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LANDAU-GINZBURG MODELS IN REAL MIRROR
SYMMETRY

by Johannes WALCHER

Abstract. — In recent years, mirror symmetry for open strings has exhibited
some new connections between symplectic and enumerative geometry (A-model)
and complex algebraic geometry (B-model) that in a sense lie between classical
and homological mirror symmetry. I review the rôle played in this story by matrix
factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.
Résumé. — Récemment, la symétrie miroir pour les cordes ouvertes a dévoilé

de nouveaux liens entre la géométrie symplectique et énumérative (modèle A) et
la géométrie algébrique complexe (modèle B) qui en un certain sens se situent
entre la symétrie miroir classique et sa version homologique. On résume ici le rôle
que jouent dans cette histoire les factorisations matricielles et la correspondance
Calabi-Yau/Landau-Ginzburg.

Contribution to proceedings of the workshop on “Geometry and Physics
of Landau-Ginzburg Models”, May 31–June 4, 2010, to appear in special
volume of Annales de l’Institut Fourier

1. Introduction

We begin with an overview of the (pre-)history of the line of research
reported here.

Mirror symmetry rose to prominence around 1990 after a computation
by Candelas, de la Ossa, Green and Parkes [6]. These authors used the
conjectural equivalence of N = 2 superconformal field theories attached to
mirror pairs (X,Y ) of Calabi-Yau manifolds (as well as some other infor-
mation about the use of these manifolds for compactifying string theory)
to make a prediction about the number of rational curves on a generic

Keywords: Mirror symmetry, Landau-Ginzburg models, matrix factorizations, algebraic
cycles, real enumerative geometry.
Math. classification: 81T40, 14N35, 14C25.
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quintic threefold. That prediction was expressed in terms of the periods of
an assumed mirror manifold previously constructed by Greene and Plesser
[13].
The mathematical theory relevant to the computations on the mirror

manifold (“B-model”) was rapidly understood to be related to classical
Hodge theory [27]. Based on the development of Gromov-Witten theory, the
enumerative predictions (“A-model”) were verified over subsequent years,
culminating in the proof of the now classical “mirror theorems” [23, 11, 25],
which may be informally stated as

Gromov-Witten theory of X
solved by
←−−−−→ Hodge theory of Y (1.1)

Somewhat more precisely, the right-hand side is only the genus 0 theory,
and the right-hand side is the variation of Hodge structure associated with
a family Y → B of Calabi-Yau threefolds. Formulated in this way, the
correspondence (1.1) sounds more asymmetrical than necessary, because
the parameter space B appears to be absent on the left hand side. As
a remedy, physicists have reasoned from (before) the beginning that the
complete correspondence of superconformal field theories in fact implies
an identification of B (and all geometric structure attached to it) with a
“complexified Kähler moduli space”, suitably constructed from the genus 0
Gromov-Witten theory of X. The correspondence would become even more
symmetrical by including the reverse correspondence in which the roles of
X and Y are exchanged.

Part of the problem with the larger correspondence is that, even assum-
ing it exists, Gromov-Witten theory controls only an infinitesimal neighbor-
hood of a special point in B, (the so-called large complex structure limit),
and the construction of B appears to convey no mathematically useable
information away from that point. Recent developments, however, have
begun to improve that situation. Specifically, mathematical theories have
emerged that fit in with the physicists’ notion of a mirror correspondence
away from the large complex structure limit.
That, of course, is one of the central themes of this workshop: the Calabi-

Yau/Landau-Ginzburg correspondence. Originally proposed in [14], it was
fully developed in [43] into a relationship between definitions of physi-
cal theories involving non-trivial geometries (on the Calabi-Yau side) and
non-trivial interactions (on the Landau-Ginzburg side). The sense of this
relationship is an analytical continuation of certain physical observables
depending on a suitable set of complex parameters (or coupling constants).

ANNALES DE L’INSTITUT FOURIER
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In the simplest example, X is a hypersurface of degree d in projective
space Pd−1, defined as the vanishing locus of a homogeneous polyonomial
V of degree d. Let us write the correspondence as

non-linear sigma-model on X = {V = 0} ⊂ P4

m related to
Landau-Ginzburg orbifold V/Γ

(1.2)

where “orbifold” refers to the version equivariant with respect to the group
Γ ∼= Z/d that acts multiplicatively on the d variables entering V .
It should be clear that the correspondence (1.2), although also coming

from physics, is very different in character from (1.1): while the former
exchanges symplectic and complex structures, the latter remains “on one
side” of mirror symmetry. There are by now two well-developed, and in-
terrelated ways, in which (1.2) has been given mathematical meaning. The
first of those is homological in nature, and will play an important role mo-
mentarily. The second is based on the enumerative theory of singularities
developed by Fan-Jarvis-Ruan [9], and can also be elevated to a mirror
theorem [7].

