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MATRIX FACTORIZATIONS AND SINGULARITY
CATEGORIES FOR STACKS

by Alexander POLISHCHUK & Arkady VAINTROB

Abstract. — We study matrix factorizations of a potential W which is a sec-
tion of a line bundle on an algebraic stack. We relate the corresponding derived
category (the category of D-branes of type B in the Landau-Ginzburg model with
potential W) with the singularity category of the zero locus of W generalizing a
theorem of Orlov. We use this result to construct push-forward functors for matrix
factorizations with relatively proper support.
Résumé. — On étudie les factorisations matricielles d’un potentiel W qui est

une section d’un fibré en droites sur un champ algébrique. On établit une relation
entre la catégorie dérivée correspondante (la catégorie des D-branes de type B dans
le modèle de Landau-Ginzburg avec potentiel W) et la catégorie des singularités
du lieu des zéros de W généralisant un théorème d’Orlov. On utilise ce résultat
pour construire des foncteurs image directe pour les factorisations matricielles à
supports relativement propres.

Introduction

Matrix factorizations arose in the work of Eisenbud [10] in connection
with the study of maximal Cohen-Macaulay modules. Since then they be-
came a standard tool and an object of study in commutative algebra (see
e.g. [6, 37]). Recall that a matrix factorization of an element W of a com-
mutative ring R is a Z/2-graded finitely generated projective R-module
E = E0 ⊕ E1 equipped with an odd endomorphism δ : E → E such that
δ2 = W · id. Matrix factorizations of a fixed element W (called a potential)
form a triangulated category HMF(W ) with morphisms defined as “chain
maps” up to homotopy.
Following the suggestion of Kontsevich, matrix factorizations were used

by physicists to describe D-branes of type B in Landau-Ginzburg models

Keywords: matrix factorizations, singularity category, algebraic stack.
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2610 Alexander POLISHCHUK & Arkady VAINTROB

(see [19, 20]). They found applications in various approaches to mirror sym-
metry and in the study of sigma model/Landau-Ginzburg correspondence
(see [21, 9, 34, 4, 14]). Mathematical foundations of this circle of ideas were
laid down in a series of papers by Orlov [25, 26, 27].
The fundamental result of Orlov [25, Thm. 3.9] states that the triangu-

lated category HMF(W ) is equivalent to the so-called singularity category
DSg(X0) of the affine hypersurface X0 = Spec(R/(W )) ⊂ X = Spec(R)
(assuming that X is smooth and W is not a zero divisor). Here DSg(X0) is
defined as the quotient of the bounded derived category Db(X0) of coher-
ent sheaves on X0 by the triangulated subcategory Per(X0) of perfect com-
plexes. One should think of a triangulated categoryDSg(X0) as a “measure”
of singularity of X0 (in the case when X0 is smooth one has DSg(X0) = 0).
Kontsevich (see [23]) suggested to view categories of matrix factoriza-

tions as examples of noncommutative spaces. In this context it is natural to
consider analogs of these categories for a potential W on a non-necessarily
affine schemeX. In this case simply using the homotopy category HMF(W )
does not give the right notion because one has to take into account the pres-
ence of higher cohomology of coherent sheaves on X. One way to do this is
to use a dg-version of the functor RHom (see [21, Sec. 3.2], [33]). Another
(proposed by Orlov, see [21, Sec. 3.2]) is to replace the homotopy category
of matrix factorizations by an appropriate localization. This is the path we
follow in this paper. We define the derived category of matrix factorizations
DMF(X,W ) as the quotient of the homotopy category HMF(X,W ) by the
triangulated subcategory formed by matrix factorizations that are locally
contractible. This definition of DMF(X,W ) is different from the one pro-
posed by Orlov (see Remark 3.20) but is equivalent to it under appropriate
assumptions on X.
In examples coming from physics it is often necessary to consider cate-

gories of matrix factorizations on orbifolds. To include this case we consider
a more general situation where X is an algebraic stack and W is a section
of a line bundle over X. Our main result (see Theorem 3.14) is a generaliza-
tion of Orlov’s theorem to this case. Namely, we show that for a potential
W on a smooth algebraic stack X satisfying some technical assumptions
the derived category DMF(X,W ) of matrix factorizations is equivalent to
the singularity category of the zero locus of W .
The second goal of the paper is to define and study push-forward func-

tors for matrix factorizations as a preparation to developing an analog of
the theory of Fourier-Mukai transforms. The naive definition of the push-
forward functor with respect to a smooth affine morphism leads to matrix
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MATRIX FACTORIZATIONS FOR STACKS 2611

factorizations of possibly infinite rank (we call them quasi-matrix factor-
izations). On the other hand, using the equivalence with the singularity
category and the notion of support for matrix factorizations which we de-
velop in Section 5, we define a push-forward functor for the derived cate-
gory of matrix factorizations with relatively proper support. To check that
these two types of functors are compatible we prove some partial analogs
of Orlov’s equivalence for quasi-matrix factorizations.

In the paper [28] we use the results of this paper to provide an alge-
braic analog of the theory developed by Fan, Jarvis and Ruan in [12, 11].
For each quasihomogeneous polynomialW with an isolated singularity they
construct a cohomological field theory which is a Landau-Ginzburg counter-
part of the topological sigma model producing Gromov-Witten invariants.
The main technical ingredient of the Fan-Jarvis-Ruan theory is a collection
of cohomology classes on the moduli space of stable curves with additional
data (called W -curves). The construction given in [11] uses sophisticated
analytic tools. We construct in [28] similar classes using categories of ma-
trix factorizations and functors between them introduced in this paper.
The starting point of our approach is the identification made in our pre-
vious paper [29] of the orbifold Milnor ring of W with its residue pairing
(which is equal to the state space of the Fan-Jarvis-Ruan theory) with the
Hochschild homology of the dg-category of equivariant matrix factoriza-
tions of W equipped with the canonical metric.

Now let us describe the structure of the paper. In Section 1 we give basic
definitions and constructions for matrix factorizations on stacks.

The new feature here is that we allow the potential W to be a sec-
tion of a non-trivial line bundle L on X. In this setup we have a natural
definition of Z-graded dg-categories of matrix factorizations, making our
matrix factorizations similar to graded matrix factorizations considered in
[26, 18]. The Z/2-graded dg-categories of matrix factorizations (considered
originally in [25]) can be considered only in the case when L is trivial.
In Section 2 we show how our formalism can be used to work with equi-
variant matrix factorizations. Our main result, Theorem 3.14, generalizing
Orlov’s equivalence [25, Thm. 3.9] between singularity categories and de-
rived categories of matrix factorizations to the non-affine case is proved in
Section 3. As in the affine situation, there is a natural functor from the
homotopy category HMF(W ) to the singularity category DSg(X0) of the
zero locus of W . The main difficulty in the non-affine case is to prove the
surjectivity of the induced functor from the derived category DMF(W ) to
DSg(X0). This is achieved by combining Orlov’s description of morphisms

TOME 61 (2011), FASCICULE 7



2612 Alexander POLISHCHUK & Arkady VAINTROB

in DSg(X0) (see [25, Prop. 1.21]) with the standard 2-periodic resolution
associated with a matrix factorization. In Section 4 we prove some partial
analogs of this equivalence for quasi-matrix factorizations — factorizations
of possibly infinite rank which will be used in the study of push-forward
functors. In Section 5 we introduce the notion of support for matrix fac-
torizations. By definition, the support of (E, δ) is the subset of the zero
locus of W consisting of points x such that the 2-periodic complex defined
by the pull-back of (E, δ) to x has nonzero cohomology. We prove that this
corresponds to the natural notion of support for objects of the singularity
category. More precisely, we have to work with the idempotent completion
of this category (following [27]). Finally, in Section 6 we study push-forward
functors for categories of matrix factorizations. We define the push-forward
of matrix factorizations with relatively proper support for a representable
morphism of smooth stacks (satisfying additional technical assumption),
taking values in the idempotent completion of the derived category of ma-
trix factorizations on the base. We prove that for a smooth affine morphism
with geometrically integral fibers this push-forward agrees with the obvious
notion of a push-forward for quasi-matrix factorizations.

Acknowledgments. We would like to thank Maxim Kontsevich, Dmitry
Orlov and Tony Pantev for helpful discussions. Part of this work was done
during our stay at the IHES and we are grateful to it for hospitality and for
stimulating atmosphere. The first author was partially supported by the
NSF grant DMS-1001364.

Notations and conventions. We work with schemes and stacks over a
ground field k. All stacks we are dealing with are assumed to be alge-
braic, Noetherian and semi-separated. For such a stack X we denote by
Coh(X), (resp., Qcoh(X); resp., Db(X)) the category of coherent sheaves
(resp., quasicoherent sheaves; resp., bounded derived category of coherent
sheaves) onX. By [2, Cor. 2.11],Db(X) is equivalent to the full subcategory
of the bounded derived category of OX -modules consisting of complexes
with coherent cohomology. We call a stack X Gorenstein if there exists a
presentation U → X, where U is a Gorenstein scheme. This implies that
the structure sheaf OX is a dualizing object in Db(X). By vector bundles
we mean locally free sheaves of finite rank.
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1. Matrix factorizations of a section of a line bundle

Let X be an algebraic stack, L a line bundle on X, and W ∈ H0(X,L)
a section (called a potential).

