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A GLOBAL MIRROR SYMMETRY FRAMEWORK FOR
THE LANDAU–GINZBURG/CALABI–YAU

CORRESPONDENCE

by Alessandro CHIODO & Yongbin RUAN

Abstract. — We show how the Landau–Ginzburg/Calabi–Yau correspondence
for the quintic three-fold can be cast into a global mirror symmetry framework.
Then we draw inspiration from Berglund–Hübsch mirror duality construction to
provide an analogue conjectural picture featuring all Calabi–Yau hypersurfaces
within weighted projective spaces and certain quotients by finite abelian group
actions.
Résumé. — On montre comment la correspondance Landau–Ginzburg/Calabi–

Yau pour la variété quintique dans P4 s’inscrit naturellement dans un cadre de
symétrie miroir globale. On s’inspire de la dualité miroir de Berglund–Hübsch
pour fournir un cadre conjectural analogue qui incorpore toutes les hypersurfaces
de Calabi–Yau dans les espaces projectifs à poids, ainsi que certains quotients par
l’action de groupes abéliens finis.

1. Introduction

We survey FJRW theory introduced by Fan, Jarvis, and the second au-
thor for the Landau–Ginzburg model following ideas of Witten. We review
its connection to related work and we provide a prospectus on the ideas
guiding the long term development of FRJW theory. The paper also con-
tains some new results on foundational aspects of FRJW theory.

The theory can be motivated as a tool for the computation of Gromov–
Witten invariants. Almost twenty years ago a correspondence was pro-
posed (see [70] and [74]) in order to connect two areas of physics: the
Landau–Ginzburg (LG) model and Calabi–Yau (CY) geometry. In simple

Keywords: Mirror symmetry, Gromov–Witten theory, Calabi–Yau varieties, moduli of
curves.
Math. classification: 14J33, 14J32, 14H10.
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terms, the geometry of certain CY spaces is expected to be completely
encoded by another geometrical object, the LG model, which is in many
cases easier to study. The case of the quintic three-fold illustrates this well:
a smooth hypersurface defined in P4 by a homogeneous degree-five polyno-
mial plays a central role in Gromov–Witten theory since its early develop-
ments. Whereas in genus zero the theory has been completely elucidated in
[34] and [56] matching the mirror symmetry conjecture, for positive genus
the theory is largely unknown: it has been determined by Zinger [75] for
g = 1 and is still wide open for g > 1 despite the joint effort of math-
ematicians and physicists over the last twenty years. From the point of
view of theoretical physics, the most advanced effort is Huang, Klemm,
and Quackenbush’s speculation [40] via a physical argument; it is striking
however that, even with these far-reaching techniques, there is no predic-
tion beyond g = 52. A natural idea to approach the higher genus cases
consists in providing a mathematical statement of the physical LG-CY
correspondence and using the computational power of the LG singularity
model to determine the higher genus Gromov–Witten invariants of the CY
manifold. From the mathematical point of view, this conceptual framework
is largely incomplete: whereas Gromov–Witten (GW) theory embodies all
the relevant information on the CY side, it is not clear which theory plays
the same role on the LG side. This is likely to be interesting in its own
right; for instance, in a different context, the LG-CY correspondence led to
Orlov’s equivalence between the derived category of complexes of coherent
sheaves and matrix factorizations (see [63], [38] and [47]).
In [31, 32, 30], Fan, Jarvis and the second author construct such a can-

didate quantum theory of singularities: FJRW theory. In intuitive terms,
GW theory may be regarded as the study of the solutions of the Cauchy–
Riemann equation ∂f = 0 for the map f : C → XW , where C is a compact
Riemann surface and XW is a degree-N hypersurface within a projective
space with N homogeneous coordinates. On the other hand, in the LG sin-
gularity model, we treat W as a holomorphic function on CN . From this
perspective, FJRW theory is about solving a generalized PDE attached to
W rather than classifying holomorphic maps from a compact Riemann sur-
face Σ to CN . The idea comes from Witten’s conjecture [72] stated in the
early 90’s and soon proven by Kontsevich [48]: the intersection theory of
Deligne and Mumford’s moduli of curves is governed by the KdV integrable
hierarchy—i.e. the integrable system corresponding to the A1-singularity.
Witten generalized Deligne and Mumford’s spaces to new moduli spaces
governed by integrable hierarchies attached to more general singularities.

ANNALES DE L’INSTITUT FOURIER
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To this effect, he considers the PDE

∂sj + ∂jW (s1, · · · , sN ) = 0, (1.1)

where W is the same polynomial defining XW and ∂jW is the deriva-
tive with respect to the jth variable. Faber, Shadrin and Zvonkine proved
this conjecture for An-singularities. Fan, Jarvis, and the second author
[31, 32, 30] extended Witten approach to any singularity and genealized the
proof of Witten’s statement to all simple singularities. In this way FJRW
theory plays the role of Gromov–Witten theory on the LG side for any
isolated singularity defined by a quasihomogeneous polynomial. The Wit-
ten equation should be viewed as the counterpart to the Cauchy–Riemann
equation: when we pass to the LG singularity model we replace the linear
Cauchy–Riemann equation on a nonlinear target with the nonlinear Witten
equation on a linear target.
Three years ago, a program was launched by the authors in order to es-

tablish the LG-CY correspondence mathematically. Since then, a great deal
of progress has been made: the proof of classical mirror symmetry state-
ments via the LG model (by the authors [17] and Krawitz [50]), the mod-
ularity of the Gromov–Witten theory of elliptic orbifold P1 (see Krawitz–
Shen [51] and work by the second author in collaboration with Milanov
[59]) and the connection to Orlov’s equivalence (by the authors in collab-
oration with Iritani [15]). In this survey article, we report on some of the
progress within a common framework and we complement at several points
our treatment of the quintic threefold [16].

1.1. LG-CY correspondence and “global” mirror symmetry

So far we have presented the LG-CY correspondence from the point of
view of the open problem of computing GW theory. The framework of
mirror symmetry, however, allows us to recast this transition from CY
geometry to the LG side within a geometric setup involving a wider circle
of ideas. This is the main focus of this paper.

Recall that mirror symmetry asserts a duality among CY three-folds ex-
changing the A model invariants with the B model invariants. Naively, the
A model contains information such as the Kähler structure and Gromov–
Witten invariants, while the B model contains information such as the
complex structure and period integrals. From a global point of view, this
picture cannot be entirely satisfactory, because the complex moduli space
has a nontrivial topology while the Kähler moduli space does not.

TOME 61 (2011), FASCICULE 7
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1.1.1. Cohomological mirror symmetry

Let us illustrate this issue by means of the example which inspired the
whole phenomenon of mirror symmetry [11]. On the one side of the mirror
we have the quintic three-fold

XW = {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0}⊂ P4 (1.2)

equipped with a natural holomorphic three-form ω = dx1 ∧ dx2 ∧ dx3/x
4
4

(written here in coordinates with x5 = 1). On the other side we take the
quotient of XW by the group G ∼= (Z5)4 spanned by xi 7→ αxi with α5 = 1
for all i = 1, . . . , 5 subject to the condition that ω is preserved(1) . The quo-
tient scheme XW /G is singular; but there is a natural, canonically defined,
resolution Y = (XW /G)res which is again a CY variety.
In general the existence of resolutions of CY type is not guaranteed. But

we can rephrase things in higher generality in terms of orbifolds: let us mod
out G by the kernel of G→ Aut(XW ), the group spanned by the diagonal
symmetry jW scaling all coordinates by the same primitive fifth root ξ5.
Then, the quotient of XW by G̃ = G/〈jW 〉 equals XW /G and the group G̃
acts faithfully. In this way, the resolution Y may be equivalently replaced
by the smooth quotient stack (orbifold)

X∨W = [XW /G̃] (1.3)

(a cohomological equivalence between Y and X∨W holds under the condition
that the stabilizers are nontrivial only in codimension 2).
The odd cohomology (primitive cohomology) of X∨W is four-dimensional

and unusually simple: the odd-degree Hodge numbers equal (1, 1, 1, 1) and
mirror the four hyperplane sections 111, H,H2, H3 of the projective hyper-
surface XW

hp,q(X∨W ) = 1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

hp,q(XW ) = 1
0 0

0 1 0
1 101 101 1.

0 1 0
0 0

1

Indeed, this is part of the cohomological mirror symmetry

hp,q(XW ) = hdim−p,q(X∨W ). (1.4)

(1) In other words, each diagonal transformation Diag(α1 ∈ µµµ5, . . . , α5 ∈ µµµ5) should
satisfy det =

∏
i
αi = 1.

ANNALES DE L’INSTITUT FOURIER
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1.1.2. Mirror symmetry at the large complex structure point

We further illustrate mirror symmetry for this example with special at-
tention to the difference in global geometry between the two sides. On one
side of the mirror, for XW , we consider the (complexified) Kähler moduli
space — a contractible one-dimensional complex space which should be
regarded as an A side invariant

A(XW ).

On the other side of the mirror we consider a B model invariant: the (com-
plex structure) deformations of [XW /G̃]. These are actually deformations
of XW preserved by the action of G̃ = G/〈jW 〉. We get the Dwork family

XW,ψ =
{
x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + 5ψ
5∏
i=1

xi = 0
}
,

on which G̃ operates by preserving the fibres and the form ωψ =
dx1 ∧ dx2 ∧ dx3/(x4

4 − ψx1x2x3) yielding a family of CY orbifolds X∨W,ψ
over an open subset of P1

ψ (the complement of the divisor where singulari-
ties occur). In fact, for α5 = 1, we can let the diagonal symmetry xi 7→ αxi
operate on the family so that the action identifies the fibre X∨W,ψ over ψ
with the isomorphic fibre X∨W,αψ over αψ. Therefore, the Dwork family is
ultimately a family of three-dimensional CY orbifolds over [P1/Z5]. Write
t = ψ5; then the new family is regular off t = ∞ and t = 1. These limit
points alongside with the stack-theoretic point t = 0 are usually referred
to as special limit points; more precisely, 0,∞, and 1 are referred to as the
Gepner point, the large complex structure point, and the conifold point.
Unlike the Kähler moduli space, this moduli space of complex structures is
not contractible. For this reason, mirror symmetry has been studied as an
identification between the above contractible Kähler moduli space A(XW )
and a contractible neighborhood of the large complex structure point t =∞

B(X∨W,∞).

This leads to a formulation of mirror symmetry as a local statement match-
ing the A model to the B model restricted to a neighborhood of the large
complex structure point. Consider the bundle over B(X∨W,∞) minus the
origin with four-dimensional fibre H3(X∨W,t,C) over t ∈ B(X∨W,∞). There
is, of course, a flat connection, the Gauss–Manin connection, given by the
local system H3(X∨W,t,Z) ⊂ H3(X∨W,t,C). Dubrovin has shown how to use
Gromov–Witten invariants to put a flat connection on the four-dimensional

TOME 61 (2011), FASCICULE 7
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bundle with fibre Hev(XW ) over A(XW ). Under a suitable identification
(mirror map)

B(X∨W,∞)

∼=
��

A(XW )

OO
(1.5)

the two structures are identified (Givental [33], Lian–Liu–Yau [56]). This
local point of view dominated the mathematical study of mirror symmetry
for the last twenty years.

1.1.3. Global mirror symmetry

It is natural to extend our study to the entire moduli space [P1/Z5] and
to all the special limits. Such a global point of view underlies a large part
of the physics literature on the subject and leads naturally to the famous
holomorphic anomaly equation [8] and, in turn, to the above mentioned
spectacular physical predictions [40] on Gromov–Witten invariants of the
quintic three-fold up to genus 52. In the early 90’s, a physical solution was
proposed to complete the Kähler moduli space by including other phases
[60, 74]. As we shall illustrate, for the quintic three-fold, two phases arise
in the A model: the CY geometry and the LG phase. Whereas the CY
geometry of the quintic has already been identified by mirror symmetry to
a neighborhood of the large complex structure limit point B(X∨W,∞), the
LG phase is expected to be mirror to the neighborhood of the Gepner point
at 0

B(X∨W,0).
Then, the LG-CY correspondence can be interpreted as an analytic contin-
uation from the Gepner point to the large complex structure point. From
this point of view, the LG-CY correspondence should be viewed as a step
towards global mirror symmetry.
From a purely mathematical point of view it may appear difficult to

make sense of such a transition of the CY quintic three-fold into a different
“phase”. Fortunately, Witten has illustrated this in precise mathematical
terms as a variation of stability conditions in geometric invariant theory,
[74, §4]. Let us consider the explicit example of the Fermat quintic Calabi–
Yau three-fold: let Y = C6 with coordinates x1, . . . , x5 and p and let C∗
act as

xi 7→ λxi, ∀i; p 7→ λ−5p.

ANNALES DE L’INSTITUT FOURIER
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The presence of nonclosed orbits prevents us from defining a geometric
quotient. In order to obtain a geometric quotient, one should necessarily re-
strict to open C∗-invariant subsets Ω of V ∼= C6 for which Ω/C∗ exists. The
geometric invariant theory (GIT) yields two maximal possibilities: the sets
Ω1 = {xxx 6= 0} yielding O(−5) as a quotient by C∗ and the set Ω2 = {p 6= 0}
yielding the orbifold [C5/Z5]. If one adds to the picture a C∗-invariant holo-
morphic function such as W̃ (p, x1, . . . , x5) = pW (x1, . . . , x5) = p

∑
i x

5
i the

two geometric models ultimately reduce to the Fermat quintic XW and to
the singularity at the origin of

W =
∑
i

x5
i : [C5/Z5] −→ C. (1.6)

On B(X∨W,0) consider the bundle with fibre H3(X∨W,t,C) over the point
t. There is again the flat Gauss–Manin connection induced by the local
system H3(X∨W,t,Z) ⊂ H3(X∨W,t,C). The work of Fan, Jarvis, and the
second author [31] yields — via Dubrovin connection — a flat connection
on a vector bundle on a contractible one-dimensional space

A(W,Z5)
attached to (1.6). (For the abstract formalism of Dubrovin connection we
refer to Iritani [42].) The fibre of this bundle is a four-dimensional state
space attached to the singularity W : [C5/Z5] → C (see §2.1). Under a
suitable identification (mirror map)

B(X∨W,0)

∼=
��

A(W,Z5)

OO
(1.7)

we match the two structures in [16]. The LG-CY correspondence can be
now carried out via (1.5) and (1.7) on the B side via the local system
induced by the family of CY orbifolds X∨W,t with t varying in (P1)× =
P1
t \ {0, 1,∞}. Consider Figure 1.1, where the notation ( )× stands for

( ) \ {special points 0, 1 and ∞}, the horizontal maps to (P1)× are the
natural inclusions, and V , V0 and V∞ are the four-dimensional bundles with
fibre H3(X∨W,t,C) equipped with the respective Gauss–Manin connections
∇.

TOME 61 (2011), FASCICULE 7
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(V0,∇0)

��

// (V,∇)

��

(V∞,∇∞)oo

��
� �

B side B(X∨W,0)× //

∼=

��

(P1)× B(X∨W,∞)×oo

∼=

��

↑

mirror symmetry

↓

A side A(W,Z5)×

OO

A(XW )×

OO

LG side ← correspondence→ CY side

Figure 1.1. Casting LG-CY correspondence within the global mirror
symmetry framework.

