), Yi+1 → Yi is toroidal for Dp above a neighborhood of
W (Yi, p).
A sequence (5.1) will be called an admissible sequence. In the first ap-

proximation, S(Yi) may be seen as the set of “bad points” p ∈ Yj (for j < i)
with “bad preimages” in Yi. Their preimages are not fully 3-prepared, or
contain singular points or IpOYi is not invertible. By performing a succes-
sion of admissible sequences, we want to obtain that S(Yn) = ∅.
Define

σ(Yi) := max{{σD(p) | p ∈ Yi \W (i)} ∪ {σD(q) | q ∈ S(i)}}.

Definition 5.4. — Suppose that Yi0 → X is an admissible sequence,
and C is a curve in DYi which contains a 1-point of D. Let η be the generic
point of C. C is called a good curve if one of the following conditions hold:

1. If σD(η) = 0, then σD(p) = 0 for all p ∈ C\W (i0) and p ∈ C∩W (i0)
implies p = Λ(Yi0 , νtb) and C = C(Yi0 , νtb) for some b ∈ S(i0) and t.

2. If σD(η) > 0, then C \W (i0) is a set of 3-prepared 1-points and
p ∈ C ∩ W (i0) implies p = Λ(Yi0 , νtb), C = C(Yi0 , νtb) for some
b ∈ S(i0) and t (in particular, p is a 2-point of D).

We will be particularly concerned with sequences (5.1) which admit ex-
pressions

(5.2) Y = Yn = Yis → · · · → Yi2 → Yi1 → Y0 = X

where each Yij+1 → Yij is the sequence

Yij+1 → Yij+1−1 → · · · → Yij+1 → Yij ,

such that each of the Yij+1 → Yij in (5.2) is one of the following, called an
admissible transformation:

1. The blow up of a prepared point of D, and S(ij+1) = S(ij).
2. The blow up of a 3-point or a 2-curve of D, and S(ij+1) = S(ij).
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3. The blow up of a 3-point or 2-curve for Dp, contained in W (Yij , p)
(with p ∈ S(ij) ∩ Yk), which contracts to p under Yij → Yk and
S(ij+1) = S(ij).

4. Yij+1 = Yij and S(ij+1) = S(ij)∪{p} for some p ∈ Yij \W (ij), which
is a 2-point for D such that Yij is 3-prepared at p, and σD(p) > 0,
and we introduce a local resolver (Up, Dp, ν

1
p , ν

2
p) at p.

5. The sequence of permissible blow ups of Proposition 3.14, applied
to a union of irreducible components E of D such that all 2 and 3
points for D in a neighborhood of E are 3-prepared, and W (i) ∩E
contains only a finite set of 2-points (which we take to be the set B
of Proposition 3.14), over which Yij+1 → Yij is an isomorphism. The
effect of this transformation is to make all points in a neighborhood
of Preimage(Yij+1 , E) 3-prepared. We have S(ij+1) = S(ij).

6. The “canonical sequence of blow ups” above a good curve C in
DYij

(This transformation will be defined after Lemma 5.10). We
will generally have S(ij+1) \ S(ij) 6= ∅.

7. Yij+1 = Yij and S(ij+1) = S(ij) \ {p ∈ S(ij) |W (Yij , p) = ∅}.

Lemma 5.5. — Suppose that (5.2) is an admissible sequence consisting
entirely of admissible transformations of types 1 - 5 and 7. Then for 0 6
j 6 n in (5.2), the following conditions (5.3) - (5.7) hold:
(5.3)
The closed sets W (Yij , p) ∩ Preimage(Yij , p) are pairwise disjoint for
p ∈ S(ij).

(5.4) All points of Yij \W (ij) are 2-prepared.

(5.5)
For p ∈ S(ij), Yij+1 → Yij is toroidal for Dp above a neighborhood of
W (Yij , p).

(5.6) σ(Yij+1) 6 σ(Yij )

(5.7)
Suppose that r = σ(Yij ) and σ(Yij \W (ij)) < r.
Then σ(Yij+1 \W (ij+1)) < r and if p ∈ S(ij+1)\S(ij), then σD(p) < r.

