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QUANTUM SINGULARITY THEORY FOR A(r−1) AND
r-SPIN THEORY

by Huijun FAN, Tyler JARVIS & Yongbin RUAN (*)

Abstract. — We give a review of our construction of a cohomological field
theory for quasi-homogeneous singularities and the r-spin theory of Jarvis-Kimura-
Vaintrob. We further prove that for a singularity W of type A our construction
of the stack of W -curves is canonically isomorphic to the stack of r-spin curves
described by Abramovich and Jarvis. We further prove that our theory satisfies all
the Jarvis-Kimura-Vaintrob axioms for an r-spin virtual class. Therefore, the Faber-
Shadrin-Zvonkine proof of the Witten Integrable Hierarchies Conjecture for r-spin
curves applies to our theory for A-type singularities; that is, the total descendant
potential function of our theory for A-type singularities satisfies the corresponding
Gelfand-Dikii integrable hierarchy.
Résumé. — Nous passons en revue notre construction d’une théorie cohomolo-

gique des champs pour les singularités quasi-homogènes et la théorie des courbes
r-spin de Jarvis-Kimura-Vaintrob. De plus, nous prouvons que pour une singularité
W de type A notre construction du champ algébrique des W -courbes est canoni-
quement isomorphe au champ algébrique des courbes r-spin décrit par Abramovich
et Jarvis. En outre, nous prouvons que notre théorie satisfait tous les axiomes de
Jarvis-Kimura-Vaintrob pour une classe virtuelle r-spin. Par conséquent, la preuve
de Faber-Shadrin-Zvonkine de la conjecture des hiérarchies intégrables de Witten
pour les courbes r-spin s’applique à notre théorie des singularités de type A. C’est-
à-dire, la fonction potentielle descendante totale de notre théorie des singularités
de type A satisfait la hiérarchie intégrable de Gelfand-Dikii.

Keywords: FJRW, Mirror symmetry, r-spin curve, spin curve, Witten, Cohomological
field theory, moduli, Gelfand-Dikii, integrable hierarchy.
Math. classification: 14H70, 14H10, 14H81, 14B05, 32S25, 57R56, 14N35, 53D45.
(*) Partially Supported by NSFC 10401001, NSFC 10321001, and NSFC 10631050.
Partially supported by National Science Foundation grant DMS-0605155 and NSA grant
#H98230-10-1-0181.
Partially supported by the National Science Foundation and the Yangtz Center of Math-
ematics at Sichuan University.



2782 Huijun FAN, Tyler JARVIS & Yongbin RUAN

1. Introduction

In the paper [5] we introduce a family of moduli spaces, a virtual cy-
cle, and a corresponding cohomological field theory associated to each non-
degenerate, quasi-homogeneous hypersurface singularityW ∈ C[x1, . . . , xN ]
and for each admissible subgroup G of the diagonal automorphism group
Gmax := {(γ1, . . . , γN ) ∈ (C∗)N |W (γ1x1, . . . , γNxN ) = W (x1, . . . , xN )}.
When the singularity is Ar−1 = xr, then the only admissible subgroup

is the full automorphism group Gmax = µr ⊂ C∗, which is the group of rth
roots of unity.
In this paper we prove that for the singularity Ar−1 = xr (with the

group G = µr), the stack of Ar−1-curves of [5] is canonically isomorphic
to the stack of r-spin curves described in [1] and [7], and that the theory
of [5] satisfies all the axioms of [8] for an r-spin virtual class. Therefore,
the results of [8, 9, 4, 6] all apply to the Ar−1-theory of [5]. In particular,
this shows that the Witten Integrable Hierarchies Conjecture is true for
the Ar−1-theory of [5]; that is, the total descendant potential function of
the Ar−1-theory satisfies the r-th Gelfand-Dikii hierarchy.

1.1. Conventions and Notation

Throughout this paper we will assume that r > 1 is an integer and we
will set W := xr. The group of automorphisms of W is G = µr = {Jk|k ∈
Z/r, J = exp(2πi/r)}. Although some of the results described in this paper
hold in a more general setting, we will always work over C.

2. The stacks

In this section we review the definition and basic properties of the stack
of r-spin curves used in [8, 7] and of the stack of Ar−1-curves of [5]. These
two stacks are isomorphic, as proved in [1]. We will briefly review that
isomorphism in this section as well.
The stack of Ar−1 curves has a much simpler definition, and we will use

that definition rather than the more complicated r-spin curve definition
whenever possible.
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QUANTUM A(r − 1) AND r-SPIN THEORY 2783

2.1. The stack of Ar−1-curves

The definition in [5] of an n-pointed Ar−1-curve (C ,L , p1, . . . , pn, ϕ) is
an n-pointed stable orbicurve (C , p1, . . . , pn), an orbifold line bundle L ,
and an isomorphism ϕ : L r - ωlog, where ωlog is the log-canonical
bundle—specifically, the bundle of meromorphic 1-forms having at worst a
single pole at each mark pi for i ∈ {1, . . . , n}. That is, the sheaf of sections of
ωlog is locally generated by the one-form dz/z, where z is a local coordinate
on C near a marked point pi. We describe these structures in more detail
below.
Recall that an orbicurve C with marked points p1, . . . , pn is a (possibly

nodal) Riemann surface C with orbifold structure at each pi and each
node. That is to say, for each marked point pi there is a local group Gpi
and (since we are working over C) a canonical isomorphism Gpi

∼= Z/mi

for some positive integer mi. A neighborhood of pi is uniformized by the
branched covering map z - zmi . For each node p there is again a local
group Gp ∼= Z/nj whose action is complementary on the two different
branches. That is to say, a neighborhood of a nodal point (viewed as a
neighborhood of the origin of {zw = 0} ⊂ C2) is uniformized by a branched
covering map (z, w) - (znj , wnj ), with nj > 1, and with group action
e2πi/nj (z, w) = (e2πi/njz, e−2πi/njw).

