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EIGENVALUES AND SUBELLIPTIC ESTIMATES FOR
NON-SELFADJOINT SEMICLASSICAL OPERATORS

WITH DOUBLE CHARACTERISTICS

by Michael HITRIK & Karel PRAVDA-STAROV

Abstract. — For a class of non-selfadjoint h–pseudodifferential operators with
double characteristics, we give a precise description of the spectrum and establish
accurate semiclassical resolvent estimates in a neighborhood of the origin. Specif-
ically, assuming that the quadratic approximations of the principal symbol of the
operator along the double characteristics enjoy a partial ellipticity property along a
suitable subspace of the phase space, namely their singular space, we give a precise
description of the spectrum of the operator in an O(h)–neighborhood of the origin.
Moreover, when all the singular spaces are reduced to zero, we establish accurate
semiclassical resolvent estimates of subelliptic type, which depend directly on alge-
braic properties of the Hamilton maps associated to the quadratic approximations
of the principal symbol.
Résumé. — Nous décrivons le spectre et établissons des estimations de résol-

vante semi-classiques dans un voisinage de l’origine pour une classe d’opérateurs h-
pseudodifférentiels non-autoadjoints à caractéristiques doubles. Plus précisément,
sous l’hypothèse que les approximations quadratiques du symbole principal de
l’opérateur sont elliptiques sur un sous-espace particulier de l’espace des phases,
dénommé espace singulier, nous donnons une description précise du spectre de cet
opérateur dans un O(h)-voisinage de l’origine. De plus, lorsque tous les espaces
singuliers sont nuls, nous établissons des estimations de résolvante semi-classiques
de type sous-elliptique qui dépendent directement de propriétés algébriques des ap-
plications hamiltoniennes des approximations quadratiques du symbole principal.

1. Introduction

In this work, we are concerned with the analysis of spectral properties for
general non-selfadjoint pseudodifferential operators with double character-
istics. This study was initiated in [8], and our purpose here is to complement

Keywords: non-selfadjoint operator, eigenvalue, resolvent estimate, subelliptic estimates,
double characteristics, singular space, pseudodifferential calculus, Wick calculus, FBI
transform, Grushin problem.
Math. classification: 35H20, 35P20, 35S05, 47A10, 47B44.



986 Michael HITRIK & Karel PRAVDA-STAROV

the results of [8] on two essential points, as we describe below. Assume that
we are given a non-selfadjoint semiclassical pseudodifferential operator

P = Pw(x, hDx;h), 0 < h 6 1;

defined by the semiclassical Weyl quantization of the symbol P (x, ξ;h),

Pw(x, hDx;h)u(x) = 1
(2π)n

∫
R2n

ei(x−y).ξP
(x+ y

2 , hξ;h
)
u(y)dydξ,

with a semiclassical asymptotic expansion

P (x, ξ;h) ∼
+∞∑
j=0

hjpj(x, ξ),

such that its principal symbol p0 has a non-negative real part

Re p0(X) > 0, X = (x, ξ) ∈ R2n,

and such that we have a finite number of doubly characteristic points X0
for the operator,

p0(X0) = ∇p0(X0) = 0.
Our interest is in studying spectral properties and the resolvent growth
of the operator P in a fixed neighborhood of the origin. In the previous
work [8], we established an accurate semiclassical a priori estimate

h||u ||L2 6 C0|| (P − hz)u ||L2 , |z| 6 C, (1.1)

valid in an O(h)-neighborhood of the origin, when the quadratic approx-
imations q of the principal symbol p0 at the doubly characteristic points
enjoy the partial ellipticity property

(x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0. (1.2)

Here S is a suitable subspace of the phase space, namely the singular space
associated to q [7], and the spectral parameter z in (1.1) avoids a dis-
crete set depending on the values of the subprincipal symbol p1 and the
spectra of the quadratic approximations of the principal symbol p0 at the
doubly characteristic points. The a priori estimate (1.1) gives a first lo-
calization and bounds on the low lying eigenvalues of the operator P , i.e.,
when restricting the attention to an O(h)-neighborhood of the origin in
the complex spectral plane. In the first part of the present work, we shall
push this analysis further and give a precise description of the spectrum
of the operator P in an O(h)-neighborhood of the origin, with complete
semiclassical asymptotic expansions for the eigenvalues. That such a study
is planned by the authors was mentioned in [8].
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In the second part of this work, we shall be concerned with the behavior
of the resolvent norm of P in a sufficiently small but fixed neighborhood of
the origin. We shall actually show that this behavior is linked to subelliptic
properties of the quadratic approximations of the principal symbol p0 at
the doubly characteristic points, and that the positive integers k0 appearing
in the resolvent estimates

h
2k0

2k0+1 |z|
1

2k0+1 ‖u‖L2 6 C0‖Pu− zu‖L2 ,

depend directly on the loss of derivatives associated to the subelliptic prop-
erties of these quadratic operators. We shall show how the positive integers
k0 are intrinsically associated to the structure of the doubly characteris-
tic set, and how they are completely characterized by algebraic properties
of the Hamilton maps associated to the quadratic approximations of the
principal symbol.

As in [8], the starting point for this work has been the general study of the
Kramers-Fokker-Planck type operators carried out by F. Hérau, J. Sjös-
trand and C. Stolk in [11]. This study has been a major breakthrough in
the understanding of the spectral properties of some general classes of pseu-
dodifferential operators that are neither selfadjoint nor elliptic. We draw
our inspiration considerably from this work and use many techniques de-
veloped in the analysis of [11]. By using some of these techniques, together
with the recent improvements in the understanding of spectral and subel-
liptic properties of non-elliptic quadratic operators obtained in [7] and [20],
here we are able to extend to a large class of non-selfadjoint semiclassical
pseudodifferential operators with double characteristics the results proved
in [11] for the case of operators of Kramers-Fokker-Planck type.

1.1. Miscellaneous facts about quadratic differential operators

Before giving the precise statement of the main results contained in this
article, we shall recall miscellaneous facts and notation concerning qua-
dratic differential operators. Associated to a complex-valued quadratic form

q : Rn
x ×Rn

ξ → C
(x, ξ) 7→ q(x, ξ),

with n ∈ N∗, is the Hamilton map F ∈ M2n(C) uniquely defined by the
identity

q
(
(x, ξ); (y, η)

)
= σ

(
(x, ξ), F (y, η)

)
, (x, ξ) ∈ R2n, (y, η) ∈ R2n, (1.3)

TOME 63 (2013), FASCICULE 3



988 Michael HITRIK & Karel PRAVDA-STAROV

where q
(
·; ·

)
stands for the polarized form associated to the quadratic

form q and σ is the canonical symplectic form on R2n,

σ
(
(x, ξ), (y, η)

)
= ξ.y − x.η, (x, ξ) ∈ R2n, (y, η) ∈ R2n. (1.4)

It follows directly from the definition of the Hamilton map F that its real
and imaginary parts, denoted respectively by Re F and Im F ,

Re F = 1
2(F + F ), Im F = 1

2i (F − F ),

with F being the complex conjugate of F , are the Hamilton maps associated
to the quadratic forms Re q and Im q, respectively; and that a Hamilton
map is always skew-symmetric with respect to σ. This fact is just a conse-
quence of the properties of the skew-symmetry of the symplectic form and
the symmetry of the polarized form,

∀X,Y ∈ R2n, σ(X,FY ) = q(X;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ).
(1.5)

We defined in [7] the singular space S associated to the quadratic symbol
q as the following intersection of kernels,

S =
( 2n−1⋂
j=0

Ker
[
Re F (Im F )j

])⋂
R2n, (1.6)

where F stands for the Hamilton map of q, and we proved in Theorem 1.2.2
in [7], that when a quadratic symbol q with a non-negative real part is
elliptic on its singular space S,

(x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0, (1.7)

then the spectrum of the quadratic operator qw(x,Dx) is only composed
of eigenvalues of finite multiplicity and is given by

σ
(
qw(x,Dx)

)
=
{ ∑

λ∈σ(F ),
−iλ∈C+∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
. (1.8)

Here rλ is the dimension of the space of generalized eigenvectors of F in
C2n belonging to the eigenvalue λ ∈ C, and

Σ(q|S) = q(S) and C+ = {z ∈ C : Re z > 0}.

It follows from (1.6) that the closure of the range of q along S, Σ(q|S),
satisfies Σ(q|S) ⊂ iR.

ANNALES DE L’INSTITUT FOURIER
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Remark. — Equivalently, one can describe the singular space as the
subset in the phase space where all the Poisson brackets Hk

Im qRe q, k ∈ N,
are vanishing,

S = {X ∈ R2n : Hk
Im qRe q(X) = 0, k ∈ N}.

The singular space is therefore exactly the set of points X0 in the phase
space where the real part of q under the flow generated by the Hamilton
vector field associated to its imaginary part Im q,

t 7→ Re q(etHIm qX0),
vanishes to an infinite order at t = 0. We refer to Section 2 in [7] to find
all the arguments needed to establish this second equivalent description of
the singular space.

We shall finish this subsection by recalling that quadratic operators with a
zero singular space S = {0}, enjoy noticeable subelliptic properties. Specif-
ically, when qw(x,Dx) stands for a quadratic operator whose Weyl symbol
q has a non-negative real part Re q > 0, and a zero singular space S = {0},
it was established in [20] that it fulfills the subelliptic estimate∥∥(〈(x, ξ)〉2/(2k0+1))wu∥∥

L2 6 C
(
‖qw(x,Dx)u‖L2 + ‖u‖L2

)
, u ∈ S(Rn),

(1.9)
with a loss of 2k0/(2k0 + 1) derivatives, where 〈(x, ξ)〉 = (1 + |x|2 + |ξ|2)1/2

and k0 stands for the smallest integer 0 6 k0 6 2n− 1 such that( k0⋂
j=0

Ker
[
Re F (Im F )j

])⋂
R2n = {0}.

Such a non-negative integer k0 is well-defined since S = {0}.

1.2. Statement of the main results

Let us now state the main results contained in this paper. Let m > 1 be
a C∞ order function on R2n fulfilling
∃C0 > 1, N0 > 0, m(X) 6 C0〈X − Y 〉N0m(Y ), X, Y ∈ R2n, (1.10)

where 〈X〉 = (1 + |X|2) 1
2 , and let S(m) be the symbol class

S(m) =
{
a ∈ C∞(R2n,C) : ∀α ∈ N2n,∃Cα > 0,∀X ∈ R2n,

|∂αXa(X)| 6 Cαm(X)} .
We shall assume in the following, as we may, that m belongs to its own
symbol class m ∈ S(m).

TOME 63 (2013), FASCICULE 3



990 Michael HITRIK & Karel PRAVDA-STAROV

Considering a symbol P (x, ξ;h) with a semiclassical asymptotic expansion
in the symbol class S(m),

P (x, ξ;h) ∼
+∞∑
j=0

hjpj(x, ξ), (1.11)

with some pj ∈ S(m), j ∈ N, independent of the semiclassical parameter
h, such that its principal symbol p0 has a non-negative real part

Re p0(X) > 0, X = (x, ξ) ∈ R2n, (1.12)

we shall study the operator

P = Pw(x, hDx;h), 0 < h 6 1, (1.13)

defined by the h-Weyl quantization of the symbol P (x, ξ;h), that is, the
Weyl quantization of the symbol P (x, hξ;h),

Pw(x, hDx;h)u(x) = 1
(2π)n

∫
R2n

ei(x−y).ξP
(x+ y

2 , hξ;h
)
u(y)dydξ.

(1.14)

We shall make the important assumption that Re p0 is elliptic at infinity
in the sense that for some C > 1, we have

Re p0(X) > m(X)
C

, |X| > C. (1.15)

The ellipticity assumption (1.15) implies that, for h > 0 small enough and
when equipped with the domain

D(P ) = H(m) := (mw(x, hD))−1 (
L2(Rn)

)
,

the operator P becomes closed and densely defined on L2(Rn). Further-
more, another basic consequence of (1.12) and (1.15) is that when z ∈
neigh(0,C), the analytic family of operators

P − z : H(m)→ L2(Rn),

is Fredholm of index 0, for all h > 0 small enough — see, e.g., [2]. An
application of analytic Fredholm theory allows us then to conclude that
the spectrum of P in a small but fixed neighborhood of 0 ∈ C is discrete
and consists of eigenvalues of finite algebraic multiplicity.