Definition 1.1. — A matrix factorization Ē = (E•, δ•) of W on X

consists of a pair of vector bundles (i.e., locally free sheaves of finite rank)
E0, E1 on X together with homomorphisms

δ1 : E1 → E0 and δ0 : E0 → E1 ⊗ L,

such that δ0δ1 = W · id and (δ1 ⊗ id)δ0 = W · id.
We will often assume that the potential W is not a zero divisor, i.e., the

morphism W : OX → L is injective.

It is convenient to introduce formal expressions V ⊗ Ln/2, where V is
a vector bundle X, which we will call half-twisted bundles. They have a
natural tensor product

(V1 ⊗ Ln1/2)⊗ (V2 ⊗ Ln2/2) = V1 ⊗ V2 ⊗ L(n1+n2)/2.

The space of morphisms between half-twisted bundles V1⊗Ln1/2 and V2⊗
Ln2/2 is defined only when n2 − n1 is even and given by

Hom(V1 ⊗ Ln1/2, V2 ⊗ Ln2/2) = HomX(V1, V2 ⊗ L(n2−n1)/2).

We will also use Z/2-graded half-twisted bundles V =
(
V0̄ ⊗ Lm/2

)
⊕(

V1̄ ⊗ Ln/2
)
and we define their “half-twists" by

V (L1/2) := V0̄ ⊗ Lm/2 ⊕ V1̄ ⊗ L(n+1)/2

and
V (L−1/2) := V0̄ ⊗ Lm/2 ⊕ V1̄ ⊗ L(n−1)/2.

With a matrix factorization Ē = (E•, δ•) we associate a Z/2-graded
half-twisted bundle

E(L1/2) = E0 ⊕ (E1 ⊗ L1/2).

The differential δ can be viewed as an odd morphism

δ : E(L1/2)→ E(L1/2)⊗ L1/2

such that δ2 = W .

Definition 1.2. — We define the dg-category MF(X,W ) of matrix fac-
torizations of W as follows. For matrix factorizations Ē and F̄ the set of
morphisms HomMF(Ē, F̄ ) is a Z-graded complex

HomMF(Ē, F̄ )i = Homimod 2(E(L1/2), F (L1/2)⊗ Li/2),

TOME 61 (2011), FASCICULE 7
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where Hom0̄ (resp., Hom1̄) denote the even (resp., odd) morphisms between
the Z/2-graded half-twisted bundles. Explicitly,

HomMF(Ē, F̄ )2n = Hom(E0, F0 ⊗ Ln)⊕Hom(E1, F1 ⊗ Ln),

HomMF(Ē, F̄ )2n+1 = Hom(E0, F1 ⊗ Ln+1)⊕Hom(E1, F0 ⊗ Ln).

The differential on HomMF(Ē, F̄ ) is given by

df = δF ◦ f − (−1)|f |f ◦ δE . (1.1)

We denote by HMF(X,W ) = H0MF(X,W ) the corresponding homotopy
category. In other words, the objects of HMF(X,W ) are matrix factoriza-
tions of W , morphisms are the spaces H0HomMF(Ē, F̄ ). We will usually
omit X from the notation. As in the affine case considered in [25], the
category HMF(W ) has a triangulated structure.

Definition 1.3. — We define the translation functor on HMF(W ) by

Ē[1] = (E[1], δ[1]), where E[1]0 = E1 ⊗ L,E[1]1 = E0, δ[1]i = −δi+1.

The mapping cone of a closed morphism of matrix factorizations f : Ē → F̄

is defined as C(f) = F⊕E[1] with the differential given by the same formula
as for the category of complexes. We have canonical closed morphisms of
matrix factorizations F̄ → C(f) and C(f) → Ē[1]. We define the class of
exact triangles as those isomorphic to some triangle of the form

Ē
f� F̄ C(f) Ē[1]. (1.2)

The standard proof that the homotopy category of complexes is triangu-
lated can be adapted to show that we obtain a triangulated structure on
HMF(W ) in this way.

Note that for n ∈ Z one has

E[n](L1/2)i = E(L1/2)i+n ⊗ Ln/2

with δ[n]i = (−1)nδi+n.
Sometimes it is convenient to work with matrix factorizations of possibly

infinite rank.

Definition 1.4. — A quasi-matrix factorization Ē = (E0 ⊕ E1, δ) of
W ∈ H0(X,L) consists of a pair of locally free sheaves (not necessarily of
finite rank) E0 and E1 equipped with the differentials δ0, δ1 as above. As
before, quasi-matrix factorizations form a dg-category MF∞(X,W ), and
the corresponding homotopy category HMF∞(X,W ) is triangulated.

ANNALES DE L’INSTITUT FOURIER



MATRIX FACTORIZATIONS FOR STACKS 2615

Matrix factorizations can be used to produce infinite (2-periodic up to
a twist) complexes of vector bundles on the zero locus X0 = W−1(0).
Namely, with a quasi-matrix factorization Ē = (E•, δ•) we associate a Z-
graded complex com(Ē) of vector bundles on X0

. . . (E0 L−1)|X0

δ0� E1|X0

δ1� E0|X0

δ0� (E1 L)|X0
. . . (1.3)

where δi is induced by δi, and E0|X0 is placed in degree 0. Note that we
can also present com(Ē) using half-twisted bundles:

com(Ē)n = E(L1/2)n ⊗ Ln/2|X0 .

This construction extends to a dg-functor

com : MF∞(W )→ Com(X0)

that induces an exact functor com : HMF∞(W ) → H0 Com(X0) between
the corresponding homotopy categories.

Lemma 1.5. — If W is not a zero divisor, then for any quasi-matrix
factorization Ē of W the complex com(Ē) is exact.

Proof. — For a coherent sheaf F on X let us denote by WF ⊂ F the
image of the map F ⊗ L−1 → F induced by W . The kernel of the map
δ1 : E1/WE1 → E0/WE0 can be identified with δ−1

1 (WE0)/WE1. But
WE0 = δ1δ0E0 and δ1 is injective, so we obtain δ−1

1 (WE0) = δ0E0. Now
δ0 induces an isomorphism

E0/δ1E1 ' δ0(E0 ⊗ L−1)/WE1 ' ker(δ1).

But
E0/δ1E1 ' coker(δ1) ' coker(δ1 : E1/WE1 → E0/WE0),

which finishes the proof. �

For a morphism of stacks f : X ′ → X, a line bundle L over X and
a section W ∈ H0(X,L) we have natural pull-back functors of matrix
factorizations: a dg-functor

f∗ : MF(X,W )→ MF(X ′, f∗W ),

where f∗W is the induced section of f∗L on X ′, and the induced exact
functor

f∗ : HMF(X,W )→ HMF(X, f∗W ).

TOME 61 (2011), FASCICULE 7



2616 Alexander POLISHCHUK & Arkady VAINTROB

2. Equivariant matrix factorizations

Here we define equivariant matrix factorizations and show that they can
be viewed as a particular case of the construction of the previous section.
For the general background on group actions on stacks see e.g. [32].

Let Γ be an affine algebraic group acting on a stack X. Let W be a
regular function on X, semi-invariant with respect to Γ, i.e., we have a
character χ : Γ→ Gm such that

W (γ · x) = χ(γ)W (x)

for γ ∈ Γ, x ∈ X.

Definition 2.1. — A Γ-equivariant matrix factorization of W with re-
spect to the character χ is a pair of Γ-equivariant vector bundles (E0, E1)
on X together with Γ-invariant homomorphisms

δ1 : E1 → E0 and δ0 : E0 → E1 ⊗ χ,

such that δ0δ1 = W · id and δ1δ0 = W · id.
Γ-equivariant matrix factorizations form a dg-category MFΓ,χ(X,W )

with morphisms given by

HomMFΓ(Ē, F̄ )2n = Hom(E0, F0 ⊗ χn)Γ ⊕Hom(E1, F1 ⊗ χn)Γ,

HomMFΓ(Ē, F̄ )2n+1 = Hom(E0, F1 ⊗ χn+1)Γ ⊕Hom(E1, F0 ⊗ χn)Γ

and the differential defined by (1.1). The corresponding homotopy category
HMFΓ,χ(X,W ) has a triangulated structure defined as in Definition (1.3).
We will usually omit X and χ from the notation.