Definition 2.1.1. — We call the orbicurve C smooth if the underlying
curve C is smooth, and we will call the orbicurve nodal if the underlying
curve C is nodal.

We denote by % : C - C the natural projection to the underlying
(coarse, or non-orbifold) Riemann surface C. If L is a line bundle on C, it
can be pulled back to an orbifold line bundle %∗L over C . When there is
no danger of confusion, we use the same symbol L to denote its pullback.

Definition 2.1.2. — Let ωC be the canonical bundle of C. We define
the log-canonical bundle of C to be the line bundle

ωC,log := ωC ⊗ O(p1)⊗ · · · ⊗ O(pn),

where O(p) is the holomorphic line bundle of degree one whose sections
may have a simple pole at p. This bundle ωC,log can be thought of as the
canonical bundle of the punctured Riemann surface C − {p1, . . . , pn}.
The log-canonical bundle of C is defined to be the pullback to C of the

log-canonical bundle of C:

ωC ,log := %∗ωC,log. (2.1)

TOME 61 (2011), FASCICULE 7
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Near a marked point p of C with local coordinate x, the bundle ωC,log is
locally generated by the meromorphic one-form dx/x. If the local coordi-
nate near p on C is z, with zm = x, then the lift ωC ,log := %∗(ωC,log) is still
locally generated by mdz/z = dx/x. When there is no risk of confusion, we
will denote both ωC,log and ωC ,log by ωlog. Near a node with coordinates
z and w satisfying zw = 0, both ω and ωlog are locally generated by the
one-form dz/z = −dw/w.

2.1.1. Pushforward to the underlying curve

If L is an orbifold line bundle on a smooth orbicurve C , then the sheaf
of locally invariant sections of L is locally free of rank one, and hence dual
to a unique line bundle |L | on C . We also denote |L | by %∗L , and it is
called the “desingularization” of L in [2, Prop 4.1.2]. It can be constructed
explicitly as follows.
We keep the local trivialization at non-orbifold points, and change it

at each orbifold point p. If L has a local chart ∆ × C with coordinates
(z, s), and if the generator 1 ∈ Z/m ∼= Gp acts locally on L by (z, s) 7→
(exp(2πi/m)z, exp(2πiv/m)s), then we use the Z/m-equivariant map Ψ :
(∆− {0})× C - ∆× C given by

(z, s) - (zm, z−vs), (2.2)

where Z/m acts trivially on the second ∆ × C. Since Z/m acts trivially,
this gives a line bundle over C, which is |L |.

If the orbicurve C is nodal, then the pushforward %∗L of a line bundle
L may not be a line bundle on C. In fact, if the local group Gp at a node
acts non-trivially on L , then the invariant sections of L form a rank-one
torsion-free sheaf on C (see [1]). However, we may take the normalizations
C̃ and C̃ to get (possibly disconnected) smooth curves, and the pushforward
of L from C̃ will give a line bundle on C̃. Thus |L | is a line bundle away
from the nodes of C, but its fiber at a node can be two-dimensional; that
is, there is (usually) no gluing condition on |L | at the nodal points. The
situation is slightly more subtle than this (see [1]), but for our purposes,
it will be enough to consider the pushforward |L | as a line bundle on the
normalization C̃ where the local group acts trivially on L .
It is also important to understand more about the sections of the push-

forward %∗L . Suppose that s is a section of |L | having local representative
g(u). Then (z, zvg(zm)) is a local section of L . Therefore, we obtain a sec-
tion %∗(s) ∈ Ω0(L ) which equals s away from orbifold points under the
identification given by Equation 2.2. It is clear that if s is holomorphic,
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so is %∗(s). If we start from an analytic section of L , we can reverse the
above process to obtain a section of |L |. In particular, L and |L | have
isomorphic spaces of holomorphic sections:

%∗ : H0(C, |L |)−̃→H0(C ,L ).

In the same way, there is a map %∗ : Ω0,1(|L |) - Ω0,1(L ), where
Ω0,1(L ) is the space of orbifold (0, 1)-forms with values in L . Suppose
that g(u)dū is a local representative of a section of t ∈ Ω0,1(|L |). Then
%∗(t) has a local representative zvg(zm)mz̄m−1dz̄. Moreover, % induces an
isomorphism

%∗ : H1(C, |L |)−̃→H1(C ,L ).

Example 2.1.3. — The pushforward |ωC ,log| of the log-canonical bundle
of any orbicurve C is again the log-canonical bundle of C, because at a point
p with local group Gp ∼= Z/m the one-form mdz/z = dx/x is invariant
under the local group action.
Similarly, the pushforward |ωC | of the canonical bundle of C is just the

canonical bundle of C:
|ωC | = %∗ωC = ωC , (2.3)

because the local group Z/m acts on the one-form dz by exp(2πi/m)dz,
and the invariant holomorphic one-forms are precisely those generated by
mzm−1dz = dx.

Definition 2.1.4. — An Ar−1-structure on an orbicurve C is a choice
of a line bundle L and an isomorphism of line bundles

ϕ : L r - ωlog,

with the additional condition that for each point p ∈ C , the induced rep-
resentation ρp : Gp - Aut(L ) ∼= U(1) be faithful.

An isomorphism of Ar−1-structures Υ : (L , ϕ) - (L ′, ϕ′) on C is
defined to be an isomorphism ξ : L - L ′ such that ϕ = ϕ′ ◦ ξ.
Different choices of maps ϕ give isomorphic Ar−1-structures.