On the CY side, i.e. on A(XW )×, the isomorphism (1.5) and the study
of the variation of the Hodge structure of X∨W,t on B(XW,∞)× allow us to
associate to a given basis of Hev(XW ) a basis of multivalued functions from
A(XW )× to Hev(XW ) which are flat with respect to Dubrovin connection.
This amounts to solving Gromov–Witten theory for XW in genus zero.
The analogous problem holds on A(W,Z5)× on the LG side; it is solved via
(1.7) by computing FJRW theory for (W,Z5) in genus zero. Furthermore,
via analytic continuation, we can extend the bases of flat sections globally
on (P1)× and find a change of bases matrix

ULG-CY. (1.8)

This is explicitly computed in [16] for the Fermat quintic and is indepen-
dent of the base parameter t on (P1)×. In [15] we provide a geometric
interpretation in terms of Orlov’s equivalence relating the bounded derived
category of coherent sheaves on XW and the category of matrix factoriza-
tions attached to (W,Z5) (see §4.4). This point of view is interesting in its
own right, because it short-circuits mirror symmetry in the diagram and
provides a conceptual explanation to the fact that ULG-CY is symplectic (a
crucial fact for Conjecture 4.2). We refer to §4.4.
This paper focuses on the generalization of Figure 1.1. Indeed, the rich-

ness of the mirror symmetry picture calls for generalizations in several
directions and makes the whole process of figuring out all sides of the
story very entertaining: some corners of Figure 1.1 can be more rapidly
understood and shed light on entire the picture. For instance, there are
cohomological aspects that can be treated in very high generality; e.g. we

ANNALES DE L’INSTITUT FOURIER
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provide results applying to finite group quotients of CY hypersurfaces in
weighted projective spaces (see Section 3). On the other hand, the quantum
cohomological aspects are intrinsically more difficult; there, the results are
almost exclusively limited to certain well behaved ambient spaces (Goren-
stein weighted projective spaces); in this way, the purely cohomological
results can be used to formulate conjectures.

1.2. Structure of the paper

In Section 2, we will review Fan–Jarvis–Ruan–Witten (FJRW) theory
which plays a crucial role in these recent developments. In Section 3 we
will generalize point (1.4) above discussing results of Berglund, Hübsch
and Krawitz on LG phases and of the authors on LG-CY cohomologi-
cal correspondence. In Section 4 we focus on the quantum counterpart of
these theorems; i.e. we provide correspondences involving the enumerative
geometry of curves. This section is structured in four parts. We will state
the LG-CY conjecture and review recent results §4.1. Then, we will cast
it in a global mirror symmetry framework in §4.2. We will present in §4.3
a result going very far in providing evidence for this global mirror sym-
metry framework in higher genus [51] [59]. Finally, in §4.4 we will provide
an independent interpretation of the LG-CY correspondence via Orlov’s
equivalence (work in collaboration with Iritani).
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2. Fan–Jarvis–Ruan–Witten theory

In this section, we review Fan, Jarvis, and Ruan’s construction of “quan-
tum” singularity theory based on Witten’s partial differential equation
(1.1). The treatment given here is more general than that appearing in
[16] and complements [31]. The theory provides us with the LG side of the
correspondence. The input for the theory is a pair (W,G) where W is a
“nondegenerate” quasihomogeneous polynomial W : CN → C and G is a
group of diagonal symmetries of W .
We say that W : CN → C is quasihomogeneous (or weighted homoge-

neous) polynomial of type (q1, . . . , qN ) for qj ∈ Q>0 if the following con-
dition is satisfied. Let W =

∑s
i=1 γi

∏
x
mi,j
j with mi,j ∈ Z, mi,j > 0 and

γi 6= 0; then
∑N
j=1mi,jqj = 1. Equivalently, with a slight abuse of notation,

we write
W (λq1x1, . . . , λ

qNxN ) = λW (x1, . . . , xN )
and we refer to q1, . . . , qN as the charges of W . The polynomial W is
nondegenerate if: (1) W defines a unique singularity at zero; (2) the choice
of q1, . . . , qN is unique.
An element g ∈ GL(CN ) is a diagonal symmetry of W if g is a diagonal

matrix of the form Diag(λ1, . . . , λN ) such that

W (λ1x1, . . . , λNxN ) = W (x1, . . . , xN ).

We will use Aut(W ) to denote the group of all diagonal symmetries and
we will refer to it as the maximal group of diagonal symmetries. It is easy
to see that this group is finite (see for instance [31]). The group is also
nontrivial since it contains the element jW = Diag(e2πiq1 , . . . , e2πiqN ).

FJRW theory applies to a pair (W,G), where G ⊆ Aut(W ). Two condi-
tions will naturally arise in the rest of the paper; their role is specular in the
sense of mirror symmetry. We will say that G ⊆ Aut(W ) is A-admissible if
jW is contained in G. We will say that it is B-admissible if G ⊆ SL(CN );
i.e. if G is included in SLW = SL(CN ) ∩Aut(W ).

2.1. A model state space

The state space was introduced by Fan, Jarvis, and Ruan [31, 32, 30]
as part of the moduli theory of the Witten equation. We provide a purely
mathematical definition, independent from the mirror symmetry motiva-
tion.

ANNALES DE L’INSTITUT FOURIER
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2.1.1. Lefschetz thimbles from the classical point of view

ConsiderW : CN → C. Let us recall some important facts on the relative
homology of (CN ,W−1(S+

M )) where S+
M is the half-plane {z ∈ C | Rez >

M} for M > 0. We denote it by

HN (CN ,W+∞;Z)

with W+∞ = W−1(S+
M ) and, by abusing notation, we refer to it as the

space of Lefschetz thimbles.

Remark 2.1. — Due to the nondegeneracy condition, the origin is the
only critical point of W , and W is a fibre bundle on C×; for N > 1, since
CN is contractible, we can regard the above relative cohomology as the
homology (with compact support) of rank N − 1 of the fibre over a point
of S+

M ([64, 1.1]).

Remark 2.2. — Standard arguments ([4, ch. 2] and [57, (5.11)]) show
that the space of Lefschetz thimbles is freely generated by as many gener-
ators µ as the complex dimension of the local algebra QW . Furthermore,
due to [62] and [71], for any G ⊆ Aut(W ), its dual Hom(H,C) is isomor-
phic as a G-space to dx1 ∧ · · · ∧ dxN · QW (where a diagonal symmetry
g = Diag(λ1, . . . , λN ) acts on dx1 ∧ · · · ∧ dxN by multiplication by

∏
j λj).

Remark 2.3. — A nondegenerate pairing can be defined in the following
sense. Following [37, §8, Step 2] and [64], we consider the relative homology

HN (CN ,W−∞;Z),

where W−∞ denotes W−1(S−M ) and S−M is the half-plane {z ∈ C | Rez <
−M} for M > 0. The intersection form for Lefschetz thimbles with bound-
aries in W+∞ and in W−∞ gives a well defined nondegenerate pairing

P : HN (CN ,W+∞;Z)×HN (CN ,W−∞;Z) −→ Z. (2.1)

2.1.2. The state space of (W,G)

In our setup the above facts can be used to define the state space as the
space of Lefschetz thimbles for the stack-theoretic map

W : [CN/G] −→ C

where G is an A-admissible group (i.e. a group of diagonal symmetries con-
taining jW ). The quasihomogeneity condition yields a state space naturally
equipped with a nondegenerate inner pairing.

TOME 61 (2011), FASCICULE 7
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Let us define the state space first; for the scheme-theoretic morphism
W : CN→C it is natural to consider the relative cohomologyH∗(CN ,W+∞)
which is concentrated in degree N and dual to the above space of Lefschetz
thimbles. Since [CN/G] is a stack, and the loci W+∞ and W−∞ (preim-
ages of S+

M and S−M ) are substacks, the suitable cohomology theory for this
setup is orbifold cohomology (or Chen–Ruan cohomology). Indeed Chen–
Ruan cohomology admits a natural relative version

Ha,b
CR(U, V ) =

⊕
g

Ha−age(g),b−age(g)(Ug, Vg;C)G,

where, in complete analogy with the standard definition of Chen–Ruan
cohomology, the union runs over the elements of the stabilizers of the stack
U (i.e., in our case, the elements of G), the notation Ug and Vg stands
for the stacks where the automorphism g persists, and age(g) denotes the
age(2) of g acting on the normal bundle of Ug in U .

Definition 2.4 (A model state space). — For any A-admissible group
G, we set

Ha,bW,G := Ha+q,b+q
CR ([CN/G],W+∞) q =

∑
jqj .

Remark 2.5. — The above state space is the direct sum of two spaces:
the image and the kernel of

i∗ : H∗CR([CN/G],W+∞)→ H∗CR([CN/G])

The image of i∗ is isomorphic in HW,G to classes attached to diagonal
symmetries g fixing only the origin; these are narrow states (in Section 2.2,
Remark 2.16, we see how these states arise in the geometry of curves and
we motivate the terminology “narrow” from this different viewpoint). A
special case of narrow state is the fundamental class attached to jW : since
jW fixes only the origin this class is narrow, and — by construction — its
degree vanishes. Such a state plays the role of the unit of HW,G once the
ring structure is set up (see (3.10)). The complementary space of the space
of narrow states, i.e. the kernel of i∗, is referred to in [31] as the space of
broad states. These are classes attached to diagonal symmetries fixing a
nontrivial subspace of CN .

(2)We define age(α, V ) ∈ Q for any finite order autormorphism α of a vector space
V , or — equivalently — for any representation of µµµr for some r ∈ N. Each character
χ : µµµr → C∗ is of the form t→ tk for a unique integer k with 0 6 k 6 r−1 and, for these
representations, we define the age of χ as k/r. Since these characters form a basis for
the representation ring of µµµr, this extends to a unique additive homomorphism which
we denote by age: Rµµµr → Q.
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Remark 2.6. — By making the above definition explicit we may regard
the state space as the direct sum over the elements g ∈ G of the G-invariant
cohomology classes

HW,G =
⊕
g∈G

HNg (CNg ,W+∞
g ;C)G, (2.2)

where Ng is the number of coordinates x1, . . . , xN fixed by g and CNg and
W+∞
g denote the subspaces of CN of W+∞ which are fixed by g. In these

terms narrow states are spanned by the summands satisfyingNg 6= 0. Recall
the subspace of G-invariant classes within HNg (CNg ,W+∞

g ) is included in
the subspace of jW -invariant classes; this insures that HNg (CNg ,W+∞

g ;C)G
is equipped with a pure Hodge structure of weight Ng; in this way each
class has bidegree (p,Ng − p) in standard cohomology and, within HW,G
has bidegree

(deg+
A,deg−A) = (p,Ng−p)+(age(g), age(g))−(q, q) (with q =

∑
qj).

We will usually write Ha,bW,G for the terms of bidegree (a, b) and degA for
the total degree a+ b.

2.1.3. The inner pairing

We now define the nondegenerate inner pairing. The crucial fact is that
the quasihomogeneity of the map W allows us to define an automorphism

I : [CN/G]→ [CN/G]

exchanging [W+∞/G] with [W−∞/G]. Indeed we can set

I(x1, . . . , xN ) = (eπiq1 , . . . , eπiqN )

for which
W (I(x1, . . . , xN )) = −W (x1, . . . , xN ).

Recall that automorphisms of [CN/G] are defined up to natural transfor-
mation (composition with elements of G). The automorphism I induces
the nondegenerate inner pairing

〈·, ·〉 : HN (CN ,W+∞;C)G ×HN (CN ,W+∞;C)G −→ C
(α, β) 7→ P (α, I∗β)

via (2.1) and passage to cohomology. Notice that I is defined up to a natural
transformation; since we are working with G-invariant cohomology classes
this still yields a well defined pairing.
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There is an obvious identification ε between HNg (CNg ,W+∞
g ;C)G and

HNh(CNh ,W+∞
h ;C)G as soon as g = h−1 in G. This allows us to define a

nondegenerate pairing between these two spaces via 〈·, ·〉g = 〈·, ε(·)〉 and,
in turn, a nondegenerate pairing globally on HW,G.

Definition 2.7 (pairing for HW,G). — We have a nondegenerate inner
product

〈·, ·〉 : HW,G ×HW,G → C

pairing HaW,G and H2ĉW−a
W,G for

ĉW = N − 2q =
∑
j(1− 2qj) (central charge).

The above formula follows from the well known relation age(g) +
age(g−1) = N − Ng from Chen–Ruan cohomology and the overall shift
by q in Definition 2.4; it shows that the state space behaves like the co-
homology of a variety of complex dimension ĉW . Under the CY condition∑
j qj = 1, this equals N − 2; i.e., precisely the dimension of a weighted

projective hypersurface, see Theorem 3.15.

2.2. The moduli space

The relevant moduli space is also defined starting from the pair (W,G)
with G A-admissible.

2.2.1. The moduli stack associated to W

The first step is the definition of a moduli stack Wg,n attached to the
nondegenerate polynomial

W =
s∑
i=1

γi
∏
j

x
mi,j
j . (2.3)

We provide and elementary definition, simplifying that of [31] (see Remark
2.13). The moduli stack Wg,n is an étale cover of a compactification of the
usual moduli stack of curvesMg,n. Set

δ = exp(Aut(W ));
i.e., the exponent of the group Aut(W ) (the smallest integer δ for which
gδ = 1 for all δ ∈ Aut(W )). A δ-stable curve is a proper and geometrically
connected orbifold curve (or twisted curve in the sense of Abramovich and
Vistoli) with finite automorphism group, stabilizers of order δ only at the
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nodes and at the markings, and trivial stabilizers elsewhere. The stack
Mg,n,δ of δ-stable curves is a smooth and proper Deligne–Mumford stack
which differs only slightly from the usual Mg,n (see [13]). The advantage
of working overMg,n,δ is thatWg,n can be regarded as an étale and proper
cover ofMg,n,δ.

Definition 2.8. — On a δ-stable curve C, a W -structure is the datum
of N δth roots (

Lj , ϕj : L⊗δj
∼−−→ ω

⊗δqj
log

)N
j=1

(as many as the variables of W ) satisfying the following s conditions (as
many as the monomials W1, . . . ,Ws). For each i = 1, . . . , s and for
Wi(L1, . . . , LN ) =

⊗N
j=1 L

⊗mi,j
j , the condition

Wi(L1, . . . , LN ) ∼= ωlog (2.4)
holds. A δ-stable curve equipped with a W -structure is called an n-pointed
genus-g W -curve. We denote by Wg,n their moduli stack.

Remark 2.9. — If we replace ωlog by the trivial line bundleO in (2.4), we
obtain a different moduli stack W 0

g,n which also deserves special attention
(see Theorem 2.12).

Remark 2.10. — Since jW is in Aut(W ), it is automatic that δqj is
integer. On the other hand, the exponent δ of Aut(W ) is not the order
|jW | of jW . As a counterexample consider the D4 singularity x3 + xy2: the
order of jW is 3 but the exponent δ is 6.

Remark 2.11. — It is straightforward to see that Wg,n is a proper and
étale cover of the proper moduli stackMg,n,δ. Let us introduce the following
notation. Given an m-tuple of line bundles ~E = (E1, . . . , Em) and an n×m
matrix A = (ai,j) we denote by A~E the n-tuple of line bundles

A~E = (⊗jE⊗ai,ji )ni=1. (2.5)
A similar notation holds for an m-tuple of isomorphisms of line bundles
~f = (f1, . . . , fm) : ~E → ~F ; we write A~f for the n-tuple of isomorphisms of
line bundles (⊗jf⊗ai,ji )ni=1 from A~E to A~F .
With this notation we may rephrase the definition of Wg,n. Consider

the N roots (Lj , ϕj)j as a pair of vectors as above (~L, ~ϕ) and define EW
as the matrix (mi,j) from (2.3). Then, M~ϕ is an s-tuple of isomorphisms
M~ϕ : EW ~L⊗δ → EW (ω⊗δq1

log , . . . , ω⊗dqNlog )t identifying the δth tensor powers
Wi(L1, . . . , LN )⊗δ to ω⊗δlog. Hence, it is automatic thatWi(L1, . . . , LN )⊗ω∨log
is δ-torsion and the stackWg,n is merely the open and closed substack where
such a line bundle is actually trivial. This is an open and closed condition
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within a fibred product of categories of δth roots. Since the stacks of δth
roots of a given line bundle have been shown in [13] to be proper and étale
overMg,n,δ, the following theorem follows.