We shall assume that the characteristic set of the real part of the principal
symbol p0,

(Re p0)−1(0) ⊂ R2n,

is finite, so that we may write it as

(Re p0)−1(0) = {X1, ..., XN}. (1.16)

ANNALES DE L’INSTITUT FOURIER
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The sign assumption (1.12) implies in particular that we have

dRe p0(Xj) = 0,

for all 1 6 j 6 N , and we shall actually assume that these points are all
doubly characteristic for the full principal symbol p0,

p0(Xj) = dp0(Xj) = 0, 1 6 j 6 N, (1.17)

so that we may write

p0(Xj + Y ) = qj(Y ) +O(Y 3), (1.18)

when Y → 0. Here qj is the quadratic form which begins the Taylor expan-
sion of the principal symbol p0 atXj . Notice that the sign assumption (1.12)
implies that the complex-valued quadratic forms qj have non-negative real
parts,

Re qj > 0, (1.19)
when 1 6 j 6 N . We shall assume throughout the present work that when
1 6 j 6 N , the quadratic form qj is elliptic along the associated singular
space Sj introduced in (1.6), in the sense of (1.2).
The following result was established in [8], under the assumptions above: let
C > 1 and assume that z ∈ C with |z| 6 C is such that for all 1 6 j 6 N ,
we have z − p1(Xj) /∈ Ωj , where Ωj ⊂ C is a fixed neighborhood of the
spectrum of the quadratic operator qwj (x,Dx). Then for all h > 0 small
enough, the following a priori estimate holds,

h||u || 6 O(1)|| (P − hz)u ||, u ∈ S(Rn). (1.20)

Here || · || is the L2–norm on Rn. In view of the observations made above,
we see that the estimate (1.20) extends to all of D(P ) = H(m), since the
Schwartz space S(Rn) is dense in the latter. The operator P−hz : H(m)→
L2(Rn) is therefore injective with closed range, and thus invertible, thanks
to the Fredholm property. We conclude that when z ∈ C is as above, then
hz is not an eigenvalue of P and the resolvent estimate

(P − hz)−1 = O
(

1
h

)
: L2(Rn)→ L2(Rn) (1.21)

holds true.

The following is the first main result of this work.

Theorem 1.1. — Let us make the assumptions (1.12), (1.15), (1.16),
and (1.17). Assume furthermore that the quadratic form qj introduced in
(1.18) is elliptic along the singular space Sj , when 1 6 j 6 N . Let C > 0.
Then there exists h0 > 0 such that for all 0 < h 6 h0, the spectrum of the

TOME 63 (2013), FASCICULE 3



992 Michael HITRIK & Karel PRAVDA-STAROV

operator P in the open disc in the complex plane D(0, Ch) is given by the
eigenvalues of the form,

zj,k ∼ h
(
λj,k + p1(Xj) + h1/Nj,kλj,k,1 + h2/Nj,kλj,k,2 + . . .

)
, 1 6 j 6 N.

(1.22)
Here λj,k are the eigenvalues inD(0, C) of qwj (x,Dx) given in (1.8), repeated
according to their algebraic multiplicity, and Nj,k is the dimension of the
corresponding generalized eigenspace. (Possibly after changing C > 0, we
may assume that |λj,k + p1(Xj)| 6= C for all k, 1 6 j 6 N .)

We now come to state the second main result of this work. In doing so, let
us introduce the symbols

rj(Y ) = p0(Xj + Y )− qj(Y ), 1 6 j 6 N. (1.23)
We shall assume that there exists a closed angular sector Γ with vertex at
0 and a neighborhood V of the origin in R2n such that for all 1 6 j 6 N ,

rj(V ) \ {0} ⊂ Γ \ {0} ⊂ {z ∈ C : Re z > 0}. (1.24)

Figure 1.1. The range of rj .

Im z

Re z0

Γ \ {0}

rj(V ) \ {0}

By denoting Fj the Hamilton maps and Sj the singular spaces associated
to the quadratic forms qj , we shall also assume that all the singular spaces
are reduced to zero,

Sj = {0}, (1.25)

ANNALES DE L’INSTITUT FOURIER
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when 1 6 j 6 N . According to the definition of the singular space (1.6),
one can therefore consider the smallest integers, 0 6 kj 6 2n−1, such that( kj⋂

l=0
Ker

[
Re Fj(Im Fj)l

])⋂
R2n = {0}. (1.26)

Defining the integer
k0 = max

j=1,...,N
kj , (1.27)

in {0, ..., 2n− 1}, we shall establish the following result:

Theorem 1.2. — Consider a symbol P (x, ξ;h) with a semiclassical ex-
pansion in the class S(m) fulfilling the assumptions (1.12), (1.15), (1.16),
(1.17) and (1.24). When all the quadratic forms qj , 1 6 j 6 N , defined in
(1.18) have zero singular spaces Sj = {0}, then for any constant C0 > 0
sufficiently small, there exist positive constants 0 < h0 6 1, C > 1 and
c0 > 0 such that for all 0 < h 6 h0, u ∈ S(Rn) and z ∈ Ωh,

h
2k0

2k0+1 |z|
1

2k0+1 ‖u‖L2 6 c0‖Pu− zu‖L2 , (1.28)
where P = Pw(x, hDx;h), k0 is the integer defined in (1.27) and Ωh denotes
the set

Ωh =
{
z ∈ C : Re z 6 1

C
h

2k0
2k0+1 |z|

1
2k0+1 , Ch 6 |z| 6 C0

}
. (1.29)

The set Ωh defined in (1.29) is represented on Figure 1.2. We may also notice
that when z ∈ Ωh, then Theorem 1.2 implies that z is in the resolvent set
of P , and the resolvent estimate

(P − z)−1 = O
(
h−

2k0
2k0+1 |z|−

1
2k0+1

)
: L2(Rn)→ L2(Rn)

holds.
Notice that the quantity h

2k0
2k0+1 |z|

1
2k0+1 , which appears in the estimate

(1.28), when Ch 6 |z| 6 C0, increases when the spectral parameter z
moves away from the origin at a rate, which depends on the maximal loss
of derivatives 2k0/(2k0 + 1) appearing in the subelliptic estimates (1.9),
fulfilled by the quadratic approximations of the principal symbol at the
doubly characteristic points. When the spectral parameter is of the or-
der of magnitude of h, we recover the semiclassical hypoelliptic a priori
estimate (1.20), proved in [8], with a loss of the full power of the semi-
classical parameter. Theorem 1.2 and Theorem 1 in [8], together with the
description of the spectrum of P , given in Theorem 1.1, give therefore an
almost complete picture of the spectral properties and the growth of the re-
solvent norm of a non-selfadjoint semiclassical pseudodifferential operator
with double characteristics fulfilling the assumptions of Theorems 1.2 near

TOME 63 (2013), FASCICULE 3
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Figure 1.2. Set Ωh.

Im z

Re z0

Ch

C0

Re z = 1
C
h

2k0
2k0+1 |z|

1
2k0+1

Ωh

the doubly characteristic set. These results underline the basic rôle played
by the singular space in the analysis of the general structure of double
characteristics.
Coming back to Theorem 1.2, we would like to stress the fact that the

non-negative integer k0 defined in (1.27), 0 6 k0 6 2n − 1, measuring
the maximal loss of derivatives 2k0/(2k0 + 1) appearing in the subelliptic
estimates (1.9) fulfilled by the quadratic approximations of the principal
symbol at doubly characteristic points and the rate of growth of the resol-
vent norm when the spectral parameter z moves away from the origin in
the estimate (1.28); can actually take any value in the set {0, ..., 2n − 1},
when n > 1. Explicit local models for the quadratic approximations of the
principal symbol at doubly characteristic points for which the integer k0
can take any value in the set {0, ..., 2n − 1} are given for example by the
following symbols:

- Case k0 = 0: According to the definition of the Hamilton map, this
is the case of any quadratic symbol q with a positive definite real
part Re q > 0.

ANNALES DE L’INSTITUT FOURIER
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- Case k0 = 1: Consider a Fokker-Plank operator with a nondegen-
erate quadratic potential tensorized with a harmonic oscillator in
other symplectic variables

ξ2
2 + x2

2 + i(x2ξ1 − x1ξ2) +
n∑
j=3

(ξ2
j + x2

j ).

- Case k0 = 2p, with 1 6 p 6 n− 1: Consider

ξ2
1 + x2

1 + i(ξ2
1 + 2x2ξ1 + ξ2

2 + 2x3ξ2 + ....+ ξ2
p + 2xp+1ξp + ξ2

p+1)

+
n∑

j=p+2
(ξ2
j + x2

j ).

- Case k0 = 2p+ 1, with 1 6 p 6 n− 1: Consider

x2
1 + i(ξ2

1 + 2x2ξ1 + ξ2
2 + 2x3ξ2 + ....+ ξ2

p + 2xp+1ξp+ ξ2
p+1) +

n∑
j=p+2

(ξ2
j +x2

j ).

We refer the reader to [20] for more details concerning those examples.

Figure 1.3. The estimate h
2k0

2k0+1 |z|
1

2k0+1 ‖u‖L2 6 c‖Pu − zu‖L2 is ful-
filled when z belongs to the dark grey region of the figure; whereas the
estimate h‖u‖L2 6 ‖Pu− zu‖L2 is fulfilled in the light grey one.

Im z

Re z0

Ch

C0

TOME 63 (2013), FASCICULE 3
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Remark. — The basic rôle played by conditions of subelliptic type for
the understanding of resolvent estimates for non-selfadjoint operators of
principal type was first stressed in [2]. See also [18, 19] for specific cases.
These results were recently improved byW. Bordeaux Montrieux in a model
situation [1] and in the general case by J. Sjöstrand in [24].

In [11], the authors obtain a result analogous to Theorem 1.1 and a resolvent
estimate similar to (1.28), in the case when k0 = 1. These results are
obtained using assumptions of subelliptic type for the principal symbol of
the operator, both locally near the doubly characteristic points, and at
infinity. Our analysis does not consider such a general situation where the
ellipticity may fail both locally and at infinity. The purpose of the present
work, as well as of [8], is to understand deeper the phenomena occurring
near the doubly characteristic set, and therefore we simplify parts of the
analysis of [11] by requiring a property of ellipticity at infinity (1.15) for the
real part of the principal symbol p0, whereas we weaken the assumptions
of subelliptic type at the doubly characteristic points. The assumption of
subelliptic type for the principal symbol p0 of the operator near a doubly
characteristic point, say here X0 = 0,

∃ε0 > 0, Re p0(X) + ε0H
2
Imp0

Re p0(X) ∼ |X|2,

made in [11], implies (See Section 4 in [8]) that the singular space S as-
sociated to the quadratic approximation q of the principal symbol p0 at
X0 = 0 is reduced to {0}. More specifically, the singular space S is equal
to zero after the intersection of exactly two kernels,

S = Ker(Re F ) ∩Ker
[
Re F (Im F )

]⋂
R2n = {0}.

This explains why the integer k0 is equal to 1 in the case studied in [11].

In the proof of Theorem 1.1, we rely upon the techniques developed
in [11], [7], [8], and similarly to [11], the proof proceeds by solving a glob-
ally well-posed Grushin problem for the operator P in a suitable microlo-
cally weighted L2–space, introduced in [8]. The main technical tool in the
first part of the paper is therefore a systematic use of the FBI–Bargmann
transformation as well as of the associated weighted spaces of holomorphic
functions.

The proof of Theorem 1.2 uses elements of the Wick calculus, whose main
features are recalled in the appendix (Section A). This proof also depends
crucially on the construction of weight functions performed in [20] (Propo-
sition 2.0.1) for the quadratic approximations of the principal symbol at
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the doubly characteristic points. The method used in this proof, by starting
with weights built for quadratic symbols in order to deal with the general
doubly characteristic case, largely accounts for the assumption (1.24). We
shall need this assumption in our proof of Theorem 1.2. Nevertheless, this
hypothesis may be relevant only technically.

The plan of the paper is as follows. In Section 2, we study quadratic dif-
ferential operators with quadratic symbols q, elliptic along the associated
singular spaces, and derive some Gaussian decay estimates for the general-
ized eigenfunctions, thereby completing the corresponding discussion in [7].
This study is instrumental in Section 3, devoted to the construction of a
globally well-posed Grushin proof for the operator P and to the proof of
Theorem 1.1. Theorem 1.2 is established in Section 4. As alluded to above,
the proof makes use of some elements of the Wick calculus, and the relevant
facts concerning those techniques are reviewed in the appendix.
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inspiring discussions. The authors are also very grateful to San Vũ Ngo.c
for the generous hospitality in Rennes.