Proof. — For admissible transformations of types 1 - 5 (5.3) - (5.6) hold
since D ⊂ Dp for all p ∈ S(ij), and by Lemma 3.9 (for transformations
of type 1), Lemma 2.5 (for transformations of type 2), Theorem 4.3 (for
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transformations of type 3) and Propositions 3.14 (for transformations of
type 5).
(5.7) holds for all admissible transformations of types 1 - 5, since for

p ∈ S(ij), 0 < σD(p) 6 r. Thus by Theorem 4.3, we have

σD(q) < r if q ∈ Preimage(Yij+1 ,W (Yij , p)),

since Yij+1 → Yij is toroidal for Dp above a neighborhood of W (Yij , p) and
IpOYij+1 ,q

is invertible. �

Remark 5.6. — (5.3) tells us that if p ∈ Yij ∩W (ij) is a (closed) point,
then there is a unique q ∈ S(ij) such that p ∈ W (Yij , q). This observation
is important in the structure of the proof of Theorem 5.3.

Lemma 5.7. — Suppose that Yi0 → X is an admissible sequence, and
r = σ(Yi0) > 0. Then there exists an admissible sequence Yij → Yi0 ,
consisting of admissible transformations of types 2,3, 4 and 5, such that all
points of Singr(Yij \W (ij)) are 3-prepared 1-points.

Proof. — We will prove the lemma by constructing an admissible se-
quence

Yin → Yin−1 → · · · → Yi1 → Yi0

where each Yij+1 → Yij is an admissible transformation of type 2 or 3 for
j 6 n−3, Yin−1 → Yin−2 is an admissible transformation of type 5 (so that
S(ij) = S(i0) for j 6 n − 1) and Yin → Yin−1 is a transformation of type
4, and for all j,

(5.8)
If F is a component of DYij

such that F ⊂ Preimage(Yij , S(i0))
then F ∩ Singr(Yij \W (ij)) = ∅.

Let Yi1 → Yi0 be a sequence of permissible blow ups of 2-curves of D
such that if p ∈ S(i0), then for j = 1, we have that

(5.9) W (Yij , p) ⊂ C(Yij , ν1
p) ∪ C(Yij , ν2

p) ∪ Preimage(Yj , p).

We have that (5.8) holds for j = 1 (by Theorem 4.3 and since σ(Yi0) = r).
Let Yi2 → Yi1 be a sequence of blow ups of 2-curves and 3-points of D,

such that for j = 2, we have that
(5.10)
If E1 and E2 are distinct components of Yij such that E1 contains a
curve C(Yij , νsp) and E2 contains a curve C(Yij , νtq)for some p, q ∈ S(i0)
and s, t, then E1 ∩ E2 = ∅

and

(5.11)
If E is a component of DYij

, and p ∈ S(i0), t are such that
Λ(Yij , νtp) ∈ E but C(Yij , νtp) 6⊂ E, then E contracts to p.
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Suppose that p ∈ S(i0), and E is a component of DYi2
which contains

C(Yi2 , ν1
p) for some t (E can contain at most one of these two curves). Let

ηt be the generic point of C(Yi2 , νtp).
Since (5.9) holds for j = 2, W (Yi2 , p) intersects E in a union of 2-curves

and 3-points for Dp which contract to p, as well as (possibly) the point ηt.
Let γp,t be the 2-curve for Dp in E which contains the point Λ(Yi2 , νtp)

(and is not equal to C(Yi2 , νtp)). Let

(5.12) Z = W (Yi2 , p) ∩ E \ {γp,t, ηt}.

If W (Yi2 , p) ∩ E ⊂ Z ∪ {ηt}, then let Yi3 = Yi2 . Otherwise, the 2-curve
γp,t for Dp is in W (Yi2 , p) ∩E. In this case we let Yi3 → Yi2 be a sequence
of blow ups of 2-curves for Dp, which are sections over γp,t, and lie in the
strict transform of E. Under each such blow up, the strict transform of
E maps isomorphically to E, so we may in fact identify E with its strict
transform and γp,t with its section. After enough such blow ups, on the
strict transform E3 of E (which is isomorphic to E), we have that γp,t is
not contained in W (Yi3 , p) ∩ E3.
Let G = W (Yi3 , p) ∩ E3 \

(
C(Yi3 , ν1

p) ∪ C(Yi3 , ν2
p)
)
. G is a closed subset

of E3 which is disjoint from C(Yi3 , ν1
p) ∪ C(Yi3 , ν2

p). Thus there exists an
open neighborhood V of G in Preimage(Yi3 , Up) which is disjoint from
C(Yi3 , ν1

p)∪C(Yi3 , ν2
p). There exists a sequence of blow ups of 3-points and

2-curves for Dp (which contract to p) V1 → V such that Ip|OV1 is locally
principal. V1 → V extends to an admissible sequence of transformations of
type 3, Yi4 → Yi3 , such that the strict transform E4 of E on Yi4 satisfies

W (Yi4 , p) ∩ E4 ⊂ C(Yi4 , ν1
p) ∪ C(Yi4 , ν2

p).