Note that closed morphisms of degree zero between Γ-equivariant matrix
factorizations Ē and F̄ are given by pairs of Γ-invariant morphisms (E0 →
F0, E1 → F1) commuting with δ.
Equivariant matrix factorizations of W can be described as matrix fac-

torizations on the stack Y = X/Γ with respect to the line bundle Lχ−1

which corresponds to the Gm-torsor defined as the push-out of the Γ-
torsor U → X under χ−1. Note that W descends to a global section
W ∈ H0(Y,Lχ−1). Viewing vector bundles on Y as Γ-equivariant vector
bundles on X we immediately obtain the following result.

Proposition 2.2. — The dg-categories (resp., triangulated categories)
MFΓ,χ(X,W ) and MF(Y,W ) (resp., HMFΓ,χ(X,W ) and HMF(Y,W )) are
equivalent.

ANNALES DE L’INSTITUT FOURIER
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Conversely, ifW is a section of a line bundle L on a stack X, then matrix
factorizations of W can be viewed as Gm-equivariant matrix factorizations
on the Gm-torsor X̃ → X associated with L−1. Indeed, W can be viewed
as a function W̃ on X̃, such that W̃ (λ · x̃) = λ · W̃ (x̃) for λ ∈ Gm. In
other words, W̃ is semi-invariant with respect to Gm and the character
id : Gm → Gm. Proposition 2.2 applied to the action of Gm on X̃ implies
that the dg-categories MF(X,W ) and MFGm,id(X̃, W̃ ) are equivalent.
Let X (resp., X ′) be a stack with an action of a group Γ (resp., Γ′).

Assume that we have a homomorphism π : Γ′ → Γ and a Γ′-equivariant
morphism f : X ′ → X. Given a character χ : Γ → Gm and a function W
on X such that W (γ · x) = χ(γ)W (x), let f∗W be the pull-back of W to
X ′. Then f∗W is semi-invariant with respect to the character χ′ = χ ◦ π
of Γ′. In this situation we have a natural pull-back dg-functor

MFΓ,χ(X,W )→ MFΓ′,χ′(X ′, f∗W ). (2.1)

3. Connection with categories of singularities

In this section we define the derived category DMF(X,W ) of matrix
factorizations of a potential W ∈ H0(X,L) on a stack X as a suitable
localization of HMF(X,W ). Our main result is Theorem 3.14 establishing
equivalence of DMF(X,W ) with the singularity category of X0, the zero
locus of W . This is a generalization of [25, Thm. 3.9].

Definition 3.1. — Let X be an algebraic stack.
We say that X
(i) has the resolution property (RP) if for every coherent sheaf F on X

there exists a vector bundle V on X and a surjection V → F.
(ii) has finite cohomological dimension (FCD) if there exists an integer

N such that for every quasicoherent sheaf F on X one has Hi(X,F) = 0
for i > N . We call the minimal N with this property the cohomological
dimension of X.

(iii) is an FCDRP-stack if it has both properties (i) and (ii).
(iv) is a nice quotient stack if X = U/Γ, where U is a Noetherian scheme

and Γ is a reductive linear algebraic group, such that U has an ample family
of Γ-equivariant line bundles.

Note that by [35], if X is a nice quotient stack then it has the resolu-
tion property. Such a stack also has finite cohomological dimension, as the
following lemma shows.

TOME 61 (2011), FASCICULE 7



2618 Alexander POLISHCHUK & Arkady VAINTROB

Lemma 3.2. — Let X = U/Γ be a quotient stack, where U is a scheme
and Γ is a reductive group, and let π : U → X be the natural projection.
(i) For any quasicoherent sheaves F and G on X one has natural isomor-

phisms
ExtiX(F,G) ' ExtiU (π∗F, π∗G)Γ.

(ii) Assume that U can be covered with N affine open subsets. If P is a
locally free sheaf on X and F is a quasicoherent sheaf on X then

ExtiX(P,F) = 0 for i > N.

In particular, X has cohomological dimension 6 N .

Proof. — (i) For i = 0 this follows from the definition of the morphisms
in the category of Γ-equivariant sheaves on U . The general case follows
from the exactness of the functor of Γ-invariants.

(ii) By part (i), it suffices to prove a similar fact on the scheme U , which
follows from the proof of [25, Lem. 1.12]. �

Remark 3.3. — By [24, Prop. 5.1] if X is a separated DM stack of finite
type over k that has quasi-projective coarse moduli space then X has RP if
and only it is a quotient stack. Moreover, in this case X is a nice quotient
stack. For example, this is true for every smooth separated DM stack of
finite type over a field of characteristic zero with quasi-projective coarse
moduli space (see [24, Thm. 4.4]).

The condition of finite cohomological dimension is stable under passing
to open and closed substacks. More generally, we have the following simple
observation.

Lemma 3.4. — Let f : X → Y be a representable morphism of Noe-
therian stacks. If Y has finite cohomological dimension then so does X.

Proof. — It suffices to prove that Rf∗ has finite cohomological dimen-
sion. But this can be checked by replacing Y with its presentation, so we can
assume Y to be a scheme. Now the assertion follows from the assumption
that our stacks are Noetherian. �

Recall (see [17]) that the full subcategory Per(X) ∈ Db(X) of perfect
complexes consists of objects, locally isomorphic in the derived category to
a bounded complex of vector bundles.

Lemma 3.5. — Let X be a stack with the resolution property.
(i) For every complex C• ∈ Db(X) there exists a bounded above complex

of vector bundles P • and a quasi-isomorphism P • → C•.

ANNALES DE L’INSTITUT FOURIER
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(ii) Any object of Per(X) is isomorphic in Db(X) to a bounded complex
of vector bundles.
(iii) For every object C• ∈ Per(X) there exists a bounded complex of

vector bundles P • and a quasi-isomorphism P • → C•.

Proof. — (i) and (ii) follow from the resolution property as in [16, Lem.
2.2.8] using [16, Prop. 1.2]. As is explained in [25, Lem. 1.6], (iii) follows
from (i) (one can also apply of [17, Prop. 2.2]). �

Definition 3.6. — Let X be a stack. The quotient category

DSg(X) := Db(X)/Per(X)

is called the singularity category of X. We denote by DSg(X) its idempo-
tent completion.

The fact that being a perfect complex is a local property immediately
implies the following result.

Lemma 3.7. — An object A ∈ DSg(X) (resp., a morphism f : A → B

in DSg(X)) is zero (resp., an isomorphism) if and only if it is zero (resp., an
isomorphism) locally, i.e., for some open covering (Ui) of X in flat topology
the restrictions A|Ui

) are zero (resp., the restrictions f |Ui
are isomorphisms

in DSg(Ui)).

The singularity category DSg(X) admits a natural quasicoherent analog.
Namely, we consider the full subcategory Lfr(X) ⊂ Db(Qcoh(X)) of objects
that can be represented by bounded complexes of locally free sheaves, and
consider the quotient

D′Sg(X) := Db(Qcoh(X))/Lfr(X). (3.1)

Note that if X has a resolution property then by Lemma 3.5(ii), we have
Lfr(X) ∩Db(X) = Per(X).

Proposition 3.8. — Let X be a nice quotient stack (see Definition
3.1). Then the natural functor DSg(X)→ D′Sg(X) is fully faithful.

Proof. — We can repeat the argument of [25, Prop. 1.13] using Lemma
3.2(ii) and Lemma 3.5. �

Definition 3.9. — A coherent sheaf F on a Gorenstein stackX of finite
Krull dimension is called maximal Cohen-Macaulay (MCM) ifRHom(F,OX)
is a sheaf.

Lemma 3.10. — Let X be a Gorenstein stack of finite cohomological
dimension and finite Krull dimension. Then there exists an integer N such

TOME 61 (2011), FASCICULE 7
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that for any coherent sheaf F and any locally free sheaf P on X one has
Exti(F,P) = 0 for i > N .

Proof. — The proof is similar to that of [25, Lem. 1.18]. Namely, first, one
checks that Exti(F,P) = 0 for i > n, where n is the Krull dimension of X,
using the fact that X is Gorenstein. Next, since the sheaves Exti(F,P) are
quasicoherent, the result follows from the local to global spectral sequence
and the assumption that X has finite cohomological dimension. �

Lemma 3.11. — Let X be a Gorenstein stack of finite Krull dimension
with the resolution property.
(i) A coherent sheaf F on X is MCM if and only if it admits an (infinite)

right resolution by vector bundles.
(ii) A MCM sheaf, which is perfect as a complex, is locally free.
(iii) Every object of DSg(X) is isomorphic to a MCM sheaf.
(iv) Assume in addition that X has finite cohomological dimension N .