2. Gaussian decay of eigenfunctions in the quadratic case

In this section we shall be concerned with a quadratic form q on R2n

such that Re q > 0 and with q being elliptic along the associated singular
space S, introduced in (1.6). It follows then from [7] (Section 1.4.1) that the
singular space S ⊂ R2n is symplectic. We have the following decomposition,

R2n = Sσ⊥ ⊕ S, (2.1)

where Sσ⊥ is the orthogonal space of S with respect to the symplectic
form σ in R2n, and let us recall from [7] (Section 2) that we have linear
symplectic coordinates (x′, ξ′) in Sσ⊥ and (x′′, ξ′′) in S, respectively, such
that if

X = (x, ξ) = (X ′;X ′′) = (x′, ξ′;x′′, ξ′′) ∈ R2n = R2n′
×R2n′′

, (2.2)

then

q(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′), q1 = q|Sσ⊥ , iq2 = q|S . (2.3)
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We know furthermore from [7] (Proposition 2.0.1) that the symplectic co-
ordinates may be chosen such that the elliptic quadratic form q2 satisfies

q2(x′′, ξ′′) = ε0

n′′∑
j=1

λj
2

(
x′′j

2 + ξ′′j
2
)
, λj > 0, ε0 ∈ {±1}, (2.4)

while q1 enjoys the following averaging property: for each T > 0, the qua-
dratic form

〈Re q1〉T (x′, ξ′) = 1
T

∫ T

0
Re q1 (exp (tHIm q1)(x′, ξ′)) dt (2.5)

is positive definite in (x′, ξ′). In what follows, in order to fix the ideas, we
take ε0 = 1 in (2.4).

Following [8] (Section 2), let us introduce the quadratic weight function,

G0(X) = −
∫
J

(
− t

T

)
Re q (exp (tHIm q)(X)) dt, T > 0, (2.6)

where J is a compactly supported piecewise affine function satisfying

J ′(t) = δ(t)− 1[−1,0](t),

and 1[−1,0] the characteristic function of the set [−1, 0]. It follows that

HIm qG0 = 〈Re q〉T,Im q − Re q, (2.7)

where

〈Re q〉T,Im q(X) = 1
T

∫ T

0
Re q(exp (tHIm q)(X)) dt.

From (2.3) and (2.4) we see that G0 is a function of X ′ only, so that G0 =
G0(X ′), X ′ = (x′, ξ′) ∈ R2n′

. Following [11] and [8], we shall therefore
consider an IR-deformation of the real phase space Sσ⊥ = R2n′

, associated
to the quadratic weight G0, viewed as a function on R2n′

. Let us set

Λδ = {X ′ + iδHG0(X ′); X ′ ∈ R2n′
} ⊂ C2n′

, 0 6 δ 6 1. (2.8)

We then know that for all δ > 0 small enough, Λδ is a linear IR-manifold,
and, as explained for instance in [9] (Section 4), there exists a linear canon-
ical transformation

κδ : R2n′
→ Λδ, (2.9)

such that
κδ(X ′) = X ′ + iδHG0(X ′) +O(δ2 |X ′|). (2.10)
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We introduce next the standard FBI-Bargmann transformation along
Sσ⊥ ' R2n′

,

T ′u(x′) = C̃h−3n′/4
∫
e
i
hϕ(x′,y′)u(y′) dy′, x′ ∈ Cn′

, C̃ > 0, (2.11)

where ϕ(x′, y′) = i
2 (x′ − y′)2. Associated to T ′ there is a complex linear

canonical transformation

κT ′ : C2n′
3 (y′, η′) 7→ (x′, ξ′) = (y′ − iη′, η′) ∈ C2n′

, (2.12)

mapping the real phase space R2n′
onto the linear IR-manifold

ΛΦ0 =
{(
x′,

2
i

∂Φ0

∂x′
(x′)

)
: x′ ∈ Cn′

}
, (2.13)

where
Φ0(x′) = 1

2 (Imx′)2
.

For a suitable choice of C̃ > 0 in (2.11), we know that the map T ′ takes
L2(Rn′

) unitarily onto HΦ0,h(Cn′
). Here and in what follows, when Φ ∈

C∞(Cn′
) is a suitable smooth strictly plurisubharmonic weight function

close to Φ0 in (2.13), we shall let HΦ,h(Cn′
) stand for the closed subspace

of L2(Cn′
; e− 2Φ

h L(dx′)), consisting of functions that are entire holomorphic.
The integration element L(dx′) stands here for the Lebesgue measure on
Cn′

.

Following [8] (Section 3), we write next

κT ′(Λδ) = ΛΦδ :=
{(
x′,

2
i

∂Φδ
∂x′

(x′)
)

;x′ ∈ Cn′
}
, (2.14)

for 0 6 δ 6 δ0 with δ0 > 0 small enough, where Φδ(x′) is a strictly plurisub-
harmonic quadratic form on Cn′

, given by

Φδ(x′) = v.c.(y′,η′)∈Cn′×Rn′ (−Imϕ(x′, y′)− (Im y′) · η′ + δG0(Re y′, η′)) .
(2.15)

The unique critical point (y′(x′), η(x′)) giving the corresponding critical
value in (2.15) satisfies

y′(x′) = Rex′ +O(δ |x′|), η′(x′) = −Imx′ +O(δ |x′|), (2.16)

and as in [7], [8], we obtain that

Φδ(x′) = Φ0(x′) + δG0(Rex′,−Imx′) +O(δ2 |x′|2). (2.17)

Let us set Q1 = qw1 (x′, hDx′) and recall from [23] the exact Egorov property

T ′Q1u = Q̃1T
′u, u ∈ S(Rn′

), (2.18)
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where Q̃1 is a semiclassical quadratic differential operator on Cn′
whose

Weyl symbol q̃1 satisfies
q̃1 ◦ κT ′ = q1, (2.19)

with κT ′ given in (2.12).

Continuing to follow [23], let us also recall that when realizing Q̃1 as an

unbounded operator on HΦ0,h(Cn′
), we may first use the contour integral

representation

Q̃1u(x′) = 1
(2πh)n′

∫∫
θ′=2

i
∂Φ0
∂x′

(
x′+y′

2

) e ih (x′−y′)·θ′
q̃1

(x′ + y′

2 , θ′
)
u(y′) dy′ dθ′,

and then, using that the symbol q̃1 is holomorphic, by a contour deforma-
tion we obtain the following formula for Q̃1 as an unbounded operator on
HΦ0,h(Cn′

),

Q̃1u(x′) = 1
(2πh)n′

∫∫
θ′= 2

i
∂Φ0
∂x′

(
x′+y′

2

)
+it(x′−y′)

e
i
h (x′−y′)·θ′

q̃1

(x′ + y′

2 , θ′
)
u(y′) dy′ dθ′, (2.20)

for any t > 0. Furthermore, the operator Q̃1 can also be viewed as an
unbounded operator

Q̃1 : HΦδ,h(Cn′
)→ HΦδ,h(Cn′

), (2.21)

defined for 0 < δ 6 δ0, with δ0 > 0 sufficiently small. Indeed, when defining
the operator in (2.21), it suffices to make a contour deformation in (2.20)
and set

Q̃1u(x′) = 1
(2πh)n′

∫∫
θ′= 2

i

∂Φδ
∂x′

(
x′+y′

2

)
+it(x′−y′)

e
i
h (x′−y′)·θ′

q̃1

(x′ + y′

2 , θ
)
u(y′) dy′ dθ′, (2.22)

for any t > 0. We then know from the general theory [17], [22], that the op-
erator in (2.21) is unitarily equivalent to the quadratic operator on L2(Rn′

),
whose Weyl symbol is given by the quadratic form

X ′ 7→ q1 (κδ(X ′)) , X ′ ∈ R2n′
, (2.23)

with κδ introduced in (2.9), (2.10). In particular, using (2.5), (2.7), and
(2.10), we see as in [7] (p.827) that the real part of the quadratic form in
(2.23) is positive definite, and from [7] (p.828) we also know that the spec-
trum of Q̃1 acting on HΦ0,h(Cn′

) agrees with the spectrum of Q̃1 acting on

ANNALES DE L’INSTITUT FOURIER



EIGENVALUES AND SUBELLIPTIC ESTIMATES 1001

HΦδ,h(Cn′
), for all 0 < δ 6 δ0, δ0 > 0 small enough, including the multi-

plicities. For future reference, let us recall from [7] the explicit description
of the spectrum of Q̃1, which is given by

Spec(Q̃1) =

h
∑

λ∈σ(F1)
Imλ>0

(rλ + 2kλ)λ
i
, kλ ∈ N

 . (2.24)

Here, F1 is the Hamilton map associated to the quadratic form q1 and rλ
is the dimension of the generalized eigenspace of F1 in C2n′

corresponding
to the eigenvalue λ ∈ C of the Hamilton map F1.

In the remainder of this section, we shall be concerned exclusively with
the case of (h = 1) quantization, and we shall then write HΦ0(Cn′

) =
HΦ0,h=1(Cn′

), and similarly for HΦδ(Cn′
). The following result is a slight

generalization of the corresponding statement from [7].

Proposition 2.1. — There exists η > 0 and δ0 > 0 small enough, such
that the generalized eigenvectors u of the operators

Q̃1(x′, Dx′) : HΦ0(Cn′
)→ HΦ0(Cn′

)

and
Q̃1(x′, Dx′) : HΦδ(Cn′

)→ HΦδ(Cn′
), 0 < δ 6 δ0,

agree and satisfy
u ∈ HΦ0−η|x′|2(Cn′

). (2.25)

Proof. — The statement of the proposition was established in the
work [7], in the case when u is an eigenvector of Q̃1. When treating the case
of generalized eigenvectors, we may argue in a way similar to [7] (p.829-831),
and consider the restriction of the heat semigroup, viewed as a bounded
operator,

e−tQ̃1 : HΦ0(Cn′
)→ HΦt(Cn′

), 0 < t 6 t0, (2.26)

t0 > 0 small enough, to a generalized eigenspace Eλ0 ⊂ HΦ0(Cn′
) of Q̃1,

associated to an eigenvalue λ0. The space Eλ0 is finite-dimensional, and the
restriction of Q̃1−λ0 to Eλ0 is nilpotent. It was shown in [7] (Lemma 3.1.2)
that for each t > 0 small enough, there exists α = α(t) > 0 such that the
quadratic form Φt satisfies

Φt(x′) 6 Φ0(x′)− α |x′|2 , x′ ∈ Cn′
.
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Notice that the map e−tQ̃1 : Eλ0 → Eλ0 is bijective for any t > 0. Indeed,
the generalized eigenspace Eλ0 is stable under the action of the operator
Q̃1 and its restriction to this finite-dimensional space

Q̃1|Eλ0
: Eλ0 → Eλ0 ,

is a bounded operator. This implies that the restriction of the semigroup
to the space (e−tQ̃1)|Eλ0

coincides with the exponential of the bounded
operator −tQ̃1|Eλ0

, which is always bijective. It follows therefore that the
generalized eigenvectors u ∈ HΦ0(Cn′

) of Q̃1 acting on HΦ0(Cn′
), belong

to HΦδ(Cn′
), for δ > 0 small enough, and satisfy (2.25). Considering the

action of the heat semigroup on the corresponding generalized eigenspace
of the operator Q̃1 acting on HΦδ(Cn′

) and repeating the arguments fol-
lowing the statement of Lemma 3.1.2 in [7], we obtain the statement of the
proposition. �

Having obtained the exponential decay properties of the generalized eigen-
vectors of Q̃1, we return to the full quadratic operator Q = qw(x,Dx) in
(2.3), and introduce the corresponding quadratic differential operator Q̃ on
the FBI transform side, given by

TQu = Q̃Tu, u ∈ S(Rn).