Proposition 2.1.5. — For a given orbicurve C , any two Ar−1-structu-
res (L , ϕ) and (L , ϕ′) on C which have identical structure bundle L are
isomorphic.

Proof. — The composition ϕ−1◦ϕ′ is an automorphism of ωlog and hence
defined by an element exp(α) ∈ C∗. Let β = α/r. This induces an auto-
morphism exp(β) : L - L which takes ϕ to exp(α)ϕ = ϕ′, and thus
induces an isomorphism of Ar−1-structures (L , ϕ)−̃→(L , ϕ′). �
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Definition 2.1.6. — For each orbifold marked point pi we will denote
the image ρpi(1) of the canonical generator 1 ∈ Z/m ∼= Gpi in U(1) by

γi := γpi := ρpi(1) = exp(2πiΘγi),

where Θγi ∈ Q ∩ [0, 1)

The choices of orbifold structure for the line bundles in the
Ar−1-structure is severely restricted by W ; specifically, the faithful rep-
resentation ρpi : Gpi - U(1) factors through G so γi ∈ µr.

Definition 2.1.7. — A marked point p of an Ar−1-curve is called nar-
row (called Neveu-Schwarz in [5]) if γp = 1. The point p is called broad
(called Ramond in [5]) otherwise.

2.2. Stack of stable Ar−1-orbicurves

Definition 2.2.1. — A triple (C ,L , ϕ) consisting of an orbicurve C

with n marked points and with Ar−1-structure (L , ϕ) is called a stable
Ar−1-orbicurve if the underlying (coarse) curve C is a stable curve.

Definition 2.2.2. — A genus-g, stable Ar−1-orbicurve with n marked
points over a base T is given by a flat family of genus-g, n-pointed or-
bicurves C - T with (gerbe) markings Si ⊂ C and sections σi :
T - Si, and the data (L , ϕ). The sections σi are required to induce
isomorphisms between T and the coarse moduli of Si for i ∈ {1, . . . , n}.
The bundle L is an orbifold line bundle on C . And ϕ : L r−̃→ωC/T,log is
an isomorphism to the relative log-canonical bundle which, together with
the L , induces an Ar−1-structure on every fiber Ct.

Definition 2.2.3. — We denote the stack of stable Ar−1-orbicurves by
Wg,n(Ar−1) or simply Wg,n.

Forgetting the Ar−1-structure and the orbifold structure gives a mor-
phism

st : Wg,n
- M g,n.

The morphism st plays a role similar to that played by the stabilization
morphism of stable maps.

Theorem 2.2.4 ([1]). — The stack Wg,n is a smooth, compact orbifold
(Deligne-Mumford stack) with projective coarse moduli. In particular, the
morphism st : Wg,n

- M g,n is flat, proper and quasi-finite (but not
representable).

ANNALES DE L’INSTITUT FOURIER
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2.2.1. Decomposition of Wg,n into components

The orbifold structure, and the image γi = ρpi(1) of the canonical gen-
erator 1 ∈ Z/mi

∼= Gpi at each marked point pi is locally constant, and
hence is constant for each component of Wg,n. Therefore, we can use these
decorations to decompose the moduli space into components.

Definition 2.2.5. — For any choice γ := (γ1, . . . , γn) ∈ Gn we define
Wg,n(γ) ⊆ Wg,n to be the open and closed substack with orbifold decoration
γ. We call γ the type of any Ar−1-orbicurve in Wg,n(γ).

We have the decomposition

Wg,n =
∑

γ

Wg,n(γ).

The following proposition is proved in [5].

Proposition 2.2.6. — A necessary and sufficient condition for Wg,n(γ)
to be non-empty is

(2g − 2 + n)/r −
n∑
l=1

Θγl ∈ Z, (2.4)

where Θγl is given in Definition 2.1.6.

Example 2.2.7. — For three-pointed, genus-zero Ar−1-curves, the choice
of orbifold line bundle L providing the Ar−1-structure is unique, if it exists
at all. Hence, if the selection rule is satisfied, W0,3(γ) is isomorphic to the
classifying stack Bµr := [pt/µr].

2.3. The stack of r-spin curves

2.3.1. Smooth r-spin curves

Let g and n be integers such that 2g− 2 +n > 0. Let m = (m1, . . . ,mn)
be an n-tuple of integers. A nonsingular n-pointed r-spin curve of genus g
and type m over a base S, denoted (C - S, si,L , c), is the data of

(1) a smooth, n-pointed curve (C - S, si : S - C) of genus g,
(2) an invertible sheaf L on C, and
(3) an isomorphism c : L ⊗r−̃→ωC/S(−

∑n
i=1miSi), where Si is the

image of si.

TOME 61 (2011), FASCICULE 7
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The category M
1/r,m
g,n of nonsingular, n-pointed r-spin curves of genus g

and type a, with morphisms given by fiber diagrams, is a Deligne-Mumford
stack with quasi-projective coarse moduli space. See [1, 7] for a detailed
proof. When m is congruent to m′ mod r, the two stacks M

1/r,m
g,n and

M
1/r,m′
g,n are canonically isomorphic. We denote by M

1/r
g,n the disjoint union

M 1/r
g,n =

∐
m

06mi<r

M 1/r,m
g,n .

Note that if (C - S, si,L , c) is a nonsingular, n-pointed r-spin curve
of genus g and type m, then

deg L = (2g − 2−
∑

mi/r) ∈ Z. (2.5)

Moreover, the stack M
1/r,m
g,n is non-empty if and only if∑

mi ≡ 2g − 2 mod r.