Let F be a MCM sheaf, G a quasicoherent sheaf on X. Then for any mor-
phism f : F → G in D′Sg(X), any integer n > N and any exact sequence of
coherent sheaves on X

0→ G′ → Gn → . . .→ G1 → G→ 0, (3.2)

where Gi are locally free and G′ is a quasicoherent sheaf on X, there exists
an exact sequence of coherent sheaves

0→ F′ → Fn → . . .→ F1 → F → 0, (3.3)

where Fi are vector bundles on X, and a morphism f ′ : F′ → G′ of quasi-
coherent sheaves making the following diagram in D′Sg(X) is commutative

F � F′[n]

G

f

�
� G′[n]

f ′[n]

�

(here the horizontal arrows are isomorphisms in D′Sg(X) induced by the
exact sequences (3.2), (3.3)).

Proof. — (i) See [25, Lem. 1.19].
(ii) This is proved in the same way as [25, Lem. 1.20]. If F is such a

sheaf then by Lemma 3.5(iii), there exists a bounded complex of vector
bundles P • and a quasi-isomorphism P • → F∨ = Hom(F,OX) (since F∨
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is perfect). Dualizing we obtain a bounded right resolution for F, so F is
locally free.
(iii) One can repeat the proof of [25, Prop. 1.23] using Lemma 3.5(i)

instead of [25, Lem. 1.4].
(iv) We can view f as a morphism F → G′[n] in D′Sg(X). We can apply

the same argument as in [25, Prop. 1.21] to prove that f can be realized by
a morphism F → G′[n] in Db(Qcoh(X)). Note that because G′ is only qua-
sicoherent, and DSg(X) is replaced by D′Sg(X), we have to use Lemma 3.10
at the relevant place in this argument. Finally, as is well known, a morphism
F → G′[n] in Db(Qcoh(X)) can be realized by a morphism Hn(F•)→ G′ for
appropriate resolution of F• of F. Furthermore, since X has the resolution
property, we can assume that Fi are vector bundles. �

Now let X be a stack, and letW ∈ H0(X,L) be a potential, where L is a
line bundle on X. Assume that W is not a zero divisor. Let X0 = W−1(0)
be the zero locus of W . As in [25], we consider the natural functor

C : HMF(X,W )→ DSg(X0). (3.4)

that associates with a matrix factorization (E•, δ) the cokernel of δ1 : E1 →
E0.

Lemma 3.12. — The functor C is exact.

Proof. — For a matrix factorization

F̄ = (F0 ⊕ F1, δ)

consider

F = C(F̄ ) = coker(F1
δ1� F0) = coker(F1|X0

δ1� F0|X0) and

F′ = C(F̄ [1]) = coker(F0
δ0� F1 L) = coker(F0|X0

δ0� (F1 L)|X0).

Then Lemma 1.5 gives an exact sequence

0→ F → (F1 ⊗ L)|X0 → F′ → 0. (3.5)

Since (F1 ⊗ L)|X0 ∈ Per(X0), this gives an isomorphism F′ → F[1] in
DSg(X0), i.e., we obtain a functorial isomorphism

tF̄ : C(F̄ [1]) ' C(F̄ )[1].

Now let f : Ē → F̄ be a closed morphism of matrix factorizations. To see
that the image of the triangle (1.2) under C is an exact triangle in DSg(X0)
let us consider the short exact sequence of two-term complexes

0 [F1
δ1� F0] [C(f)1

δ1� C(f)0] [E[1]1
δ1� E[1]0] 0. (3.6)
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Since the multiplication by W is injective, the differentials δ1 in (3.6) are
injective, and so the sequence of cokernels is exact. Thus, we obtain a
morphism of short exact sequences of coherent sheaves

0� C(F̄ ) � C(C(f)) � C(Ē[1]) � 0

0� C(F̄ )

id

�
� (F1 L)|X0

ϕ

�
� C(F̄ [1])

C(f [1])

�
� 0

(3.7)

where the second row is the sequence (3.5), and ϕ is induced by the mor-
phism

F0 E[1]0
(δ,f [1])� F [1]0|X0 = (F1 L)|X0 .

We can extend the first row of (3.7) to an exact triangle in Db(X0)

C(F̄ ) C(C(f)) C(Ē[1])
γ� C(F̄ )[1].

The commutativity of diagram (3.7) shows that γ = tF̄ ◦ C(f [1]), so the
image of the triangle (1.2) under C is an exact triangle in DSg(X0). This
shows that the functor C is exact. �

In the case when X is a smooth affine scheme and L is trivial, the functor
C is an equivalence by [25, Thm. 3.9]. In the non-affine case we need to
localize the category HMF(X,W ). Namely, we consider the full subcategory

LHZ(X,W ) ⊂ HMF(X,W )

consisting of matrix factorizations Ē that are locally contractible (i.e., there
exists an open covering Ui of X in smooth topology such that Ē|Ui = 0
in HMF(Ui,W |Ui

)). It is easy to see that LHZ(X,W ) is a triangulated
subcategory (we will see later that it is thick).

Definition 3.13. — For a stack X we define the derived category of
matrix factorizations by

DMF(X,W ) := HMF(X,W )/LHZ(X,W ).

The following theorem is a generalization of [25, Thm. 3.9].
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Theorem 3.14. — Let X be a smooth FCDRP-stack (see 3.1(iii)), L a
line bundle on X and W ∈ H0(X,L) a potential. Assume that W is not a
zero divisor. Then the functor

C : DMF(W )→ DSg(X0) (3.8)

induced by C is an equivalence of triangulated categories.

We will prove this theorem using the following general criterion of equiv-
alence for triangulated categories.

Lemma 3.15. — Let Φ : C → D be an exact functor between triangu-
lated categories. Assume that for every morphism f : D → Φ(C), where
C ∈ C, D ∈ D, there exists an object C ′ ∈ C, a morphism g : C ′ → C in C

and an isomorphism α : Φ(C ′)→ D in D, such that Φ(g) = f ◦ α. Then Φ
induces an equivalence Φ : C/ ker(Φ)→ D of triangulated categories.

Proof. — Set C = C/ ker(Φ). First, let us show that for every C1, C2 ∈ C

the natural morphism

Φ : Hom
C

(C1, C2)→ HomD(Φ(C1),Φ(C2))

is surjective. For f ∈ HomD(Φ(C1),Φ(C2)) consider the morphism

Φ(C1)
(id,f )� Φ(C1) Φ(C2) = Φ(C1 C2).

By assumption, there exists an object C ′ ∈ C, a morphism (q, g) : C ′ →
C1 ⊕ C2 and an isomorphism α : Φ(C ′) → Φ(C1) such that Φ(q, g) =
(id, f) ◦α. In other words, we have α = Φ(q) and Φ(g) = f ◦α. Hence, q is
an isomorphism in C and Φ(g ◦ q−1) = f . Next, we observe that ker(Φ) = 0
by definition. Now Lemma 3.16 below applied to the functor Φ implies that
this functor is faithful. �

Lemma 3.16. — Let Φ : C → D be an exact functor between triangu-
lated categories such that ker(Φ) = 0, and let C ∈ C be a fixed object.
Assume that for each C ′ ∈ C the morphism

Φ : HomC(C,C ′)→ HomD(Φ(C),Φ(C ′))

is surjective. Then this morphism is an isomorphism for every C ′ ∈ C .

Proof. — The argument below is similar to the first part of the proof
of [25, Thm. 3.9]). Suppose Φ(f) = 0 for some morphism f : C → C ′.
Consider an exact triangle

K
g� C

f� C ′ K[1]

in C. Since the image of this triangle under Φ is still exact and Φ(f) = 0,
there exists a morphism h : Φ(C)→ Φ(K) such that Φ(g) ◦ h = idΦ(C). By
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assumption we can choose h′ ∈ HomC(C,K) such that Φ(h′) = h. Then
Φ(g ◦ h′) = idΦ(C), hence, g ◦ h′ is an isomorphism in C (since ker(Φ) = 0
and Φ is exact). But f ◦ g ◦ h′ = 0, so we deduce that f = 0. �

Lemma 3.17. — Let F be a MCM sheaf on X0 and let p : V → F be a
surjection of coherent sheaves on X, where V is a vector bundle on X and
F is viewed as a coherent sheaf on X. Then ker(p) is a vector bundle on X.