Here the full FBI-Bargmann transformation T is given by

T = T ′ ⊗ T ′′ : L2(Rn) = L2(Rn′
)⊗ L2(Rn′′

)

→ HΦ0(Cn′
)⊗HΦ0(Cn′′

) = HΦ0(Cn),

with the partial transform T
′′ along the singular space S being defined

similarly to (2.11). Associated to T ′′ and to T , we have the linear canonical
transformations κT ′′ and κT , with κT = κT ′ ⊗ κT ′′ , so that κT (y, η) =
(y − iη, η). The splitting of the coordinates (2.2) induces, by means of κT ,
the corresponding splitting of the coordinates in Cn, so that we can write
x = (x′, x′′) ∈ Cn = Cn′

×Cn′′
. We have, in view of (2.3),

Q̃(x,Dx) = Q̃1(x′, Dx′) + iQ̃2(x′′, Dx′′), (2.27)

where the symbol q̃2 of the quadratic operator Q̃2(x′′, Dx′′) is given by
q̃2 = q2 ◦ κ−1

T ′′ .

We shall be concerned with the generalized eigenfunctions of the operator
Q̃(x,Dx) in (2.27) acting on the weighted space

HΦδ(Cn) = HΦδ(Cn′
)⊗HΦ0(Cn′′

),
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with δ > 0 small enough fixed. Here in the left hand side,

Φδ(x) = Φδ(x′) + Φ0(x′′),

and an application of (2.13) and (2.17) shows that

Φδ(x) = Φ0(x) + δG0(Rex′,−Imx′) +O(δ2 |x′|2).

Let us recall from [7] (p.843) that the spectrum of Q̃(x,Dx) is given by

σ(Q̃(x,Dx)) = σ(Q̃1(x′, Dx′)) + iσ(Q̃2(x′′, Dx′′)),

with the spectrum of Q̃1(x′, Dx′) given in (2.24), and furthermore, from
(2.4), we know that the spectrum of Q̃2(x′′, Dx′′) consists of the eigenvalues
of the form

µα′′ =
n′′∑
j=1

λj
2
(
2α′′j + 1

)
, α′′ ∈ Nn′′

.

The corresponding eigenfunctions are given by

Φα′′(x′′) = (T ′′ϕα′′)(x′′), (2.28)

where
ϕα′′(y′′) = Hα′′(y′′)e−(y′′)2/2

are the Hermite functions, with Hα′′(y′′) being the Hermite polynomials on
Rn′′

. It is clear that the eigenfunctions Φα′′(x′′) form an orthonormal basis
of HΦ0(Cn′′

), and a straightforward computation shows that the functions
Φα′′(x′′) are of the form

Φα′′(x′′) = pα′′(x′′)e−(x′′)2/4,

where pα′′(x′′) is a holomorphic polynomial on Cn′′
. In particular, we have

Φα′′ ∈ HΦ0−η|x′′|2(Cn′′
), (2.29)

for some fixed η > 0.

Let u ∈ HΦδ(Cn), and let us write

u(x′, x′′) =
∑

α′′∈Nn′′

uα′′(x′)Φα′′(x′′).

Using that(
Q̃(x,Dx)− λ

)
u =

∑
α′′∈Nn′′

[
(Q̃1(x′, Dx′) + iµα′′ − λ)uα′′(x′)

]
Φα′′(x′′),

(2.30)
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we see that u is a generalized eigenvector of Q̃(x,Dx) corresponding to an
eigenvalue λ ∈ C, precisely when u is of the form

u(x′, x′′) =
∑
α′′

uα′′(x′)Φα′′(x′′), (2.31)

where the summation extends over all α′′ ∈ Nn′′
for which

λ− iµα′′ ∈ σ(Q̃1(x′, Dx′)),

and uα′′(x′) ∈ HΦδ(Cn′
) is a generalized eigenvector of Q̃1(x′, Dx′) as-

sociated to the eigenvalue λ − iµα′′ . Since, according to (2.24), σ(Q̃1) is
contained in a proper closed cone in C of the form |Im z| 6 CRe z, C > 0,
it follows that the sum in (2.31) contains a fixed finite number of terms,
when |λ| = O(1). Combining Proposition 2.1, (2.29), and (2.31), we ob-
tain the following result, which summarizes the discussion pursued in this
section.

Proposition 2.2. — There exists η > 0 such that for all 0 6 δ 6 δ0,
with δ0 > 0 small enough, the generalized eigenvectors u of the quadratic
operator Q̃(x,Dx) acting on HΦδ(Cn), satisfy

u ∈ HΦ0−η|x|2(Cn).

Remark. — The discussion in this section, together with the corre-
sponding analysis in Section 3 in [7], can be considered as a natural general-
ization of Remark 11.7 in [11]. For future reference, let us also remark that
from [11], [9], [21], we know that the generalized eigenfunctions u of the
operator Q̃(x,Dx) are such that the inverse FBI transform T−1u ∈ L2(Rn)
is of the form

T−1u = p(x)eiΦ(x), (2.32)

where p is a polynomial on Rn and Φ(x) is a complex quadratic form, and
according to Proposition 2.2), we have ImΦ > 0. Furthermore, the positive
Lagrangian subspace {(x,Φ′(x)); x ∈ Cn} is the stable outgoing manifold
for the Hamilton flow of the quadratic form

(x, ξ) 7→ 1
i
e−iθq(x, ξ), (x, ξ) ∈ R2n,

where θ > 0 is sufficiently small but fixed.
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3. Global Grushin problem

Throughout this section, we shall make the simplifying assumption that
the integer N introduced in (1.16) satisfies N = 1, and that the corre-
sponding doubly characteristic point is X1 = (0, 0) ∈ R2n. This assump-
tion serves merely to simplify the notation in the proofs and does not cause
any loss of generality. In particular, we write

p0(X) = q(X) +O(X3),

where q is a quadratic form, to which Proposition 2.2 applies.

When proving Theorem 1.1, it will be convenient to work with symbols in
the class S(1), bounded together with all of their derivatives, similarly to
what was done in [8]. Let us begin this section by describing therefore a
reduction to the case when m = 1. When doing so, we notice that for all
h > 0 sufficiently small, the operator

P + 1 : H(m)→ L2(Rn)

is bijective, and by an application of Beals’s lemma, we know that (P +
1)−1 ∈ Oph(S(

( 1
m

)
)), see [3], p.99-100. Let

P̃ = (P + 1)−1P ∈ Oph (S(1)) ,

with the leading symbol given by

p̃0 = p0

p0 + 1 . (3.1)

Furthermore, by holomorphic functional calculus [6], or by an explicit cal-
culation using the Weyl calculus [3] (use formula (8.11) p.100), we see that
the subprincipal symbol of P̃ is given by

p̃1 = p1

(p0 + 1)2 . (3.2)

It follows from (3.1) that the leading symbol p̃0 of the bounded h-pseudo-
differential operator P̃ satisfies Re p̃0 > 0, and that Re p̃0 is elliptic near
infinity in the class S(1). Furthermore, p̃0 vanishes precisely at the origin,
with

p̃0(X) = q(X) +O(X3), p̃1(0) = p1(0).
In order to deduce the asymptotic description of the eigenvalues for the
operator P from the corresponding description for the operator P̃ , we notice
that the resolvents of P and P̃ are related as follows, for z ∈ neigh(0,C),(

P̃ − z
)−1

= (1− z)−1
(
P − z

1− z

)−1
(P + 1).
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Hence, z ∈ neigh(0,C) is an eigenvalue of P̃ precisely when z/(1 − z) is
an eigenvalue of P , and the multiplicities agree. In what follows, we shall
therefore be concerned exclusively with the case when m = 1.

3.1. Grushin problem in the quadratic case

In this subsection, we shall describe a well-posed Grushin problem for
the elliptic quadratic operator Q̃(x,Dx) defined in (2.27), acting on the
weighted space HΦδ(Cn), for δ > 0 small enough but fixed. Let λ0 ∈ C be
an eigenvalue of Q̃(x,Dx), and let Eλ0 ⊂ HΦδ(Cn) be the corresponding
finite-dimensional generalized eigenspace. According to Proposition 2.2, we
have

Eλ0 ⊂ HΦ0−η|x|2(Cn), η > 0.
Let e1, . . . , eN0 be a basis for Eλ0 . We shall now introduce a suitable
dual basis. When doing so, let Q̃∗ = Q̃∗(x,Dx) be the adjoint of the
operator Q̃ = Q̃(x,Dx) acting on the space HΦ0(Cn). Here the closed
densely defined quadratic operator Q̃ is equipped with the domain {u ∈
HΦ0(Cn); Q̃u ∈ HΦ0(Cn)}. According to the discussion in [13], p.426, we
have Q̃∗ = TqwT−1. Here the Weyl symbol of qw is the quadratic form
X 7→ q(X), which has a non-negative real part, and whose restriction
to the corresponding singular space, which is equal to S, is elliptic. Let
f1, . . . , fN0 , fj ∈ HΦ0(Cn), be the basis for the generalized eigenspace of
the adjoint operator Q̃∗ : HΦ0(Cn) → HΦ0(Cn), associated to the eigen-
value λ0, which is dual to e1, . . . eN0 . An application of Proposition 2.2
shows that the functions fj , 1 6 j 6 N0, satisfy

fj ∈ HΦ0−η|x|2(Cn), η > 0. (3.3)

In particular, fj ∈ HΦδ(Cn), for δ > 0 small enough, and we have

det ((ej , fk)) 6= 0, 0 6 δ 6 δ0, (3.4)

for some δ0 > 0 sufficiently small. Here the scalar product in (3.4) is taken
in the space HΦδ(Cn).

Let us introduce the operators

R− : CN0 → HΦδ(Cn)

and
R+ : HΦδ(Cn)→ CN0 ,
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given by R−u− =
∑N0
j=1 u−(j)ej and (R+u)(j) = (u, fj), with the scalar

product taken in the space HΦδ(Cn). Arguing as in Section 11 of [11], we
obtain that for z ∈ neigh(λ0,C), the Grushin operator(

Q̃− z R−
R+ 0

)
: D(Q̃)×CN0 → HΦδ(Cn)×CN0 (3.5)

is bijective. Here D(Q̃) = {u ∈ HΦδ(Cn); (1 + |x|2)u ∈ L2
Φδ(C

n)}.

Continuing to follow [11], we shall now restore the semiclassical parameter
h > 0 and consider the operators

R−,h = O(1) : CN0 → HΦδ,h(Cn), R+,h = O(1) : HΦδ,h → CN0 , (3.6)

given by

R−,hu− =
N0∑
j=1

u−(j)ej,h, (R+,hu) (j) = (u, fj,h). (3.7)

Here the scalar product in the definition of R+,h is taken in the space
HΦδ,h(Cn), and

ej,h(x) = h−n/2ej

(
x√
h

)
, fj,h(x) = h−n/2fj

(
x√
h

)
.

With Q̃ = Q̃(x, hDx), we shall now consider the semiclassical Grushin
problem, given by(

Q̃− hz
)
u+R−,hu− = v, R+,hv = v+. (3.8)

Here z varies in a sufficiently small but fixed neighborhood of the eigenvalue
λ0. At this point, we are exactly in the same situation as described in Sec-
tion 11 of [11] (Proposition 11.5), and arguing exactly as in that paper, we
see that for each (v, v+) ∈ HΦδ,h(Cn)×CN0 , the problem (3.8) has a unique
solution (u, u−) ∈ HΦδ,h(Cn) × CN0 such that (1 + |x|2)u ∈ L2

Φδ,h(Cn).
Furthermore, for every k ∈ R fixed, the following a priori estimate holds,

|| (h+ |x|2)1−ku ||+ h−k |u−| 6 O(1)
(
|| (h+ |x|2)−kv ||+ h1−k |v+|

)
.

(3.9)
Here the norms are taken in the space L2

Φδ,h(Cn).

The estimate (3.9) can subsequently be localized, and we see that the result
of Proposition 11.6 of [11] can be applied to our situation as it stands,
since the proof of Proposition 11.6 in [11] only relies on the ellipticity of
the quadratic operator Q̃ acting on HΦδ,h(Cn), for δ > 0 small enough
but fixed, together with the decay estimates given in Proposition 2.2 and
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in (3.3). We therefore obtain the following result, which summarizes the
discussion in this section.

Proposition 3.1. — Let χ0 ∈ C∞0 (Cn) be fixed, such that χ0 = 1
near x = 0, and let k ∈ R be fixed. Then for z ∈ neigh(λ0,C), we have
the following estimate for the problem (3.8), valid for all h > 0 sufficiently
small,

|| (h+ |x|2)1−kχ0u ||+ h−k |u−|

6 O(1)
(
|| (h+ |x|2)−kχ0v ||+ h1−k |v+|+ h1/2|| 1Ku ||

)
. (3.10)

Here K is a fixed neighborhood of supp(∇χ0) and 1K stands for the char-
acteristic function of this set. The norms in the estimate (3.10) are taken
in the space L2

Φδ,h(Cn).