Theorem 2.12. — Let W be a nondegenerate quasihomogeneous poly-
nomial of type (q1, . . . , qN ).

(1) The stack Wg,n is nonempty if and only if n > 0 or |jW | divides
2g − 2. It is a proper, smooth, 3g − 3 + n-dimensional Deligne–
Mumford stack; more precisely, it is étale over Mg,n,δ which is a
proper and smooth stack of dimension 3g − 3 + n.

(2) The stack W 0
g,n (see Remark 2.9) carries a structure of a group

over the stack of genus-g n-pointed δ-stable curves Mg,n,δ with
composition law

W 0
g,n ×δ W 0

g,n
// W 0

g,n,

where ×δ denotes the fibred product over Mg,n,δ. The degree of
W 0
g,n over Mg,n,δ is equal to |Aut(W )|2g−1+n/δN for n > 0 and
|Aut(W )|2g/δN for n = 0.

(3) The stack Wg,n is a torsor under the group stack W 0
g,n overMg,n,δ.

In particular, its degree overMg,n,δ equals that ofW 0
g,n overMg,n,δ.

We have a surjective étale morphism and an action

Wg,n

��

W 0
g,n ×δ Wg,n

// W c
g,n .

Mg,n,δ

�

Remark 2.13. — The above moduli stack slightly differs from that used
in [31]. In the present paper a point representing a curve with trivial auto-
morphism group is equipped with N automorphisms acting by multiplica-
tion by ξδ on the fibres of L1, . . . , LN ; therefore, as a stack-theoretic point it
should be regarded as B(µµµδ)N . In [31], the isomorphismsWi(L1, . . . , LN ) =⊗N

j=1 L
⊗mi,j
j are included in the data defining an object; this involves

some technicalities on the compatibility between these isomorphisms [31,
2.1.4]. Adding these extra data imposes further constraints to the multi-
plications by δth roots of unity along the fibres; hence, the generic auto-
morphism group in [31] may be smaller than µµµNδ and is actually equal to
Aut(W ) ⊆ (µµµδ)N . It is easy to see that the moduli functor of [31] is an
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étale cover of Wg,n, locally isomorphic to

BAut(W )→ B(µµµδ)N ;

therefore, since we regard the relevant classes defined in [31] as pushfor-
wards to Wg,n, this issue does not affect the intersection theory on the
stack.

2.2.2. Decomposition of Wg,n according to the type of the markings

Consider a δth root L of a line bundle pulled back from the universal
stable curve ofMg,n (e.g., ωclog for some c). An index

multσi L = Θi ∈ [0, 1[ (2.6)

is determined by the local index of the universal δth root L at the ith
marking σi. More explicitly, the local picture of L over C at the ith marking
σi is parametrized by the pairs (x, λ) ∈ C2, where x varies along the curve
and λ varies along the fibres of the line bundle. The stabilizer µµµδ at the
marking acts as (x, λ) 7→ (exp(2πi/δ)x, exp(2πiΘi)λ). In this way, the local
picture of L provides an explicit definition of Θ1, . . . ,Θn for the markings
σ1, . . . , σn. As a consequence of Definition 2.8, the stack Wg,n decomposed
into several connected components defined by specifying the multiplicities
of the roots L1, . . . , LN at the points σ1, . . . , σn. We organize these data
into n multi-indices h1, . . . , hn each one with N entries.

Definition 2.14. — Let us fix n multi-indices with N entries hi =
(e2πiΘi1 , . . . , e2πiΘiN ) ∈ U(1)N for i = 1, . . . , n and Θi

j ∈ [0, 1[. Then
W (h1, . . . , hn)g,n is the stack of n-pointed genus-g W -curves satisfying the
relation Θi

j = multσi Lj , where Θi
j is the jth entry of hi.

Proposition 2.15. — Let n > 0. The stack Wg,n is the disjoint union

Wg,n =
⊔

h1,...,hn∈U(1)N
W (h1, . . . , hn)g,n.

The stack W (h1, . . . , hn)g,n is nonempty if and only if{
hi = (e2πiΘi1 , . . . , e2πiΘiN ) ∈ Aut(W ) i = 1, . . . , n;
qj(2g − 2 + n)−

∑n
i=1 Θi

j ∈ Z j = 1, . . . , N.
(2.7)

Remark 2.16. — A marking of a W -curve is therefore attached with a
multi-index h = (h1, . . . , hN ) ∈ Aut(W ). The case where all coordinates
of h are nontrivial is special: the sections of the line bundles L1, . . . , LN
necessarily vanish at such a marking. In this sense the bundle at that
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marking is “narrow” (this may provide a geometric explanation for the
terminology of §2.1). Similarly, a narrow node is a node whose multiplicities
h and h−1 ∈ Aut(W ) on the two branches are narrow in the sense of §2.1.
Again sections necessarily vanish at such a node.

2.2.3. The moduli stack associated to W and G

We identify open and closed substacks of Wg,n,G where the local indices
h only belong to a given subgroup G of Aut(W ). This happens because G
can be regarded as the group of diagonal symmetries of a polynomial
W (x1, . . . , xN ) + extra quasihomogeneous terms in the variables x1, . . . , xN .

We may allow negative exponents in the extra terms; we only require that
the extra monomials are distinct from those of W but involve the same
variables x1, . . . , xN with charges q1, . . . , qN . The following lemma is due
to Krawitz [50].

Lemma 2.17 (Krawitz [50]). — For any A-admissible subgroup G of
Aut(W ), there exists a Laurent power series Z in the same variables
x1, . . . , xN as W such that W (x1, . . . , xN ) + Z(x1, . . . , xN ) is quasihomo-
geneous in the variables x1, . . . , xN with charges q1, . . . , qN and we have
G = GW+Z . �

In this way to each A-admissible subgroup G of Aut(W ) we can associate
a substackWg,n,G ofWg,n whose object will be referred to as (W,G)-curves.

Definition 2.18. — Let Wg,n,G be the full subcategory of Wg,n whose
objects (L1, . . . , LN ) satisfy Zt(L1, . . . , LN ) ∼= ωlog, where Z =

∑
t Zt is

the sum of monomials Zt satisfying G = GW+Z .

Remark 2.19. — The above definition of Wg,n,G makes sense. It is im-
mediate that the definition ofWg,n extends whenW is a quasihomogeneous
power series. It is also straightforward that the definition ofWg,n,G does not
depend on the choice of Z. Assume that there are two polynomials Z ′ and
Z ′′ satisfying G = GW+Z′ = GW+Z′′ . We can define a third polynomial
Z̃ by summing all distinct monomials of Z ′ and Z ′′. Then we immediately
have G

W+Z̃ = G and

(W+Z ′-conditions)g,n ⊇ (W+Z̃-conditions)g,n ⊆ (W+Z ′′-conditions)g,n.
Notice that these inclusions cannot be strict: the fibres over Mg,n,δ of all
the three moduli stacks involved are zero-dimensional stacks all isomorphic
to the disjoint union of |G|2g−1+n copies of B(µµµδ)N .
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Remark 2.20. — As in Proposition 2.15, for n > 0, we have

Wg,n,G =
⊔

h1,...,hn∈G

W (h1, . . . , hn)g,n,G,

where hi ∈ G is the local index at the ith marked point.

Example 2.21. — The case where G = 〈jW 〉 is easy to work out. The
substack Wg,n,〈jW 〉 ⊆ Wg,n is the image of the stack of roots of ω of order
|jW | via the functor

(L,ϕ) 7→
(
(L⊗δq1 , ϕ⊗dq1), . . . , (L⊗δqN , ϕ⊗dqN )

)
(recall that δ and |jW | differ in general).

2.2.4. Tautological classes

The so-called psi classes and kappa classes are defined as
ψi = σ∗i ωπ (for i = 1, . . . , n)
κh = π∗(c1(ωlog)h+1) ∈ H2h(Wg,n) (for h > 0),

where π is the universal curve Cg,n → Wg,n and σi denotes the universal
section specifying the ith marking. We can identify each stack
Wg,n+1(h1, . . . , hn, 1) to the universal curve π : C → Wg,n(h1, . . . , hn) and
express κh as π∗(ψh+1

n+1).
Let us consider the higher direct images of the universal W -structure

(L1, . . . ,LN ) on the universal d-stable curve π : Cg,n →Wg,n. We express its
Chern character in terms of psi classes. The normalization of the boundary
locus parametrizing singular curves in Wg,n can be identified to the stack
parametrixing pairs (W -curves, nodes) in the universal curve. We consider
the étale double cover D given by the moduli space of triples (W -curves,
nodes, a branch of the node). The stack D is naturally equipped with two
line bundles whose fibres are the cotangent lines to the branches; we label
the corresponding first Chern classes by ψ,ψ′ ∈ H2(D) starting from the
branch attached to the geometric point in D. Recall that a δth root at
a node of a δ-stable curve determines local indices a, b ∈ [0, 1[ such that
a+ b ∈ Z corresponding to the branches of the node (apply for each branch
the definition (2.6) or see [18, §2.2]). In this way on D, the local index
attached to the chosen branch determines a natural decomposition into
open and closed substacks and natural restriction morphisms of the map
to Wg,n

D =
⊔

Θ∈[0,1[

DΘ, jΘ : DΘ →Wg,n.
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Proposition 2.22. — Let W be a nondegenerate quasihomogeneous
polynomial in N variables whose charges equal q1, . . . , qN . For any j =
1, . . . , N , consider the higher direct image Rπ∗Lj of the jth component
of the universal W -structure. Let chh be the degree-2h term of the re-
striction of the Chern character to the stack W (h1, . . . , hn)g,n, where hi =
(e2πiΘi1 , . . . , e2πiΘiN ) for Θi

j ∈ [0, 1[N . We have

chh(Rπ∗Lj) = Bh+1(qj)
(h+ 1)! κh −

n∑
i=1

Bh+1(Θi
j)

(h+ 1)! ψ
h
i

+ d

2
∑

06Θ<1

Bh+1(Θ)
(h+ 1)! (jΘ)∗

( ∑
a+a′=h−1

ψa(−ψ′)a
′

)
.

Proof. — This is an immediate consequence of the main result of [14]. �

2.3. The virtual cycle

The FJRW invariants of (W,G) fit in the the formalism of Gromov–
Witten theory. Fix the genus g and the number of markings n (with
2g − 2 + n > 0, stability condition); then, for any choice of nonnegative
integers a1, . . . , an (associated to powers of psi classes ψa1

1 , . . . , ψan1 ) and
any choice of elements α1, . . . , αn ∈ HW,G we can define an invariant (a
rational number)

〈τa1(α1), . . . , τan(αn)〉W,Gg,n . (2.8)
Once the “target” (W,G) is fixed, the procedure is similar to Gromov–
Witten theory and shares many features with orbifold theory. An intrinsic
mathematical object is attached to each genus g and each number of mark-
ings n: the so called “virtual cycle”. Then the psi classes ψa1

1 , . . . , ψan1 and
the state space entries α1, . . . , αn ∈ HW,G naturally yield FJRW invariants
via intersection theory carried out on a moduli space classifying the solu-
tions to the Witten equation. This is a moduli space overlying the moduli
space of W curves introduced above. We will not provide a treatment at
this level of generality, but we identify a number of cases where one can
reduce to the moduli space of W curves.

First, let us recall the formalism of [31]. There, the definition of (2.8) is
given by extending linearly the treatment of the special case where the en-
tries αi ∈ HW,G lie within a single summand HNg (CNg ,W+∞;C) of (2.2).
We denote by hi the group element satisfying αi ∈ HNhi(CNhi ,W

+∞;C).
When all the markings are narrow (in the sense of Remark 2.16), a lemma
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of Witten shows that his equation has only zero solutions; this provides
an heuristic explanation for the existence of a definition of the FJRW in-
variants in terms of intersection of psi classes against an algebraic virtual
cycle. In other terms, when αi is narrow for all i, we have

HNhi (CNg ,W+∞;C) ∼= 111hi · C; (2.9)

i.e. there is a canonical generator 111hi and, by abuse of notation, we can
write 〈τa1(h1), . . . , τan(hn)〉W,Gg,n and carry the computation directly in the
rational cohomology ring of W (h1, . . . , hn)g,n.

In general, for instance for D-type singularities (see [29]), nonvanishing
invariants attached to broad entries should be included in order to define
a consistent Gromov–Witten-type theory. The presence of nonvanishing
invariants attached to these broad entries can be actually probed indirectly
via universal relations such as WDVV equation. This observation is the
starting point of the FJRW setup. Even if [31] provides a coherent setup,
a direct computation is still an open problem in general. FJRW analytic
setup via Witten’s PDE indicates that this is due to the lack of an effective
method to solve Witten’s PDE equation. (The reader may refer to [29] for
an example of complete treatment of a D-singularity involving the broad
sector.)
In this paper, we illustrate the approach which has allowed a large part

of the computations available in the literature. Namely, we restrict to well-
behaved cases where we can assume that the markings are all within the
narrow sector. There, equation (2.9) allows us to focus essentially only
on the enumerative geometry of the moduli space. We will return to the
general case in the last part of the section: “Cohomological field theory in
the general case”.

2.3.1. The case of A singularities. A well-behaved “concave” locus.

In [74], Witten considers the case of the Ar−1 singularity W = xr. Here,
the only A-admissible group is Aut(W ) = 〈jW 〉 ∼= µµµr and the moduli stack
is

Wg,n,G(h1, . . . , hN ) = Wg,n(h1, . . . , hn),
for hi = exp(eπiΘi) with Θi ∈ [0, 1[. We have a universal curve π : C →
Wg,n(h1, . . . , hn) carrying an rth root L of the relative sheaf of logarithmic
differential ωlog,π. Let C be a fibre of the universal curve and let L be the
rth root on C; consider the space

V = H1(C,L).
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Generically, and away from a few low genus cases, this vector space has
dimension

D = (1− g)
(

1− 2
r

)
+

N∑
i=1

(
Θi −

1
r

)
. (2.10)

This fails precisely when H0(C,L) is non-zero. When H0(C,L) is trivial we
say that L is concave, the vector space V vary as a complex vector bundle
overWg,n(h1, . . . , hN ) of rank D, the locally free sheaf R1π∗L. In this case,
the virtual cycle is Poincaré dual to the top Chern class of (R1π∗L)∨

[Wg,n(h1, . . . , hN )]vir = ctop(R1π∗L)∨ = (−1)Dctop(R1π∗L). (2.11)

2.3.2. Witten’s analytic construction for A-singularities.

Since H0(C,L) is not trivial in general, Witten suggested the following
approach. At least over the open substack of smooth curves one has bundles
of Hilbert spaces E = Ω0,0(L) and F = Ω0,1(L) (consisting respectively of
L-valued (0, 0)-forms and (0, 1)-forms along the fibres of π), with a family
of operators ∂ : E → F . Choosing a Hermitian metric on L defines an
isomorphism L ∼= L∨. In this way the Serre duality (SD) map

s ∈ H0(C,L⊗r−1) ↪→ H0(C,ω ⊗ L∨) SD= H1(C,L)∨ 3 sr−1 (2.12)

is regarded as a family of maps on the total space of E

∂W : E → p∗F , (2.13)
s 7→ sr−1,

where p is the projection E to the moduli stack Wg,n. Witten considers the
section of p∗F → E

W(s) = ∂(s) + ∂W (s), (2.14)

for which

W(s) = 0 ⇔ s = 0; (2.15)

i.e. W vanishes only on the zero section of the total space of E . Then, the
above data defines a topological Euler class (−1)De(W : E → π∗F) which
generalizes (2.11). It was not clear, however, how to extend this approach
to singular curves and to the whole stack Wg,n(h1, . . . , hn).
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2.3.3. The algebraic counterpart for A-singularities.