FJR theory of V/Γ
solved by
←−−−−→ Hodge theory of Y (1.3)

Putting together (1.1), (1.2), and (1.3) provides the A-model at least at two
points (and their neighborhoods) in the parameter space B that is implicit
on the right hand side.
If everything makes sense, of course, the (individual member of the family

on the) right hand side would also be subject to the Calabi-Yau/Landau-
Ginzburg correspondence. In fact the physics proof of mirror symmetry
given in 2000 by K. Hori and C. Vafa [17] (see [28] for earlier work) is
stated as an equivalence

Sigma-model on X
dual to
←−−a==⇒ Landau-Ginzburg orbifold W/∆ (1.4)

Note that (1.4) is a combination of mirror symmetry and Calabi-Yau/Lan-
dau-Ginzburg correspondence. (To depict the full situation would require
a third dimension in which acts the Calabi-Yau/Landau-Ginzburg corre-
spondence for Y .) In particular, it exchanges symplectic and complex struc-
tures. This should be strictly kept in mind in the examples, in which W

also turns out to be a homogeneous polynomial of degree d. The only clear
disctinction between (1.2) and (1.4) then comes from the fact that the
group ∆ ∼= ker

(
(Z/d)d → Z/d

)
is larger than Γ ∼= Z/d.

We now turn to the categorical framework. In 1994, M. Kontsevich pro-
posed to understand the mathematical origin of mirror symmetry from an

TOME 61 (2011), FASCICULE 7
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underlying equivalence of triangulated categories [24],

Fuk(X) ∼= Db(Y ) (1.5)

It has become popular to think of mirror symmetry in these terms, al-
though it is perhaps not entirely clear how exactly one would recover (1.1)
from (1.5). The two basic ideas to reconstruct the parameter space B is
either as the deformation space of the category, or as the “space of stability
conditions” (in the sense of Douglas-Bridgeland). For the purpose of this
reconstruction, the proposal (1.5) suffers from the same shortcomings dis-
cussed below (1.1), that the left hand side is defined only at a particular
point in parameter space.
In 2002, M. Kontsevich made a proposal for the category that would

underly the correspondence (1.2) (in the B-model) and could also be used
on one side of homological mirror symmetry: the category of matrix fac-
torizations [5]. For our purposes,

Db(Y ) ∼= MF(W/∆) (1.6)

This proposal was picked up by D. Orlov [31], and by two groups of physicist
[21, 3]. Combining (1.6) with (1.5) would provide a homological version of
(1.4).
I became interested in matrix factorizations around that time. Together

with K. Hori, I wrote a few papers [19, 18, 20] exploring the possibility of
using (1.6) for concrete computations in mirror symmetry with D-branes.
(“D-brane” is the word physicists use in this context to refer to an object
in one of the triangulated category. The intuition is that computations
in Landau-Ginzburg models are much simpler that those in the derived
category. But there is another side to that coin.) In particular, we proposed
in [18] a mirror conjecture relating the set of 625 real quintics (as objects
in the Fukaya category) to a set of 625 matrix factorizations of the mirror
Landau-Ginzburg superpotential. This will be reviewed below.

The paper [39], which is of special relevance for this talk, contains three
main results. (i) The detailed definition of the right hand side of (1.6), and
especially a definition of the important Z-grading. (ii) An index theorem
for matrix factorizations in the framework of (1.6), including a formula
for the Chern character. (iii) A discussion of the notion of stability for the
category of matrix factorizations, including a formula for the central charge
(an additive complex function whose argument is the slope).
The equivalence (1.6) was proven by Orlov [30]. An index theorem for

matrix factorizations was also proven by van Straten [37], and more re-
cently by Polishchuk-Vaintrob in [33]. The formula for the central charge
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plays a rôle in work by Takahashi [36], and subsequent work. But the defi-
nition of a stability condition is not yet complete. For a relevant discussion
of geometric invariant theory involving non-reductive group actions, see
Doran-Kirwan [8].
The main evidence for the conjecture with Hori [18] emerged after my