Remark. — When deriving the estimate (3.10), following [11], we re-
place the functions fj,h in the definition of R+,h by χ(x/R

√
h)fj,h(x), where

χ ∈ C∞0 (Cn), and R > 0 is sufficiently large fixed.

3.2. Localization and exterior estimates

The purpose of this subsection is to study a globally well-posed Grushin
problem for the operator P introduced in (1.13). When doing so, we shall be
concerned with the action of P , after an FBI-Bargmann transformation,
on a suitable weighted space of holomorphic functions on Cn. We shall
therefore first proceed to recall the definition and properties of this space,
constructed and introduced in [8].

In Proposition 2 of [8], it was shown that for all 0 < ε 6 ε0, 0 < δ 6 δ0, with
ε0 > 0, δ0 > 0 sufficiently small, there exists a function Gε ∈ C∞0 (R2n,R),
supported in a sufficiently small but fixed neighborhood of the origin, such
that Gε = O(ε), ∇2Gε = O(1), and such that for some C > 1, C̃ > 1, we
have

|p0 (X + iδHGε(X))| > δ

C̃
min

(
|X|2 , ε

)
,

in the region where |X| 6 1/C. Furthermore, in the region where |X| >
ε1/2, we have

Re
((

1− icδε

|X|2

)
p0 (X + iδHGε(X))

)
>
δε

C̃
, c > 0. (3.11)
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Here we have also written p0 for an almost analytic extension of the leading
symbol p0 of P to a tubular neighborhood of R2n, bounded together with
all of its derivatives.

Remark. — For future reference, we may remark that it follows from
the construction of the weight function Gε in [8], that in the region where
|X|2 6 ε/2, we have

Gε(X) = G0(X ′) +O(X3), (3.12)

where the quadratic form G0 is defined in (2.6), see remark p.1002 in [8].

Associated with the weight function Gε there is an IR-manifold

Λδ,ε =
{
X + iδHGε(X);X ∈ R2n} , (3.13)

and arguing as in [8] (Section 3), we obtain that

κT (Λδ,ε) = ΛΦδ,ε :=
{

(x, ξ) ∈ C2n; ξ = 2
i

∂Φδ,ε
∂x

(x)
}
. (3.14)

Here Φδ,ε ∈ C∞(Cn) is a strictly plurisubharmonic function given by

Φδ,ε(x) = v.c.(y,η)∈Cn×Rn (−Imϕ(x, y)− (Im y) · η + δGε(Re y, η)) .
(3.15)

Uniformly on Cn, we have

Φδ,ε(x) = Φ0(x) + δGε(Rex,−Imx) +O(δ2ε), (3.16)

and in particular,
Φδ,ε − Φ0 = O(δε). (3.17)

We furthermore know that Φδ,ε agrees with Φ0 outside a bounded set and
that

∇ (Φδ,ε − Φ0) = O(δε1/2), (3.18)
with ∇2Φδ,ε ∈ L∞(Cn), uniformly in δ and ε.

In what follows, similarly to [8] (Section 3), we shall be concerned with the
case when

ε = Ah, (3.19)
when A > 1 is sufficiently large but fixed, to be chosen in what follows. As
explained in [8] (Section 3), following [11], the h–pseudodifferential opera-
tor on the FBI–Bargmann transform side, P̃ := TPT−1, can therefore be
defined as a uniformly bounded operator

P̃ = O(1) : HΦδ,ε,h(Cn)→ HΦδ,ε,h(Cn),
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given, when u ∈ HΦδ,ε,h(Cn), by

P̃ u(x) = 1
(2πh)n

∫∫
Γδ,ε(x)

e
i
h (x−y)·θψ(x− y)P̃

(
x+ y

2 , θ

)
u(y) dy dθ +Ru.

(3.20)
Here ψ ∈ C∞0 (Cn) is such that ψ = 1 near 0 and Γδ,ε(x) is the contour
given by

θ = 2
i

∂Φδ,ε
∂x

(
x+ y

2

)
+ it0(x− y), t0 > 0.

The remainder R in (3.20) satisfies

R = OA(h∞) : L2(Cn; e−
2Φδ,ε
h L(dx))→ L2(Cn; e−

2Φδ,ε
h L(dx)).

Also, in (3.20) we continue to write P̃ for an almost holomorphic exten-
sion of the full symbol P̃ ∈ S(ΛΦ0 , 1) of P̃ , P̃ = P ◦ κ−1

T , to a tubular
neighborhood of ΛΦ0 , bounded together with all of its derivatives.

We shall be concerned with a global Grushin problem for the operator
P̃ in the weighted space HΦδ,ε,h(Cn). In order to exploit the quadratic
Grushin problem for Q̃, described in subsection 3.1, we shall make use of
the observation that there exists a constant C > 0 such that in the region
of Cn, where

|x| 6
√
ε

C
, (3.21)

the weight function Φδ,ε is independent of ε, and furthermore, in this region,
we have

Φδ,ε = Φδ(x) +O(δ |x|3). (3.22)
The equality (3.22) is obtained by a straightforward computation, using
(2.15), its analogue for the weight Φδ,ε, given by (3.15), as well as (3.12).

By making a rescaling in ε, we may and will assume in the following that
we have C = 1 in (3.21). It follows that in the region where |x| 6

√
ε, the

L2–norm associated to the quadratic weight function Φδ can be replaced
by the L2–norm associated to the full weight Φδ,ε, at the expense of a loss
which is

exp (O(1)A3/2h1/2) = O(1),
provided that A > 1 is taken large but fixed, and h ∈ (0, h0], with h0 > 0
small enough depending on A. We shall therefore replace the fixed cut-
off function χ0 in Proposition 3.1 by χ0(x/

√
ε), and following Section 11

of [11], this can be achieved by a rescaling argument using the change of
variables x =

√
εx̃. This argument is carried out in detail, see (11.33), in

Section 11.3 of [11], and for future reference, we shall record it here.
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Lemma 3.2. — Let χ0 ∈ C∞0 (Cn) be fixed, such that χ0 = 1 near x = 0,
and let k ∈ R be fixed. Then for z ∈ neigh(λ0,C), we have the following
estimate for the Grushin problem (3.8), valid for h > 0 sufficiently small,
with ε = Ah,

|| (h+ |x|2)1−kχ0

(
x√
ε

)
u ||+h−k |u−| 6 O(1)|| (h+ |x|2)−kχ0

(
x√
ε

)
v ||

+O(1)
(
h1−k |v+|+

√
h

ε
|| (h+ |x|2)1−k1K

(
x√
ε

)
u ||

)
. (3.23)

Here K is a fixed neighborhood of supp(∇χ0) and 1K stands for the char-
acteristic function of this set. The norms in the estimate (3.23) are taken
in the space L2

Φδ,h(Cn). According to (3.22), all the norms in the estimate
(3.23) can be replaced by the norms in the space L2

Φδ,ε,h(Cn), for each fixed
A � 1, provided that h ∈ (0, h0], with h0 > 0 small enough, depending
on A.

We now come to study the global Grushin problem for the operator P̃ −
hz, for z ∈ neigh(λ0 + p1(0),C), in the weighted space HΦδ,ε,h(Cn). Here
p1(0) is the value of the subprincipal symbol p1(x, ξ) of P at the unique
doubly characteristic point, (0, 0) ∈ R2n. With the operators R−,h and
R+,h introduced in (3.7), let us consider

(P̃ − hz)u+R−,hu− = v, R+,hu = v+, (3.24)

when (v, v+) ∈ HΦδ,ε,h(Cn) ×CN0 . Writing the first equation in (3.24) in
the form

(Q̃− h(z − p1(0)))u+R−,hu− = v + (Q̃+ hp1(0)− P̃ )u,

and applying Lemma 3.2 with k = 1/2, we get, with some constant C > 0,

|| (h+ |x|2)1/2χ0

(
x√
ε

)
u ||+ h−1/2 |u−|

6 C|| (h+ |x|2)−1/2χ0

(
x√
ε

)
v ||

+ C|| (h+ |x|2)−1/2χ0

(
x√
ε

)
(P̃ − Q̃− hp1(0))u ||

+O(h1/2) |v+|+ C

√
h

ε
|| (h+ |x|2)1/21K

(
x√
ε

)
u ||. (3.25)

Here the norms are taken in the space L2
Φδ,ε,h(Cn), as explained in Lemma

3.2. Now, as was already observed and exploited in [8], see (5.7) in Section
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5, we have

|| (h+ |x|2)−1/2χ0

(
x√
ε

)
(P̃ − Q̃− hp1(0))u || = OA(h)||u ||,

and therefore, using also that h+ |x|2 6 O(ε) in the support of the function

x 7→ 1K(x/
√
ε),

we get

h1/2||χ0

(
x√
ε

)
u ||+ h−1/2 |u−|

6 O(h−1/2)|| v ||+OA(h)||u ||+O(h1/2) |v+|+O(h1/2)|| 1K
(
x√
ε

)
u ||.

(3.26)

It follows from (3.26) upon squaring that

h||χ0

(
x√
ε

)
u ||2 + h−1 |u−|2

6
O(1)
h
|| v ||2 +OA(h2)||u ||2 +O(h) |v+|2 +O(h)|| 1K

(
x√
ε

)
u ||2.

(3.27)

The estimate (3.27) will be instrumental in obtaining the global well-
posedness of the Grushin problem (3.24).

When deriving an a priori estimate for the problem (3.24) away from an
O(
√
ε)–neighborhood of the doubly characteristic point x = 0 ∈ Cn, we

shall proceed very much in the spirit of Section 6 in [8]. Let p̃0 be an almost
holomorphic continuation of the leading symbol of P̃ , bounded together
with all of its derivatives in a tubular neighborhood of ΛΦ0 . To simplify the
notation, we shall write here p := p̃0. According to (3.11), we know that

Re
((

1− ic δε
|x|2

)
p

(
x,

2
i

∂Φδ,ε(x)
∂x

))
>
δε

C̃
, |x| >

√
ε. (3.28)

Following Section 6 of [8], we shall now switch to rescaled variables. Set

x =
√
εx̃. (3.29)

In the new coordinates, the IR-manifold ΛΦδ,ε in (3.14) becomes replaced
by the manifold

ΛΦ̃δ,ε
=
{(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

)
: x̃ ∈ Cn

}
, (3.30)
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with
Φ̃δ,ε(x̃) = 1

ε
Φδ,ε(

√
εx̃).

We notice that ∇2Φ̃δ,ε ∈ L∞(Cn) uniformly in ε ∈ (0, ε0], δ ∈ (0, δ0], and
that along ΛΦ̃δ,ε

, we have

ξ̃ = −Im x̃+O(δ).

Let us consider the h̃–pseudodifferential operator,

Pε := 1
ε
pw(x, hDx) = 1

ε
pw
(√

ε
(
x̃, h̃D

x̃

))
, h̃ = h

ε
= 1
A
, (3.31)

with the Weyl symbol given by

pε(x̃, ξ̃) = 1
ε
p
(√

ε(x̃, ξ̃)
)
. (3.32)

It follows from (3.28) that along the manifold ΛΦ̃δ,ε
, the symbol (3.32)

satisfies the following estimate,

Re
((

1− ic δ

|x̃2|

)
pε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

))
>

δ

C̃
, (3.33)

in the region where |x̃| > 1.

Associated with the IR-manifold ΛΦ̃δ,ε
is the weighted space HΦ̃δ,ε ,̃h

(Cn),
where we notice that

Φ̃δ,ε(x̃)
h̃

= Φδ,ε(x)
h

.

The map u(x) 7→ ũ(x̃) = εn/2u(
√
εx̃) then takes the space HΦδ,ε,h(Cn)

unitarily onto the space HΦ̃δ,ε ,̃h
(Cn).

Let now χ(x̃) ∈ C∞b (Cn; [0, 1]) be such that χ = 1 for large |x̃|, and with
suppχ contained in the set where |x̃| > 1. Let us set

m(x̃) = 1− ic δ

|x̃|2
.