Proof. — By taking the pull-back to a presentation of the stack X, we
can reduce the problem to the similar question in the case when X is a
smooth scheme. Now we can argue as in the proof of Theorem 3.9 of [25].
Pick a closed point x ∈ X. Since X is smooth, there exists an integer N
such that ExtiX(G,Ox) = 0 for i > N for any coherent sheaf G on X. On
the other hand, if P is a vector bundle on X0, viewed as a coherent sheaf
on X, then ExtiX(P,Ox) = 0 for i > 1. Since by Lemma 3.11(i), F has a
right resolution by vector bundles on X0, we deduce that ExtiX(F,Ox) = 0
for i > 1. Now the exact sequence

0→ ker(p)→ V → F → 0

implies that ExtiX(ker(p),Ox) = 0 for i > 0. It follows that ker(p) is locally
free. �

Proof of Theorem 3.14. By Lemma 3.12, C is an exact functor. To prove
that C is an equivalence we will apply the criterion of Lemma 3.15 to the
functor C : HMF(W )→ DSg(X0). Let

f : F → G = C(Ē)

be a morphism in DSg(X0). We have to construct a matrix factorization F̄ ,
a closed morphism of matrix factorizations g : F̄ → Ē and an isomorphism
α : C(F̄ )→ F such that C(g) = f ◦α. Note that X0 is an FCDRP-stack and
has finite Krull dimension, as a closed substack ofX. Also,X0 is Gorenstein
as a divisor in a smooth stack. Thus, by Lemma 3.11(iii), we can assume
that F is a MCM sheaf. Denote by E′i = (E(L1/2)i ⊗ Li/2)|X0 the terms
of the complex (1.3). By Lemma 1.5, this complex is exact, so for large
enough n we can apply Lemma 3.11(iv) to the exact sequence of sheaves
on X0

0→ G′ → E′−n+1 → . . .→ E′−1 → E′0 → G→ 0
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and the morphism f . We obtain an exact sequence of sheaves on X0

0→ F′ → V−n+1 → . . .→ V−1 → V0 → F → 0,

and a morphism f ′ : F′ → G′ of sheaves such that all Vi are vector bundles
on X0 and f ′[n] represents f in DSg(X0). Let us prove that from this
data one can construct a matrix factorization F̄ , a surjective morphism
α : C(F̄ ) → F of sheaves on X0 and a morphism of matrix factorizations
g : F̄ → Ē, such that ker(α) ∈ Per(X0) and C(g) = f ◦ α in Coh(X0). We
use induction in n.
If n = 0 then f is given by a morphism of coherent sheaves F → G. We

can choose a surjective morphism p : F0 → F, where F0 is a vector bundle
on X, such that the morphism f extends to a commutative diagram in
Coh(X)

F0
g0 � E0

F

p

� f � G
�

By Lemma 3.17, F1 := ker(p) is a vector bundle. Let δ1 : F1 → F0 be the
natural inclusion. Since WF = 0, the injective morphism W : F0 ⊗ L−1 →
F0 factors through δ1, so we obtain an injective morphism δ0 : F0⊗L−1 →
F1 such that δ1δ0 = W . Note that δ1 and δ0 are isomorphisms over the dense
open set W 6= 0. Hence, the equality δ0δ1δ0 = Wδ0 implies that δ0δ1 = W ,
so F̄ = (F•, δ•) is a matrix factorization ofW . Furthermore, from the above
commutative diagram we get a unique morphism g1 : F1 → E1 such that
δ1g1 = g0δ1. It follows that

δ1δ0g0 = Wg0 = g0δ1δ0 = δ1g1δ0.

Hence, δ0g0 = g1δ0, i.e., g : F̄ → Ē is a morphism of matrix factorizations.
Now suppose the assertion is true for n− 1. Set

F̃ = ker(V0 → F) and G̃ = ker(E′0 → G).

By Lemma 1.5, G̃ = coker((E0 ⊗ L−1)|X0 → E1|X0) = C(Ē[1]). So we have
isomorphisms F → F̃[1] and G → G̃[1] in DSg(X0), hence f corresponds
to a morphism f̃ : F̃ → G̃ in DSg(X0). By induction assumption, we can
construct a matrix factorization P̄ , a surjective morphism α : C(P̄ ) → F̃

and a morphism of matrix factorizations g̃ : P̄ → Ē[1] such that ker(α) ∈
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Per(X0) and C(g̃) = f̃ ◦α in Coh(X0). We have a commutative diagram of
sheaves on X0 with exact rows and columns

0 0 0

0 � ker(α)
� ψ � P1|X0

�
� K

�
� 0

0 � C(P̄ )
�

ϕ� P1|X0
⊕ V0

�
� F′

�
� 0

0 � F̃

α

�
� V0

�
� F

�
� 0

0
�

0
�

0
�

where ϕ is induced by the natural embedding C(P̄ ) ↪→ P1|X0 and by the
composition C(P̄ ) α� F̃ → V0, the map ψ is the restriction of ϕ to
ker(α), and the sheaves K and F′ are the cokernels of ψ and ϕ. The first
row shows that K ∈ Per(X0). On the other hand, we have a morphism of
exact sequences

0 � C(P̄ ) � P1|X0 ⊕ V0
� F′ � 0

0 � C(P̄ )
�

� P1|X0

�
� C(P̄ [ 1])

f ′

�
� 0

Now arguing as in the case n = 0, we can construct a matrix factorization
F̄ , an isomorphism of sheaves C(F̄ ) ' F′ and a closed morphism of matrix
factorizations F̄ → P̄ [−1] inducing f ′. After composing it with g̃[−1] :
P̄ [−1] → Ē we get the desired morphism g : F̄ → Ē. Thus, by Lemma
3.15, we obtain an equivalence of triangulated categories

C : HMF(W )/ ker(C)→ DSg(X0).
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It remains to establish the equality of full subcategories

ker(C) = LHZ(W )

in HMF(W ). By Lemma 3.7, we have LHZ(W ) ⊂ ker(C). Conversely, sup-
pose C(Ē) = 0. Consider an open covering Ui of X in smooth topology,
such that Ui are smooth affine schemes and the pull-backs L|Ui

are trivial.
By Theorem 3.9 of [25], the functor C induces equivalences

HMF(Ui,W |Ui) ' DSg(Ui ×X X0).

Thus, we obtain that Ē|Ui = 0 in HMF(Ui,W |Ui), and so Ē ∈ LHZ(W ).
�

Corollary 3.18. — Let X be a smooth stack, W ∈ H0(X,L) a non-
zero-divisor. The restriction of any matrix factorization Ē ∈ HMF(X,W )
to the complement X \ Sing(X0) of the singular locus of X0 is locally
contractible.

Proof. — We can assume X to be an affine scheme. Note that the equiv-
alence of Theorem 3.14 is compatible with restrictions to open substacks.
Hence, the assertion follows from the fact that DSg(X \Sing(X0)) = 0. �

There is one important case when the derived category DMF(X,W )
coincides with the homotopy category HMF(X,W ).

Proposition 3.19. — Let us keep the assumptions of Theorem 3.14.
Assume in addition that X has cohomological dimension 0. Then ker(C) =
0, so in this case

HMF(X,W ) ' DMF(X,W ) ' DSg(X0).

Proof. — Note that X0 also has cohomological dimension 0, so every vec-
tor bundle on X0 is a projective object in the category of coherent sheaves
on X0. Thus, we can prove that ker(C) = 0 by repeating the argument of
[25, Lem. 3.8]. The rest follows from Theorem 3.14. �

Note that in the case when X is the quotient of an affine scheme by a
finite group and L is trivial, the above result reduces to [31, Thm 7.3]. A
more general example is the case of a quotient stack X = U/Γ, where U is
an affine scheme and Γ is a reductive group (see Lemma 3.2(ii)).

Remark 3.20. — Another characterization of ker(C) is given by the un-
published result of Orlov (see [21, Sec. 3.2]) that states that ker(C) consists
of all matrix factorizations that appear as direct summands in the convolu-
tions of finite exact sequences of matrix factorizations. The corresponding
quotient category is called in [30] the absolute derived category.
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Sometimes it is convenient to use the following generalization of the
notion of matrix factorization obtained by replacing vector bundles by co-
herent sheaves.

Definition 3.21. — A coherent matrix factorization of a potentialW ∈
H0(X,L) on a stack X is a pair of coherent sheaves F0, F1 with maps
δ1 : F1 → F0 and δ0 : F0 → F1⊗L, such that δ0δ1 = W ·id and (δ1⊗id)δ0 =
W · id, and the multiplication by W is injective on both F0 and F1. The
corresponding homotopy category HMFc(X,W ) still has a triangulated
structure, and we still have the cokernel functor (see (3.4))

Cc : HMFc(X,W )→ DSg(X0)

which is an exact functor. In the situation of Theorem 3.14 we can view Cc

as an exact functor from HMFc(X,W ) to DMF(X,W ).

4. Quasi-matrix factorizations

Here we establish a connection between the category of quasi-matrix
factorizations and a quasicoherent analog of the singularity category. The
results of this section will be used in the study of the push-forward functors
for matrix factorizations (see Section 6).

Assume thatW is not a zero divisor. Note that we can define the functor

C∞ : HMF∞(X,W )→ D′Sg(X0)

for quasi-matrix factorizations in the same way as for matrix factorizations
(by taking the cokernel of δ1), where D′Sg(X0) is given by (3.1). It is easy
to see that the proof of Lemma 3.12 works in this situation, so the functor
C∞ is exact. Thus, we have a commutative diagram of exact functors

HMF(X,W )
C� DSg(X0)

HMF∞(X,W )
� C∞

� D′
Sg(X0)

�

We are going to prove certain weaker versions of Theorem 3.14 and Propo-
sition 3.19 for quasi-matrix factorizations (see Theorem 4.2 below).
We will need the following fundamental fact about (not necessarily

finitely generated) locally free sheaves.
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Lemma 4.1. — LetX = Spec(A) be a Noetherian affine scheme, F = M̃

a quasicoherent sheaf on X associated with an A-module M . Then F is
locally free if and only if M is projective.