The algebraic counterpart of the above analytic construction has been
provided in [67] via bivariant intersection theory using MacPherson’s graph
construction. In [12], the first author provided a compatible construction
directly in the K theory ring of Wg,n. This can be presented in very simple
and explicit terms and may clarify the above discussion. Instead of E → F ,
consider a complex of coherent locally free sheaves

0→ E
δ−−→ F → 0 (2.16)

representing the pushforward Rπ∗L in the derived category; this exists be-
cause π is of relative dimension one. We have rk(F ) − rk(E) = −χ(L) =
D by Riemann–Roch. The case where H0(C,L) constantly vanishes is
the case where we can choose E = 0 and define the virtual cycle as
ctop(F∨); or, equivalently, in terms of Chern and Todd characters via the
well known Grothendieck formula ctop(F∨) = ch

(∑
k(−1)kΛkF

)
td(F∨).

Since the Todd class is invertible it makes sense to define td(F∨ − E∨) =
td(F∨)/ td(E∨). In this way, the difficulty lies in generalizing the term
ch
(∑

k(−1)kΛkF
)
. To this effect we need to modify (ΛkF )rkF

k=0, which
should be regarded as a complex with zero differential and K class∑
k(−1)kΛkF . Then, this is generalized by a double graded complex of

coherent sheaves with two differentials(
Ch,k = SymhE ⊗ ΛkF, δ : Ch,k → Ch−1,k+1, ∂ : Ch,k → Ch−r+1,k−1

)
,

where the Koszul differentials δ and ∂ are induced by (2.16) and by (2.12-
2.13). The reparametrization (p, q) = (h+k−rk, h+k) transforms them into
horizontal and vertical differentials of bidegree (−r, 0) and (0,−r), More
important, due to (2.15) the differentials commute and the cohomology
with respect to the total differential Hi

δ+∂(C•,•) vanishes except for a finite
number of ranks i. In this way, the Chern character of

∑
i(−1)iHi

δ+∂(C•,•)
is well defined and we can set

[Wg,n(h1, . . . , hn)]vir = ch
(∑

i(−1)iHi
δ+∂(C•,•)

)
td(F∨ − E∨), (2.17)

which satisfies cohomological field theory axioms (a key property is due to
Polishchuk [65]).

2.3.4. Fan, Jarvis and Ruan’s construction for the narrow sector

Fan, Jarvis and Ruan extended Witten approach to the case of a general
singularity in full generality. TheW -structure L1, . . . , LN can be assembled
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into a single vector bundle

E = ⊕Nj=1Lj .

When the markings are all narrow, the codimension of the cycle
[W (h1, . . . , hn)]vir

g,n in W (h1, . . . , hn)g,n equals −χ(Rπ∗E) for E = ⊕Nj=1Lj .
By Riemann–Roch for orbifold curves [1, Thm. 7.2.1], for hi =
(e2πiΘi1 , . . . , e2πiΘiN ), we can explicitly compute

−χ(Rπ∗E) = − rk(E)(1− g)− deg(E) +
∑
i,j

Θi
j

= (g − 1)N −
N∑
j=1

(2g − 2 + n)qi +
∑
i,j

Θi
j

= (g − 1)
N∑
j=1

(1− 2qj) +
n∑
i=1

N∑
j=1

(Θi
j − qj)

= (g − 1)ĉW +
n∑
i=1

(age(hi)− q),

= (g − 1)ĉW + 1
2

n∑
i=1

deg (111hi) , (2.18)

where in the last equality we see the role played in FJRW theory by the
central charge ĉW =

∑
j(1−2qj), the age shift the constant q =

∑
j qj , and

the grading introduced in §2.1. Note how the above formula specializes to
(2.10) for W = xr.

Again, since the universal curve π : C → Wg,n(h1, . . . , hn) is a flat mor-
phism of relative dimension one the pushforward Rπ∗E in the derived cate-
gories can be represented by a two-terms complex of the form (2.16); we get
δ = ⊕δj : E → p∗F . Then, in [32], Witten’s morphism ∂W : s 7→ sr−1 is re-
placed by the direct sum of all partial derivatives ∂jW for all j = 1, . . . , N ;
we get ∂W = ⊕j∂Wj : E → p∗F. Set W = δ + ∂W as in (2.14). The
nondegeneracy condition for W (2.15) extends immediately by the nonde-
generacy of the polynomial W . Then in [32] the virtual cycle is defined via
a topological Euler class construction

[Wg,n,G(h1, · · · , hn)]vir

= (−1)−χ(E)e(W : E → p∗F ) ∩ [Wg,n,G(h1, · · · , hn)]

We highlight two subcases.
Concavity: Suppose that all markings are narrow and suppose that

for every fibre C of the universal curve H0(C,Lj) = 0 for all j.
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Then the virtual cycle is given by

[Wg,n,G(h1, · · · , hn)]vir = ctop
(
(R1π∗E)∨

)
∩ [Wg,n,G(h1, · · · , hn)] .

Index zero: Suppose that the dimension of Wg,n,G(h1, · · · , hn) is
zero and that all markings are narrow. Furthermore, let us assume
that the π∗E and R1π∗E are both vector spaces and share the same
rank. Then the virtual cycle is just the degree of W : E → p∗F .

Remark 2.23. — When W is of Fermat type paired with the group 〈j〉,
the genus-zero theory falls into the concave case. Here, the expression of
the virtual cycle via the top Chern class allows explicit computations via
the Grothendiek–Riemann–Roch formula of Proposition 2.22; this happens
because ctop = [exp(

∑
k>0 skchk)]top for sk = (−1)k(k−1)! (see for example

[16]). Furthermore, since in this case W is a sum of monomials of the form
xr, even in higher genus we can describe the virtual cycle by intersecting
cycles defined as in (2.17). We refer again to [16] for more details.

2.3.5. Cohomological field theory in the general case

For sake of completeness we finish the section by presenting the formalism
in the general case, beyond the narrow sector. In general the virtual cycle
is defined for

[Wg,n,G(h1, · · · , hn)]vir

∈ H∗(Wg,n(h1, · · · , hn),C)⊗
n∏
i=1

HNhi
(CNhi ,W+∞

hi
,C)G

of degree

2
(

(ĉW − 3)(1− g) + n−
∑
i

(age(hi)− q)
)

(this is the real dimension 6g−6+2n ofWg,n minus the same degree already
discussed in (2.18)). One of the main achievements of [31] is the proof
of the fact that this cycle, satisfies the axioms of a Gromov-Witten type
theory. These axioms can be summarized in terms of the abstract notion
of cohomological field theory [49]. This amounts to show that the virtual
cycle has good factorization properties with respect to the decomposition
of the boundary of the moduli space of stable curvesMg,n. To this effect,
let us introduce the forgetful morphism

f : Wg,n →Mg,n
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to the standard Deligne–Mumford space. This map factors through the
forgetful map to Mg,n,δ but fails to be étale; nevertheless, Theorem 2.12
determines the degree of f because Mg,n,δ has degree 1 over Mg,n (see
[13]).

Definition 2.24. — The operators ΛWg,n,G ∈ Hom(H⊗nW,G, H∗(Mg,n))
are defined as follows. For each entry α1, . . . , αn ∈ HW,G assume there is a
group element hi ∈ G satisfying αi ∈ HNhi (CNhi ,W

+∞
hi

;C)G. Then, we set

ΛWg,n,G(α1, · · · , αk) := |G|g

deg(f)f∗

(
[Wg,n,G(h1, · · · , hn)]vir ∩

n∏
i=1

αi

)
.

We extend the definition linearly to the entire space H⊗nW,G.
We provide the abstract framework of cohomological field theory. Sup-

pose that H is a graded vector space with a nondegenerate pairing 〈·, ·〉
and a degree zero unit 1. To simplify the signs, we assume that H has only
even degree elements and the pairing is symmetric. (When this is not the
case, there are systematic solutions in terms of cohomological field theo-
ries over super-state spaces) Once and for all, we choose a homogeneous
basis φα (α = 1, . . . ,dimH) of H with φ1 = 1. Let ηµν = 〈φµ, φν〉 and
(ηµν) = (ηµν)−1.
Definition 2.25. — A cohomological field theory is a collection of ho-

momorphisms
Λg,n : H⊗n → H∗(Mg,n,C)

satisfying the following properties:
C1: The element Λg,n is invariant under the action of the symmetric

group Sn.
C2: Let g = g1 + g2 and k = n1 + n2 and cosider ρtree : Mg1,n1+1 ×
Mg2,n2+1 →Mg,n. Then Λg,n satisfy the composition property

ρ∗treeΛg1+g2,n(α1, . . . , αn)
= Λg1,n1+1(αi1 , . . . , αin1

, µ) ηµν ⊗ Λg2,k2+1(ν, αin1+1 , . . . , αin1+n2
)

for all αi ∈ H.
C3: Let ρloop :Mg−1,n+2 →Mg,n be the loop-type gluing morphism.

Then

ρ∗loop Λg,n(α1, . . . , αn) = Λg−1,n+2 (α1, . . . , αn, µ, ν) ηµν , (2.19)

where αi, µ, ν, and η are as in C2.
C4a: For all αi in H we have

Λg,n+1(α1, . . . , αn, 1) = π∗Λg,n(α1, . . . , αn), (2.20)
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where π :Mg,n+1 →Mg,n is the forgetful morphism.
C4b: We have ∫

M0,3

Λ0,3(α1, α2, 1) = 〈α1, α2〉. (2.21)

For each cohomological field theory, we can generalize the notion of in-
tersection number, the generating function and total descendant potential
function. Let

〈τa1,α1 , · · · , τan,αn〉Λg =
∫
Mg,n

∏
i

ψaii Λg,n(φα1 , . . . , φαn).

By associating a formal variable tαi to τi,α, we define generating functions

FgΛ =
∑
n>0

tα1
a1
. . . tαkan
n! 〈τa1,α1 , . . . , τan,αn〉g

and their total potential function

DΛ = exp
(∑

g>0h
g−1FgΛ

)
.

Theorem 2.26 (Fan–Jarvis–Ruan [31]). — Let 1 be the distinguished
generator 111jW attached jW lying in the A-admissible group G. Let 〈·, ·〉W,G
denote the pairing on the state space HW,G. Then, the collection
(HW,G, 〈·, ·〉W,G, {ΛWg,n,G}, 1) is a cohomological field theory.

The following properties hold.
(1) Decomposition. If W1 and W2 are two singularities in distinct

variables, then the cohomological field theory arising from (W1 +
W2, G1 ×G2) is the tensor product of the cohomological field the-
ories arising from (W1, G1) and (W2, G2).

(2) Deformation invariance. Suppose that Wt, t ∈ [0, 1] is a one-para-
meter family of nondegenerate polynomials such that Wt is G-
invariant. Then, we have a canonical isomorphism HW0,G

∼= HW1,G.
Under the above isomorphism,

ΛW0
g,n,G = ΛW1

g,n,G.

Namely, ΛWg,n depends only on (q1, . . . , qN ) and on G. Note also
that, when applied to a deformation of a polynomial W along a
loop, this property implies monodromy invariance for ΛWg,n,G.

(3) Aut(W )-invariance. The group Aut(W ) acts on HW,G in an obvious
way. Then, ΛWg,n,G is invariant with respect to the action of Aut(W )
on each state space entry α1, . . . , αn ∈ HW,G.

TOME 61 (2011), FASCICULE 7



2830 Alessandro CHIODO & Yongbin RUAN

3. State spaces: a complete picture

State spaces are the cornerstones of Gromov–Witten theory and of Fan–
Jarvis–Ruan–Witten theory. At their level, we can provide an exhaustive
picture featuring LG-CY correspondence as well as mirror symmetry. To
this effect, since we already went through A model state spaces, let us
introduce the B model state space.

3.1. B model state space

The present discussion parallels the above introduction of the A model
state space.

3.1.1. Local algebra from the classical point of view

Consider the local algebra (also known as the chiral ring or the Mil-
nor ring) QW := C[x1, . . . , xN ]/ Jac(W ), with Jac(W ) equal to the Ja-
cobian ideal generated by partial derivatives Jac(W ) = (∂1W, . . . , ∂NW ) .
We regard each polynomial α(x1, . . . , xN ) in QW as an N -form
α(x1, . . . , xN )dx1 ∧ · · · ∧ dxN . In this way a diagonal symmetry
Diag(λ1, . . . , λN ) operates on

∏
j x

mj
j dx1 ∧ · · · ∧ dxN by multiplication by∏

j λ
mj+1
j .

The local algebra is graded by assigning xj 7→ qj ; in this way
∏
j x

mj
j dx1∧

· · · ∧ dxN has degree
∑
j(mj + 1)qj . There is a unique element

hess(W ) = det(∂i∂jW )

whose degree is maximal. The dimension of the local algebra is given by
the formula

µ(W ) =
∏
i

(
1
qi
− 1
)
.

For f, g ∈ QW , the residue pairing 〈f, g〉 is determined by writing fg in
the form

fg = 〈f, g〉hess(W )
µ(W ) + terms of lower degree.

This pairing is well defined and nondegenerate. It endows the local algebra
with the structure of a Frobenius algebra (i.e. 〈fg, h〉 = 〈f, gh〉). For more
details, see [4].
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3.1.2. The state space of (W,G)

From the modern point of view, the local algebra is regarded as a part of
the B model theory of singularities. For its application, it is important to
orbifold the construction by G. The orbifold B model graded vector space
with pairing OW,G was essentially worked out by the physicists Intriligator
and Vafa [41] (see [46] for a mathematical account). The ring structure was
constructed later by Kaufmann [45] and Krawitz [50] in the case of the so
called “invertible” W and B-admissible group G ⊆ Aut(W ).
For each g ∈ G, we write as usual CNg for the points of CN fixed by g.

We write Wg for the restriction of W to CNg . In this way Wg is a quasi-
homogeneous singularity in a subspace of CN and admits a local algebra
QWg

with a natural G-action.

Definition 3.1 (B model state space). — For any B-admissible group
G, we set

QW,G =
⊕
g∈G

(QWg )G,

where ( )G denots the G-invariant subspace.

Remark 3.2. — The state space QW,G is clearly a module over (QW )G.

Remark 3.3. — Remark 2.2 may be regarded as saying that the B model
state space is — by construction — isomorphic to the A state space of
Definition 2.4. On the other hand, the space is equipped with a different
Hodge bigrading as follows. For a G-invariant form α of degree p in QWg

,
the bidegree (deg+

B(α),deg−B(α)) is defined as follows

(deg+
B(α),deg−B(α)) = (p, p)+(age(g), age(g−1))−(q, q) (with q =

∑
qj).

We will usually write Qa,bW,G for the terms of bidegree (a = deg+
B(α), b =

deg−B(α)). We write QdW,G for the terms whose total degree degB = a + b

equals d.

3.1.3. The inner pairing

Notice that Qg is canonically isomorphic to Qg−1 . The pairing of QW,G
is the direct sum of residue pairings

〈·, ·〉 : Qg ⊗Qg−1 → C

via the pairing of the local algebra.
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Definition 3.4 (pairing for QW,G). — We have a nondegenerate inner
product

〈·, ·〉 : QW,G ×QW,G → C.

The pairing descends to a nondegenerate pairing QaW,G × Q
2ĉW−a
W,G → C

where ĉW is the so-called central charge
∑
j(1−2qj). This quantity, already

appearing in Definition 2.7, plays a fundamental role in singularity theory:
the singularities whose central charge cW is less than 1 are called simple
singularities and admit an ADE classification.