Repeat this last step (the construction of Yi4 → Yi2) for all p ∈ S(i0)
and components E of DYi4

which contain C(Yi4 , νtp) for some p ∈ S(i0) and
t, remembering that (5.10) holds, to obtain Yi5 → Yi4 where (5.8), (5.9),
(5.10) and (5.11) continue to hold for j = 5, and we also have that for
j = 5,
(5.13)

If p ∈ S(i0) and E is a component of DYij
such that C(Yij , νtp) ⊂ E

for some t, then W (Yij , p) ∩ E ⊂ C(Yij , ν1
p) ∪ C(Yij , ν2

p).

Suppose that E is a component ofDYi5
such that E∩Singr(Yi5\W (i5)) 6=

∅, and p ∈ S(i0). If C(Yi5 , νtp) ⊂ E for some t, then E ∩W (Yi5 , p) ⊂ {ηt},
where ηt is the generic point of C(Yi5 , νtp) (by (5.13)). If C(Yi5 , νtp) 6⊂ E for
t = 1, 2, then Λ(Yi5 , ν1

p),Λ(Yi5 , ν2
p) 6∈ E by (5.11) and (5.8), and thus by

(5.13), we have that E ∩W (i5, p) ∩
(
C(Yi5 , ν1

p) ∪ C(Yi5 , ν2
p)
)

= ∅.
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Thus we can construct an allowable sequence of transformations of type
3, Yi6 → Yi5 , so that if E6 is the strict transform on Yi6 of a component E
of DYi5

such that E ∩ Singr(Yi6 \W (i6)) 6= ∅, then

(5.14) W (Yi6) ∩ E ⊂ {ηp,t | ηpt
is the generic point of a curve C(Yi6 , νtp)

which lies on E}.

By (5.8), we have that all exceptional components F of Yi6 → Yi5 satisfy
F ∩ Singr(Yi6 \W (i6)) = ∅. Thus all components E of Yi6 which satisfy
E ∩ Singr(Yi6 \W (i6)) 6= ∅ must satisfy (5.14). Thus for j = 6, we have
that
(5.15)
If E is a component of DYij

such that E ∩ Singr(Yij \W (ij)) 6= ∅, then
W (Yij ) ∩ E ⊂ {ηp,t | ηpt is the generic point of a curve C(Yij , νtp)

which lies on E}.
By Lemmas 2.5 and 3.4, there exists a further sequence Yi7 → Yi6 of

blow ups of 3-points and 2-curves of D, such that Yi7 \W (i7) is 3-prepared,
except possibly at a finite number of 1-points. The conditions of equations
(5.8), (5.9), (5.10), (5.11) and (5.15) continue to hold on Yi7 (although we
may have that some 2-curves for D are blown up which do not contract to
points of S(i0)).
We now apply Proposition 3.14 to the union H of irreducible components

E of D for Yi7 which contain a point of Singr(Yi7 \W (i7)), with

A = {q ∈ H | Yi7 is not 3-prepared at q
(which are necessarily 1-points of D)}

being sure that none of the finitely many 2-points for D

B = {Λ(Yi7 , νtp) | p ∈ S(i0)}

are in the image of the general curves blown up, to construct an admissible
transformation Yi8 → Yi7 of type 5, so that if E is an irreducible component
of D for Yi8 which contains a point of Singr(Yi8 \W (i8)), then all points
of E \W (i8) are 3-prepared. We also will have that the conditions of (5.8),
(5.9), (5.10), (5.15) and (5.15) hold on points of E.
We now perform a sequence of admissible transformations of type 4,

introducing local resolvers at all 2-points p ∈ Yi8 \W (i8) such that σD(p) =
r (the finite set of these points are all necessarily 3-prepared). �

Lemma 5.8. — Suppose that Yi0 → X is an admissible sequence, and
C is a curve contained in DYi

such that C is not a 2-curve and C 6⊂W (i0).
Let η be the generic point of C. Then there exists an admissible sequence
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Yij → Yi0 , consisting of admissible transformations of types 2, 3, 4 and 5,
such that if Cj is the strict transform of C in Yij , then

1. If σD(η) > 0, then all points of Cj \W (ij) are 3-prepared 1-points.
2. If σD(η) = 0, then all points q of Cj \W (ij) are 1-points or 2-points

with σD(q) = 0.

Proof. — The proof follows from the arguments of the proof of Lemma
5.7, applied only to the component E of D containing C. In the case where
σD(η) = 0, the set A of the hypotheses of Proposition 3.14 used in the
construction, will be the union of the set of 1-points of the strict transform
of E which are not 3-prepared, and the 1-points q on the strict transform
of C such that σD(q) > 0. �

Lemma 5.9. — Suppose that Yi0 → X is an admissible sequence, and
C is a curve in DYi0

which contains a 1-point. Suppose that p ∈ C ∩W (i0)
is a 2-point for D. Then there exists an admissible sequence Yij → Yi0 ,
consisting entirely of transformations of types 2 and 3, such that if Cj is
the strict transform of C in Yij , then the following holds. Suppose that q ∈
Preimage(Yij , p) ∩Cj . Then q is a 2-point for D, and we further have that
if q ∈W (ij), then q = Λ(Yij , νtb) and Cj = C(Yij , νtb) for some b ∈ S(ij).

Proof. — We have that b ∈ C ∩W (Yi0 , b) for some b ∈ S(i0). If C =
C(Yi0 , νtb) for some t, then we have obtained the conclusions of the lemma,
so suppose that C 6= C(Yi0 , νtb) for any t. Since C is not a 2-curve for D,
there exists a sequence of blow ups of 3-points for Db, Yi1 → Yi0 , such
that the strict transform C1 of C on Yi1 has the property that the set
C1 ∩ Preimage(Yi1 , p) consists of 2-points for D. We further may obtain
that either C1 ∩ Preimage(Yi1 , p) is disjoint from W (Yi1 , b), in which case
we have achieved the conclusions of the lemma, or that

C1 ∩ Preimage(Yi1 , p) has non trivial intersection with W (Yi1 , b),

but Λ(Yi1 , νtb) 6∈ C1 for any t. Assume that this last case holds, and q ∈
C1 ∩ Preimage(Yi1 , p). Then there is a unique 2-curve γ of Db, which is
also a 2-curve for D, such that q ∈ γ. There is a finite sequence of blow
ups Yi2 → Yi1 of 2-curves for Db, which are sections over γ, such that if
C2 is the strict transform of C1 in Yi2 , and a ∈ C2 ∩Preimage(Yi2 , q), then
IbOYi2 ,a

is principal, so that C2 ∩ Preimage(Yi2 , q) is disjoint from W (i2).
We now apply this procedure above any other points of

C1 ∩ Preimage(Yi1 , p), to construct a further sequence of blow ups of 2-
curves Yi3 → Yi2 such that the strict transform C3 of C2 on Yi3 satisfies
the condition that C3 ∩ Preimage(Yi3 , p) is disjoint from W (i3). �
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Lemma 5.10. — Suppose that Yi0 → X is an admissible sequence and
C is a curve in DYi0

which contains a 1-point. Suppose that p ∈ C is a
2-point. Then there exists an admissible sequence Yij → Yi0 , consisting
entirely of transformations of types 2, 3 and 4, satisfying the following
properties. Let Cj be the strict transform of C in Yij . Suppose that q ∈
Preimage(Yij , p) ∩ Cj . Then q is a 2-point for D, and one of the following
holds:

1. There exists a ∈ S(ij) such that q = Λ(Yij , νta) and Cj = C(Yij , νta)
for some t, or

2. σD(q) = 0 and q 6∈W (ij).