Assume also that the spectral parameter z ∈ C satisfies |z| 6 C, for some
fixed C > 0. An application of Proposition 3 of [8], as in (6.15) in [8], shows
that the scalar product (

χm(Pε − h̃z)ũ, ũ
)

Φ̃δ,ε ,̃h
(3.34)
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is equal to∫
χ(x̃)m(x̃)pε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

)
|ũ(x̃)|2 e−2Φ̃δ,ε(x̃)/̃h L(dx̃)+O(h̃)|| ũ ||2

Φ̃δ,ε,h̃
.

Thus,

Re
(
χm(Pε − h̃z)ũ, ũ

)
Φ̃δ,ε ,̃h

=
∫
χ(x̃)Re

(
m(x̃)pε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

))
|ũ(x̃)|2 e−2Φ̃δ,ε(x̃)/̃h L(dx̃)

+O(h̃)|| ũ ||2
Φ̃δ,ε ,̃h

,

and using that (3.33) holds near the support of χ, we get, by an application
of the Cauchy-Schwarz inequality,∫

χ(x̃) |ũ(x̃)|2 e−2Φ̃δ,ε(x̃)/̃h L(dx̃)

6 O(1)||χ(Pε − h̃z)ũ ||Φ̃δ,ε ,̃h || ũ ||Φ̃δ,ε ,̃h +O(h̃)|| ũ ||2
Φ̃δ,ε ,̃h

.

Coming back to the original variable x =
√
εx̃ and using that

||χ(Pε − h̃z)ũ ||Φ̃δ,ε ,̃h = 1
ε
||χ
(
·√
ε

)
(pw(x, hDx)− hz)u ||Φδ,ε,h,

we obtain that

ε

∫
χ

(
x√
ε

)
|u(x)|2 e−2Φδ,ε(x)/h L(dx)

6 O(1)||χ
(
·√
ε

)
(pw(x, hDx)−hz)u ||Φδ,ε,h ||u ||Φδ,ε,h+O(h)||u ||2Φδ,ε,h.

An application of (3.24) then gives,

ε

∫
χ

(
x√
ε

)
|u(x)|2 e−2Φδ,ε(x)/h L(dx) 6 O(1)|| v ||Φδ,ε,h ||u ||Φδ,ε,h

+O(1)||χ
(
·√
ε

)
R−,hu− ||Φδ,ε,h ||u ||Φδ,ε,h +O(h)||u ||2Φδ,ε,h.

Using Proposition 2.2, together with (3.7) and (3.17), we easily see that

||χ
(
·√
ε

)
R−,hu− ||Φδ,ε,h = O

((
h

ε

)∞)
|u−| . (3.35)
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Recalling that ε = Ah, we obtain the following exterior estimate,

h

∫
χ

(
x√
Ah

)
|u(x)|2 e−2Φδ,ε(x)/h L(dx) 6 O(1)|| v ||Φδ,ε,h ||u ||Φδ,ε,h

+O(A−∞) |u−| ||u ||Φδ,ε,h +O
(
h

A

)
||u ||2Φδ,ε,h. (3.36)

The estimates (3.27) and (3.36) are the main results established in this
subsection.

3.3. End of the proof of Theorem 1.1

In this subsection, we shall glue together the estimates (3.27) and (3.36),
in order to show the well-posedness of the global Grushin problem (3.24).
Applying the exterior estimate (3.36) to estimate the last term occurring
in the right hand side of (3.27) and adding the estimates (3.27) and (3.36),
we obtain that

h||u ||2 + h−1 |u−|2 6
O(1)
h
|| v ||2 +O(1)|| v || ||u ||

+O(h) |v+|2 +O(A−∞) |u−| ||u ||+
(
OA(h2) +O

(
h

A

))
||u ||2. (3.37)

Here we have also used that we arrange, as we may, that χ + χ2
0 > 1 on

Cn. Now

O(1)|| v || ||u ||+O(A−∞) |u−| ||u ||

6
O(1)
h
|| v ||2 +O(A−∞)h−1 |u−|2 + h

2 ||u ||
2,

and it follows that

h2

2 ||u ||
2 + |u−|2 6 O(1)|| v ||2 +O(h2) |v+|2

+O(A−∞) |u−|2 +
(
OA(h3) +O

(
h2

A

))
||u ||2.

Taking the parameter A sufficiently large but fixed, and then restricting
the attention to the interval h ∈ (0, h0], for some h0 > 0 small enough
depending on A, we obtain that

h||u ||+ |u−| 6 O(1)|| v ||+O(h) |v+| . (3.38)
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Here the norms throughout are taken in the space HΦδ,ε,h(Cn), and ac-
cording to (3.17), the weight function Φδ,ε can be replaced by the standard
quadratic weight Φ0, at the expense of an O(1)–loss. The Grushin operator

P̃(z;h) =
(
P̃ − hz R−,h
R+,h 0

)
: HΦ0,h(Cn)×CN0 → HΦ0,h(Cn)×CN0

(3.39)
is therefore injective. On the other hand, being a finite rank perturbation
of the Fredholm operator(

P̃ − hz 0
0 0

)
: HΦ0,h(Cn)×CN0 → HΦ0,h(Cn)×CN0 ,

the operator in (3.39) is also Fredholm, and furthermore, as observed in
the introduction, the index is zero. It follows that the Grushin operator
in (3.39) is invertible, so that the problem (3.24) is well-posed, for z ∈
neigh(λ0 + p1(0),C).

The inverse of the operator in (3.39) is of the form

Ẽ(z;h) =
(

E(z;h) E+(z;h)
E−(z;h) E−+(z;h)

)
: HΦ0,h(Cn)×CN0

→ HΦ0,h(Cn)×CN0 , (3.40)

and it follows from (3.38) that

E(z;h) = O
(

1
h

)
: HΦ0,h(Cn)→ HΦ0,h(Cn),

with
E+(z;h) = O(1) : CN0 → HΦ0,h(Cn),

E−(z;h) = O(1) : HΦ0,h(Cn)→ CN0 ,

and
E−+(z;h) = O(h) : CN0 → CN0 .

Furthermore, let us recall from [25] that hz, with z ∈ neigh(λ0 + p1(0),C),
is an eigenvalue of P precisely when the determinant of E−+(z;h) vanishes.

In Section 11.5 of [11], the action of the Grushin operator in (3.39), after
applying the inverse FBI–Bargmann transformation, was studied in detail,
on spaces of functions of the form(

a(x;h)eiΦ(x)/h, u−

)
,
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where a(x;h) is a symbol and the quadratic form Φ has been introduced
in (2.32). It was deduced there that E−+(z;h) has an asymptotic expan-
sion in half–integer powers of h, with a certain additional structure. A
complete asymptotic expansion for the determinant of E−+(z;h) was sub-
sequently obtained and it was shown that it is a classical symbol of order 0,
and complete asymptotic expansions for the zeros of the determinant were
obtained using Puiseux series. That discussion goes through without any
changes in the present situation, and therefore, repeating the arguments of
Section 11.5 of [11] as they stand, we obtain that the eigenvalues of h−1P

in a sufficiently small but fixed neighborhood of λ0 + p1(0) have complete
asymptotic expansions in powers of h1/N0 , of the form

λ(h) = λ0 + p1(0) + c1h
1/N0 + c2h

2/N0 + . . . .

On the other hand, from the main result of [8] and the discussion in the
introduction, we know that for all h > 0 small enough, the spectrum of P
in the disc D(0, Ch), is contained in the union of the regions

D

(
h(λ0 + p1(0)), h

C̃

)
,

where λ0 is an eigenvalue of q(x,Dx) with |λ0 + p1(0)| < C, and C̃ > 0 is a
sufficiently large constant. The statement of Theorem 1.1 follows and this
completes the proof.

4. Proof of Theorem 1.2

We shall begin this section by explaining that it is actually sufficient
to establish Theorem 1.2 in the special case when m = 1. Indeed, when
assuming that Theorem 1.2 has already been proved when m = 1, we may
consider an order function m > 1 as in (1.10) such that m ∈ S(m); and
a symbol P (x, ξ;h) satisfying the associated assumptions of Theorem 1.2.
Then, one can choose a symbol p̃0 ∈ S(1) with a non-negative real part
Re p̃0 > 0 which is elliptic near infinity in the symbol class S(1); and such
that p̃0 = p0 on a large compact set containing p−1

0 (0) where p0 stands for
the principal symbol of P (x, ξ;h). This is for instance the case when taking
χ0 ∈ C∞0 (R2n; [0, 1]) such that χ0 = 1 near p−1

0 (0) and setting

p̃0 = χ0p0 + (1− χ0).

Defining also the symbols

p̃j = χ0pj + (1− χ0) ∈ S(1),
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when j > 1, we may choose χ ∈ C∞0 (R2n, [0, 1]) such that χ = 1 near
p−1

0 (0) and χ0 = 1 near suppχ. By setting P = Pw(x, hDx;h) and P̃ =
P̃w(x, hDx;h), where

P̃ (x, ξ;h) ∼
+∞∑
j=0

p̃j(x, ξ)hj ,

in the symbol class S(1); and using L2–norms throughout, we deduce from
the semiclassical elliptic regularity that

h
2k0

2k0+1 |z|
1

2k0+1 ‖u‖

6 h
2k0

2k0+1 |z|
1

2k0+1 ‖χw(x, hDx)u‖+ h
2k0

2k0+1 |z|
1

2k0+1 ‖(1− χ)w(x, hDx)u‖

6 h
2k0

2k0+1 |z|
1

2k0+1 ‖χw(x, hDx)u‖+O(h
2k0

2k0+1 |z|
1

2k0+1 )‖(P − z)u‖
+O(h∞)‖u‖,

when |z| 6 C0, for 0 < C0 � 1, since the principal symbol p0 of the
operator P is elliptic near the support of the function 1−χ. By using that
Theorem 1.2 is valid when m = 1, we may apply it to the operator P̃ to
get that if z is as in Theorem 1.2,

h
2k0

2k0+1 |z|
1

2k0+1 ‖χw(x, hDx)u‖ 6 O(1)‖(P̃ − z)χw(x, hDx)u‖ (4.1)
6 O(1)‖(P − z)χw(x, hDx)u‖+O(h∞)‖u‖,

since (P̃ − P )χw(x, hDx) = O(h∞) in L(L2) when h→ 0+. We get that

h
2k0

2k0+1 |z|
1

2k0+1 ‖χw(x, hDx)u‖
6 O(1)‖(P − z)u‖+O(1)‖[P, χw(x, hDx)]u‖+O(h∞)‖u‖. (4.2)

When estimating the commutator term in the right hand side of (4.2), we
take χ̃ ∈ C∞0 (R2n, [0, 1]) such that χ̃ = 1 near p−1

0 (0) and χ = 1 near
supp χ̃. Then, by using that

[P, χw(x, hDx)]χ̃w(x, hDx) = O(h∞),

in L(L2), together with the fact that p0 is elliptic near the support of 1− χ̃,
we get that

h
2k0

2k0+1 |z|
1

2k0+1 ‖χw(x, hDx)u‖ 6 O(1)‖(P − z)u‖+O(h∞)‖u‖, (4.3)

which in view of previous estimates completes the proof of the reduction
to the case when m = 1. In what follows, we shall therefore be concerned
exclusively with the case when m = 1.
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Consider p0 a symbol in the class S(1) independent of the semiclassical
parameter with a non-negative real part

Re p0 > 0.

We assume that all the hypothesis (1.15), (1.16), (1.17), (1.24) and (1.25)
are fulfilled; and study the operator pw0 (x, hDx) defined by the h-Weyl
quantization of the symbol p0(x, ξ) with the following choice for the nor-
malization of the Weyl quantization

pw0 (x, hDx)u(x) =
∫

R2n
e2πi(x−y).ξp0

(x+ y

2 , hξ
)
u(y)dydξ. (4.4)

This normalization differs from the one considered in (1.14); but, of course,
it is completely equivalent, after a rescaling of the semiclassical parameter,
to prove Theorem 1.2 with the normalizations (1.14) or (4.4). This choice
is for convenience only. Writing

p0(Xj + Y ) = qj(Y ) +O(Y 3),

when Y → 0; where qj denotes the quadratic approximation which begins
the Taylor expansion of the symbol p0 at the doubly characteristic point Xj

and recalling (1.26) and (1.27); we notice that the following intersections
of kernels are zero( k0⋂

l=0
Ker

[
Re Fj(Im Fj)l

])
∩R2n = {0}, (4.5)

for any 1 6 j 6 N . One can deduce, as in [20], that these properties imply
that the following sums of k0 + 1 non-negative quadratic forms

k0∑
l=0

Re qj
(
(Im Fj)lX

)
, (4.6)

when 1 6 j 6 N , are all positive definite. Indeed, let X0 ∈ R2n be such
that

k0∑
l=0

Re qj
(
(Im Fj)lX0

)
= 0.