3.2. Mirror symmetry between LG models

Berglund and Hübsch [6] consider polynomials in N variables having N
monomials

W (x1, . . . , xN ) =
N∑
i=1

N∏
j=1

x
mi,j
j . (3.1)

Note that each of the N monomials has coefficient one; in fact, since the
number of variables equals the number of monomials and W is nondegen-
erate, any polynomial of the form

∑N
i=1 γi

∏N
j=1 x

mi,j
j can be reduced to

the above expression by conveniently rescaling the N variables. In this way
assigning a polynomial W as above amounts to specifying its exponent
square matrix

EW = (mi,j)16i,j6N .

The polynomials studied in [6] are called “invertible” because the matrix
EW is an invertible N×N matrix as a consequence of the uniqueness of the
charges q1, . . . , qN (nondegeneracy of W ). There is a strikingly simple clas-
sification of invertible nondegenerate singularities by Kreuzer and Skarke
[53].
An invertible potential W is nondegenerate if and only if it can be writ-

ten, for a suitable permutation of the variables, as a sum of invertible
potentials (with disjoint sets of variables) of one of the following three
types:

WFermat = xa. (3.2)
Wloop = xa1

1 x2 + xa2
2 x3 + · · ·+ x

aN−1
N−1 xN + xaNN x1. (3.3)

Wchain = xa1
1 x2 + xa2

2 x3 + · · ·+ x
aN−1
N−1 xN + xaNN . (3.4)

One can compute the charges q1, . . . , qN by simply setting
qi =

∑
jm

i,j , (3.5)
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the sum of the entries on the ith line of E−1
W = (mi,j)16i,j6N .

Each column (m1,j , . . . ,mN,j) of the matrix E−1
W can be used to define

the diagonal matrix
ρj = Diag(exp(2πim1,j), . . . , exp(2πimN,j)). (3.6)

In fact these matrices satisfy the following properties ρ∗jW = W ; i.e. W is
invariant with respect to ρj . Furthermore the group Aut(W ) of diagonal
matrices α such that α∗W = W is generated by the elements ρ1, . . . , ρN :

Aut(W ) := {α = Diag(α1, . . . , αN ) | α∗W = W} = 〈ρ1, . . . , ρN 〉.

For instance, the above mentioned matrix jW whose diagonal entries are
exp(2πiq1), . . . , and exp(2πiqN ) lies in Aut(W ) and is indeed the product
ρ1 · · · ρN . Recall that

SLW = Aut(W ) ∩ SL(CN ),
the matrices with determinant 1; in Berglund and Hübsch’s construction
we consider groups G containing jW (A-admissible) and included in SLW
(B-admissible). We write G̃ for the quotient G/〈jW 〉.
The geometric side of the LG-CY correspondence is an orbifold or smooth

Deligne–Mumford stack. More precisely, let d be the least common denom-
inator of q1 = w1/d, . . . , qN = wN/d (i.e. d = |jW |). Then XW = {W = 0}
is a degree d hypersurface of the weighted projective space P(w1, . . . , wN ).
Then, W is nondegenerate (i.e. W has a single critical point at the origin)
if and only if XW is a smooth Deligne-Mumford stack. Let W be a nonde-
generate invertible potential of charges q1, . . . , qN satisfying the Calabi–Yau
condition ∑

jqj = 1. (3.7)
The geometrical meaning of this condition is that XW = {W = 0} is of
Calabi–Yau type in the sense that the canonical line bundle ω is trivial
(adjuction formula: d =

∑
j wj). Under the CY condition, let us point out

a special case where several simplifications occur; namely, the case where
wj divides d =

∑
j wj . Then the CY hypersurface defined XW is embedded

within a weighted projective stack whose coarse space is Gorenstein. This is
a very special condition which allows direct computations of GW invariants
in genus zero.

3.2.1. The polynomial W∨

Following Berglund–Hübsch, we consider the transposed polynomialW∨
defined by the property

EW∨ = (EW )∨.
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Namely, we set

W∨(x1, . . . , xN ) =
N∑
i=1

N∏
j=1

x
mj,i
j (3.8)

by transposing the matrix (mi,j) encoding the exponents. This construction
respects the above classifications (3.2), (3.3) and (3.4). As a consequence,
W∨ is nondegenerate if and only if W is nondegenerate. Recall that qj is
the sum of the jth column of the inverse matrix E−1

W . Hence, the charges
q1, . . . , qN of W∨ are the sums of the rows of E−1

W . Therefore,∑
jqj =

∑
jqj .

In this way, W∨ is of Calabi–Yau type if and only if W is of Calabi–Yau
type.
The striking idea of Berglund and HÃ¼bsch is that W and W∨ should

be related by mirror symmetry. Clearly this is not true in the naive way:
the mirror of a Fermat quintic three-fold XW is not the quintic itself as one
would get by transposing the corresponding exponent matrix EW . Instead,
as already discussed in the introduction, the mirror X∨W is the quotient
of XW by the automorphism group (Z5)3. It was already understood by
Berglund–Hübsch that the correct statement should read

(W,G) mirror to (W∨, G∨)

for a conveniently defined dual group G∨. Many examples of dual groups
have been constructed in the literature. The general construction was given
only recently by Krawitz [50].

3.2.2. The group G∨

The group G∨ is contained in Aut(W∨). Recall that Aut(W∨) is spanned
by the diagonal symmetries ρ∨1 , . . . , ρ

∨
N determined by the columns of

(E∨W )−1 as in (3.6):
Aut(W∨) = 〈ρ∨1 , . . . , ρ∨N 〉.

Then G∨ is the subgroup defined by

G∨ =
{∏N

j=1(ρ∨i )ai | if
∏N
j=1 x

ai
i is G-invariant

}
. (3.9)

More explicitly, we express any g ∈ G as g = ρk1
1 . . . ρkNN and h ∈ G∨

as h = (ρ∨1 )l1 . . . (ρ∨N )lN . Then, G∨ is determined by imposing within
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Aut(W∨) the following conditions for all g = ρk1
1 . . . ρkNN ∈ G

[
k1 . . . kN

]
E−1
W

 l1...
lN

 ∈ Z.

We have the following properties: transposition is an involution (G∨)∨ =
G, it is inclusion-reversing (H ⊆ K ⇒ H∨ ⊇ K∨), it sends the trivial
subgroup of Aut(W∨) to the total group Aut(W ), and it exchanges 〈jW 〉
and SLW∨ .

3.2.3. Mirror symmetry conjectures between LG models

Now, we can state two mirror symmetry conjectures. Here, “mirror”
means that the A model and the B model are exchanged. The first one
is the Berglund–Hübsch–Krawitz mirror symmetry of the form LG| LG.

Conjecture 3.5 (mirror symmetry LG| LG). — Suppose that W is a
nondegenerate invertible polynomial. Then the Landau–Ginzburg models
(W,G) and (W∨, G∨) mirror each other.

Let W be invertible and of Calabi–Yau type. We say G ⊆ Aut(W ) is of
Calabi–Yau type if 〈jW 〉 ⊆ G ⊆ SLW (the fact that jW is contained in SLW
follows from the Calabi–Yau condition (3.7)). In this case G̃ = G/〈jW 〉 acts
on XW faithfully and the quotient [XW /G̃] is still an orbifold with trivial
canonical bundle (Calabi–Yau type). The properties listed above for the
construction associating G∨ to G show that G is of Calabi–Yau type if and
only if G∨ is of Calabi–Yau type. Then, within the Calabi–Yau category,
we obtain a mirror symmetry conjecture of type CY| CY.

Conjecture 3.6 (mirror symmetry CY| CY). — Suppose that W and
G satisfy the Calabi–Yau condition (automatically the same holds for W∨
and G∨). Then the stack [XW /G̃] is the mirror of [XW∨/G̃∨].

Remark 3.7. — Since we have not given a precise meaning to to the
notion of mirror, the above conjectures should be viewed as a guideline
instead of a mathematical statement. In the next section the above con-
jectures are turned into precise mathematical statements. One can regard
them as relations in terms of state spaces. Then, they may be read as fol-
lows: the A model state space of (W,G) is isomorphic to the B model state
space to (W∨, G∨). Although elementary, the claim is nontrivial. For ex-
ample it does not fit in Borisov–Batyrev duality of Gorenstein cones [5].
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This happens systematically when W is not Fermat as was first noted in
[19]. It was proven by Krawitz.

Theorem 3.8 (Krawitz [50]). — Suppose that W is invertible. Then,
there is an isomorphism between bigraded vector spaces

HW,G ∼= QW∨,G∨ .

Remark 3.9. — The isomorphism in the theorem is interesting in its
own right. The basic idea is to exchange monomials with group elements.
As already mentioned in Remark 2.2, HW,G and QW,G are isomorphic as a
consequence of [62] and [71]. This isomorphism, however, does not respect
the gradings. Let us express an element of QW,G as

∧
xlii dxi |

∏
i ρ
ki+1
i 〉

where
∧
xlii dxi is fixed by

∏
i ρ
ki+1
i . Here, we use the presentation of an

element of Aut(W ) in terms of the generators ρi. Then the mirror map in
Krawitz’s theorem [50] is of the form∧

i

xlii dxi |
∏
i

ρki+1
i

〉
7−→

∧
i

xkii dxi |
∏
i

ρli+1
i

〉
.

The proof uses Kreuzer and Skarke’s decomposition of invertible polyno-
mials. Note that there is no analogue decomposition on the CY side. This
is the main reason why the LG side is easier to work with in this case. On
the other hand, as we will discuss in the last part of this section the LG-CY
correspondence sets a connection between the two conjectures given above.

Remark 3.10. — Recently, Borisov has found [10] a new proof of the
theorem above via vertex algebras. This approach may actually lead to a
unified setup including both Berglund–Hübsch and Borisov–Batyrev dual-
ity.

Beyond state spaces the situation is as follows. On the A model side, we
have rigorous theories, FJRW theory for the LG model and GW theory
for the CY model. The counterpart of these theories for the B model side
is incomplete. The genus-zero theory should correspond to a Frobenius
manifold structure; however, unless G is a trivial group, it appears delicate
to define the suitable G-orbifold version extending the state space QW,G =⊕

g∈G(QWg )G. Due to Kaufmann–Krawitz [45, 50], we can provide at least
an orbifold Frobenius algebra construction; i.e., a ring structure on the
state space.
Suppose that W is invertible. We define a product on

⊕
hQWh

and then
take G-invariants. The product has the properties

QWh1
⊗QWh2

→ QWh1h2
.
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as well as respecting the QW -module structure in the sense that

α111g1 ∗ β111g2 = αβ111g1 ∗ 111g2 ,

where α, β ∈ QWe
and 111g is the unit in the algebra QWg

.
Let

111g1 ∗ 111g2 = γg1,g2111g1g2 ,

where

γg,h
hess(W | CNg ∩ CNh )
µ(W | CNg ∩ CNh )

=


hess(W |CNgh)
µ(W |CN

gh
) if CNg ∪ CNh ∪ CNgh = CN

0 otherwise.
(3.10)

(We use the convention that hess(W |{0}) = 1.)

Theorem 3.11 (Kaufmann [45], Krawitz [50]). — WhenW is invertible
and G is B-admissible, the operation ∗ is associative, 111e∗ operates as the
identity, and ∗ respects the G-action and the double grading. Therefore, the
space of G-invariants QW,G is equipped with a Frobenius algebra structure.

Since the cohomological field theory attached to FJRW theory in the pre-
vious section automatically yields a Frobenius algebra structure for HW,G,
it is natural to further interpret Conjecture 3.5 as a statement relating the
Frobenius algebra structure HW,G on the A side to the Frobenius algebra
structure QW∨,G∨ on the B side. Krawitz’s checked that his vector space
isomorphism for the case G = Aut(W )

HW,Aut(W ) ∼= QW∨,(e)
respects the Frobenius algebra structure. He also provided evidence for the
same statement for G ⊆ SLW and W of loop type and for other special
cases related to Arnold’s strange duality. We refer to [50] for precise state-
ments.

Remark 3.12. — We can regard these isomorphisms of Frobenius alge-
bra structures as evidence for an isomorphism between Frobenius mani-
folds attached to (W,G) on the A side and to (W∨, G∨) on the B-side.
On the other hand we point out again, that — unless the group is triv-
ial — the notion of Frobenius manifold for pairs of the form (W,G) still
lacks a rigorous definition. The problem consists in orbifolding the Frobe-
nius manifold structure that can be already defined over the deformation
spaces Def(W ). As far as we know, the same issue arises for the B model of
Calabi–Yau varieties as soon as they are equipped with a nontrivial orbifold
structure.
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Problem 3.13. — Orbifold the Frobenius manifold Def(W ) as well as
the Calabi–Yau B model for XW and prove a higher genus version of the
LG-CY correspondence between them.

This may well lead to a B model version of the LG-CY correspondence.

3.3. LG-CY correspondence

Let us consider both A model state spaces of FJRW theory and of GW
theory. The simplest conjecture from the LG-CY correspondence is the
following cohomological LG-CY correspondence conjecture.

Conjecture 3.14. — Suppose that the pair (W,G) is of Calabi–Yau
type; i.e. W is nondegenerate (not necessarily invertible) with

∑
j qj = 1

and G contains 〈jW 〉 and lies in SLW . Then, there is a bigraded vector
space isomorphism

H∗,∗W,G ∼= H∗,∗CR

(
[XW /G̃];C

)
, (3.11)

where the right-hand side is Chen–Ruan orbifold cohomology of the stack
[XW /G̃] with G̃ = G/〈jW 〉.

This conjecture is certainly not true without assuming that W is of
Calabi–Yau type. For instance a quartic polynomial in five variables pro-
vides an immediate counterexample. The Calabi–Yau condition plays a
crucial role in the proof of the correspondence. In physics, it reflects a to a
supersymmetry condition which is the source of the physical LG-CY corre-
spondence. Even if the formula in the statement above makes sense even for
G 6⊆ SLW , this indicates that the isomorphism may fail without imposing a
Calabi–Yau condition to G. Surprisingly the authors found that the above
statement still holds when G is not contained in SLW . We will return to
this observation in the end of the paper where we present a higher genus
correspondence holding precisely for G 6⊆ SLW .

Theorem 3.15. — Suppose that W is of Calabi–Yau type and that G
contains jW (no upper bound for G). Then the above cohomological LG-CY
correspondence holds.

The main application is the folllowing classical mirror symmetry, which
is a direct consequence of the cohomological LG-CY correspondence and
Krawitz’s mirror symmetry theorem of type LG| LG.
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Corollary 3.16. — Suppose that W is invertible and that the pair
(W,G) is of Calabi–Yau type as in Conjecture 3.14. Automatically, also
the pair (W∨, G∨) is of Calabi–Yau type. Furthermore, the Calabi–Yau
orbifolds [XW /G̃] and [XW∨/G̃

∨] form a mirror pair in the classical sense;
i.e. we have the following isomorphism between Chen–Ruan cohomology
groups

Hp,q
CR

(
[XW /G̃];C

)
∼= HN−2−p,q

CR

(
[XW∨/G̃

∨];C
)
.

Corollary 3.17. — Assume that the quotient schemes XW /G̃ and
XW∨/G̃∨ admit crepant resolutions Z and Z∨. Then the above statement
yields a statement in ordinary cohomology:

hp,q(Z;C) = hN−2−p,q(Z∨;C).

In the case where wj divides d, Corollary 3.16 can be deduced from
Borisov and Batyrev’s construction of mirror pairs in toric geometry [5].
As already mentioned, the general case does not fit into polar duality be-
cause the associated toric variety is not reflexive. The following example
illustrates this well.

Example 3.18. — We consider the quintic hypersurface in P4 defined as
the vanishing locus of

W = x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x5
5.