2006 paper ref. [41]. My interest in the problem was initially revived after
J. Solomon computed the number of real lines on the quintic, see ref. [35].
Along a heuristic route analogous to that orginally employed by Candelas
et al. [6], Solomon’s result enabled me to predict the number of real rational
curves in all degrees. More to the point, the argument involves consideration
of holomorphic discs ending on the real locus L inside a quintic X defined
over the real numbers, and the full picture includes (1.5) and (1.6) in an
essential way.
The enumerative predictions (A-model) were verified first: The joint work

with Pandharipande and Solomon [32] uses (a suitable real version of)
localization on the moduli space of stable maps, together with Givental
equivariant mirror transform. The B-model explanation was found with
Morrison [29]: this work shows that the relevant Hodge theoretic object
is a normal function attached to an algebraic cycle C ⊂ Y in the mirror
family, by identifying the cycle dual to the real quintic, and calculating the
associated normal function. Taking all this together, the results of ref. [41]
can now be stated as a real mirror correspondence, generalizing (1.1) (1)

real Gromov-Witten
theory of (X,L)

solved by
←−−−−→ normal function

attached to (Y,C) (1.7)

One of the most interesting aspects of this correspondence is that the cycle
C is actually derived from the matrix factorization that is conjecturally
dual, via the equivalence Fuk(X) ∼= MF(W/∆), to the real quintic L (as
an object in Fuk(X)). In that sense the theorem (1.7) provides evidence
for the conjecture of ref. [18].
In the rest of this talk, I will describe the various ingredient in the open

string mirror correspondence (1.7). In the final section, I will describe a
few consequences that one might draw for the (possible) rôle of matrix
factorizations in mirror symmetry.

Remark 1.1. — As in the review [40], I will here concentrate on progress
made on open mirror symmetry on compact Calabi-Yau threefolds. For a re-
view of the progress on non-compact manifolds, see [26]. Landau-Ginzburg

(1)Here, L ⊂ X is the real quintic, and C ⊂ Y is an algebraic cycle in the mirror family,
see below for the details.

TOME 61 (2011), FASCICULE 7



2870 Johannes WALCHER

models and matrix factorizations also play a rôle in mirror symmetry for
non-Calabi-Yau manifolds, some of which was discussed at other talks in
this conference.

Acknowledgment. I wish to thank the organizers for putting together
an enjoyable workshop in Grenoble, and especially Alessandro Chiodo, as
well as the referee, for encouragement in writing up a more comprehensible
version of my talk.

2. A-model

Our interest is concentrated on the quintic Calabi–Yau X = {V = 0} ⊂
P4, defined as the vanishing locus of a homogeneous degree 5 polynomial
V in 5 complex variables x1, . . . , x5. We assume that X is defined over
the real numbers, which means that all coefficients of V are real (possi-
bly up to some common phase). The real locus {xi = x̄i} ⊂ X is then
a Lagrangian submanifold with respect to the standard symplectic struc-
ture, and after choosing a flat U(1) connection, will define an object in the
(derived) Fukaya category Fuk(X).
Both the topological type and the homology class in H3(X;Z) of the real

locus depend on the complex structure of X (the choice of (real) polyno-
mial V ). On the other hand, the Fukaya category is independent of the
choice of V (real or not). The object in Fuk(X) that we shall refer to as
the real quintic is defined from the real locus L of X when V is the Fermat
quintic V = x5

1 + x5
2 + x5

3 + x5
4 + x5

5. It is not hard to see that topologically,
L ∼= RP3. There are therefore two choices of flat bundles on L, and we will
denote the corresponding objects of Fuk(X) by L+ and L−, respectively.
More precisely, since Fuk(X) depends on the choice of a complexified Käh-
ler structure on X, we define L± for some choice of Kähler parameter t
close to large volume Im(t)→∞, and then continue it under Kähler defor-
mations. In fact, the rigorous definition of the Fukaya category is at present
only known infinitesimally close to this large volume point [10]. However,
Fuk(X) does exist over the entire stringy Kähler moduli space of X, and
at least some of the structure varies holomorphically. Our interest here is
in the variation of the categorical structure associated with L± over the
entire stringy Kähler moduli space of X, identified via mirror symmetry
with the complex structure moduli space of the mirror quintic, Y .

The Fermat quintic is invariant under more than one anti-holomorphic
involution. If Z/5 denotes the multiplicative group of fifth roots of unity,

ANNALES DE L’INSTITUT FOURIER
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we define for χ = (χ1, . . . , χ5) ∈ (Z/5)5 an anti-holomorphic involution σχ
of P4 by its action on homogeneous coordinates

σχ : xi → χix̄i. (2.1)

The Fermat quintic is invariant under any σχ. The involution and the fixed
point locus only depend on the class of χ in (Z/5)5/(Z/5) ∼= (Z/5)4, and
we obtain in this way 54 = 625 (pairs of) objects L[χ]

± in Fuk(X).
We emphasize again that although we have defined the Lagrangians L[χ]

±
as fixed point sets of anti-holomorphic involutions of the Fermat quintic,
we can think of the corresponding objects of Fuk(X) without reference to
the complex structure.