2.3.2. The stack of stable r-spin curves

To compactify the stack M
1/r,m
g,n one must replace rth-root line bundles

by rank-one torsion-free sheaves on nodal curves as described in [1, 7].
Although the full definition of the stable r-spin curve includes additional
data, for our purposes the most important structure is the choice of an
n-pointed stable curve (C, p1, . . . , pn), a rank-one, torsion-free sheaf E on
C, and a morphism ϕ : E⊗r - ω(−

∑n
i=1mipi) such that away from the

nodes of C the morphism ϕ is an isomorphism. Additionally, we require
that at each node q of C one of the following two conditions holds.

(1) The morphism ϕ is an isomorphism (in which case F is locally free
at the node). In this case we call the spin structure Ramond at the
node q.

(2) The sheaf F is not locally free, but F and the morphism ϕ are
induced from a line bundle F̃ and an isomorphism ϕ̃ : F̃⊗r -

ω
C̃

(−m+q+ −m−q−) on the normalization ν : C̃ - C of C at
the node q. Here the normalization C̃ has two smooth points q+ and
q− lying over the node q, and the integers m+ and m− must satisfy
m+ +m− ≡ r−2 (mod r). We call these integers the type of the r-
spin structure at the node q. The inclusion ω

C̃
⊂ - ω

C̃,log
= ν∗ωC

gives a morphism F̃⊗r - ν∗ωC which induces (by adjointness)
the morphism ϕ : F⊗r - ωC . In this case we say that the spin
structure is Neveu-Schwarz at the node q.
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Additional data and restrictions must also be placed on the torsion-free
sheaves to ensure that the compactification is smooth. These restrict the
way the spin structures may vary in families and it involves additional data
in the form of intermediate roots of ω. For more details on these structures,
see [1, 7].
The category M

1/r,a
g,n of n-pointed, stable r-spin curves of genus g and

type a, with morphisms given by fiber diagrams, is a smooth, proper
Deligne-Mumford stack with projective coarse moduli space. The forget-
ful map M

1/r
g,n

- M g,n is quasi-finite and proper, but not representable
[7].
We must also consider decorated dual graphs.

Definition 2.3.1. — A stable decorated graph is a stable graph with
a marking of each half-edge by an integer m with −1 6 m < r, such that
for each edge e the marks m+ and m− of the two half-edges of e satisfy

m+ +m− ≡ r − 2 (mod r).

Given a stable r-spin curve C of type m = (m1, . . . ,mn), the decorated
dual graph of C is the dual graph Γ of the underlying curve C, with the
following additional markings. The i-th tail is marked bymi, and each half-
edge associated to a node of C is marked by the type (m+ or m−) of the
r-spin structure along the branch of the node associated to that half-edge
if the node is Neveu-Schwarz. We mark the half edges with r − 1 if the
corresponding node is Ramond.
Given a decorated stable graph Γ, we denote by M

1/r
Γ the locus of r-spin

curves in M
1/r
g,n with dual graph Γ.

2.3.3. Change of type and roots of other bundles

In the definitions given above, one could also have replaced the bundle
ω with another line bundle defined on every stable curve. Specifically, let
1 := (1, 1, . . . , 1) ∈ Zn be the n-tuple of all ones. It will be important in
this paper to compare r-spin curves to the stack obtained by replacing ω
by ωlog := ω(

∑
Si), or by ω(−r`1) := ω(−

∑
r`Si), or by ωlog(−r`1) :=

ω(
∑

(1−r`)Si), for any choice of ` ∈ Z. We denote the corresponding stacks
by M

1/r,m
g,n,log, M

1/r,m+r`1
g,n , and M

1/r,m+r`1
g,n,log , respectively. More precisely,

points of the smooth locus M
1/r,m
g,n,log are tuples (C,L , c) such that C is

an n-pointed,smooth, genus-g curve, L is a line bundle on C, and c :
L ⊗r−̃→ωC,log(−

∑
mipi) = ωC(

∑
(1 − mi)pi) is an isomorphism of line

TOME 61 (2011), FASCICULE 7
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bundles on C. Points of the smooth locus M
1/r,m+r`1
g,n are tuples (C,L , c)

such that C is an n-pointed,smooth, genus-g curve, L is a line bundle on
C, and c : L ⊗r−̃→ωC(−

∑
(mi + r`)pi) is an isomorphism of line bundles

on C. And points of the smooth locus M
1/r,m+r`1
g,n,log are tuples (C,L , c)

such that C is an n-pointed,smooth, genus-g curve, L is a line bundle on
C, and c : L ⊗r−̃→ωC,log(−

∑
(mi + r`)pi) = ωC(

∑
(1 −mi − r`)pi) is an

isomorphism of line bundles on C.
The stack M

1/r,m
g,n is canonically isomorphic to the stack M

1/r,m+r`1
g,n for

any m ∈ Z. Similarly, the stacks M
1/r,m
g,n,log and M

1/r,m+r`1
g,n,log are canonically

isomorphic for any ` ∈ Z. In both cases, when C is smooth, the isomorphism
sends (C,L , ϕ) to (C,L ⊗ ωm, ϕ ⊗ I), where I : (ω⊗`)⊗r−̃→ω⊗`r is the
obvious isomorphism.
Similarly, the stack M

1/r,m
g,n,log is isomorphic to the stack M

1/r,m−1
g,n . On

the smooth locus this is immediate from the definitions.

2.4. The isomorphism between Wg,n and M
1/r
g,n

In [1, §4] it is shown that the stack Wg,n(Ar−1) of stable Ar−1-curves (in
[1] this stack is denoted Bg,n(Gm, ω1/r

log )) is isomorphic to the stack M
1/r
g,n

of r-spin curves. On the smooth locus the isomorphism is given simply
by pushing forward the orbifold line bundle to the underlying (coarse)
curve. Before describing the isomorphism, we will review some facts about
pushforwards of Ar−1 structures to the underlying curve.