The non-negativity of the quadratic form Re qj implies that for all l =
0, ..., k0,

Re qj
(
(Im Fj)lX0

)
= 0. (4.7)

By denoting Re qj(X;Y ) the polar form associated to Re qj , we deduce
from the Cauchy-Schwarz inequality, (1.3) and (4.7) that for all l = 0, ..., k0
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and Y ∈ R2n,∣∣Re qj(Y ; (Im Fj)lX0
)∣∣2 =

∣∣σ(Y,Re Fj(Im Fj)lX0
)∣∣2

6 Re qj(Y )Re qj
(
(Im Fj)lX0

)
= 0.

It follows that for all l = 0, ..., k0 and Y ∈ R2n,

σ
(
Y,Re Fj(Im Fj)lX0

)
= 0,

which implies that for all l = 0, ..., k0,

Re Fj(Im Fj)lX0 = 0,

since σ is non-degenerate. We finally obtain from (4.5) that X0 = 0, which
proves that the quadratic forms (4.6) are positive definite. We then deduce
from Proposition 2.0.1 in [20] that there exist real-valued weight functions

gj ∈ S
(
1, 〈X〉−

2
2k0+1 dX2), (4.8)

and positive constants c1,j and c2,j such that for all X ∈ R2n,

Re qj(X) + c1,jHImqj gj(X) + 1 > c2,j〈X〉
2

2k0+1 > c2,j |X|
2

2k0+1 , (4.9)

where HImqj denotes the Hamilton vector field of Im qj . We use here the
usual notation S

(
m̃h, M̃

−2
h dX2), where m̃h and M̃h are positive functions

depending on the semiclassical parameter h, to stand for the symbol class

S
(
m̃h, M̃

−2
h dX2) =

{
ah ∈ C∞(R2n,C) : ∀α ∈ N2n,∃Cα > 0,

∀X ∈ R2n,∀ 0 < h 6 1, |∂αXah(X)| 6 Cαm̃h(X)M̃h(X)−|α|
}
.

Setting
gj,h(X) = gj

( X√
h

)
, (4.10)

for 0 < h 6 1; it follows from (4.9) and the homogeneity properties of the
quadratic form qj that for all X ∈ R2n and 0 < h 6 1,

hRe qj
( X√

h

)
+ c1,jh(HImqj gj)

( X√
h

)
+ h = Re qj(X)

+ c1,jh(HImqj gj,h)(X) + h > c2,jh
2k0

2k0+1 |X|
2

2k0+1 , (4.11)

since

(HImqj gj,h)(X) =
{
Im qj(X), gj

( X√
h

)}
=
{
hIm qj

( X√
h

)
, gj

( X√
h

)}
= h

{
Im qj

( X√
h

)
, gj

( X√
h

)}
= {Im qj , gj}

( X√
h

)
= (HImqj gj)

( X√
h

)
,
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where {p, q} stands for the Poisson bracket

{p, q} = ∂p

∂ξ
.
∂q

∂x
− ∂p

∂x
.
∂q

∂ξ
.

Since p0 ∈ S(1), it follows from (1.17) that there exists c3 > 1 such that
for all 1 6 j 6 N and X ∈ R2n,

|p0(X)| 6 c3|X −Xj |2 (4.12)

and
|p0(X)− z| > |z|2 when |X −Xj |2 6

|z|
2c3

. (4.13)

Recalling the assumption (1.24), one can find a positive constant c4 > 0
such that for all 1 6 j 6 N and |X| 6 c4,

rj(X) ∈ Γ, (4.14)

where rj are the symbols defined in (1.23), and Γ is a closed angular sector
with vertex at 0 included in the right open half-plane

Γ \ {0} ⊂
{
z ∈ C : Re z > 0

}
.

One may assume that

0 < c4 < inf
j,k=1,...,N

j 6=k

|Xj −Xk|. (4.15)

One can therefore find a positive constant c5 such that

∀ 1 6 j 6 N, ∀|X| 6 c4, |Im rj(X)| 6 c5Re rj(X). (4.16)

Let ψ be a C∞0 (R2n, [0, 1]) function such that

ψ(X) = 1, when |X| 6 c4
2 ; and supp ψ ⊂

{
X ∈ R2n : |X| 6 c4

}
. (4.17)

Setting
r̃j = ψrj , (4.18)

and recalling the well-known inequality

|f ′(x)|2 6 2f(x)‖f ′′‖L∞(R), (4.19)

fulfilled by any non-negative smooth function f with a bounded second
derivative, we deduce from (4.16) and (4.17) that there exists a positive
constant c6 such that for all 1 6 j 6 N and X ∈ R2n,

|∇Re r̃j(X)| 6 c6
√

Re r̃j(X) (4.20)
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and

|c5∇Re r̃j(X)−∇Im r̃j(X)| 6 c6
√
c5Re r̃j(X)− Im r̃j(X).

It follows that
|∇Im r̃j(X)| 6 |c5∇Re r̃j(X)−∇Im r̃j(X)|+ c5|∇Re r̃j(X)|

6 c6
√
c5Re r̃j(X)− Im r̃j(X) + c5c6

√
Re r̃j(X),

(4.21)

for all X ∈ R2n. We deduce from (1.23), (4.11), (4.17) and (4.18) that for
all |Y | 6 c4

2 and 0 < h 6 1,

Re p0(Xj + Y ) + c1,jh
{
Im p0(Xj + Y ), gj,h(Y )

}
− Re r̃j(Y )

− c1,jh(HImr̃j gj,h)(Y ) + h > c2,jh
2k0

2k0+1 |Y |
2

2k0+1 . (4.22)

Since from (4.8), (4.10) and (4.21),

h|(HImr̃j gj,h)(X)| . h|∇Im r̃j(X)||∇gj,h(X)| .
√
h|∇Im r̃j(X)|

. c6
√
h
√
c5Re r̃j(X)− Im r̃j(X) + c5c6

√
h
√
Re r̃j(X),

it follows from (4.22) that there exists a positive constant c7 such that for
all |Y | 6 c4

2 and 0 < h 6 1,

Re p0(Xj + Y ) + c1,jh
{
Im p0(Xj + Y ), gj,h(Y )

}
+ 2h+ c7Re r̃j(Y )

+ c7
(
c5Re r̃j(Y )− Im r̃j(Y )

)
> c2,jh

2k0
2k0+1 |Y |

2
2k0+1 . (4.23)

Notice from (1.19), (1.23), (4.16), (4.17) and (4.18), that for all |Y | 6 c4
2 ,

c7Re r̃j(Y ) + c7
(
c5Re r̃j(Y )− Im r̃j(Y )

)
6 (2c5 + 1)c7Re r̃j(Y )

6 (2c5 + 1)c7
(
Re qj(Y ) + Re r̃j(Y )

)
= (2c5 + 1)c7Re p0(Xj + Y ).

It follows that for all |Y | 6 c4
2 and 0 < h 6 1,(

1 + (2c5 + 1)c7
)
Re p0(Xj + Y ) + c1,jh

{
Im p0(Xj + Y ), gj,h(Y )

}
+ 2h

> c2,jh
2k0

2k0+1 |Y |
2

2k0+1 . (4.24)

Let C0 > 1 be a fixed constant. Then, by introducing the real-valued weight
function

gh(X) =
N∑
j=1

c1,jψ
(
2(X −Xj)

)
gj,h(X −Xj), (4.25)
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where ψ is the function defined in (4.17); and noticing from (4.8) and (4.10)
that

h
( N∑
j=1

c1,jgj,h(X −Xj)
)
HImp0

[
ψ
(
2(X −Xj)

)]
= O(h),

we deduce from (1.15), (1.16), (4.15) and (4.24) that there exist some pos-
itive constant c8, c9 and h0 such that for all X ∈ R2n and 0 < h 6 h0,

Re p0(X) + h(HImp0 gh)(X) + c8h > c9h
2k0

2k0+1 min
[
C

1
2
0 , (4c3) 1

2 δ(X)
] 2

2k0+1 ,

(4.26)
where δ stands for the distance to the set (Re p0)−1(0). Since Re p0 > 0,
we may also assume according to (4.8), (4.9), (4.10) and (4.25) that

sup
X∈R2n

|gh(X)| 6 3
4π , (4.27)

for all 0 < h 6 h0. Let z be in C and 0 < h 6 h0. We shall use a multiplier
method inspired by the one used by F. Hérau, J. Sjöstrand and C. Stolk in
[11]. By using the Wick quantization whose definition and properties are
recalled in Section A, one can write that

Re
(
[p0(
√
hX)− z]Wicku, [2− gh(

√
hX)]Wicku

)
(4.28)

= Re
(
[2− gh(

√
hX)]Wick[p0(

√
hX)− z]Wicku, u

)
=
(
Re
(
[2− gh(

√
hX)]Wick[p0(

√
hX)− z]Wick)u, u).

since real Hamiltonians get quantized in the Wick quantization by formally
selfadjoint operators on L2(Rn). Notice also from (4.8), (4.10) and (4.25)
that

gh(
√
hX) ∈ S(1, dX2), (4.29)

uniformly with respect to the parameter 0 < h 6 h0. We deduce from
symbolic calculus in the Wick quantization (A.10) that

Re
(
[2− gh(

√
hX)]Wick[p0(

√
hX)− z]Wick)

=
[(

2− gh(
√
hX)

)(
Re p0(

√
hX)− Re z

)
+
√
h

4π ∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+ 1
4πh(HImp0 gh)(

√
hX)

]Wick
+ Sh, (4.30)
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with ‖Sh‖L(L2) = O(h). Since from (4.19) and (4.29), we have

∣∣∣√h4π ∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

∣∣∣
.
√
h

√
Re p0(

√
hX) 6 Re p0(

√
hX) +O(h),

it follows from (4.27) that there exists a positive constant c10 such that for
all X ∈ R2n and 0 < h 6 h0,

(
2−gh(

√
hX)

)(
Re p0(

√
hX)−Re z

)
+
√
h

4π ∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+ 1
4πh(HImp0 gh)(

√
hX) >

1
4πRe p0(

√
hX) + 1

4πh(HImp0 gh)(
√
hX)− c10h−

9
4 max(0,Re z).

It follows from (4.26) that for all X ∈ R2n and 0 < h 6 h0,(
2−gh(

√
hX)

)(
Re p0(

√
hX)−Re z

)
+
√
h

4π ∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+ 1
4πh(HImp0 gh)(

√
hX) > −

( 1
4π c8 + c10

)
h− 9

4 max(0,Re z)

+ 1
4π c9h

2k0
2k0+1 min

[
C

1
2
0 , (4c3) 1

2 δ(
√
hX)

] 2
2k0+1 .

We then obtain that for all X ∈ R2n and 0 < h 6 h0,(
2−gh(

√
hX)

)(
Re p0(

√
hX)−Re z

)
+
√
h

4π ∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+ 1
4πh(HImp0 gh)(

√
hX) > 1

8π c9h
2k0

2k0+1 |z|
1

2k0+1

+ 1
4π c9h

2k0
2k0+1

(
min

[
C

1
2
0 , (4c3) 1

2 δ(
√
hX)

] 2
2k0+1 − |z|

1
2k0+1

)
+ 9

4

( 1
18π c9h

2k0
2k0+1 |z|

1
2k0+1 −max(0,Re z)

)
−
( 1

4π c8 + c10

)
h.

Considering the set

ΩC,h =
{
z ∈ C : Re z 6 1

18π c9h
2k0

2k0+1 |z|
1

2k0+1 , Ch 6 |z| 6 C0

}
, (4.31)

where C � 1 is a large constant whose value will be chosen later, and
ϕ ∈ C∞0 (R, [0, 1]) such that

ϕ(X) = 1 when |X| 6 1
4c3

, and supp ϕ ⊂
{
X ∈ R : |X| 6 1

3c3

}
, (4.32)
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we notice that for all X ∈ R2n, 0 < h 6 h0, C > 1 and z ∈ ΩC,h,

1
4π c9h

2k0
2k0+1

(
min

[
C

1
2
0 , (4c3) 1

2 δ(
√
hX)

] 2
2k0+1 − |z|

1
2k0+1

)
+ 9

4

( 1
18π c9h

2k0
2k0+1 |z|

1
2k0+1 −max(0,Re z)

)
> − 1

4π c9h
2k0

2k0+1 |z|
1

2k0+1ϕ
(δ(√hX)2

|z|

)
.