Proof. — If F is locally free thenM is locally projective, so it is projective
by [13, part 2, Sec. 3.1]. Conversely, assume that M is projective. If M
is finitely generated then the assertion is well-known. Otherwise, we can
assume that X is connected and apply the result of Bass [3, Cor. 4.5] saying
that an infinitely generated projective module over A is free. �

Theorem 4.2. — LetX be a smooth stack with the resolution property,
and let W ∈ H0(X,L) be a non-zero-divisor.

(i) Assume that X = U/Γ, where U is an affine scheme and Γ is a
reductive linear algebraic group. Then the functor C∞ is fully faithful.
(ii) For an arbitrary X, let LHZ∞(X,W ) ⊂ HMF∞(X,W ) be the full

subcategory consisting of quasi-matrix factorizations that are locally ho-
motopic to zero. Then

ker(C∞) = LHZ∞(X,W ).

Moreover, the restriction of an object in LHZ∞(X,W ) to any open (in flat
topology) of the type considered in part (i) is homotopic to zero. Thus, if
we set

DMF∞(X,W ) := HMF∞(X,W )/LHZ∞(X,W )
then the functor DMF∞(X,W )→ D′Sg(X0) has zero kernel.
(iii) Assume in addition that X has finite cohomological dimension

(so X is a smooth FCDRP-stack). Then for F̄ ∈ HMF(X,W ) and Ē ∈
HMF∞(X,W ) the map

HomDMF∞(X,W )(F̄ , Ē)→ HomD′Sg(X0)(C(F̄ ),C∞(Ē)) (4.1)

is an isomorphism.

For the proof we need the following analogs of Lemma 3.11(ii) and [25,
Prop. 1.21].

Lemma 4.3. — Let A be a Noetherian Gorenstein commutative ring of
Krull dimension n.

(i) For any projective A-module P and an A-module M one has
ExtiA(M,P ) = 0 for i > n.

(ii) Let F = M̃ be a quasicoherent sheaf on X = Spec(A) associated
with an A-module M , that admits a right locally free resolution F → Q•

and such that F ∈ Lfr(X). Then M is a projective A-module and so, by
Lemma 4.1, F is a locally free sheaf.
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Proof. — (i) It is enough to consider the case when P is a free module.
Since A is Gorenstein of Krull dimension n, the injective dimension of
A is equal to n. Since (infinite) direct sums of injective modules over a
Noetherian ring are also injective, it follows that the injective dimension of
P is also n.
(ii) By assumption there exists a finite locally free resolution

0→ Q−N → . . .→ Q−1 → F → 0.

Sewing it with the right resolution Q0 → Q1 → . . . of F we obtain the
exact complex

0→ Q−N → . . .→ Q−1 → Q0 → Q1 → . . .

of locally free sheaves. By Lemma 4.1, the A-modules corresponding to Qi
are projective. Thus, it suffices to prove that for any infinite exact complex

0→ P 0 → P 1 → . . .

of projective modules, the module N = coker(P 0 → P 1) is also projective.
By part (i), any projective A-module also has the injective dimension 6 n.
Let us set N i = coker(P i−1 → P i), where i > 1, so that N = N1. Then
using the exact sequences 0→ N i → P i+1 → N i+1 → 0 we obtain

Ext1(N,P 0) = Ext2(N2, P 0) = . . . = Extn+1(Nn+1, P 0) = 0.

Hence, the sequence
0→ P 0 → P 1 → N → 0

splits, so N is projective. �

Lemma 4.4. — Let X = U/Γ be a nice affine Gorenstein quotient stack,
where U is a Noetherian affine scheme of finite Krull dimension n, and Γ
is a reductive linear algebraic group.
(i) If F is a quasicoherent sheaf and P is a locally free sheaf on X then

ExtiX(F,P) = 0 for i > n.
(ii) Let F and G be quasicoherent sheaves on X such that F admits a

right locally free resolution F → Q•. Then the natural map

HomX(F,G)→ HomD′Sg(X)(F,G)

is surjective.

Proof. — (i) By Lemma 3.2(i), it is enough to prove a similar statement
on U . But U = Spec(A) is affine and Noetherian, so P corresponds to a
projective A-module by Lemma 4.1. Therefore, it has injective dimension
6 n by Lemma 4.3(i).
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(ii) The proof is analogous to that of [25, Prop. 1.21], using part (i)
together with the fact that for any locally free sheaf P and any quasico-
herent sheaf F on X one has ExtiX(P,F) = 0 for i > 0. Indeed, by Lemma
3.2(i), this reduces to a similar statement on U , which follows from Lemma
4.1. �

Proof of Theorem 4.2. (i) First, as in the proof of Theorem 3.14, we see
that the functor C∞ is exact. Next, we claim that in this case ker(C∞) = 0.
Indeed, suppose P̄ ∈ MF∞(X,W ) is such that the quasicoherent sheaf
F = coker(P1 → P0) belongs to Lfr(X0) ⊂ Db(Qcoh(X0)). By Lemma 1.5,
the sheaf F has a right locally free resolution. Hence, we can apply Lemma
4.3(ii) to an affine covering of X to deduce that F is locally free. Note that
X0 itself is a quotient of a Noetherian affine scheme by Γ. In particular, X0
has cohomological dimension 0, so by Lemma 3.2(ii), F is a projective object
in Qcoh(X0). Therefore, the same argument as in [25, Lem. 3.8], shows that
P̄ is contractible. Now Lemma 4.4(ii) and the projectivity of locally free
sheaves on X imply that the functor C∞ is full (using an argument of [25,
Lem. 3.5]). By Lemma 3.16, the functor C∞ is also faithful.

(ii) This follows from (i).
(iii) By Lemma 3.16, it is enough to prove that the map (4.1) is surjective.

To this end we use the strategy similar to that of the proof of Theorem 3.14.
Let us set F = C(F̄ ) (this is a coherent sheaf on X0), and suppose we have
a morphism f : F → C∞(Ē) in D′Sg(X0). Let us consider the quasicoherent
sheaf on X0

G = F ⊕ C∞(Ē) = C∞(F̄ ⊕ Ē)

and the morphism (id, f) : F → G. Applying the same inductive procedure
as in the proof of Theorem 3.14 (using Lemma 3.11(iv)) to the morphism
(id, f) we can construct a matrix factorization F̄ ′ ∈ MF(X,W ), a closed
morphism of quasi-matrix factorizations g′ : F̄ ′ → F̄ ⊕ Ē and an isomor-
phism α : C(F̄ ′)→ F in DSg(X0) such that C∞(g′) = (id, f)◦α = (α, f ◦α).
Let us write g′ = (q, g), where q : F̄ ′ → F̄ and g : F̄ ′ → Ē. Then C(q) = α

and C∞(g) = f ◦α. Since α is an isomorphism, from part (ii) we obtain that
q is an isomorphism in DMF∞(X,W ). Hence, the morphism g◦q−1 : F̄ → Ē

in DMF∞(X,W ) is in the preimage of f under C∞. �

Corollary 4.5. — In the situation of Theorem 4.2(i) the natural func-
tor

HMF(X,W )→ HMF∞(X,W )

is fully faithful.
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Lemma 4.6. — The triangulated category DMF∞(X,W ) has infinite
direct sums. Hence, all idempotents in this category are split.

Proof. — Lemma 4.1 implies that an (infinite) direct sum of locally
free sheaves on X is still locally free. Now, the standard construction for
the homotopy category of complexes can be adapted to show that infi-
nite direct sums exist in HMF∞(X,W ). By Theorem 4.2, the subcategory
LHZ∞ = ker(C∞) is closed under arbitrary direct sums. By [7, Lem. 1.5],
this implies that the quotient category DMF∞(X,W ) has direct sums. The
last assertion follows by [7, Prop. 3.2]. �

Abusing notation we will also denote by

C∞ : DMF∞(X,W )→ D′Sg(X0)

the exact functor induced by C∞.
By Lemma 4.6, the natural functor DMF(X,W ) → DMF∞(X,W ) ex-

tends to the functor

ι : DMF(X,W )→ DMF∞(X,W ).

Proposition 4.7. — Assume thatX is a smooth FCDRP-stack, and let
W ∈H0(X,L) be a non-zero-divisor. Then for objects (Ē, e)∈DMF(X,W )
and F̄ ∈ DMF∞(X,W ) the morphism

C∞ : HomDMF∞(X,W )(ι(Ē, e), F̄ )→ HomD′Sg(X0)(C∞(ι(Ē, e)),C∞(F̄ ))

is an isomorphism. Furthermore, if α ∈ HomDMF∞(X,W )(ι(Ē, e), F̄ ) is such
that C∞(α) is an isomorphism in D′Sg(X0) then α is an isomorphism in
D′Sg(X0).