3. B-model

Let V ∈ C[x1, x2, . . . , x5] be a polynomial. A matrix factorization of V is
a Z2-graded free C[x1, . . . , x5]-module M equipped with an odd endomor-
phism Q : M →M of square V ,

Q2 = V · idM (3.1)

In other words, Q is a “curved differential” when acting on M . Since the
curvature is central and independent of M , Q2 vanishes when acting on
morphisms of free modules. The category MF(V ) is then the triangulated
category of matrix factorizations with morphisms given by Q-closed mor-
phisms of free modules, modulo Q-exact morphisms. Matrix factorizations
are well-known objects since the mid ’80’s, see in particular [5], and it was
proposed by Kontsevich that MF(V ) should be a good description of B-type
D-branes in a Landau-Ginzburg model based on the worldsheet superpo-
tential V [31, 21, 3]. To apply this to the case of interest, we need a little
bit of extra structure.
When V is of degree 5, the so-called homological Calabi-Yau/Landau-

Ginzburg correspondence [30] states that the derived category of coherent
sheaves of the projective hypersurface X = {V = 0} ⊂ P4 is equivalent
to the graded, equivariant category of matrix factorizations of the corre-
sponding Landau-Ginzburg superpotential,

Db(X) ∼= MF(V/(Z/5)) (3.2)

where Z/5 is the group of 5-th roots of unity acting diagonally on x1, . . . , x5.
To pass to the mirror quintic Y by the standard Greene-Plesser construc-
tion, we replace V with the one-parameter family of potentials W given

TOME 61 (2011), FASCICULE 7
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by

W = 1
5
(
x5

1 + x5
2 + x5

3 + x5
4 + x5

5
)
− ψx1x2x3x4x5 (3.3)

and enlarge the orbifold group to obtain (1.6)

Db(Y ) ∼= MF(W/(Z/5)4) (3.4)

where (Z/5)4 = Ker
(
(Z/5)5 → Z/5

)
is the subgroup of phase symmetries

of W whose product is equal to 1.
To describe an object mirror to the real quintic, we begin with finding

a matrix factorization of the one-parameter family of polynomials (3.3).
If S ∼= C5 is a 5-dimensional vector space, we can associate to its exterior
algebra a C[x1, . . . , x5]-moduleM = ∧∗S⊗C[x1, . . . , x5]. It naturally comes
with the decomposition

M = M0 +M1 +M2 +M3 +M4 +M5 , where Ms = ∧sS ⊗ C[x1, . . . , x5],
(3.5)

and the Z2-grading (−1)s. Let ηi (i = 1, . . . , 5) be a basis of S and η̄i the
dual basis of S∗, both embedded in End(M). We then define two families
of matrix factorizations (M,Q±) of W by

Q± = 1√
5

5∑
i=1

(x2
i ηi + x3

i η̄i)±
√
ψ

5∏
i=1

(ηi − xiη̄i) (3.6)

To check that Q2
± = W ·idM , one uses that ηi, η̄i satisfy the Clifford algebra

{ηi, η̄j} = δij (3.7)

as well as the ensuing relations

{(x2
i ηi + x3

i η̄i), (ηi − xiη̄i)} = 0 and (ηi − xiη̄i)2 = −xi (3.8)

The matrix factorization (3.6) is quasi-homogeneous (C∗-gradable), but we
will not need this data explicitly.
Now to specfy objects in MF(W/∆), where ∆ = (Z/5)4 for the mirror

quintic, we have to equip M with a representation of ∆ such that Q± is
equivariant with respect to the action of ∆ on the xi. Since Q± is irre-
ducible, this representation of ∆ on M is determined up to a character of
∆ by a representation on S, i.e., an action on the ηi. For γ ∈ ∆, we have
γ(xi) = γixi for some fifth root of unity γi. We then set γ(ηi) = γ−2

i ηi,
making Q± equivariant. As noted, this representation is unique up to an
action on M0, i.e., a character of ∆.
For the mirror quintic, ∆ = Ker((Z/5)5 → Z/5), so ∆∗ = (Z/5)5/Z/5,

and we label the characters of ∆ as [χ]. The corresponding objects of

ANNALES DE L’INSTITUT FOURIER
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MF(W/∆) constructed out ofQ± (3.6) are classified asQ[χ]
± = (M,Q±, ρ[χ]),

where ρ[χ] is the representation on M we just described.
By using the explicit algorithm of [15], one may obtain representatives

of the matrix factorizations Q[χ]
± in Db(Y ), which would be interesting to

analyze further. A particularly nice one is the bundle

Ker

 M0(2)
⊕M2(1)
⊕M4(0)

Q±−→
M1(4)
⊕M3(3)
⊕M5(2)

 (3.9)

where Ms(k) = ∧sS ⊗OP4(k). See [29] for details.