Proof. — First suppose that p ∈ W (i0). Then there exists a point b ∈
S(i0) such that p ∈W (Yi0 , b). Perform Lemma 5.9 to construct an allowable
sequence Yi1 → Yi0 such that if C1 is the strict transform of C on Yi1 , and
q ∈ C1∩Preimage(Yi0 , p) is contained in W (i1), then there exists a ∈ S(i1)
such that q = Λ(Yi1 , νta) and C1 = C(Yi1 , νta) for some a. Let

λ(i1) := max{σD(q) | q ∈ (C1 ∩ Preimage(Yi1 , p)) \W (i1)}.

We have that
λ(i1) < σD(p).

If p 6∈W (i0), then we let Yi1 = Yi0 , S(i1) = S(i0) and λ(i1) = σD(p).
The rest of the proof is the same for both cases considered above (p ∈

W (i0) and p 6∈W (i0)).
Now perform Lemma 3.4 to construct a sequence of blow ups of 2-curves

for D, Yi2 → Yi1 , such that if C2 is the strict transform of C1 on Yi2 , then
all points of (Preimage(Yi2 , p) ∩ C2)\W (i2) (which are necessarily 2-points
for D) are 3-prepared. Let

R(i2) = {q ∈ (Preimage(Yi2 , p)∩C2) \W (i2) | q is a 2-point and σD(q)> 0}.

Write R(i2) = {q1, . . . , qm}. For each qi ∈ R(i2), let (Uqi
, Dqi

, Iqi
, ν1
qi
, ν2
qi

)
be a local resolver in Yi2 . Let Yi3 → Yi2 be the admissible sequence consist-
ing of transformations of type 4, where S(i3) = S(i2)∪R(i2). Let C3 = C2,
the strict transform of C on Yi3 . If q ∈ (Preimage(Yi3 , p) ∩ C3)\W (i3). then
σD(q) = 0. If q ∈ (Preimage(Yi3 , p) ∩ C3) and q ∈ R(i2) = S(i3) \ S(i2),
then we have

σD(q) 6 λ(i1).

Now again perform Lemma 5.9, to construct Yi4 → Yi3 such that if C4
be the strict transform of C3 on Yi4 , and q ∈ (Preimage(Yi4 , p) ∩ C4) ∩
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W (i4), then q = Λ(Yi4 , a) and C4 = C(Yi4 , νta) for some a ∈ S(i4) and t. If
(Preimage(Yi4 , p) ∩ C4) ∩W (i4) 6= ∅, we have that

λ(i3) := max{σD(q)|q ∈ (Preimage(Yi4 , p) ∩ C4) ∩W (i4)} < λ(i1).

Iterate the above, performing Lemma 3.4 followed by a sequence of adimis-
sible transformations of type 4, and then performing Lemma 5.9, to even-
tually obtain Yij → Yi0 such that if Cij is the strict transform of C on
Yij , then σD(q) = 0 if q ∈

(
Preimage(Yij , p) ∩ Cij

)
\ W (ij), and if q ∈(

Preimage(Yij , p) ∩ Cij
)
∩W (ij), then q = Λ(Yij , b) and Cij = C(Yij , νtb)

for some b ∈ S(ij) and t. �

We now define an admissible transformation of type 6. Suppose that
Yi0 → X is an admissible sequence, and C is a good curve on Yi0 (Definition
5.4).
First assume that σD(η) = 0, where η is the generic point of C. By

Lemmas 3.9 - 3.11, there exists a sequence of transformations of type 1
Yi1 → Yi0 such that the strict transform C1 of C in Yi1 is such that σD(q) =
0 and the other assumptions of Lemma 3.12 hold for all q ∈ C1 \W (i1). Let
Yi2 → Yi1 be the blow up of C which is an admissible blow up. We have that
σD(q) = 0 for all q ∈ Preimage(Yi2 , C1 \W (i1)) by Lemma 3.12. We define
the morphism Yi2 → Yi0 to be the transformation of type 6 associated to
C.
Now assume that σD(η) > 0, where η is the generic point of C. Let

Z → Yi0 \
(
W (i0) ∪DYi0

)
be the canonical sequence of blow ups above

C \W (i0) defined in 1) of Definition 5.2. Z → Yi0 \
(
W (i0) ∪DYi0

)
has a

factorization

Z = Zm → Zm−1 → · · · → Z1 → Z0 = Yi0 \
(
W (i0) ∪DYi0

)
where each Zj+1 → Zj is the blow up of a curve Aj which is a section over
C \W (i0), and is permissible for D (thus Aj is either a 2-curve, or consists
entirely of 1-points). We will inductively extend these morphisms (to an
admissible sequence