This is a chain-type Calabi–Yau variety X whose Hodge diamond is clearly
equal to that of the Fermat quintic and is well known: h1,1 = 1, h0,3 =
1, h1,2 = 101. The mirror Calabi–Yau is given by the vanishing of the
polynomial

W∨(x1, x2, x3, x4, x5) = x4
1 + x1x

4
2 + x2x

4
3 + x3x

4
4 + x4x

5
5,

which may be regarded as defining a degree-256 hypersurface X∨ inside
P(64, 48, 52, 51, 41). This is a degree-256 hypersurface of Calabi–Yau type
(256 is indeed the sum of the weights). In this case, the ambient weighted
projective stack is no longer Gorenstein (all weights but 64 do not divide
the total weight 256). Note that the group SL coincides with 〈j〉 on both
sides; therefore, Corollary 3.16 reads

hp,qCR(X;C) = h3−p,q
CR (X∨;C).

Indeed, the Hodge diamond of XW∨ satisfies h1,1 = 101, h0,3 = 1, h1,2 = 1
matching (1.4).
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Let us explain the role of the Gorenstein condition. Let us call the hy-
persurface XW ⊂ P(w1, . . . , wN ) transverse if the intersection of XW with
every coordinate subspace of the form P(wi1 , . . . , wik) is either empty or
a hypersurface. The transversality of XW amounts essentially to the am-
bient space being Gorenstein. In another words, if P(w1, . . . , wN ) is not
Gorenstein, XW will contain some coordinate subspace. The presence of
these coordinate subspaces makes it more difficult to study XW and its
quotients. For instance, it is well known that the enumerative geometry of
rational stable maps for these coordinate subspaces is an open problem in
Gromov–Witten theory (this is due to the behavior of the virtual funda-
mental cycle). Initially, we thought that nonGorenstein cases such as loop
and chain polynomials may provide counterexamples for the classical mir-
ror symmetry conjecture. We actually found out that the cohomological
LG-CY correspondence as well as the classical mirror symmetry conjecture
hold in full generality. Similar issues arise in the enumerative geometry of
curves; we will discuss them in §4.4.

3.3.1. The proof of the cohomological LG-CY correspondence

To illustrate the idea of the proof, it is instructive to work out the case
of the quintic three-fold.

Example 3.19. — Consider W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 and the cyclic

group G = 〈j〉 of order 5. For each element jm = (e2πim/5, . . . , e2πim/5) ∈
G with m = 0, . . . , 4 we compute HW,G =

⊕
g∈GH

Ng (CNg ,W+∞
g ;C)G and

the total degree of its elements.
Let m 6= 0 and consider the elements of the summands corresponding to

jm. These are the narrow states where HNg (CNg ,W+∞
g ;C)G is isomorphic

to 111gC. The total degree of 111 is 2m− 2. We obtain four elements of degree
0, 2, 4 and 6; they correspond to the generators of H0(XW ,C), H2(XW ,C),
H4(XW ,C) and H6(XW ,C).
Finally consider the remaining states which are not narrow and lie in

HN (CN1 ,W+∞
1 ,C)G. This space is isomorphic to the degree-3 cohomology

group of XW . This holds in full generality as a consequence of the isomor-
phism between the G-invariant part of the local algebra and the primitive
cohomology. The total degree of these elements is 3. Therefore, we recover
the desired degree-preserving vector space isomorphism.

We learn from this example that the dichotomy determined by narrow
and broad states within the Landau–Ginzburg state space corresponds to
the well known dichotomy on the Calabi–Yau side between fixed classes
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and variable (or primitive) classes. In the orbifold setting, each sector
of XW lies in some subweighted projective coordinate space of the form
P(wi1 , . . . , wik). Therefore, this dichotomy applies to each sector. We say
that an orbifold cohomological class is variable (or primitive) if it comes
from a variable (or primitive) cohomology class of some sector. It is straight-
forward to match the broad sector with variable classes. But it is far trickier
to do so for narrow group elements versus fixed classes. We match these
classes via a combinatorial construction based on an earlier model for Chen–
Ruan orbifold cohomology of weighted projective spaces due to Boissière,
Mann, and Perroni [9].

4. LG-CY correspondence: towards a global picture

We state the LG-CY correspondence conjecture at the quantum level;
then, we cast it within a mirror symmetry framework. In the last part of
this section we review recent results.

4.1. LG-CY correspondence: GW and FJRW theories

The state space isomorphism stated above for any nondegenerate poly-
nomial W and any G 3 jW allows us to extend the conjecture which we
have stated in [16] only for the quintic polynomial W and G = 〈jW 〉. Let
us set up Givental’s formalism.

4.1.1. Givental’s formalism for GW and FJRW theories

The setup presented here extends the analogue setup for the quintic pre-
sented in [16]. The genus-zero invariants of both theories are encoded by two
Lagrangian cones, LGW and LFJRW, inside two symplectic vector spaces,
(VGW,ΩGW) and (VFJRW,ΩFJRW). The two symplectic vector spaces also
allow us to state the conjectural correspondence in higher genera. We re-
call the two settings simultaneously by using the subscript W, which can
be read as GW or FJRW.

We define the vector space VW and its symplectic form ΩW. The elements
of VW are Laurent series with values in a state space HW;

VW = HW ⊗ C((z−1)).
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In FJRW theory the state space is normally the entire space HW,G. In GW
theory the state space is HCR([XW /G̃];C). We choose a basis φ0, . . . , φk
for the state space of FJRW theory and a basis ϕ0, . . . , ϕk for the state
space of GW theory. We label by zero 111jW and 111XW , respectively (these
two classes play a special role at (4.6)). We express the basis of HW as
Φ0, . . . ,Φk and the dual basis Φ0, . . . ,Φk.

The vector space VW is equipped with the symplectic form

ΩW(f1, f2) = Resz=0〈f1(−z), f2(z)〉W,

where 〈 , 〉W is the inner pairing discussed above. In this way VW is polarized
as VW = V+

W⊕V
−
W, with V+

W = HW⊗C[z] and V−W = z−1HW⊗C[[z−1]], and
can be regarded as the total cotangent space of V+

W. The points of VW are
parametrized by Darboux coordinates {qha , pl,j} and can be written as

∑
a>0

k∑
h=0

qhaΦhza +
∑
l>0

k∑
j=0

pl,jΦj(−z)−1−l.

We review the definitions of the potentials encoding the invariants of the
two theories. In FJRW theory, the invariants are the intersection numbers

〈τa1(φi1), . . . , τan(φin)〉FJRW
g,n =

∫
Mg,n

n∏
i=1

ψaii ∩ ΛWg,n,G(φi1 , . . . , φin), (4.1)

with ΛWg,n,G as in §2.3.5. In GW theory, the invariants are the intersection
numbers

〈τa1(ϕh1), . . . , τan(ϕhn)〉GW
g,n,δ =

n∏
i=1

ev∗i (ϕhi)ψ
aj
i ∩ [XW ]vir

g,n,δ. (4.2)

The generating functions are respectively

FgFJRW =
∑

a1,...,an
h1,...,hn

〈τa1(φh1), . . . , τan(φhn)〉FJRW
g,n

th1
a1
. . . thnan
n! (4.3)

and

FgGW =
∑

a1,...,an
h1,...,hn

∑
δ>0
〈τa1(ϕh1), . . . , τan(ϕhn)〉GW

g,n,δ

th1
a1
. . . thnan
n! . (4.4)

In this way, both theories yield a power series

FgW =
∑

a1,...,an
h1,...,hn

∑
δ>0
〈τa1(Φh1), . . . , τan(Φhn)〉Wg,n,δ

th1
a1
. . . thnan
n!
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in the variables tia (for FJRW theory the contribution of the terms δ > 0
is set to zero, whereas 〈 〉Wg,n,0 should be read as 〈 〉FJRW

g,n ).
We can also define the partition function

DW = exp
(∑

g>0~
g−1FgW

)
. (4.5)

Let us focus on the genus-zero potential F0
W. The dilaton shift

qha =
{
t01 − 1 if (a, h) = (1, 0)
tha otherwise.

(4.6)

makes F0
W into a power series in the Darboux coordinates qha . Now we can

define LW as the cone

LW := {ppp = dqqqF0
W} ⊂ VW.

With respect to the symplectic form ΩW, the subvariety LW is a Lagrangian
cone whose tangent spaces satisfy the geometric condition zT = LW ∩ T
at any point (this happens because both potentials satisfy the equations
SE, DE and TRR of [34]; in FJRW theory, this is guaranteed by [31,
Thm. 4.2.8]).
Every point of LW can be written as follows

− zΦ0 +
∑

06h6k
a>0

thaΦhza

+
∑
n>0
δ>0

∑
06h1,...,hn6k
a1,...,an>0

∑
06ε6k
l>0

th1
a1
. . . thnan

n!(−z)l+1 〈τa1(Φh1), . . . , τan(Φhn),τl(Φε)〉W0,n+1,δΦε,

where the term −zΦ0 performs the dilaton shift.

Remark 4.1 (J-function). — Setting a and ai to zero, we obtain the
points of the form

− zΦ0 +
∑

06h6k
th0Φh

+
∑
n>0
δ>0

∑
06h1,...,hn6k

∑
06ε6k
l>0

th1
0 . . . thn0
n!(−z)k+1 〈τ0(Φh1), . . . , τ0(Φhn), τl(Φε)〉W0,n+1,δΦε,

(4.7)

which uniquely determine the rest of LW (via multiplication by exp(α/z)
for any α ∈ C—i.e. via the string equation—and via the divisor equation
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in GW theory). We define the J-function

t =
k∑
h=0

th0Φh 7→ JW(t, z)

from the state spaceHW to the symplectic vector space VW so that JW(t,−z)
equals the expression (4.7).

4.1.2. The conjecture

The following conjecture can be regarded as a geometric version of the
physical LG-CY correspondence [70] [74]. A mathematical conjecture was
proposed by the second author in [68]. The formalism is analogous to the
conjecture of [24, 25] on crepant resolutions of orbifolds and uses Givental’s
quantization from [34], which is naturally defined in the above symplectic
spaces VFJRW and VGW. In [16] we provided a precise mathematical state-
ment for the special case of the quintic three-fold; here, we build upon
recent work, and provide a general statement applying to all CY orbifolds
that can be written as hypersurfaces XW in weighted projective spaces and
to the finite group quotients [XW /G̃].

Conjecture 4.2 (LG-CY correspondence). —Consider the Lagrangian
cones LFJRW and LGW.

(1) There is a degree-preserving C[z, z−1]-valued linear symplectic iso-
morphism

ULG-CY : VFJRW → VGW

and a choice of analytic continuation of LFJRW and LGW such that
ULG-CY(LFJRW) = LGW.

(2) Up to an overall constant and up to a choice of analytic continu-
ation, the total potential functions are related by quantization of
ULG-CY; i.e.

DGW = ÛLG-CY(DFJRW).

Remark 4.3. — For the readers familiar with the crepant resolution
conjecture [24, 25], an important difference here is the lack of monodromy
condition.

By [25], a direct consequence of the first part of the above conjecture is
the following isomorphism between quantum rings.

Corollary 4.4. — For an explicit specialization of the variable q deter-
mined by ULG-CY, the quantum ring of XW is isomorphic to the quantum
ring of the singularity {W = 0}.
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4.2. Towards global mirror symmetry

Here, we cast the above conjecture into a global mirror symmetry frame-
work. The idea is to extend the results presented in the introduction (in
particular Figure 1.1).

There are two difficulties. First, Gromov–Witten theory is largely un-
known when entries are taken in the variable (i.e. primitive) cohomology
part of the state space. Only in some cases, such as the quintic threefold,
the whole theory is computable because the invariants associated to the
variable cohomology entries are easy to deal with (see [16]). Second, much
of the theory on the B side has not yet been figured out. For example,
in Problem 3.13 we pointed out that not much is known beyond the un-
twisted sector; in nontechnical terms, this means that only the case where
G is trivial can be treated in a straightforward way. Here, we present a
solution allowing us to move beyond this case.

4.2.1. Invariant A-states mirror untwisted B-states

As a first approach to both problems, it is natural to try and single out
a subclass of invariants involving only certain state space entries. This re-
quires checking that they really form independent theories (e.g. checking
that they assemble into a cohomological field theory in the sense of §2.3.5).
While doing so, we found out that the two difficulties discussed above are
mirror to each other. Namely, we point out that the isomorphism of The-
orem 3.16 matches two naturally defined state subspaces. On the A side
we consider the untwisted sector; i.e. the sector attached to the identity
element. On the B side we consider a subspace which contains the fixed
cohomology: the space of cohomology classes of HW,G which are left in-
variant by Aut(W ). Indeed, Krawitz’s Theorem 3.8 yields in particular the
identification

[HW,G]Aut(W ) ∼= [QW∨,G∨ ]untwisted
(the invariant/untwisted
mirror symmetry) . (4.8)

The right hand side is the local algebra Q of W∨ invariant under G∨

[QW∨,G∨ ]untwisted = (QW∨)G
∨
.

The left hand side can be regarded via (2.2)

[HW,G]Aut(W ) =
⊕
g∈G

HNg (CNg ,W+∞
g ;C)Aut(W ),

where at each summand we have taken invariants with respect of Aut(W )
instead of G.
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Remark 4.5. — In the special case whereW is of Fermat type, imposing
Aut(W )-invariance is the same as restricting to the narrow state space:

[HWFermat,G]Aut(WFermat) = [HWFermat,G]narrow =
⊕

g∈G | CNg =(0)

111gC.

Under the LG-CY cohomological correspondence of Theorem 3.15 this is
the same as eliminating all variable (primitive) classes. In particular, in the
case of the quintic Fermat three-fold discussed in the introductory section,
the relation (4.8) shows that fixed cohomology of XW (in this case Hev)
mirrors the variable cohomology of X∨W (in this case Hodd). In general,
for these Fermat-type cases, we have complete genus-zero computations for
Gromov–Witten theory (see [22]) as well as for Fan–Jarvis–Ruan–Witten
theory (see [15] and §4.4).

Remark 4.6. — More generally, if W cannot be written as a Fermat
polynomial, the charges are not necessarily unitary fractions. In other words
the degree d of the corresponding hypersurface is not necessarily a multi-
ple of all weights w1, . . . , wN . Then, it may happen that [HW,G]Aut(W ) )
[HW,G]narrow. A well known example is D4 = x3 +xy2 where ydx∧dy | e〉 is
Aut(D4)-invariant and clearly not narrow (see Rem. 3.9 for the notation).

We now prove that the condition of Aut(W )-invariance singles out a self-
contained cohomological field theory under the Calabi–Yau condition for
W and G.

Lemma 4.7. — Assume
∑
j qj = 1 and 〈jW 〉 ⊆ G ⊆ Aut(W ). Consider

the Aut(W )-invariant subspace of either HW,G or HCR([XW /G̃];C). Sup-
pose that N > 5. Then the virtual cycle ΛWg,n,G(α1, . . . , αk), for Aut(W )-
invariant entries αi, forms a cohomological field theory.

Proof. — It is enough to check the composition axioms. For tree-type
gluing morphisms intervening in Definition 2.25, we encounter cycles of the
form

ΛWg,n,G(α1, . . . , αk−1, β)
where αi denotes an Aut(W )-invariant class for i = 1, . . . , k− 1. We easily
conclude that the condition ΛWg,n,G(α1, . . . , αk−1, β) 6= 0 holds only if β
is Aut(W )-invariant. Next, a dimension argument allows us to verify also
the axioms involving loop-type gluing morphism in Definition 2.25. The
loop-type gluing situation only appears in the higher genus case: assume
g > 0. We can use the forgeful morphism and reduce to the cases where
no state space entry equals the fundamental class. Then, each entry has
degree > 2. This happens because we have N > 5, hence the hypersurface
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XW has dimension > 3 and its lowest degree odd cohomology lies above
degree 1. On the other hand the degree of twisted sector entries is bigger
than 1 as a consequence of G ⊆ SLW . Hence the state space has no degree
1 class apart from the fundamental class. Therefore, we can assume that
deg(αi) > 2. Then, a simple computation shows

deg ΛWg,n,G(α1, . . . , αk) = (5−N)(g − 1) + n−
n∑
i=1

1
2 deg(αi) 6 0.