4. Correspondence

Conjecture [18]. — There is an equivalence of categories Fuk(X) ∼=
MF(W/(Z/5)4) which identifies the 625 pairs of objects L[χ]

± with the 625
pairs of equivariant matrix factorizations Q[χ]

± .

Since (as follows from the calculation of the intersection indices below),
the images of the 625 objects in K-theory generate the lattices of topo-
logical charges of the respective categories, it is natural to propose that,
in an appropriate sense, the L[χ]

± generate Fuk(X) and the Q[χ]
± generate

MF(W/(Z/5)4). In combination with the Conjecture (and the equivalence
(1.6)), this would establish homological mirror symmetry for the pair (quin-
tic, mirror quintic). Similar statements should also hold for other Calabi-
Yau hypersurfaces or complete intersections, although the details would be
different (possibly substantially so).

5. Evidence 1

The first main evidence for the Conjecture is the identity of intersection
indices, originally due to [2].

Let us start with the geometric intersection index between(2) L[χ] and
L[χ′]. Because of the projective equivalence, we have to look at the inter-
section of the fixed point loci of σχ and σωχ′ from (2.1) where ω runs over
the 5 fifth roots of unity. It is not hard to see that topologically

Fix(σχ) ∩ Fix(σωχ′) ∩X ∼= RPd−2 , where d = #{χ′i = ωχi}. (5.1)

(2)The intersection index, being topological, does not depend on the Wilson lines on the
A-branes. For the B-branes, it is correspondingly independent of the sign of the square
root in (3.6).

TOME 61 (2011), FASCICULE 7
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After making the intersection transverse by a small deformation in the
normal direction, we obtain a vanishing contribution for d = 0, 1, 3, 5, and
±1 for d = 2, 4, where the sign depends on the non-trivial phase differences
χ∗iωχ

′
i. Explicitly, one finds

L[χ] ∩ L[χ′] =
∑
ω∈Z/5

f1(χ′∗ωχ), (5.2)

where

f1(χ) =
{∏5

i=1 sgn
(
Im(χi)

)
, if #{i, χi = 1} = 2, 4

0 else.
(5.3)

To compute the intersection index between the matrix factorizations, we
use the index theorem of [39]. It says in general

χHom
(
(M,Q, ρ), (M ′, Q′, ρ′)

)
:=
∑
i

(−1)i dim Homi
(
(M,Q, ρ), (M ′, Q′, ρ′)

)
= 1
|∆|

∑
γ∈∆

StrM ′ρ′(γ)∗ 1∏5
i=1(1− γi)

StrMρ(γ), (5.4)

where γi are the eigenvalues of γ ∈ ∆ acting on the xi, and ρ, ρ′ are the
representations of ∆ on M . For M = M ′, Q = Q′ and ρ = ρ[χ], ρ′ = ρ[χ′]
described above, this evaluates to

− 1
54

∑
γ∈(Z/5)4

χ(γ′)∗χ(γ)
5∏
i=1

(γi+γ2
i −γ3

i −γ4
i ) = −

∑
ω∈Z/5

f2(χ′∗ωχ), (5.5)

where

f2(χ) =
{∏5

i=1 sgn
(
Im(χi)

)
, if #{i, χi = 1} = 0

0 else.
(5.6)

We do not know any generally valid result from the representation theory of
finite cyclic group which shows that (5.2) and (5.5) coincide. It is however
not hard to check by hand or computer that for all χ,∑

ω∈Z/5

(f1 + f2)(ωχ) = 0. (5.7)

Hence
L[χ] ∩ L[χ′] = χHom(Q[χ], Q[χ′]) (5.8)

as claimed. A further computation shows that the rank of the 625 × 625
dimensional intersection matrix (5.2) is 204, which is equal to the rank of
H3(X;Z), and the determinant is one. So the classes of the L[χ] generate
the homology, as claimed above.
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REAL MIRROR SYMMETRY 2875

6. Evidence 2

Consider the endomorphism algebra Hom∗(Q,Q) of the matrix factor-
ization Q = Q+, as objects in MF(W/(Z/5)4). This algebra is Z-graded
thanks to the homogeneity of W [39]. We also have Hom0(Q,Q) ∼= C since
Q is irreducible, and this implies Hom3(Q,Q) ∼= C by Serre duality. Finally,
it is shown in [18] that

Hom1(Q,Q) = Hom2(Q,Q) =
{

0 ψ 6= 0
C ψ = 0

(6.1)

The appearance of an additional cohomology element in Hom1(Q,Q) is
another reflection of some results of [2] and was the initial motivation to
investigate mirror symmetry for the real quintic.
To interpret (6.1) in the A-model, we recall that the morphism algebra

of objects in the Fukaya category is defined using Lagrangian intersection
Floer homology [10]. For the endomorphism algebra of a single Lagrangian,
Floer homology is essentially a deformation of ordinary Morse homology
by holomorphic disks.