Xm → Vm−1 → Xm−1 → · · ·X3 → V2 → X2 → V1 → X1 → Yi0 ,

so that

Preimage(Vj , Yi0 \
(
W (i0) ∪DYi0

)
) = Preimage(Xj , Yi0 \

(
W (i0) ∪DYi0

)
)

= Zj

for all j.
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We define X1 to be the blow up of C (which is an admissible blow up).
If Aj is a 2-curve for D, then Vj → Xj will just be the identity map (with
S(Vj) = S(Xj)).
if Aj is not a 2-curve, then let γ0 be the Zariski closure of Aj inXj . γ0\Zj

is a set of 2-points and 3-points for D. First define a sequence T1 → Xj

of blow ups of 3-points for D, so that the Zariski closure γ1 of Aj in T1 is
such that γ1 \Aj consists only of 2-points. Now successively apply Lemma
5.10 to the points of γ1 \ Aj to construct an admissible sequence T2 → T1
consisting of transformations of types 2, 3 and 4, so that if γ2 is the Zariski
closure of Aj in T2, and q ∈ γ2 \Aj , then either σD(q) = 0 and q 6∈W (T2),
or there exists a ∈ S(T2) such that q = Λ(T2, ν

t
a) and Cj = C(T2, ν

t
a).

A point in γ1 \ Aj cannot be contained in a 2-curve which is a section
over C, since γ1 \Aj contains no 3-points, and the points of C ∩W (i0) are
all 2-points for D. Thus T2 → T1 has the property that Preimage(T2, Yi0 \(
W (i0) ∪DYi0

)
) = Zj .

Let ηj be the generic point of Aj . Then σD(ηj) > 0 (by Theorem 4.2).
Thus all points of q ∈ γ2 satisfy σD(q) > σD(ηj) > 0. We then define Vj to
be T2.
We now define Xj+1 → Vj to be the blow up of γ2, which is an admissible

blow up.

Lemma 5.11. — Suppose that (5.2) is an admissible sequence consisting
of admissible transformations of types 1 - 7. Then for any transformation
Yij+1 → Yij in (5.2), the conditions (5.3) - (5.7) hold.

The proof of Lemma 5.11 follows from our construction of an admissible
transformation of type 6, and Theorem 4.2, Lemma 3.12 and Lemma 5.5.

Proposition 5.12. — Suppose that Yi0 → X is an admissible sequence.
Let r = σ(Yi) > 0. Then there exists an admissible sequence Yij → Yi0 such
that σ(Yij ) 6 r and σD(p) < r for all p ∈ Yij \W (ij).

Proof. — First perform Lemma 5.7, to obtain an admissible sequence
Yi1 → Yi0 such that Γ(Yi1) = Singr(Yi1 \ W (i1)) consists of 3-prepared
1-points. By Lemma 5.1, Γ(Yi1) is a disjoint union of nonsingular curves.
Suppose that C is the closure in Yi1 of a curve in Γ(Yi1). By Lemma 5.10,

there exists an admissible sequence Yi2 → Yi2 consisting of transformations
of types 2, 3 and 4 such that the strict transform C2 of C in Yi2 is a
good curve. We may thus perform an admissible transformation of type
6, Yi3 → Yi2 to get that all points q of Preimage(Yi3 , C2 \W (i2)) are 2-
prepared forD with σD(q) 6 r−1 (by Theorem 4.2). Further, σD(q) 6 r−1
for q ∈ Preimage(Yi3 ,W (i1)) \W (i3). We now apply Lemma 5.10 followed
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by an admissible transformation of type 6 for the other curves of Γ(Yi1),
to obtain the conclusions of the Proposition. �

Proposition 5.13. — Suppose that Yi0 → X is an admissible sequence,
r = σ(Yi0) > 0 and σD(p) < r if p ∈ Yi0 \W (i0). Then there exists an
admissible sequence Yij → Yi0 such that σ(Yij ) < r.

Proof. — Let
T (i0) = {p ∈ S(i0) | σD(p) = r}.