Therefore, ρ∗loopΛWg,n,G = 0. The right hand side is zero for the same reason.
�

It is reasonable to specialize Conjecture 4.2 as follows.

Conjecture 4.8. — The LG-CY Correspondence Conjecture 4.2 holds
for Aut(W )-invariant theories on both sides.

The above conjecture was proved in genus zero for the quintic three-fold
by the authors [16] and for Fermat hypersurfaces in general and G = 〈j〉
by the authors in collaboration with Iritani [15] (this is the same as saying
that the correspondence holds for every Calabi–Yau hypersurface within
a Gorenstein weighted projective stack). Indeed the case of the quintic
three-fold is special, because, there, Conjecture 4.2 in genus zero follows
from Conjecture 4.8. Then the proof involves calculating the J-function
of FJRW theory and a comparison with the J-function of the GW side
obtained by Coates–Corti–Lee–Tseng [22]. We refer to Remark 4.16 for
discussion ot the proof of Conjecture 4.8.
The general cases of nonGorenstein hypersurface or larger groups is un-

charted territory in GW theory. The starting point of the proof in the
Gorenstein case is the observation that the genus-zero theory is concave;
i.e. the virtual cycle can be phrased as the top Chern class of a bundle.
Then, Grothendiek–Riemann–Roch can be applied (see §2.3). Beyond the
Gorenstein case, we do not have such a general method to compute invari-
ants. In this sense, the problem is similar in nature to the computation
of the higher genus GW theory of the quintic. There, the difficulty is also
the lack of concavity. In this genus-zero case it should be noted that the
problem may have a chance to be approached via Givental’s theory. For
this reason it is clear how this problem not only represents an exciting new
direction in quantum cohomology, but could also shed new light on GW
theory in higher genera.

TOME 61 (2011), FASCICULE 7



2848 Alessandro CHIODO & Yongbin RUAN

4.2.2. Global mirror symmetry

Let us set up the B side; i.e., the analogue of the family of Calabi–Yau
three-folds X∨W,t parametrized by t in P1 from the introductory section.

It is well known that the genus-zero B model theory corresponds to a
period integral vector, a fundamental object in classical complex geometry.
Given a nondegenerate quasihomogeneous and invertible polynomial W in
N variables of charges q1, . . . , qN adding up to 1 (CY condition), we con-
sider the hypersurface {W∨ = 0}. It lies naturally in a weighted projective
stack P(w1, . . . , wN ) for suitable choices of positive integers w1, . . . , wN .
Consider a group of diagonal symmetries G containing jW (A-admissible)
and included in SLW (B-admissible); then, by Corollary 3.16, the orbifold
[{W∨ = 0}/G̃∨] is the mirror of the hypersurface defined by W . We con-
sider complex deformations of the orbifold [XW∨/G̃∨]. Let us focus on the
so called marginal deformations; i.e., let M1, . . . ,Ml be the monomial gen-
erators of the local algebra QW∨ of degree 1 and invariant under G∨. Then,
consider the family of hypersurfaces

Haaa =
{
a0W

∨ +
∑l
i=1aiMi = 0

}
⊂ P(w1, . . . , wN ). (4.9)

On an open subscheme of Pl we may regard this as a family of Calabi–Yau
orbifolds. The automorphism group Aut(W∨) acts on the family of stacks
(4.9) and on the base scheme Pl. Let us mod out the cyclic subgroup 〈j〉 act-
ing trivially everywhere. Since the morphism is Aut(W∨)/〈j〉-equivariant,
we obtain a morphism between the corresponding quotient stacks. Further-
more, since G∨ acts trivially on the base scheme, we get a family of Calabi–
Yau orbifolds over an open substack of [Pl/Z], with Z = Aut(W∨)/G∨.

In this way, the B side of mirror symmetry is defined. It is a family of
quotient stacks of the form

X∨W,aaa =
[
Haaa/G̃∨

]
parametrized by aaa ∈ [Pl/Z]. On an open substack of [Pl/Z] the family
is fibred in Calabi–Yau orbifolds (smooth Deligne–Mumford stacks whose
canonical line bundle is trivial)

X∨W,aaa

��

// X∨

π

��
�

aaa // Ω

(4.10)

Remark 4.9. — In the special case wher G∨ = SLW∨ the group Z is
cyclic. Furthermore, when we start from a Fermat polynomial W of degree
d, we have W∨ = W and Z = Zd.
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Let us define the vector bundle of primitive cohomology with complex
coefficients. On the point aaa of the open substack Ω of [P1/Z] consider the
vector bundle

V −→ Ω ⊂ [Pl/Z],
whose fibre is dual to the G̃∨-invariant part of the kernel of

i∗ : H∗(Haaa;C)→ H∗(P(www);C).

Indeed i∗ is an isomorphism in all degrees up to the middle dimensionN−2.
In degree N − 2, we have a surjective morphism and the kernel is precisely
the so called variable (or primitive) homology of the hypersurface. More
systematically we can set RN−2π∗(C) ⊗ O, where π is the family (4.10).
Then the primitive cohomology sheaf is the kernel of the Lefschetz operator
L : RN−2π∗(C)⊗O −→ RNπ∗(C)⊗O.

Remark 4.10 (the relation with the local algebra). — Fibre by fibre, the
G̃∨-invariant part may be equivalently regarded as the G∨-invariant part
of the local algebra of W∨aaa = a0W

∨ +
∑l
i=1 aiMi

QW∨aaa = C[x1, . . . , xN ]/ Jac(W∨aaa ).

In particular, for G = 〈jW 〉, we have G∨ = SLW∨ and V is a rank-(N − 1)
vector bundle over a one-dimensional base Ω.

Remark 4.11 (Gauss–Manin connection). — On V there is a flat con-
nection ∇, the Gauss–Manin connection, given by the local system of inte-
ger cohomology HN−2(X∨W,aaa;Z) ⊂ HN−2(X∨W,t;C). This may be regarded
as follows. Choose a particular fibre X∨W,aaa and a basis of (N − 2)-cycles
Γ1, . . . ,ΓrkV for the primitive homology ker(i∗). Since the fibration on the
scheme Ω is locally trivial, a local trivialization can be used to extend the
cycles Γ1, . . . ,ΓrkV from the chosen fibre X∨W,aaa to cycles Γi(z) on nearby
fibres X∨W,aaa(z). This may rephrased as saying that V has a connection ∇
and that locally over Ω we can extend a basis of a fibre of V to a basis of
flat sections.

Remark 4.12 (monodromy). — Since the base Ω is not contractible, the
connection may have nontrivial monodromy. We may phrase this explicitly
using the above cycles Γi(z) extending the basis Γ1, . . . ,ΓrkV of ker(i∗)
over aaa. Indeed, they are locally constant in the parameter z. However,
transporting Γi along each closed path produces a cycle homologous to
TΓi for some linear map T (monodromy operator).

Another approach to this monodromy operator is provided by period
integrals. Choose an holomorphic (n, 0)-form ω on X∨W,aaa. We can extend ω
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locally on a neighbourhood of aaa to a holomorphic (n, 0)-form on the family
of CY orbifolds. Then, define the periods integrals of ω as

ω1(z) =
∫

Γ1(z)
ω, . . . , ωrkV =

∫
ΓrkV (z)

ω.

They extend by analytic continuation to multiple-valued functions on Ω,
transforming according to the same monodromy trasformation T operating
on the homology classes of the cycles. We point out that we can always
rescale ω by a globally holomorphic function

ω 7→ fω; (4.11)

so the period integrals are defined up to rescaling.

Remark 4.13 (the base points 0 and∞). — Now we analyse two special
fibres of the above family. The prototype case is that of the quintic and
more generally that of a homogeneous Fermat polynomial W of degree N
in N variables paired with the group 〈jW 〉. Then, W = W∨ and G∨ =
SLW , the base is one-dimensional and parametrized by the homogeneous
coordinates (a0, a1): the monodromy is maximally unipotent around a0 = 0
and diagonalizable around a1 = 0. This are the Gepner point 0 and the
large volume complex structure point ∞.
In the more general set up, we still focus on two points named 0 and ∞.

We assume that
∏
j xj is a nonvanishing element of QW∨ . This is the case

apart from a few degenerate cases, which are treated for example in [59].
Then let us set M1 =

∏
j xj and

0 = (1, 0, 0, . . . , 0) and ∞ = (0, 1, 0, . . . , 0). (4.12)

Consider the overlying fibres X∨W,0 and X∨W,∞. We expect that ∞ is the
analogue of the large complex structure point in the introductory section,
whereas 0 should play the role of the Gepner point. More precisely, we
propose the following conjectural picture.

We conjecture that the period integral at∞ encode the Gromov–Witten
theory of the CY orbifold [XW /G̃].

Conjecture 4.14 (mirror symmetry CY| CY). — There is a mirror
map matching a neighborhood of the origin in H1,1

CR([XW /G̃])Aut(W ) with
a neighborhood of the large complex structure point ∞. The mirror map
identifies the JGW-function to the period integrals ω1, . . . , ωrkV around ∞
after a suitable rescaling of the form (4.11).
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It is generally believed that the maximally quasiunipotent monodromy
of the periods indicates where the B model can be related to the Gromov–
Witten theory of the mirror variety. Since, in our construction, the fibre
X∨W,∞ at ∞ is highly singular, it is delicate to describe the monodromy
at infinity. Whereas for G = 〈j〉, the singularities occur only over isolated
points, for general choices of G it may be useful to study birational mod-
ifications of [Pl/Z] and of the overlying Calabi–Yau family. After suitable
birational transformations of this base scheme, we still expect some ana-
logue of the condition of maximal unipotency. See Morrison [61] and Deligne
[26] for more precise treatments on the relation between mirror symmetry
maximal unipotency at the large complex structure point.

At the special point 0, the monodromy is diagonalizable. We expect that
the local picture encodes FJRW theory for the potential W with respect
to G.

Conjecture 4.15 (mirror symmetry LG| CY). — There is a mirror
map matching a neighborhood of the origin of [H1,1

W,G]Aut(W ) with a neigh-
borhood of the Gepner point 0. Via the mirror map, the JFJRW-function
is matched to the period basis ω1, . . . , ωrkV after a suitable rescaling as in
(4.11).

The mirror symmetry CY| CY conjecture was proved for the smooth case
by Givental and Liang–Liu–Yau and for CY hypersurface of Gorenstein
weighted projective space by Corti–Coates–Lee–Tseng [22]. For further gen-
eralizations we refer to [24] and references therein.
The mirror symmetry conjecture of type LG| CY was proved for the quin-

tic polynomial in five variables and for the group 〈j〉 by the authors. For
(W, 〈j〉) in the Gorenstein case and in the restricted version 4.8, it is proven
by the authors with Iritani [15]. We refer to [15] for a precise statement.

Remark 4.16 (LG-CY correspondence via global mirror symmetry). —
The proof of these conjectures allows us to perform a parallel transport
along ∇ on the B side yielding the identification between the LG model
and the CY geometry predicted in the LG-CY correspondence conjecture
4.2. Let us restate the scheme of the argument referring to Figure 1.1 for
clarity. The two mirror symmetry conjectures above involve the vertical
arrows in Figure 1.1 on the left hand side and on the right hand side
respectively. The LG-CY correspondence conjecture 4.2 connects the two
A model structures on the bottom of the picture. Mirror symmetry allows
us to lift the correspondence to the upper side of the picture, where we can
use the vector bundle V and its flat connection ∇.
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Indeed, in this way we verify the genus-zero part of Conjecture 4.2 for
the quintic; in other words we verify the claim that the parallel transport
of a basis of flat sections at 0 is related to a basis of flat sections at ∞ by
a constant linear map ULG-CY. Since ULG-CY is symplectic, the genus-zero
part of Conjecture 4.2 follows, see [16].

Theorem 4.17. — The LG-CY correspondence 4.2 holds in genus zero
and matches the GW theory of the quintic three-folds in P4 to the FJRW
theory of the isolated singularity of the corresponding affine cone.

Remark 4.18 (generalizations). — Technically the parallel transport of
the cycles Γi(z) is difficult to perform explicitly. Alternatively, in [16] we
study the period integrals ωi and their Picard–Fuch’s equation. Locally, in
the case where W is homogeneous and G equals 〈jW 〉, the period integrals
belong to the (N − 1)-dimensional space of solutions of the Picard–Fuchs
equation (this is due to Griffith’s transversality). Since, for G = 〈jW 〉 and
G∨ = SLW , this is precisely the rank of the vector bundle V , we can
avoid the parallel transport and carry out analytic continuation of the pe-
riods integrals instead. This approach admits generalizations in the quasi-
homogeneous setup; indeed, there, the degree of the Picard–Fuchs equation
and the dimension of the state space H∗(XW )Aut(W ) still match.

For the quintic three-fold, this argument is enough to deduce the LG-CY
correspondence for genus-zero Gromov–Witten theory entirely. This is not
the case in higher dimension. The reason is technical: we can only compute
the J(t, z)-function for t ∈ H1,1. In dimension three it turns out that all
invariants can be deduced from this data. In higher dimension, this may
well be not enough to deduce the entire J-function.

The problem is how to recover this information from the B model. In
collaboration with Iritani [15] we partly overcome this problem by means of
an equivariant theory argument. This requires technical conditions such as
assuming that the ambient space is Gorenstein. In both cases, more work
is needed in this direction.

4.3. Fulfilling global mirror symmetry in all genera

As we mentioned previously, the physical LG-CY-correspondence re-
quires both W and G to be Calabi–Yau types. While the conjecture is
certainly false withoutW being Calabi–Yau type, our theorem on the state
space suggests that it may still be true when G fails to be of Calabi–Yau
type. In this section, we pursue this direction for G = Aut(W ). The reason
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for this choice is simple. By Krawitz’s mirror symmetry theorem of type
LG| LG, we have Aut(W )∨ = {1}. In this case, we have a well defined B

model for all genera. Once Problem 3.13 is solved, the same line of re-
search should hold more generally. Since [XW /G̃] is no longer Calabi–Yau
for G = Aut(W ), we cannot expect to have a mirror object of the form of
a CY variety. On the other hand the mirror still makes sense. Indeed, we
can exploit the Landau–Ginzburg model. Consider the LG side illustrated
in Section 3. The state space of FJRW-theory of (W,Aut(W )) is mirror
to the state space of (W∨, {1}). This is a unique situation in which we
have a B model theory for all genera. Here, the genus-zero theory is Saito’s
Frobenius manifold structure on the tangent bundle of the miniversal de-
formation of W∨. The higher genus theory can be obtained via Givental’s
formalism.
The miniversal deformation is generated by monomials of the local al-

gebra QW∨ . Among them, there are the marginal deformation generators
of the jW∨-invariant and degree 1. We label them by M−1, . . . ,M−l with
M−1 =

∏
i xi and the rest by M1, . . . ,Mµ−l for Milnor number µ. The

miniversal deformation is

W∨a−l,...,a−1,a0,a1,...,aµ−l
=

µ−l∑
−l

aiMi,

where M0 = W∨. Usually in singularity theory one considers only germ of
this functions; i.e., one imposes |ai| < ε. Here, we study global singularity
theory to allow the marginal deformation parameters a<0 to vary to infinity.
We still require |ai| < ε for i > 0. The most interesting aspect of this case is
the existence of a rigorous higher genus theory due to Givental. Recall that
the Frobenius manifold in this case is generically semisimple (this happens
because we can deform any singularity to Morse singularities).
We should mention that the B model Calabi–Yau three-fold has a higher

genus potential in physics. It is supposed to have many interesting proper-
ties and has been investigated intensively in recent years by Klemm and his
collaborators [3, 40]. For example, it is expected to be nonholomorphic and
satisfy the so called holomorphic anomaly equation. Furthermore, this anti-
holomorphic higher genus generating function is expected to be a modular
form. Unfortunately, we cannot access these information due to the lack
of a mathematically rigorous definition. On the other hand, for [XW /G̃∨],
we do have a rigorous theory of on the B side for all genera. This gives us
a quite unique opportunity to study higher genus mirror symmetry. The
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above idea has been put into practice by Krawitz–Shen and Milanov–Ruan
in dimension one.
Before describing their work, let us state two mirror conjectures govern-

ing the LG-CY correspondence in this case. Again, we refer toW∨∞ =
∏
i xi

as the large complex structure point and W∨0 = W∨ as the Gepner point
(see 4.13).