Proof. — It is enough to check the first assertion for Ē instead of ι(Ē, e),
in which case it follows from Theorem 4.2(iii). The second assertion follows
from the fact that the exact functor C∞ : DMF∞(X,W ) → D′Sg(X0) has
zero kernel by Theorem 4.2(ii). �

Quasi-matrix factorizations provide a natural setup for defining the func-
tors of push-forwards with respect to smooth affine morphisms with geo-
metrically integral fibers. Recall that by [13, part 1, (3.3.1)], the push-
forward of a locally free sheaf under such a morphism is locally projective,
hence, by Lemma 4.1, locally free. This allows us to make the following
definition.

Definition 4.8. — Let f : X → Y be a smooth affine morphism of
stacks with geometrically integral fibers, let W ∈ H0(Y,L) be a potential,
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and let Ē = (E, δ) be a quasi-matrix factorization of f∗W . The push-
forward quasi-matrix factorization f∗Ē of W is the pair of locally free
sheaves (f∗E0, f∗E1) together with the differential f∗δ.

This gives a dg-functor f∗ : MF∞(X, f∗W ) → MF∞(Y,W ), which in-
duces exact functors

f∗ : HMF∞(X, f∗W )→ HMF∞(Y,W ).

Assume in addition that W is not a zero divisor, and let Y0 (resp., X0)
be the zero locus of W (resp., of f∗W ). Let g : X0 → Y0 denote the mor-
phism induced by f . Since the morphism X0 → Y0 is also smooth with
geometrically integral fibers, the push-forward functor g∗ on quasicoher-
ent sheaves induces an exact functor Db(Qcoh(X0))→ Db(Qcoh(Y0)) that
sends Lfr(X0) to Lfr(Y0), and hence gives an exact functor g∗ : D′Sg(X0)→
D′Sg(Y0). Furthermore, since f is an affine morphism, for every Ē ∈
MF∞(X, f∗W ) we have a natural isomorphism of quasicoherent sheaves
on X0

g∗ coker(E1
δ� E0) � coker(f∗E1

f∗δ� f∗E0).

Thus, we obtain a commutative diagram of exact functors between trian-
gulated categories

HMF∞(X, f ∗W )
C∞
� D′

Sg(X0)

HMF∞(Y,W )

f∗

� C∞
� D′

Sg(Y0)

g∗

�

If Y is smooth and has the resolution property, then by Theorem 4.2 we
obtain an induced functor of derived categories

f∗ : DMF∞(X, f∗W )→ DMF∞(Y,W )

also compatible with the functor g∗ : D′Sg(X0)→ D′Sg(Y0).

5. Supports

Orlov showed in [27] that objects of the singularity category DSg(X) can
be represented as direct summands of complexes with cohomology sup-
ported on the singular locus of X. In this section we will introduce and
study a more general notion of support for objects of the singularity cate-
gory and the corresponding notion of support for matrix factorizations.
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Definition 5.1. — Let X be a Gorenstein stack with the resolution
property, and let Z ⊂ X be a closed substack. We define the singularity
category of X with support on Z as

DSg(X,Z) = Db(X,Z)/Perf(X,Z),

where Db(X,Z) is the triangulated subcategory of Db(X) of complexes
with cohomology supported on Z, and Perf(X,Z) ⊂ Db(X,Z) consists of
perfect complexes in Db(X,Z). We denote by DSg(X,Z) the idempotent
completion of DSg(X,Z).

By [27, Lem. 2.6], DSg(X,Z) is a full subcategory of DSg(X).
The following result is a slight generalization of [27, Prop. 2.7] and is

proved similarly (see also [8, Thm. 1.3]).

Proposition 5.2. — Assume that X is a Gorenstein stack of finite
Krull dimension with the resolution property. Let Z ⊂ X be a closed
substack and let j : U = X \ Z → X be the open embedding of its
complement. Then the subcategory DSg(X,Z) ⊂ DSg(X) coincides with
the kernel of the functor

j∗ : DSg(X)→ DSg(U),

induced by the restriction functor j∗.

Proof. — First, let us consider the functor

j∗ : DSg(X)→ DSg(U).

We claim that ker(j∗) consists of direct summands of objects in DSg(X,Z).
Indeed, it is clear that for F ∈ DSg(X,Z) one has j∗F = 0. Conversely,
suppose that for F ∈ Db(X) we have j∗F = 0 in DSg(U), i.e, j∗F is a
perfect complex. By Lemma 3.11(iii), we can assume that F is a MCM-
sheaf. The condition that j∗F is perfect implies by Lemma 3.11(ii) that
j∗F is a vector bundle. We have to show that F is a direct summand of an
object in DSg(Y ) represented by a complex with cohomology supported in
Z. Note that U has finite cohomological dimension as an open substack of
X (see Lemma 3.4). Take a resolution of F by vector bundles

. . . P2 → P1 → P0 → F → 0

and consider the sheaf G = ker(Pn → Pn−1), where n is the the cohomolog-
ical dimension of U . We have the corresponding morphism α : F → G[n+1]
in D(X). Since the sheaf j∗F is a vector bundle, and the cohomological
dimension of U is n, we have j∗α = 0. Hence, α factors through an object
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A of D(X,Z). But α descends to an isomorphism in DSg(X), so our claim
follows.
Next, we observe that DSg(U) can be identified with the quotient cat-

egory DSg(X)/ ker(j∗). Indeed, this can be easily deduced from the fact
that every object (resp., morphism) in Db(U) can be extended to an object
(resp., morphism) in Db(X) (see [2, Lem. 2.12]. Thus, the first part of the
argument implies that every morphism in DSg(X) that becomes zero in
DSg(U) factors through an object of DSg(X,Z).
Now suppose we have an object (F, e) ∈ DSg(X), where F ∈ DSg(X)

and e : F → F is a projector, such that j∗(F, e) = 0. Then the morphism
e : F → F becomes zero in DSg(U), hence it factors through an object
A ∈ DSg(X,Z). But the identity morphism of (F, e) factors through e in
DSg(X), so (F, e) is a direct summand of A in DSg(X). �

This proposition implies a version of [27, Prop. 2.7] for stacks.

Corollary 5.3. — Let X be a Gorenstein stack of finite Krull dimen-
sion with the resolution property. The natural inclusion

DSg(X,Sing(X))→ DSg(X)

is an equivalence of categories.

Now we are going to introduce the notion of support for matrix factor-
izations. Let W ∈ H0(X,L) be a non-zero-divisor potential on a smooth
FCDRP-stack X, and consider its zero locus X0 = W−1(0). For a closed
substack Z ⊂ X0 we would like to characterize the subcategory in DMF(W )
corresponding to DSg,Z(X0) under the equivalence of Theorem 3.14. Given
a matrix factorization P̄ = (P, δ) of W and a closed point x in a presenta-
tion of X0, consider the complex

(i∗xP, δx) := i∗x com(P̄ )

(see (1.3)), where ix : x→ X is the natural embedding. Denote byH∗(P̄ , x)
the cohomology of this complex.

Lemma 5.4. — Let P̄ = (P, δ) be a matrix factorization of W on X,
where X and W are as above.

(i) If in addition X is an affine scheme then for any coherent sheaf G on
X0

HomDSg(X0)(C(P̄ ),G) ' H0(G⊗ com(P̄ )∨),

where C(P̄ ) = coker(δ : P1 → P0).
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(ii) Assume that X is an affine scheme. For any closed point x ∈ X0 one
has natural isomorphisms

Hi(P̄ , x)∗ ' HomDSg(X0)(C(P̄ ),Ox[i]), i = 0, 1.

(iii) For any closed point x in a presentation of X0 one has H0(P̄ , x) = 0
if and only if H1(P̄ , x) = 0 if and only if C(P̄ ) is locally free on X0 in a
neighborhood of x. Equivalently, there exists an open neighborhood U of x
in X such that P̄ |U = 0 in HMF(U,W |U ), i.e., P̄ |U is a contractible matrix
factorization.

Proof. — (i) Since X is affine, Lemma 3.6 and Proposition 1.21 of [25]
imply that

HomDSg(X0)(C(P̄ ),G) ' HomX0(C(P̄ ),G)/R
where R consists of morphisms that factor through a vector bundle on X0.
By Lemma 1.5, the complex com(P̄ ) is exact, so we can identify C(P̄ ) with
a subsheaf in (P1 ⊗ L)|X0 . We claim that in fact the subspace R coincides
with the image of the natural map Hom(P1 ⊗ L|X0 ,G) → Hom(C(P ),G).
Indeed, if V is a vector bundle on X0 then a map φ : C(P )→ V defines an
element in

ψ ∈ ker (HomX0(P0|X0 , V )→ HomX0(P1|X0 , V )) .