2.4.1. Pushforward of Ar−1-structures

We now briefly recall some facts about the behavior of Ar−1-structures
when forgetting the orbifold structure at marked points, that is, when they
are pushed down to the underlying (coarse) curve.
An Ar−1-structure consists of a line bundle L with an isomorphism

L ⊗r ∼= ωlog such that near an orbifold point p with local coordinate z
the canonical generator 1 ∈ Z/m ∼= Gp of the local group Gp acts on L

by (z, s) 7→ (exp(2πi/m)z, exp(2πi(v/m))s) for some v ∈ {0, . . . ,m − 1}.
Since ωlog is invariant under the local action of Gp, we must have rv = `m

for some ` ∈ {0, . . . , r − 1}, and v
m = `

r . Denote the (invariant) local
coordinate on the underlying curve C by u = zm. Any section in σ ∈
Ω0(|L |) must locally be of the form σ = g(u)zvs, in order to be Z/m-
invariant. So σr has local representative zrvgr(u)dzz = u`gr(u) dumu . Hence,
σr ∈ Ω0(ωlog ⊗ O((−`)p), and thus when ` 6= 0, we have σr ∈ Ω0(K).
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From this we get the following proposition.

Proposition 2.4.1. — If C is a smooth orbicurve (i.e., C is a smooth
curve), let γi define the action of the local group Gpi near pi. The isomor-
phism ϕ : L r - ωlog induces an isomorphism

|ϕ| : |L |r - ωC ,log ⊗ O

(
−

n∑
i=1

rΘγipi

)
. (2.6)

2.4.2. The isomorphism between Wg,n and M
1/r
g,n

On the smooth locus, the isomorphism between Wg,n and M
1/r
g,n is a

straightforward consequence of Proposition 2.4.1. Specifically, for any
smooth Ar−1-curve (C ,L , ϕ) in Wg,n(γ), the pushforward along
% : C - C to the underlying coarse curve induces a line bundle |L |
on C and an isomorphism

|ϕ| : |L |r - ωlog

(
n∑
i=1
−rΘγipi

)
∼= ω

(
n∑
i=1

(1− rΘγi)pi

)
.

This describes the isomorphisms

Wg,n(γ) - M
1/r,(rΘγ1 ,...,rΘγn )
g,n,log

- M
1/r,(rΘγ1 ,...,rΘγn )−1
g,n

on the smooth locus.
The details of the isomorphism on nodal curves are more messy. These

details are not essential for our purposes here, but the interested reader
may find them in [1, §4].

3. The state spaces

3.1. The Ar−1 state space of [5]

We now describe the state space A := AAr−1,〈J〉 of the theory of [5]
for the singularity Ar−1 with symmetry group G = µr = 〈J〉, where J =
exp(2πi/r).

Definition 3.1.1. — For each γ ∈ G ⊂ (C∗)N we define Fix(γ) ⊆ CN
to the be fixed locus of γ acting on CN . We also define Nγ to be the
dimension of Fix(γ) (as a C-vector space).
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As described in [5], the state space is a direct sum of the 〈J〉-invariant
part of certain middle-dimensional relative cohomology groups:

AW =
⊕
γ∈G

Aγ :=
r−1⊕
k=0

AJk =
r−1⊕
k=0

(
HNγ (Fix(Jk),W∞Jk ,C)

)〈J〉
.

In the case that k 6= 0, the fixed locus of Jk is {0} ⊂ C so the middle
cohomology for these elements is just

HNγ (Fix(Jk),W∞Jk ,C) = H0({0},W∞Jk ,C) ∼= C,

and the J-action on H0({0},W∞Jk ,C) is trivial.
On the other hand, when k = 0 we have HNγ (Fix(J0),W∞Jk ,C) =

H1(C,W∞J0 ,C), and a theorem of Wall [12] shows that this is isomorphic,
as a graded G-module, to the following space of germs of one-forms on C:

H1(Fix(J0),W∞J0 ,C) ∼= Ω1/(xr−1dx).

This space has the following simple basis:

{dx, xdx, . . . , xr−2dx}.

None of the elements in the J0 sector are 〈J〉-invariant, and all the ele-
ments in the Jk sectors are invariant when k 6= 0. Thus we have

AJk = CaJk and A =
r−1⊕
k=1

CaJk ,

where aJk := 1 ∈ HN
Jk (CNJ−i ,W

∞
J−i ,C).

In the notation of the previous section, the group element Jk has ΘJk =
k/r. Therefore the Jk-sectors correspond to marked points p where the
Ar−1-structure gives |L |r ∼= ωlog(−kp) near p.
When k 6= 0, we call these sectors narrow. These will correspond to the

Neveu-Schwarz sectors of r-spin theory.
For any non-degenerate W and any admissible G, the state space AW,G

admits a grading and a non-degenerate pairing 〈 〉W . The pairing in the
Ar−1 case is given by

〈aJk ,aJ`〉 = δk+`≡0(mod r).

The grading is more subtle, as we now describe.

Definition 3.1.2. — The central charge of the singularityW is denoted
ĉFJRW :

ĉFJRW :=
N∑
i=1

(1− 2qi). (3.1)
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Suppose that γ = (e2πiΘγ1 , . . . , e2πiΘγ
N ) for rational numbers 0 6 Θγ

i < 1.
We define the degree shifting number

ιγ =
∑
i

(Θγ
i − qi) (3.2)

For a class α ∈ Aγ , we define

degW (α) = Nγ
2 + ιγ . (3.3)

Specifically, in the Ar−1-case, we have

ĉ = r − 2
r

,

and

degAr−1(aJk) = k − 1
r

,

provided we choose 0 < k < r.