By noticing now that one can find a C∞0 (R2n, [0, 1]) function Φ such that

Φ(X) = 1 when |X| 6 1√
4c3

, and supp Φ ⊂
{
X ∈ R2n : |X| 6 1√

3c3

}
;

(4.33)
verifying for all X ∈ R2n, 0 < h 6 h0 and z ∈ ΩC,h,

ϕ
(δ(√hX)2

|z|

)
6

N∑
j=1

Φ
(√hX −Xj√

|z|

)
,

we get that for all X ∈ R2n, 0 < h 6 h0, C > 1 and z ∈ ΩC,h,(
2− gh(

√
hX)

)(
Re p0(

√
hX)− Re z

)
+
√
h

4π ∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX) + 1

4πh(HImp0 gh)(
√
hX)

>
1

8π c9h
2k0

2k0+1 |z|
1

2k0+1 −
( 1

4π c8 + c10

)
h

− 1
4π c9h

2k0
2k0+1 |z|

1
2k0+1

N∑
j=1

Φ
(√hX −Xj√

|z|

)
.

It follows from (4.28), (4.30) and (A.4) that there exist some positive con-
stants c11 and c12 such that for all 0 < h 6 h0, C > 1, z ∈ ΩC,h and
u ∈ S(Rn),

Re
(
[p0(
√
hX)− z]Wicku, [2− gh(

√
hX)]Wicku

)
+ c11h‖u‖2L2

+ c11h
2k0

2k0+1 |z|
1

2k0+1

N∑
j=1

(
Φ
(√hX −Xj√

|z|

)Wick
u, u

)
> c12h

2k0
2k0+1 |z|

1
2k0+1 ‖u‖2L2 . (4.34)

Recalling (4.29) and (4.31), we deduce from the Cauchy-Schwarz inequality
and (A.5) that there exist some positive constants c13, c14 and c15 such that
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for all 0 < h 6 h0, C > c13, z ∈ ΩC,h and u ∈ S(Rn),

c15h
2k0

2k0+1 |z|
1

2k0+1

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|

)Wick
u
∥∥∥
L2

+
∥∥p0(
√
hX)Wicku− zu‖L2 > c14h

2k0
2k0+1 |z|

1
2k0+1 ‖u‖L2 . (4.35)

Since from (4.33), we have

Φ
(√hX −Xj√

|z|

)
∈ S

(
1, |z|

h
dX2

)
, (4.36)

when 1 6 j 6 N , we notice from (4.31), (A.8) and (A.9) that∥∥∥Φ
(√hX −Xj√

|z|

)Wick
u
∥∥∥
L2

=
∥∥∥Φ
(√hX −Xj√

|z|

)w
u
∥∥∥
L2

+O
( 1
C

)
‖u‖L2

and ∥∥p0(
√
hX)Wicku− zu‖L2 =

∥∥p0(
√
hX)wu− zu‖L2 +O(h)‖u‖L2 .

We deduce from (4.35) that there exist some positive constants c16 and c17
such that for all 0 < h 6 h0, C > c17, z ∈ ΩC,h and u ∈ S(Rn),

c15h
2k0

2k0+1 |z|
1

2k0+1

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|

)w
u
∥∥∥
L2

+
∥∥p0(
√
hX)wu− zu‖L2

> c16h
2k0

2k0+1 |z|
1

2k0+1 ‖u‖L2 . (4.37)

We shall now study the quantity
N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|

)w
u
∥∥∥
L2
.

To do so, we shall establish an a priori estimate similar to the one proved
in [11] (Proposition 4.1), namely that for all 0 < h 6 h0, C > c17, z ∈ ΩC,h
and u ∈ S(Rn),

1
|z|
‖p0(
√
hX)wu− zu‖L2 +O

(√ h

|z|

)
‖u‖L2 &

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|

)w
u
∥∥∥
L2
.

(4.38)
In [11], this estimate is proved on the FBI transform side. By using similar
arguments, namely a second microlocalization, we shall prove this estimate
directly without any use of the FBI transform.
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Let Ψ be a C∞0 (R2n, [0, 1]) function such that

Ψ = 1 when |Y | 6 1√
3c3

; and supp Ψ ⊂
{
Y ∈ R2n : |Y | 6 1√

2c3

}
.

We notice from (4.12) and (4.13) that the symbols
1
|z|
p0(
√
|z|Y +Xj)Ψ(Y ),

where 1 6 j 6 N , are uniformly bounded together with all their derivatives
with respect to the parameter z when z belongs to ΩC,h; and that these
symbols are elliptic∣∣∣ 1

|z|
p0(
√
|z|Y +Xj)Ψ(Y )− z

|z|

∣∣∣ > 1
2 ,

on the set {
Y ∈ R2n : |Y | 6 1√

3c3

}
.

When quantizing these symbols in the h̃-Weyl quantization with the new
semiclassical parameter

h̃ = h

|z|
, (4.39)

we deduce from (4.33) and this ellipticity property that for all 0 < h 6 h0,
C > c17, z ∈ ΩC,h and u ∈ S(Rn),∥∥Φ(

√
h̃Y )wu

∥∥
L2 6 O(1)

∥∥∥ 1
|z|
p0(
√
|z|
√
h̃Y +Xj)wu−

z

|z|
u
∥∥∥
L2

+O(h̃)‖u‖L2 .

We recall from (4.31) that

h̃ = h

|z|
6

1
C
� 1,

where the large constant C � 1 appearing in (4.31) remains to be chosen.
One can then deduce from (4.39) and the symplectic invariance property
of the Weyl quantization (Theorem 18.5.9 in [12]) while using the following
affine symplectic transformation

X 7→ X − 1√
h
Xj ,

that for all 0 < h 6 h0, C > c18, z ∈ ΩC,h and u ∈ S(Rn),∥∥∥Φ
(√hX −Xj√

|z|

)w
u
∥∥∥
L2
6 O(1) 1

|z|
‖p0(
√
hX)wu− zu‖L2 +O

( h
|z|

)
‖u‖L2 ,
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where c18 is a large positive constant and h0 a new positive constant with
0 < h0 � 1. This proves the estimate (4.38). We can next conclude as
follows. Noticing from (4.31) that

O
(√ h

|z|

)
= O

( 1√
C

)
and

h
2k0

2k0+1 |z|
1

2k0+1O
( 1
|z|

)
= O

( 1

C
2k0

2k0+1

)
,

we deduce from (4.37) and (4.38) that there exist some positive constants
c0 and c̃0 such that for all 0 < h 6 h0, C > c0, z ∈ ΩC,h and u ∈ S(Rn),∥∥p0(

√
hX)wu− zu‖L2 > c̃0h

2k0
2k0+1 |z|

1
2k0+1 ‖u‖L2 . (4.40)

Finally, we deduce from the symplectic invariance property of the Weyl
quantization (Theorem 18.5.9 in [12]) while using the linear symplectic
transformation

(x, ξ) 7→ (h− 1
2x, h

1
2 ξ),

that we have for all 0 < h 6 h0, C > c0, z ∈ ΩC,h and u ∈ S(Rn),∥∥pw0 (x, hDx)u− zu‖L2 > c̃0h
2k0

2k0+1 |z|
1

2k0+1 ‖u‖L2 . (4.41)

Recalling that m = 1 and noticing from the asymptotic expansion (1.11)
and the Calderón-Vaillancourt Theorem that

‖Pw(x, hDx;h)− pw0 (x, hDx)‖L(L2) = O(h),

when h → 0, we finally obtain by possibly increasing the value of the
positive constant c0 > 0 that for all 0 < h 6 h0, C > c0, z ∈ ΩC,h and
u ∈ S(Rn),∥∥Pw(x, hDx;h)u− zu‖L2 >

c̃0
2 h

2k0
2k0+1 |z|

1
2k0+1 ‖u‖L2 , (4.42)

where h0 is a new positive constant such that 0 < h0 � 1. This ends the
proof of Theorem 1.2.

Appendix A. Appendix on Wick calculus

The purpose of this section is to recall the definition and basic properties
of the Wick quantization that we need for the proof of Theorem 1.2. We
follow here the presentation of the Wick quantization given by N. Lerner
in [14, 15, 16] and refer the reader to his works for the proofs of the results
recalled below.
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The main property of the Wick quantization is its property of positivity,
i.e., that non-negative Hamiltonians define non-negative operators

a > 0⇒ aWick > 0.

We recall that this is not the case for the Weyl quantization and refer to
[14] for an example of non-negative Hamiltonian defining an operator which
is not non-negative.
Before defining properly the Wick quantization, we first need to recall

the definition of the wave packets transform of a function u ∈ S(Rn),

Wu(y, η) = (u, ϕy,η)L2(Rn)

= 2n/4
∫

Rn

u(x)e−π(x−y)2
e−2iπ(x−y).ηdx, (y, η) ∈ R2n.

where
ϕy,η(x) = 2n/4e−π(x−y)2

e2iπ(x−y).η, x ∈ Rn,

and x2 = x2
1 + ...+x2

n. With this definition, one can check (See Lemma 2.1
in [14]) that the mapping u 7→ Wu is continuous from S(Rn) to S(R2n),
isometric from L2(Rn) to L2(R2n) and that we have the reconstruction
formula

∀u ∈ S(Rn),∀x ∈ Rn, u(x) =
∫

R2n
Wu(y, η)ϕy,η(x)dydη. (A.1)

We denote by ΣY the operator defined in the Weyl quantization by the
symbol

pY (X) = 2ne−2π|X−Y |2 , Y = (y, η) ∈ R2n,

by using the same normalization

(awu)(x) =
∫

R2n
e2iπ(x−y).ξa

(x+ y

2 , ξ
)
u(y)dydξ, (A.2)

as in [14]. This operator is a rank-one orthogonal projection(
ΣY u

)
(x) = Wu(Y )ϕY (x) = (u, ϕY )L2(Rn)ϕY (x),

and we define the Wick quantization of any L∞(R2n) symbol a as

aWick =
∫

R2n
a(Y )ΣY dY . (A.3)

More generally, one can extend this definition when the symbol a belongs
to S ′(R2n) by defining the operator aWick for any u and v in S(Rn) by

< aWicku, v >S′(Rn),S(Rn)=< a(Y ), (ΣY u, v)L2(Rn) >S′(R2n),S(R2n),
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where < ·,· >S′(Rn),S(Rn) denotes the duality bracket between the spaces
S ′(Rn) and S(Rn). The Wick quantization is a positive quantization

a > 0⇒ aWick > 0. (A.4)

In particular, real Hamiltonians get quantized in this quantization by for-
mally self-adjoint operators and one has (See Proposition 3.2 in [14]) that
L∞(R2n) symbols define bounded operators on L2(Rn) such that

‖aWick‖L(L2(Rn)) 6 ‖a‖L∞(R2n). (A.5)

According to Proposition 3.3 in [14], the Wick and Weyl quantizations of
a symbol a are linked by the following identities

aWick = ãw, (A.6)

with

ã(X) =
∫

R2n
a(X + Y )e−2π|Y |22ndY , X ∈ R2n, (A.7)

and
aWick = aw + r(a)w, (A.8)

where r(a) stands for the symbol

r(a)(X) =
∫ 1

0

∫
R2n

(1− θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ, X ∈ R2n.

(A.9)
We also recall the following composition formula obtained in the proof of
Proposition 3.4 in [14],

aWickbWick =
[
ab− 1

4πa
′.b′ + 1

4iπ {a, b}
]Wick

+ S, (A.10)

with ‖S‖L(L2(Rn)) 6 dn‖a‖L∞γ2(b), when a ∈ L∞(R2n) and b is a smooth
symbol satisfying

γ2(b) = sup
X∈R2n,

T∈R2n,|T |=1

|b(2)(X)T 2| < +∞.

The term dn appearing in the previous estimate stands for a positive con-
stant depending only on the dimension n; and the notation {a, b} denotes
the Poisson bracket

{a, b} = ∂a

∂ξ
.
∂b

∂x
− ∂a

∂x
.
∂b

∂ξ
.
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