Since X0 is affine and the complex com(P̄ ) of vector bundles on X0 is
exact, the complex HomX0(com(P̄ ), V ) is also exact. Therefore, ψ comes
from an element of HomX0(P1 ⊗ L|X0 , V ), i.e., φ factors through a map
P1 ⊗ L|X0 → V . Thus, we get an isomorphism

HomDSg(X0)(C(P̄ ),G) ' coker
(
HomX0(P1 ⊗ L|X0 ,G)→ HomX0(C(P̄ ),G)

)
.

It remains to use the isomorphism

HomX0(C(P̄ ),G) ' ker (HomX0(P0|X0 ,G)→ HomX0(P1|X0 ,G)) .

(ii) By part (i), we have an isomorphism

H0(P̄ , x)∗ ' HomDSg(X0)(C(P̄ ),Ox).

The statement for H1(P̄ , x) follows because C is an exact functor.
(iii) We can assume that X is an affine scheme. Recall that F = C(P̄ )

is locally free if and only it is a zero object of DSg(X0) (by Lemmas 1.20
and 3.6 of [25]). Hence, in this case H0(P, x) = 0. Conversely, assume that
H0(P, x) = 0. Consider the exact sequence

0 F
α� P1|X0

F′ 0,
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where F′ = coker(δ : P0 → P1). Then it is easy to see that

H0(P̄ , x) = ker(α(x) : i∗xF → i∗xP1).

Thus, the vanishing of H0(P̄ , x) implies that α(x) is injective, i.e,
Tor1(F′,Ox) = 0. This implies that F′ is locally free, hence, F is locally free
(since F′ ' F[1] inDSg(X0)). Finally, we observe that the ranks ofH0(P̄ , x)
and of H1(P̄ , x) are equal (since the ranks of P0 and P1 are equal). �

Definition 5.5. — Let X be a stack and W ∈ H0(X,L). For a closed
substack Z ⊂ X0 = W−1(0) the category of matrix factorizations of W
with support on Z is the full subcategory HMF(X,Z;W ) ⊂ HMF(X,W )
consisting of P̄ ∈ HMF(X,Z;W ) such that

H∗(P̄ , x) = 0 for all x ∈ X̃0 \ Z.

Here x runs over closed points of some presentation X̃0 \ Z → X0 \Z. Note
that LHZ(X,W ) is a subcategory of HMF(X,Z;W ).

We define the derived category of matrix factorizations with support on
Z by

DMF(X,Z;W ) := HMF(X,Z;W )/LHZ(X,W ),
and denote its idempotent completion by DMF(X,Z,W ).

Note that DMF(X,Z;W ) (resp., DMF(X,Z;W )) is a full triangulated
subcategory in DMF(X,W ) (resp., in DMF(X,W )). Furthermore, the func-
tors

H∗(?, x) : DMF(X,W )→ k −mod
extend naturally to the category DMF(X,W ). Thus, we have

DMF(X,Z;W ) =
⋂

x∈X̃0\Z

kerH∗(?, x). (5.1)

Proposition 5.6. — Let X be a smooth FCDRP-stack. The equiva-
lence

C : DMF(X,W )→ DSg(X0)
induced by the functor (3.8) identifies the full subcategories

DMF(X,Z;W )) ⊂ DMF(X,W ) and DSg(X0, Z) ⊂ DSg(X0).

Proof. — By Proposition 5.2, it suffices to check that DMF(X,Z;W )
coincides with the kernel of the restriction functor

j∗ : DMF(X,W )→ DMF(X \ Z,W |X\Z).

The fact that the subcategory DMF(X,Z;W ) contains ker j∗ follows im-
mediately from (5.1). To prove the opposite inclusion we have to check
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that j∗(DMF(X,W )) = 0. But this follows from Lemma 5.4(iii) because
vanishing of an object in DMF(X \ Z,W |X\Z) is a local property. �

6. Push-forwards

Here we apply the results and constructions of Sections 4 and 5 to define
and study the push-forward functors for categories of matrix factoriza-
tions. We use these functors in [28] to give an algebraic construction of
a cohomological field theory related to the Landau-Ginzburg model for a
quasihomogeneous isolated singularity (see [12]).

Proposition 6.1. — Let f : X → Y be a representable morphism of
smooth FCDRP-stacks and W ∈ H0(Y, L) a potential such that W and
f∗W are not zero divisors. Let Z ⊂ X0 be a closed substack of the zero
locus of f∗W , such that the induced morphism f : Z → Y is proper. Let
Y0 ⊂ Y denote the zero locus of W , and let f0 : X0 → Y0 be the map
induced by f .
(i) The derived push-forward functor

Rf0∗ : Db(X0, Z)→ Db(Y0, f(Z))

induces a functor
DSg(X0, Z)→ DSg(Y0, f(Z)),

and hence, by Proposition 5.6, a functor

Rf∗ : DMF(X,Z; f∗W )→ DMF(Y, f(Z);W ). (6.1)

(ii) Assume that f is flat. Then for F̄ ∈ DMF(X,Z; f∗W ) and Ē ∈
DMF(Y,W ) one has a natural isomorphism

Hom(Ē, Rf∗F̄ ) ' Hom(f∗Ē, F̄ ).

(iii) If we have a representable morphism f ′ : Y → S to a smooth
FCDRP-stack such that W is a pull-back of a potential W ′ on S and f(Z)
is proper over S0 then we have an isomorphism of functors

R(f ′ ◦ f)∗ ' Rf ′∗ ◦Rf∗
from DMF(X,Z; f∗W ) to DMF(S,W ).

Proof. — (i) We have to check that if V is a perfect complex on X0 with
cohomology supported on Z then Rf0∗(V ) is a perfect complex on Y0. By
passing to a presentation of Y0 we can work with schemes. By [17, Cor.
5.8.1], it suffices to check that Rf0∗(V ) has bounded coherent cohomology
and is of finite tor-dimension. The former assertion follows from the fact

ANNALES DE L’INSTITUT FOURIER



MATRIX FACTORIZATIONS FOR STACKS 2639

that Z is proper over Y , so by [15, Cor. 3.7.2], it is enough to show that
the map g is of finite tor-dimension. Note that the assumption that f∗W
is not a zero divisor implies that the Cartesian diagram

X0
� X

Y0

f0

�
� Y

f

�

is tor-independent. Since f is of finite tor-dimension (as a map between
smooth stacks), it follows that f0 is also of finite tor-dimension.

(ii) Since f is flat, the pull-back functor f∗ is compatible with the equiv-
alences of Theorem 3.14. Now the statement follows from the similar iso-
morphism for derived categories of sheaves (cf. [25, Lem. 1.2]).
(iii) This follows immediately from the similar property of the push-

forward functors for derived categories of sheaves. �

Remark 6.2. — If in the situation of Proposition 6.1(i) the morphism
f is proper then we do not need idempotent completions. Just using the
equivalences of Theorem 3.14 gives a functor

Rf∗ : DMF(X, f∗W )→ DMF(Y ;W ).

This functor sends matrix factorizations with support on Z to matrix fac-
torizations with support on f(Z), as one can see directly from Lemma
5.4(iii). Furthermore, if f is a finite morphism then the above functor is
induced by the composition

f : HMF(X, f ∗W ) HMFc(Y,W )
Cc

� DSg(Y0) DMF(Y,W ),

where the first arrow sends a matrix factorization (P•, δ) of f∗W to the
coherent matrix factorization (f∗P•, f∗δ) ∈ HMFc(Y,W ) (see Definition
3.21).

Note that now we have two different notions of the push-forward functors:
one for quasi-matrix factorizations (see Definition 4.8) and another given
by the above proposition. The next result shows that they are compatible.

Proposition 6.3. — Let X and Y be smooth FCDRP-stacks,
f : X → Y a smooth affine morphism with geometrically integral fibers,
W ∈ H0(Y,L) a non-zero-divisor, and Z ⊂ X0 a closed substack of the

TOME 61 (2011), FASCICULE 7



2640 Alexander POLISHCHUK & Arkady VAINTROB

zero locus of W . Then the following diagram of functors is commutative

DMF(X,Z ; f∗W )
f∗� DMF(Y,W )

DMF∞(X, f ∗W )
� f∗� DMF∞(Y,W )

�

(6.2)

A version of this result in the special case when f : Am+n � An
and W ∈ k[An] has the only singularity at the origin can be found in [22,
Prop. 13] and [5, Sec. 4.2].
Proof. — Let f0 : X0 → Y0 be the morphism induced by f . We have a

commutative diagram of push-forward functors

DSg(X0,Z)
f0∗� DSg(Y0)

D′
Sg(X0)

� f0∗� D′
Sg(Y0)
�

(6.3)

Furthermore, each of the arrows in the diagram (6.2) is compatible with
the corresponding arrow in the diagram (6.3) via the appropriate functors
C or C∞. Now the assertion follows from Proposition 4.7. �
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