3.2. The r-spin state space of [8]

The r-spin state space of [8] is a C-vector space S of dimension r − 1
with a basis {s0, . . . , sr−2} and metric ηJKV given by

ηJKV (sµ, sν) := ηJKVµν := δµ+ν,r−2. (3.4)

Furthermore, in [8] the elements sµ are given a grading of

degJV K(sµ) = µ/r,

and the central charge of the theory is

ĉJKV = r − 2
r

.

Remark 3.2.1. — In [8, 15] the span of each element sµ in S is called
a Neveu-Schwarz sector. There is an additional one-dimensional Ramond
sector that appears in the r-spin theory, but this sector completely decou-
ples from the rest of the theory and so can be omitted (see [8, Rem 3.10] for
more about this sector). This Ramond sector can be thought of as roughly
corresponding to the case of γ = J0 in the Ar−1 theory.
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3.3. The State Space Isomorphism

The two state spaces are isomorphic as graded vector spaces with metric.
As suggested by the grading, the isomorphism matches the element aJk ∈
AJk to the element sk−1 ∈ S . It is straightforward to see that this is
indeed an isomorphism preserving the grading, that degFJRW (aJk) = (k−
1)/r = degJKV sk−1, and that ĉFJRW = ĉJKV = (r − 2)/r. From now
on we will drop the subscripts and just write deg to denote both degAr−1

and degJKV , write η or 〈 , 〉 to denote the pairing, and write ĉ to denote
ĉFJRW = ĉJKV = (r − 2)/r.

4. The virtual classes

In this section we show how to construct an r-spin virtual cohomology
class using the virtual class of the Ar−1 theory. We begin by reviewing the
axioms of the r-spin virtual cohomology class and the properties of the
Ar−1 virtual cycle.

4.1. The [8] axioms of an r-spin virtual class

The r-spin theory depends on the existence of a virtual cohomology class
c1/r satisfying a list of axioms outlined in [8, §4.1]. We briefly review those
axioms here.

Definition 4.1.1. — An r-spin virtual class is an assignment of a co-
homology class

c
1/r
Γ ∈ H2D

(
M

1/r
Γ ,Q

)
(4.1)

to every genus g, stable, decorated graph Γ with n-tails. Here, if the tails
of Γ are marked with the n-tuple m = (m1, . . . ,mn), then the dimension
D is

D = ĉ(g − α) +
n∑
i=1

mi/r = ĉ(g − α) +
n∑
i=1

deg(smi), (4.2)

and α is the number of connected components of Γ. In the special case
where Γ has one vertex and no edges, we denote c1/r

Γ by c1/r
g,n(m). These

classes must satisfy the axioms below.
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Axiom 1a (Connected Graphs): Let Γ be a connected, genus g,
stable, decorated graph with n tails. Let E(Γ) denote the set of
edges of Γ. For each edge e of Γ, let le := gcd(m+

e + 1, r), where
m+
e is an integer decorating a half-edge of e. The classes c1/r

Γ and
c

1/r
g,n(m) are related by

c
1/r
Γ =

 ∏
e∈E(Γ)

r

le

 ĩ∗ c1/r
g,n(m) ∈ H2D(M 1/r

Γ ), (4.3)

where ĩ : M
1/r
Γ

⊂ - M
1/r,m
g,n is the canonical inclusion map.

Axiom 1b (Disconnected Graphs): Let Γ be a stable, decorated
graph which is the disjoint union of connected graphs Γ(d), then the
classes c1/r

Γ and c1/r
Γ(d) are related by

c
1/r
Γ =

⊗
d

c
1/r
Γ(d) ∈ H•(M 1/r

Γ ).

Axiom 2 (Convexity): If mi 6= r − 1 for all i ∈ {1, . . . , n}, let F

denote the universal rth root rank-one torsion-free sheaf on the uni-
versal r-spin curve π : C1/r,m

g,n
- M

1/r,m
g,n . For each irreducible

(and connected) component of M
1/r,m
g,n (denoted here by M

1/r,m,(d)
g,n

for some index d), if π∗F = 0 on M
1/r,m,(d)
g,n , then c1/r

g,n(m) re-
stricted to M

1/r,m,(d)
g,n is the top Chern class (−1)DcD(R1π∗F ), of

the dual of the first derived pushforward of F .
Axiom 3 (Cutting edges): Given any genus-g, decorated stable

graph Γ with n tails marked with m, we have a diagram

MΓ̃ ×MΓ M
1/r
Γ

µ̃- M
1/r
Γ

⊂
ĩ- M 1/r

g,n

M
1/r
Γ̃

�
p 1

MΓ̃

p

? µ -

p2
-

MΓ

p

?
⊂

i- Mg,n.

p

?

(4.4)

where MΓ̃ is the stack of stable curves with graph Γ̃, the graph
obtained by cutting all edges of Γ, and M

1/r
Γ̃ is the stack of stable

TOME 61 (2011), FASCICULE 7



2796 Huijun FAN, Tyler JARVIS & Yongbin RUAN

r-spin curves with graph Γ̃ (still marked withm± on each half edge).
p1 is the following morphism: The fiber product consists of triples of
an r-spin curve (X/T,F , ϕ), a stable curve X̃/T , and a morphism
ν : X̃ - X, making X̃ into the normalization of X. Also, the
dual graphs of X and X̃ are Γ and Γ̃, respectively. The associated
r-spin curve in M

1/r
Γ̃ is simply (X̃/T, ν∗F , ν∗ϕ). We require that

p1∗µ̃
∗c

1/r
Γ = r|E(Γ)|c

1/r
Γ̃ ,

where E(Γ) is the set of edges of Γ that are cut in Γ̃.
Axiom 4 (Ramond Vanishing): If Γ contains a tail marked with
mi = r − 1 or mi = −1, then c1/r

Γ = 0.
Axiom 5 (Forgetting tails): Let Γ̂ be a stable graph whose i-th tail

is marked by mi = 0, Γ be the stable graph obtained by removing
the i-th tail, and

π : M
1/r
Γ̂

- M
1/r
Γ

be the forgetful morphism. The classes c1/r
Γ̂

and π∗c1/r
Γ are related

by
c

1/r
Γ̂

= π∗c
1/r
Γ .