Conjecture 4.19 (mirror symmetry CY| LG). — There is a mirror
map matching a neighborhood of H1,1

CR([XW /G̃W ];C) with a neighborhood
of the large complex structure point W∨∞ such that the genus-g potential
FgGW is matched to the genus-g formal potential Fgformal of Saito–Givental.

Conjecture 4.20 (mirror symmetry LG| LG). — Let G = Aut(W ).
There is a mirror map matching a neighborhood of H1,1

W,G with a neighbor-
hood of the Gepner point W∨0 such that the FgFJRW-function is matched to
the formal potential Fgformal of Saito–Givental.

Conjecture 4.21. — Saito–Givental theory at W∨0 and W∨∞ are re-
lated by analytic continuation and symplectic transformation.

Remark 4.22. — Naively, one could expect that Saito–Givental theory
at W∨0 and W∨∞ are related by analytic continuation only; however, notice
that the precise statement involves a subtle issue. Indeed, the construction
of the Frobenius manifold structure in Saito’s theory depends on a choice
of primitive form defined by choosing a basis of middle dimension cycles
or period integrals. Here, we see the similarity between this case and the
Calabi–Yau case.

Now, let us describe the one-dimensional cases. Here, we are concerned
with [XW /G̃W ] for an elliptic curve XW . We obtain three examples which
share a common feature. They are one-dimensional stacks of Deligne–
Mumford type whose coarse space is P1 and whose stabilizers are triv-
ial apart from three special points, whose orbifold structure has orders
(k1, k2, k3) = (3, 3, 3), (2, 4, 4), and (2, 3, 6). We refer to these orbifolds as
Calabi–Yau orbifold P1, where the terminology “Calabi–Yau” is justified
by the fact that, although ω is not trivial, it becomes trivial after taking a
suitable tensor power ω⊗r.

The three cases arise precisely for W equal to the following polynomials
P∨8 = x3

1 + x3
2 + x3

3 (i.e. (k1, k2, k3) = (3, 3, 3) ),
X∨9 = x2

1 + x1x
2
2 + x4

3 (i.e. (k1, k2, k3) = (2, 4, 4) ),
J∨10 = x2

1x2 + x3
2 + x3

3 (i.e. (k1, k2, k3) = (2, 3, 6) ).
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Clearly, one should not confuse these orbifolds with weighted projective
stacks. To this effect we adopt the notation P1[1/k1, 1/k2, 1/k3] (instead
of P(w1, . . . , wN )). The corresponding LG mirrors are the famous simple
elliptic singularities P8, X9, and J10.

Remark 4.23. — It is a natural question to classify all CY orbifold P1,
i.e. one-dimensional orbifolds with nontrivial stabilizers only over a finite
number of points and whose canonical line bundle satisfies ω⊗r ∼= O for
some integer r. It turns out that there are only four possibilities. The above
three cases, alongside with P1[ 1

2 ,
1
2 ,

1
2 ,

1
2 ]. This stack cannot be expressed

as [XW /G̃] for G = Aut(W ), but rather as the quotient of an index two
subgroup of Aut(W ). Again, this requires solving Problem 3.13.

As we mentioned previously, the key observation is that the primitive
form and Frobenius structure are determined by a choice of symplectic basis
α, β of H1 of the corresponding elliptic curve. The parameter a together
with a symplectic basis determines a point τ ∈ H+ in the upper half-plane.
The space of parameter a can be viewed as the quotient of H+ by the
monodromy group Γ.

Saito’s Frobenius manifold structure defines the genus-zero potential
function F0(τ). In this situation, Givental has defined a higher genus gener-
ating function Fg(τ). By studying the transformation of Fg under τ 7→ gτ

for g ∈ Γ, the second author obtains, in collaboration with Milanov, the
following theorem.

Theorem 4.24. — For the miniversal deformation of simple elliptic sin-
gularities, the Saito–Givental function Fg transforms as a quasimodular
form of a finite index subgroup of SL2(Z).

Recall that the second part of the LG-CY correspondence conjecture in-
volves the quantization of a symplectic transformation. The above theorem
involves quantization, even if it is not obvious from the statement. More-
over, it provides a much stronger statement; namely, the claim that the
symplectic transformation is related to the modular transformation.

The second theorem fulfilling mirror symmetry is the following.

Theorem 4.25 (Krawitz–Shen [51]). — Both the CY| LG and the
LG| LG mirror symmetry conjectures hold for all genera for simple ellip-
tic singularities.

Theorems 4.24 and 4.25 imply the following corollaries.

Corollary 4.26. — The LG-CY correspondence holds for all genera
for the CY orbifold P1 of weights (3, 3, 3), (2, 4, 4), (2, 3, 6).
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Corollary 4.27. — The generating functions of GW theory for CY
orbifold P1 of weights (3, 3, 3), (2, 4, 4), (2, 3, 6) are quasimodular forms for
finite index subgroups of SL2(Z).

Remark 4.28. — The first corollary provides the first example of the
LG-CY correspondence for all genera.

The most interesting application is probably the modularity of the GW
theory of orbifold P1. As we mentioned in the introduction, a major prob-
lem in geometry and physics is to compute Gromov–Witten theory. To
do so, we often assemble the numerical Gromov–Witten invariants into a
generating function Fg, where g represents the genus. In some extremely
fortunate situations, Fg or, more precisely, the total descendant potential
D =

∑
g>0 h

g−1Fg provides a solution to classical integrable systems. This
is the case when the target is a point, by Kontsevich–Witten, or weighted P1

by (work of Okounkov–Pandharipande, Milanov–Tseng, and Johnson). It is
also striking that Okounkov-Pandharipande showed that Fg for the elliptic
curve E is a quasimodular form of SL2(Z). In this way the study of the
LG-CY correspondence, yields another class of examples: the CY orbifold
P1 of weights (3, 3, 3), (2, 4, 4), (2, 3, 6). In many ways, this is much harder
to prove because the Chen–Ruan orbifold cohomology of these examples
has more generators than that of elliptic curves and the Gromov-Witten
invariants are, by definition, more complicated. It would be extremely in-
teresting to investigate this phenomenon in higher dimension.

4.4. LG-CY correspondence shortcircuiting mirror symmetry

The genus-zero LG-CY correspondence has not been proven as a tool to
further understand the genus-zero GW theory. The latter was completely
elucidated by Givental and Lian–Liu–Yau and does not need to be com-
puted. Instead, we want to use genus-zero information to determine the
symplectic transformation ULG-CY. Via quantization, ULG-CY is expected
to compute GW theory in higher genus once we know the higher genus
FJRW theory. For this purpose, we need to carry out analytic continuation
via the Mellin–Barnes method: this yields the desired symplectomorphism
as illustrated in Remark 4.16. There is an alternative method that allows
us to write down the symplectomorphism ULG-CY directly without passing
through the B model of mirror symmetry and analytic continuation. As a
byproduct, this operation provides an explanation of the fact that ULG-CY
is symplectic.
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4.4.1. Witten’s GIT geometric setup

The construction follows the purely mathematical description of the LG-
CY correspondence, given by Witten in [74]. As we recalled (in the ho-
mogeneous case) in the introduction there are two GIT quotients for C∗
operating on CN × C with weights (w1, . . . , wN ,−d).

(1) One of them is the quotient of the open subscheme (CN \ {000})×C
yielding the total space ofO(−N) over the weighted projective stack
P(www). This is often referred in the literature as a CY construction
as soon as the sum of the weights is zero. Indeed, consider the com-
plex function W = p

∑N
j=1x

d/wj defined in coordinates x1, . . . , xN ,

and p over CN ×C (for simplicity, we are assuming that d is a mul-
tiple of wj). Then, W is C∗-invariant and descends to the quotient
O(−N). There, if we consider the map W as a fibration on C we
notice that only the special fibre is singular, precisely along the CY
hypersurface XW .

(2) The second GIT quotient is the quotient of the open subscheme
CN × C∗ yielding the stack [CN/〈jW 〉]. If we consider the above
map W as a fibration over C, we get the LG singularity model
W : [CN/〈jW 〉] → C for W =

∑N
j=1 x

d/wj
j with its isolated singu-

larity in the special fibre and no critical points elsewhere.
From this perspective both sides of the correspondence arise from the same
C∗-invariant morphism W and from the same geometric setup

W : [U/C∗] −→ C (for U = CN × C). (4.13)

4.4.2. Matrix factorizations and Orlov’s equivalence

As illustrated in [36] we can exploit the above geometry to present the
equivalence between the bounded derived category Db(XW ) of coherent
sheaves on XW and the triangulated category of graded matrix factoriza-
tion MF gr(W ) of W : CN → C (this follows from Orlov theorem [63] we
refer to Isik [43] for a complete treatment). We recall that a matrix factor-
ization of W is a pair

(E, δE) =
(
E0 δ1←−−
−−→
δ0

E1
)
,

where E = E0 ⊕ E1 is a Z2-graded finitely generated free module over
R = C[x1, . . . , xN ], and δE ∈ End1

R(E) is a degree 1 ∈ Z2 endomorphism
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of E, such that δ2 = W · idE . There is a natural Z-graded version, which
gives rise to the triangulated category MF gr(W ) of matrix factorizations.
In [66], Polishchuk and Vaintrob have shown how to apply the Chern

character formalism for differential graded categories in general to the
special case of Zd-equivariant matrix factorization. Via this construction,
and the natural functor mapping Z-graded matrix factorization to Zd-
equivariant ones, we get the Chern character

ch : K(MFZd(W ))→ HH(MFZd(W )),

where HH stands for the Hochschild cohomology applied to the differential
graded category of Zd-equivariant matrix factorizations. In fact, in [66] a
natural isomorphism involving the FJRW state space

HH(MFZd(W )) ∼= HW,〈jW 〉
is shown. In this way, Orlov’s equivalence

MF gr(W ) ∼−−−→ Db(XW )

yields, after passage to K theory and via Serre duality, an isomorphism be-
tween the state spaces of GW theory of XW and the state space of FJRW
theory ofW, 〈j〉. The cohomological version of Orlov’s equivalence preserves
the Euler pairings χ(E,F ) :=

∑
i∈Z dim Hom(E,F [i]) after multiplication

on both sides by the Gamma class Γ̃. We refer to [42] and [15] for precise def-
initions of the Gamma class for the LG model and for the CY hypersurface
XW ; the compatibility with the Euler pairings is guaranteed by the follow-
ing relation with the Todd character: ((−1) deg

2 Γ̃XW ) ·Γ̃XW = (2πi)deg tdXW
(a consequence of Γ(1− z)Γ(1 + z) = πz/ sin(πz)). We finally obtain

ΦOrlov : HW,〈j〉 −→ H∗CR(XW ) (4.14)

respecting the Euler pairings on both sides. We point out that this isomor-
phism does not respect the bigrading defined in Section 3.

4.4.3. Short-circuiting mirror symmetry

For simplicity, and in order to connect to the discussion of the introduc-
tion, let us focus on the case of the quintic three-fold and refer to [15] for
the generalizations to weighted homogeneous polynomials.

Recall that solving GW and FJRW theories amounts to writing a basis
of flat sections of a certain vector bundle with connection. Namely, once
the state space of the theory is specified HW, we consider the trivial vector
bundle DW = HW × A −→ A, where A is a contractible neighbourhood
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of H1,1
W . This vector bundle is equipped with Dubrovin’s connection ∇W

and its fibres are the even-degree parts of the state spaces of the relevant
theory: H∗CR(XW ) for GW theory and HW,〈j〉 for FJRW theory. Solving
each theory in genus zero amounts to define morphisms

Γ(DFJRW,∇FJRW) Γ(DGW,∇GW)

HFJRW

OO

HGW

OO

identifying HW with the space of flat sections Γ(DW,∇W). The proofs of
the mirror symmetry conjectures 4.14 (Givental [34], Lian–Liu–Yau [56])
and 4.19 (by the authors [16]) yield an identification of (DW,∇W) with
two local pictures of the B model vector bundle (V,∇V ). Via analytic
continuation this yields an identification between Γ(DFJRW,∇FJRW) and
Γ(DGW,∇GW). More precisely, following Figure 1.1, we can identify both
spaces of flat sections to germs of flat sections of (V,∇V ) around 0 and ∞
and carry out a parallel transport there (this is well defined in terms of
multivalued functions, or in terms of a single-valued function once branch
cut is chosen, see Remark 4.31). In [15] we prove, in collaboration with
Iritani, that analytic continuation can be equivalently replaced by Orlov’s
isomorphism (4.14).

Theorem 4.29. — The diagram

Γ(DFJRW,∇FJRW)
analytic continuation // Γ(DGW,∇GW)

�

HFJRW

OO

ΦOrlov

// HGW

OO

is commutative. In this way the linear transformation ULG-CY matching the
bases of flat sections is encoded by a symplectic matrix expressing ΦOrlov
for a given choice of bases of the two state spaces.

Remark 4.30. — The above statement may be regarded as saying that
Orlov’s categorical equivalence mirrors on the A-model the analytic con-
tinuation carried out by means of the B-model picture (V,∇V ). This fits
in Iritani’s framework developped in [42] describing the integral structures
mirroring the local systems H3(X∨W,t,Z) ⊂ H3(X∨W,t,C) of the B models.

In physics, this counterpart to parallel transport has been widely treated.
Hori, Herbst, and Page rephrase Orlov’s equivalence in terms of brane trans-
port, see [36]. One of the most interesting aspects of their work is the above
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mentioned reformulation of Orlov’s functor passing through the geometric
setup (4.13). There, we are led to extend representations of the cyclic group
〈j〉 to representations of C∗; clearly, there is not a unique way to do so and
this is the reason why Orlov’s equivalence should be actually regarded as
a set of functors

MF gr(W ) ∼−−→ Db(XW ) yielding Φa : HFJRW −→ HGW

parametrized by a ∈ Z (see [63, §2.2]). Any two of these functors match
for a suitable autoequivalence of the source category. We treat this aspect
completely in [15].

Remark 4.31. — In complete analogy, the analytic continuation should
be carried along an open substack of the one dimensional stack [P1/Zd]; this
happens because over the conifold point and over the large complex struc-
ture point, the fibres X∨W,aaa are singular and over the Gepner point there
is a nontrivial stabilizer. In this way, the analytic continuation of period
integrals is defined up to the monodromy operator T at infinity (Remark
4.31). The theorem above should be more precisely stated as follows: there
is a choice of analytic continuation commuting with Orlov’s isomorphism
Φ0. Let us express Orlov’s isomorphisms as symplectic matrices Ua with
respect to the chosen bases for HFJRW and HGW. The linear map T oper-
ates on the period integrals and changes the symplectomorphism ULG-CY
by conjugation. Then, we have the identification

Φa = T−aULG-CYT
a

via the morphism HGW → Γ(DGW,∇GW).
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