For example, consider the real quintic L ∼= RP3. Think of RP3 as S3/Z2,
and embed the S3 in R4 3 (y0, . . . , y3) as y2

0 +y2
1 +y2

2 +y2
3 = 1. A standard

Morse function for RP3 in this presentation is given by f = y2
1 + 2y2

2 + 3y2
3

restricted to the S3. This Morse function is self-indexing and has one critical
point in each degree i = 0, 1, 2, 3. The Morse complex takes the form

C0 0−→ C1 δ−→ C2 0−→ C3 (6.2)

Working with integer coefficients, Ci ∼= Z for all i, we have δ = 2, and the
complex (6.2) computes the well-known integral cohomology of RP3.
To compute Floer homology of the real quintic, we have to deform (6.2)

by holomorphic disks, i.e., δ = 2 + O(e−t/2). In the standard treatments,
such as [10], this requires taking coefficients from a certain formal (Novikov)
ring with uncertain convergence properties. In other words, Floer homology
is at present only defined in an infinitesimal neighborhood of the large
volume point in moduli space (which leads to the often heard remark that
HF∗(L,L) is isomorphic to H∗(L)). It is however natural to expect that we
may in fact analytically continue (6.2) to the opposite end of moduli space,
ψ = 0, where it is (conjecturally) identified with the deformation complex
of Q. In particular, we conjecture δ(ψ = 0) = 0 so as to reproduce (6.1).

TOME 61 (2011), FASCICULE 7
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7. “Proof”

The original construction of mirror symmetry by Greene and Plesser [13]
exploited the fact that at ψ = 0, we may reduce the equivalence between
the Fermat quintic {

∑
x5
i = 0} and the mirror quintic at ψ = 0, the LG

orbifold
∑
x5
i /(Z/5)4, to the equivalence between “minimal models”

Landau-Ginzburg model x5 mirror to
←−−−−→ Landau-Ginzburg orbifold x5/(Z/5)

(7.1)
This equivalence (which, ultimately, is a special case of Arnold’s strange
duality) has been explained at various levels in the literature, although
perhaps not in sufficient detail to provide a proof of mirror symmetry along
the following lines, initially envisioned by Greene and Plesser: One should
first quotient by a diagonal Z/5 action on the fifth tensor power of (7.1),
to obtain

(LG orbifold
∑
x5
i )/(Z/5)

mirror to
←−−−−→ (LG orbifold

∑
x5
i )/(Z/5)4 (7.2)

Then one would study the deformation theory of the relevant symplec-
tic/algebraic structures on the two sides, and show that they coincide.
Particular finite deformations would implement the Calabi-Yau/Landau-
Ginzburg correspondence, thereby connecting (7.2) to the various equiva-
lences listed in the introduction.
The conjecture of ref. [18] was very much informed by the construction

that we just sketched. At the homological level (in physicists’ language,
at the level of D-branes), the correspondence (7.1) identifies the vanishing
cycles of opening angle 4π/5 depicted in the figure (and viewed as objects
of the Fukaya category of the LG model x5) with the building blocks of
(3.6) at ψ = 0: these are simply the factorizations

x5 = x2 · x3 (7.3)
equipped with a representation of
Z/5, as objects of MF(x5/(Z/5)) on
the right hand side of (7.1). To give
slightly more details, let us denote the
factorization (7.3) with representa-
tion m ∈ (Z/5)∗ by Bm, and the van-
ishing cycle of opening angle 4π/5
and first leg oriented in the direction
2π/5 ·m by Am. One may then check
that Hom(Bm, Bm′) ∼= Am ∩′ Am′ ,

O

B

ANNALES DE L’INSTITUT FOURIER



REAL MIRROR SYMMETRY 2877

where ∩′ denotes the (asymmetrically transversalized) intersection in which
the second cycle is slightly tilted into the shaded regions. Taking cones over
these morphisms can then be seen to generate the entire categories: on the
right hand side, factorizations x5 = x ·x4, and on the left hand side, cycles
with opening angle 2π/5.