4.2. The properties satisfied by the [5] virtual cycle for Ar−1

Let Γ be a stable graph (not necessarily connected) with tails T (Γ),
and with each tail τ ∈ T (Γ) decorated by an element γτ ∈ G. Denote by
n = |T (Γ)| the number of tails of Γ.
The theory of [5] provides a homology virtual cycle

[W (Γ)]vir ∈H∗(W (Γ),Q)⊗
∏

τ∈T (Γ)

(
HNγ (Fix(Jk),W∞Jk ,Q)

)〈J〉
= H∗(W (Γ),Q)⊗

∏
τ∈T (Γ)

A ∗γτ ,

where A ∗γτ is the dual of Aγτ . And the virtual cycle satisfies several axioms
similar to those of the virtual cohomology class of r-spin theory. Here we
briefly review those properties of the cycle that are relevant to this paper.
When Γ has a single vertex of genus g, n tails, and no edges (i.e, Γ is a

corolla), we denote the virtual cycle by [W (γ)]vir, where γ := (γ1, . . . , γn).
The following properties axioms hold for the virtual cycle [W (Γ)]vir:
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(1) Dimension: As in the r-spin case, define

D = ĉ(γ − α) +
∑

τ∈T (Γ)

deg(aγτ ),

where α is the number of connected components of Γ. If D is not
an integer, then [W (Γ)]vir = 0. Otherwise, the cycle [W (Γ)]vir has
degree

2

(ĉ− 3)(1− g) + n−
∑

τ∈T (Γ)

ιτ

 . (4.5)

So the cycle lies in Hd(W (Γ),Q)⊗
∏
τ∈T (Γ) A ∗γτ , where

d := 6g − 6 + 2n− 2D = 2

(ĉ− 3)(1− g) + n−
∑

τ∈T (Γ)

deg(aγτ )

 .

(2) Symmetric group invariance: There is a natural Sn-action on
Wg,n obtained by permuting the tails. This action induces an action
on homology. That is, for any σ ∈ Sn we have:

σ∗ : H∗(Wg,n,Q)⊗
∏
i

A ∗γi
- H∗(Wg,k,Q)⊗

∏
i

A ∗γi .

For any decorated graph Γ, let σΓ denote the graph obtained by
applying σ to the tails of Γ.

We have
σ∗ [W (Γ)]vir = [W (σΓ)]vir . (4.6)

(3) Degenerating connected graphs: Let Γ be a connected, genus-g,
stable graph decorated with γi on the ith tail.

The cycles [W (Γ)]vir and [Wg,n(γ)]vir are related by

[W (Γ)]vir = ĩ∗ [Wg,n(γ)]vir , (4.7)

where ĩ : W (Γ) - Wg,n(γ) is the canonical inclusion map.
(4) Disconnected graphs: Let Γ =

∐
i Γi be a stable, decorated W -

graph which is the disjoint union of connected W -graphs Γi. The
classes [W (Γ)]vir and [W (Γi)]vir are related by

[W (Γ)]vir = [W (Γ1)]vir × · · · × [W (Γd)]vir . (4.8)

(5) Concavity: Suppose that all the decorations on tails of Γ are nar-
row, meaning that Fix(γ) = CNγi = {0}, and so we can omit
A ∗γi = HNγi

(CNγi ,W∞γi ,C) ∼= C from our notation.
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Consider the universal Ar−1-structure bundle L on the universal
curve π : C - W (Γ).
If π∗(L ) = 0, then the virtual cycle is given by capping the top

Chern class of the dual
(
R1π∗(L )

)∗ of the pushforward with the
usual fundamental cycle of the moduli space:

[W (Γ)]vir = ctop
(
(R1π∗L )∗

)
∩ [W (Γ)]

= (−1)DcD
(
R1π∗L

)
∩ [W (Γ)] .

(4.9)

(6) Composition law: Given any genus-g decorated stable W -graph
Γ with k tails, and given any edge e of Γ, let Γ̂ denote the graph
obtained by “cutting” the edge e and replacing it with two unjoined
tails τ+ and τ− decorated with γ+ and γ−, respectively.
The fiber product

F := W (Γ̂)×W (Γ) W (Γ)

has morphisms

W (Γ̂) �q F
pr2- W (Γ).

We have〈[
W (Γ̂)

]vir〉
±

= 1
deg(q)q∗pr

∗
2

(
[W (Γ)]vir

)
, (4.10)

where 〈〉± is the map from

H∗(W (Γ̂))⊗
∏

τ∈T (Γ)

A ∗γτ ⊗A ∗γ+
⊗A ∗γ−

to
H∗(W (Γ̂))⊗

∏
τ∈T (Γ)

A ∗γτ

obtained by contracting the last two factors via the usual dual pair-
ing

〈 , 〉 : A ∗γ+
⊗A ∗γ−

- C.
(7) Forgetting tails:

(a) Let Γ have its ith tail decorated with J , where J is the expo-
nential grading element of G. Further let Γ′ be the decorated
W -graph obtained from Γ by forgetting the ith tail and its
decoration. Assume that Γ′ is stable, and denote the forget-
ting tails morphism by

ϑ : W (Γ) - W (Γ′).
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We have

[W (Γ)]vir = ϑ∗ [W (Γ′)]vir . (4.11)