Suppose there exists p ∈ T (i0) and t such that IpOYi0 ,η
is not princi-

pal, where η is the generic point of C(Yi0 , νtp). First apply Lemma 5.8 to
C(Yi0 , νtp) to construct an admissible sequence Yi1 → Yi0 so that all points
q of C(Yi2 , νtp)\W (i2) are 3-prepared 1-points if σD(η) > 0 and are 1-points
or 2-points which satisfy σD(q) = 0 if σD(η) = 0. Then successively apply
Lemma 5.10 to all 2-points q of C(Yi2 , νtp) which have σD(q) > 0, to con-
struct an admissible sequence Yi2 → Yi1 such that C(Yi2 , νtp) (which is the
strict transform of C(Yi0 , νtp)) is a good curve. Let Yi3 → Yi2 be a trans-
formation of type 6 applied to C(Yi2 , νtp). We continue to have σ(Yi3) < r

and if p ∈ S(i3) \ S(i0), then σD(p) < r (by Lemma 5.11). Thus

T (i2) = {p ∈ S(i2) | σD(p) = r} = T (i0).

We may thus repeat the above construction for some q ∈ T (i2) and t such
that IqOYi3 ,ζ

is not principal, where ζ is the generic point of C(Yi3 , νtq).
After iterating this procedure a finite number of times, we will construct
an admissible sequence Yi4 → Yi0 such that σ(Y i4) 6 r, σ(Yi4 \W (i4)) < r,

T (i4) = {p ∈ S(i4) | σD(p) = r} = T (i0),

and for all p ∈ T (i4), and t, IpOYi4 ,η
is principal, where η is the generic

point of C(Yi4 , νtp).
Now perform a sequence of blow ups of 2-curves for D Yi5 → Yi4 , so that

W (Yi5 , p) ⊂ Preimage(Yi5 , p) for all p ∈ T (i5) = T (i0). Finally, we may
construct an admissible sequence Yi6 → Yi5 consisting of transformations
of type 3, so that W (i6) = ∅ for all p ∈ T (i6) = T (i0). We may then
apply a transformation of type 7, Yi7 → Yi6 , defined by Yi7 = Yi6 and
S(i7) = S(i6) \ T (i0) to obtain that σ(Yi7) 6 r − 1. �

Now we prove Theorem 5.3, by starting with Y0 = X and S(0) = ∅.
After applying successively Propositions 5.12 and then 5.13 enough times,
we construct an admissible sequence Yn → X such that σ(Yn) = 0, so that
S(Yn) = ∅, and σD(p) = 0 for p ∈ Yn.
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6. Proof of Toroidalization

Theorem 6.1. — Suppose that k is an algebraically closed field of char-
acteristic zero, and f : X → S is a dominant morphism from a nonsingular
3-fold over k to a nonsingular surface S over k and DS is a reduced SNC
divisor on S such that DX = f−1(DS)red is a SNC divisor on X which con-
tains the locus where f is not smooth. Further suppose that f is 1-prepared.
Then there exists a sequence of blow ups of points and nonsingular curves
π2 : X1 → X, which are contained in the preimage of DX , such that the
induced morphism f1 : X1 → S is prepared with respect to DS .

Proof. — The proof is immediate from Lemma 2.2, Proposition 2.7 and
Theorem 5.3. �

Theorem 6.1 is a slight restatement of Theorem 17.3 of [11]. Theorem
17.3 [11] easily follows from Lemma 2.2 and Theorem 6.1.

Theorem 6.2. — Suppose that k is an algebraically closed field of char-
acteristic zero, and f : X → S is a dominant morphism from a nonsingular
3-fold over k to a nonsingular surface S over k and DS is a reduced SNC
divisor on S such that DX = f−1(DS)red is a SNC divisor on X which
contains the locus where f is not smooth. Then there exists a sequence
of blow ups of points and nonsingular curves π2 : X1 → X, which are
contained in the preimage of DX , and a sequence of blow ups of points
π1 : S1 → S which are in the preimage of DS , such that the induced ra-
tional map f1 : X1 → S1 is a morphism which is toroidal with respect to
DS1 = π−1

1 (DS).

Proof. — The proof follows immediately from Theorem 6.1, and Theo-
rems 18.19, 19.9 and 19.10 of [11]. �

Theorem 6.2 is a slight restatement of Theorem 19.11 of [10]. Theorem
19.11 [11] easily follows from Theorem 6.2.
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