To exploit (7.1) for the purposes of real mirror symmetry, i.e., the con-
jecture of [18], one would like to identify the real locus(3) of the Fermat
quintic in the left hand side of (7.2). The naive guess that such a sub-
manifold should come from the real slice in each of the building blocks in
(7.1) cannot be quite correct, because that real slice is not on the list of
admissible objects: as explained in [16] the image under x5 should lie on
the positive real axis.
The naive guess is not very far off the mark, however. First of all, among

all possible vanishing cycles, those with opening angle 4π/5 are the closest
to the real slices. Actually, as explained in more detail in ref. [4], the real
slices and the vanishing cycles have the same intersection number, in other
words they are equivalent in homology. (This is indicated by the shaded
regions in the figure, which are the pre-images of the upper half plane under
x 7→ x5. The point is that the integrals of exp(ix5) along contours which
asymptote to these shaded regions are convergent.)
Moreover, the actual real slices play a central role in the context of “ori-

entifolds”. Orientifolds are an important string theory construction that at
the homological level amount simply to equipping the D-brane category
(in either symplectic or algebraic incarnation) with a contravariant invo-
lution. It can be seen that on the symplectic side (in either Calabi-Yau or
Landau-Ginzburg realization) the involution of the category comes with an
anti-holomorphic involution of the underlying geometry. In the Calabi-Yau
picture, the real locus then plays two distinguished roles–one as “orien-
tifold plane”, and one as a D-brane (an object of the underlying category).
When passing to the Landau-Ginzburg phase, the two roles would seem
to be taken by somewhat different players (the O and B in the figure).
The deviation should be viewed as a consequence of the different correc-
tions from holomorphic maps: D-branes see holomorphic discs ending on
them, and orientifold planes holomorphic crosscaps (maps P1 → X that are
equivariant with respect to the antipodal map on P1 and anti-holomorphic
involution on X). The Landau-Ginzburg analogue of these holomorphic
maps in the framework of Fan-Jarvis-Ruan theory [9] should also have a
bearing on this problem.

(3)with respect to one of the 625 possible involutions
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8. Main evidence

The main evidence for the above conjecture is the enumeration of holo-
morphic disks using mirror symmetry [41, 32, 29].

We introduce the generating function of open Gromov-Witten invariants
for the pair (X,L) = (quintic, real quintic) defined in [35].

TA(q) = log q
2 + 1

4 +
∑
d odd

ñdq
d/2 (8.1)

where d indexes the degree of the holomorphic disk. One may compute
the ñd similarly to the ordinary (g = 0) Gromov-Witten invariants by
localization on the moduli space of maps from the disk to P4. We then pull
back TA(q) under the standard mirror map

q = q(z) = exp($1(z)/$0(z)) (8.2)

where $0 and $1 are the power series and first logarithmic around z = 0
solutions of the Picard-Fuchs differential operator

L = θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4), θ = d

dz
, z = (5ψ)−5

(8.3)
Namely, we define

TB(z) = $0(z)TA(q(z)) (8.4)
Then the main result of [32] is the inhomogeneous Picard-Fuchs equation

LTB(z) = 15
8
√
z (8.5)

As shown in [29], one can identify TB(z) as a particular truncated normal
function(4) associated with the algebraic cycle C+ − C−, where

C± = {x1 + x2 = 0, x3 + x4 = 0, x2
5 ±

√
5ψx1x3 = 0} ⊂ {W = 0} (8.6)

are two families of curves in the mirror quintic. Namely, we have

TB = TB(z) =
∫
S

Ω̂ (8.7)

where S is a particular three-chain bounding C+−C−, and Ω̂ is a particular
choice of holomorphic three-form on Y , defined as Poincaré residue by the
formula

Ω̂ =
( 5

2πi

)3
ψResW=0

α

W
(8.8)

(4)We recall the definition in the next section.
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where α is the four-form on projective space

α =
∑
i

(−1)i−1xidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dx5 (8.9)

The choice of holomorphic three-form in (8.8) is precisely the one for which
the Picard-Fuchs operator of the mirror quintic takes the form (8.3).
So finally, the equivalence (8.4) is evidence for the Conjecture because

the cycles C± provide representatives of the second algebraic Chern class of
our matrix factorizations Q±. In general, Grothendieck’s theory of Chern
classes provides a map

calg
i : Db(Y )→ CHi(Y ) (8.10)

from the derived category of coherent sheaves to the Chow groups of alge-
braic cycles modulo rational equivalence. Composing this map on one side
with the equivalence Db(Y ) ∼= MF(W/(Z/5)4), and on the other with the
Abel-Jacobi map, we obtain the construction of a truncated normal func-
tion starting from a virtual matrix factorization of zero topological charge.
In particular [29]

calg
2 (Q+)− calg

2 (Q−) = [C+ − C−] ∈ CH2(Y ) (8.11)

9. Consequences, Infinitesimal invariant

What are the lessons of all of this for the geometry and physics of Landau-
Ginzburg models?