(b) In the case of g = 0 and k = 3, the space W (γ1, γ2, J) is
empty if γ1γ2 6= 1, and otherwise W0,3(γ, γ−1, J) = BG. We
omit A ∗J = C from the notation. In this case, the cycle[

W0,3(γ, γ−1, J)
]vir ∈ H∗(BG,Q)⊗A ∗γ ⊗A ∗γ−1

is the fundamental cycle of BG times the Casimir element.
Here the Casimir element is defined as follows. Choose a basis
{αi} of A ∗γ , and a basis {βj} of A ∗γ−1 . Let ηij = 〈αi, βj〉 and
(ηij) be the inverse matrix of (ηij). The Casimir element is
defined as

∑
ij αiη

ij ⊗ βj .
The virtual cycle satisfies several other properties as well, but those ad-

ditional properties are not needed for this paper.

4.3. The Ar−1 virtual cycle defines an r-spin class

As noted above, the stack of r-spin curves and the stack of Ar−1-curves
are isomorphic as stacks, and the state spaces of the two theories are iso-
morphic. All that remains is to use the Ar−1 virtual cycle to construct a
cohomology class which satisfies the axioms of an r-spin virtual class.

4.3.1. r-spin class from the Ar−1 virtual cycle

To complete the connection to the r-spin theory of [8], we define a coho-
mology class c1/rg,k (m) as follows.

Definition 4.3.1. — Given a stable graph Γ with tails (indexed by
i ∈ {1, . . . , n}) decorated by integers mi ∈ {0, . . . , r − 1} and half-edges
(indexed by e+ and e− for e ∈ E(Γ)) decorated by integers me+ and me−

in {0, . . . , r− 1}, such that for any edge the two decorations me+ and me−

on the half edges e+ and e−, respectively, satisfy the relation me+ +me− ≡
r − 2 (mod r), we let Γ̃ be the stable decorated W -graph whose tails are
decorated with the group elements γi := Jmi+1 and whose half-edges are
decorated by the group elements γe+ := Jme++1 and γe− := Jme−+1,
respectively.
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We define c1/r
Γ to be the cohomology class

c
1/r
Γ :=

0 if mi ≡ −1 (mod r) for any i ∈ {1, . . . , n} or if D is not in Z.∏
e∈E(Γ) |〈γe+〉|PD

([
MAr−1(Γ̃)

]vir
∩
∏k
i=1 aγi

)
otherwise.

(4.12)
Here PD denotes the Poincaré dual, and ∩ denotes the obvious contraction

∩ :

H∗(W (Γ),Q)⊗
∏

τ∈T (Γ)

A ∗γτ

⊗
 ∏
τ∈T (Γ)

Aγτ

 - H∗(W (Γ),C).

We will write c1/r
g,k (m) := c

1/r
Γ when Γ is a genus-g corolla with k tails

labeled by m = (m1, . . . ,mn).

4.3.2. Verification of the r-spin axioms

We will continue to use the notation of Definition 4.3.1, and we will write

M
1/r
Γ := MAr−1(Γ̃). (4.13)

This is legitimate, since as discussed earlier, the stack M
1/r
Γ of stable r-spin

curves with graph Γ is (canonically) isomorphic to the stack MAr−1(Γ̃).

Proposition 4.3.2. — The collection of classes c1/r
Γ satisfies all the

axioms of an r-spin virtual class outlined in [8].

Proof. — It is clear from the definition that the class c1/r lies in
H2D(M 1/r

Γ ). And, indeed, the only axiom that does not immediately fol-
low from the definition and the corresponding axioms for Ar−1-curves is
the cutting edges axiom.
The axiom requires in Diagram (4.4) that

q∗pr
∗
2c

1/r
Γ = r|E(Γ)|c

1/r
Γ̂
,

where E(Γ) is the set of edges of Γ that are cut in Γ̂. This follows by
induction on the number of edges from the corresponding axiom for the
virtual cycle. For a single edge labeled by γ, the degree of the map q in
that axiom is |G/〈γ〉| and the class c1/r

Γ is |〈γ〉| times the Poincaré dual of
the virtual cycle, so the overall factor introduced is |G||E(Γ)| = r|E(Γ)|, as
desired.
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The only complication is the fact that we have defined the class c1/r to
be zero if any tail is marked with r − 1 or −1 (corresponding to γ = J0).
But in the Ar−1 case the only invariant element in the broad/Ramond (J0-)
sector is 0, so any time a cut graph Γ̂ introduces a new tail decorated with
m = r − 1 (or −1), the corresponding class will vanish, as required. �

5. Conclusion

The cohomological field theory arising from the Ar−1 theory is given by

ΛAr−1
g,n (aJk1 , . . . ,aJkn ) : = |G|g

deg(st)PD(st∗([Wg,n]vir ∩ aJk1 ⊗ · · · ⊗ aJkn ))

= rg

r2g−1PD(st∗([Wg,n]vir ∩ aJk1 ⊗ · · · ⊗ aJkn ))

= 1
rg−1 st∗c

1/r(k1 − 1, . . . , kn − 1)

And this is precisely the r-spin cohomological field theory Λ1/r
g,n(sk1−1, . . . ,

skn−1) as defined in [8], so the two theories are identical.
Faber, Shadrin, and Zvonkine [4] have proved that any r-spin cohomolog-

ical field theory arising from an r-spin virtual class is completely determined
by the g = 0 theory, and in [8] it is proved that the g = 0 r-spin theory is
completely determined by the axioms. Therefore the proof in [4] that the
r-spin theory satisfies the Witten Integrable Hierarchies Conjecture also
applies to the Ar−1 theory, as expected.
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