First of all, there are a few lose ends to tie up in what is known already.
For example, what is the Landau-Ginzburg version of the Chow group of
algebraic cycles that we used at the end of the previous section? (This could
merely involve writing out the abstract K-theoretic definition, see e.g., [34,
1]. But for calculations, a more hands-on approach would be desirable.)
Secondly, it seems quite unfortunate that one has to go through a fairly

long chain of correspondences, and a somewhat delicate geometric compu-
tation to arrive at the rather simple inhomogeneity in (8.5). In [38], I show
that in fact there does exist a shorcut, along the following lines.

Recall that the variation of Hodge structure associated with the family
of mirror quintics Y → B is concerned with the variation of the Hodge
decomposition

H3(Y ;C) = H3,0(Y )⊕H2,1(Y )⊕H1,2(Y )⊕H0,3(Y ) (9.1)
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of the third cohomology groupH3(Y ;C) ∼= H3(Y ;Z)⊗C with z = (5ψ)−5 ∈
B. After forming the Hodge filtration

F pH3(Y ) =
⊕
p′>p

Hp′,3−p′(Y ) (9.2)

we may write the important condition of Griffiths transversality of the VHS
as

∇F pH3(Y ) ⊂ F p−1H3(Y )⊗ ΩB (9.3)

where ∇ is the flat (“Gauss-Manin”) connection originating from the local
triviality of H3(Y ;Z) over the moduli space B.

Moreover, we have the Griffiths intermediate Jacobian fibration which is
the fibration J3(Y )→ B of complex tori

J3(Y ) = H3(Y )
F 2H3(Y )⊕H3(Y ;Z)

∼= (F 2H3(Y ))∗/H3(Y ;Z) (9.4)

Then, a Poincaré normal function of the variation of Hodge structure is a
holomorphic section ν of J3(Y ) satisfying Griffiths transversality for nor-
mal functions

∇ν̃ ∈ F 1H3(Y )⊗ ΩB (9.5)

where ν̃ is an arbitrary lift of ν from J3(Y ) to H3(Y ) (the condition (9.5)
does not depend on the lift).
Finally, we need the notion of the infinitesimal invariant of a normal

function (see [12] for details). In our context (co-dimension two cycles on
Calabi-Yau threefolds), this invariant can be viewed as an analogue of the
well-known Griffiths-Yukawa coupling. We recall that this coupling, let us
denote it as κ, is a section of

(
F 3H3)−2 ⊗ Sym3ΩB → B arising from the

third iterate of the differential period mapping,

H1(TY )→
⊕

Hom
(
Hp,q(Y ), Hp−1,q+1(Y )

)
. (9.6)

and captures the invariant information about the infinitesimal variation of
Hodge structure.
Given a normal function, its infintesimal invariant can be obtained by

choosing a lift ν̃ of ν form J3(Y ) toH3(Y ), contracting∇ν̃ with F 2H3(Y )⊗
ΩB , and using (9.5) to obtain a section δ of

(
F 3H3)−1 ⊗ Sym2ΩB → B.

This invariant captures the infinitesimal variation of mixed Hodge struc-
ture associated with the normal function, and therefore contains the same
information as the inhomogeneous Picard-Fuchs equation. Note however
that in contrast to (9.5), this definition of δ does depend on the lift. [The
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usual definition of the infinitesimal invariant takes the class of δ in H1 of
the Koszul complex

F 2H3 → F 1H3 ⊗ ΩB → F 0H3 ⊗ Ω2
B , (9.7)

which is independent of the lift.]
We are now nearing the punchline of the shortcut to (8.5). By contraction

with your choice Ω of section of F 3H3, the Griffiths-Yukawa coupling is
usually written as

κ =
∫
Y

Ω ∧∇3Ω (9.8)

which has a “Landau-Ginzburg” equivalent as a residue (written here up
to normalization)

κijk = Res∂iW∂jW∂kW

(dW )5 . (9.9)

To write a similar formula for the infinitesimal invariant, we have to spec-
ify a lift of the normal function. I have studied two distinguished lifts. The
first is the so-called real lift [42], which exploits the (non-holomorphic) split-
ting (9.1) of the Hodge filtration, and in which the infinitesimal invariant
satisfies the interesting equation

∂̄kδij = −κl̄ij δ̄l̄k̄ (9.10)

The other possibility is what I want to call the “Landau-Ginzburg lift”, in
which we have a formula similar to (9.9)

δij = Res
Str
(
∂iW∂jQ(dQ)5)

(dW )5 (9.11)

in terms of the residue for matrix factorizations introduced in [22].
To finish up, I think it is fair to say that the Landau-Ginzburg formu-

lation of D-brane categories has served very well to develop intuition, but
that several quantitative details are still better understood in the geomet-
ric description. This is true in A- and B-model, and among physicists and
mathematicians. All can benefit from filling in the details of the correspon-
dence.
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